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GAME THEORY, MAXIMUM ENTROPY, MINIMUM
DISCREPANCY AND ROBUST BAYESIAN

DECISION THEORY1

BY PETER D. GRÜNWALD AND A. PHILIP DAWID

CWI Amsterdam and University College London

We describe and develop a close relationship between two problems that
have customarily been regarded as distinct: that of maximizing entropy, and
that of minimizing worst-case expected loss. Using a formulation grounded
in the equilibrium theory of zero-sum games between Decision Maker and
Nature, these two problems are shown to be dual to each other, the solution to
each providing that to the other. Although Topsøe described this connection
for the Shannon entropy over 20 years ago, it does not appear to be widely
known even in that important special case.

We here generalize this theory to apply to arbitrary decision problems
and loss functions. We indicate how an appropriate generalized definition of
entropy can be associated with such a problem, and we show that, subject to
certain regularity conditions, the above-mentioned duality continues to apply
in this extended context. This simultaneously provides a possible rationale for
maximizing entropy and a tool for finding robust Bayes acts. We also describe
the essential identity between the problem of maximizing entropy and that of
minimizing a related discrepancy or divergence between distributions. This
leads to an extension, to arbitrary discrepancies, of a well-known minimax
theorem for the case of Kullback–Leibler divergence (the “redundancy-
capacity theorem” of information theory).

For the important case of families of distributions having certain mean
values specified, we develop simple sufficient conditions and methods for
identifying the desired solutions. We use this theory to introduce a new
concept of “generalized exponential family” linked to the specific decision
problem under consideration, and we demonstrate that this shares many of
the properties of standard exponential families.

Finally, we show that the existence of an equilibrium in our game can be
rephrased in terms of a “Pythagorean property” of the related divergence,
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thus generalizing previously announced results for Kullback–Leibler and
Bregman divergences.

1. Introduction. Suppose that, for purposes of inductive inference or choos-
ing an optimal decision, we wish to select a single distribution P ∗ to act as rep-
resentative of a class � of such distributions. The maximum entropy principle
[Jaynes (1989), Csiszár (1991) and Kapur and Kesavan (1992)] is widely ap-
plied for this purpose, but its rationale has often been controversial [see, e.g.,
van Fraassen (1981), Shimony (1985), Skyrms (1985), Jaynes (1985), Seidenfeld
(1986) and Uffink (1995, 1996)]. Here we emphasize and generalize a reinterpreta-
tion of the maximum entropy principle [Topsøe (1979), Walley (1991), Chapter 5,
Section 12, and Grünwald (1998)]: that the distribution P ∗ that maximizes the en-
tropy over � also minimizes the worst-case expected logarithmic score (log loss).
In the terminology of decision theory [Berger (1985)], P ∗ is a robust Bayes, or
�-minimax, act, when loss is measured by the logarithmic score. This gives a
decision-theoretic interpretation of maximum entropy.

In this paper we extend this result to apply to a generalized concept of entropy,
tailored to whatever loss function L is regarded as appropriate, not just logarithmic
score. We show that, under regularity conditions, maximizing this generalized
entropy constitutes the major step toward finding the robust Bayes (“�-minimax”)
act against � with respect to L. For the important special case that � is described
by mean-value constraints, we give theorems that in many cases allow us to
find the maximum generalized entropy distribution explicitly. We further define
generalized exponential families of distributions, which, for the case of the
logarithmic score, reduce to the usual exponential families. We extend generalized
entropy to generalized relative entropy and show how this is essentially the same
as a general decision-theoretic definition of discrepancy. We show that the family
of divergences between probability measures known as Bregman divergences
constitutes a special case of such discrepancies. A discrepancy can also be used
as a loss function in its own right: we show that a minimax result for relative
entropy [Haussler (1997)] can be extended to this more general case. We further
show that a “Pythagorean property” [Csiszár (1991)] known to hold for relative
entropy and for Bregman divergences in fact applies much more generally; and we
give a precise characterization of those discrepancies for which it holds.

Our analysis is game-theoretic, a crucial concern being the existence and
properties of a saddle-point, and its associated minimax and maximin acts, in a
suitable zero-sum game between Decision Maker and Nature.

1.1. A word of caution. It is not our purpose either to advocate or to criticize
the maximum entropy or robust Bayes approach: we adopt a philosophically
neutral stance. Rather, our aim is mathematical unification. By generalizing the
concept of entropy beyond the standard Shannon framework, we obtain a variety
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of interesting characterizations of maximum generalized entropy and display its
connections with other known concepts and results.

The connection with �-minimax might be viewed, by those who already
regard robust Bayes as a well-founded principle, as a justification for maximizing
entropy—but it should be noted that �-minimax, like all minimax approaches,
is not without problems of its own [Berger (1985)]. We must also point out
that some of the more problematic aspects of maximum entropy inference, such
as the incompatibility of maximum entropy with Bayesian updating [Seidenfeld
(1986) and Uffink (1996)], carry over to our generalized setting: in the words of
one referee, rather than resolving this problem, we “spread it to a new level of
abstraction and generality.” Although these dangers must be firmly held in mind
when considering the implications of this work for inductive inference, they do not
undermine the mathematical connections established.

2. Overview. We start with an overview of our results. For ease of exposition,
we make several simplifying assumptions, such as a finite sample space, in this
section. These assumptions will later be relaxed.

2.1. Maximum entropy and game theory. Let X be a finite sample space,
and let � be a family of distributions over X. Consider a Decision Maker (DM)
who has to make a decision whose consequences will depend on the outcome
of a random variable X defined on X. DM is willing to assume that X is
distributed according to some P ∈ �, a known family of distributions over X,
but he or she does not know which such distribution applies. DM would like to
pick a single P ∗ ∈ � to base decisions on. One way of selecting such a P ∗ is to
apply the maximum entropy principle [Jaynes (1989)], which advises DM to pick
that distribution P ∗ ∈ � maximizing H(P ) over all P ∈ �. Here H(P ) denotes
the Shannon entropy of P , H(P ) := −∑

x∈X p(x) log p(x) = EP {− logp(X)},
where p is the probability mass function of P . However, the various rationales
offered in support of this advice have often been unclear or disputed. Here we
shall present a game-theoretic rationale, which some may find attractive.

Let A be the set of all probability mass functions defined over X. By
the information inequality [Cover and Thomas (1991)], we have that, for any
distribution P , infq∈A EP {− logq(X)} is achieved uniquely at q = p, where
it takes the value H(P ). That is, H(P ) = infq∈A EP {− log q(X)}, and so the
maximum entropy can be written as

sup
P∈�

H(P ) = sup
P∈�

inf
q∈A

EP {− logq(X)}.(1)

Now consider the “log loss game” [Good (1952)], in which DM has to specify
some q ∈ A, and DM’s ensuing loss if Nature then reveals X = x is measured
by − logq(x). Alternatively, we can consider the “code-length game” [Topsøe
(1979) and Harremoës and Topsøe (2001)], wherein we require DM to specify
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a prefix-free code σ , mapping X into a suitable set of finite binary strings, and
to measure his or her loss when X = x by the length κ(x) of the codeword σ(x).
Thus DM’s objective is to minimize expected code-length. Basic results of coding
theory [see, e.g., Dawid (1992)] imply that we can associate with σ a probability
mass function q having q(x) = 2−κ(x). Then, up to a constant, − log q(x) becomes
identical with the code-length κ(x), so that the log loss game is essentially
equivalent to the code-length game.

By analogy with minimax results of game theory, one might conjecture that

sup
P∈�

inf
q∈A

EP {− logq(X)} = inf
q∈A

sup
P∈�

EP {− logq(X)}.(2)

As we have seen, P achieving the supremum on the left-hand side of (2) is
a maximum entropy distribution in �. However, just as important, q achieving
the infimum on the right-hand side of (2) is a robust Bayes act against �, or
a �-minimax act [Berger (1985)], for the log loss decision problem.

Now it turns out that, when � is closed and convex, (2) does indeed hold under
very general conditions. Moreover the infimum on the right-hand side is achieved
uniquely for q = p∗, the probability mass function of the maximum entropy
distribution P ∗. Thus, in this game between DM and Nature, the maximum entropy
distribution P ∗ may be viewed, simultaneously, as defining both Nature’s maximin
and—in our view more interesting—DM’s minimax strategy. In other words,
maximum entropy is robust Bayes. This decision-theoretic reinterpretation might
now be regarded as a plausible justification for selecting the maximum entropy
distribution. Note particularly that we do not restrict the acts q available to DM to
those corresponding to a distribution in the restricted set �: that the optimal act p∗
does indeed turn out to have this property is a consequence of, not a restriction on,
the analysis.

The maximum entropy method has been most commonly applied in the setting
where � is described by mean-value constraints [Jaynes (1989) and Csiszár
(1991)]: � = {P : EP (T ) = τ }, where T = t (X) ∈ Rk is some given real- or
vector-valued statistic. As pointed out by Grünwald (1998), for such constraints
the property (2) is particularly easy to show. By the general theory of exponential
families [Barndorff-Nielsen (1978)], under some mild conditions on τ there will
exist a distribution P ∗ satisfying the constraint EP ∗(T ) = τ and having probability
mass function of the form p∗(x) = exp{α0 + αTt (x)} for some α ∈ Rk , α0 ∈ R.
Then, for any P ∈ �,

EP {− log p∗(X)} = −α0 − αTEP (T ) = −α0 − αTτ = H(P ∗).(3)

We thus see that p∗ is an “equalizer rule” against �, having the same expected loss
under any P ∈ �.

To see that P ∗ maximizes entropy, observe that, for any P ∈ �,

H(P ) = inf
q∈A

EP {− logq(X)} ≤ EP {− log p∗(X)} = H(P ∗),(4)

by (3).
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To see that p∗ is robust Bayes and that (2) holds, note that, for any q ∈ A,

sup
P∈�

EP {− logq(X)} ≥ EP ∗{− logq(X)} ≥ EP ∗{− logp∗(X)} = H(P ∗),(5)

where the second inequality is the information inequality [Cover and Thomas
(1991)]. Hence

H(P ∗) ≤ inf
q∈A

sup
P∈�

EP {− logq(X)}.(6)

However, it follows trivially from the “equalizer” property (3) of p∗ that

sup
P∈�

EP {− logp∗(X)} = H(P ∗).(7)

From (6) and (7), we see that the choice q = p∗ achieves the infimum on the right-
hand side of (2) and is thus robust Bayes. Moreover, (2) holds, with both sides
equal to H(P ∗).

The above argument can be extended to much more general sample spaces (see
Section 7). Although this game-theoretic approach and result date back at least to
Topsøe (1979), they seem to have attracted little attention so far.

2.2. This work: generalized entropy. The above robust Bayes view of maxi-
mum entropy might be regarded as justifying its use in those decision problems,
such as discrete coding and Kelly gambling [Cover and Thomas (1991)], where the
log loss is clearly an appropriate loss function to use. But what if we are interested
in other loss functions? This is the principal question we address in this paper.

2.2.1. Generalized entropy and robust Bayes acts. We first recall, in Section 3,
a natural generalization of the concept of “entropy” (or “uncertainty inherent in a
distribution”), related to a specific decision problem and loss function facing DM.
The generalized entropy thus associated with the log loss problem is just the
Shannon entropy. More generally, let A be some space of actions or decisions and
let X be the (not necessarily finite) space of possible outcomes to be observed. Let
the loss function be given by L :X × A → (−∞,∞], and let � be a convex set of
distributions over X. In Sections 4–6 we set up a statistical game G� based on these
ingredients and use this to show that, under a variety of broad regularity conditions,
the distribution P ∗ maximizing, over �, the generalized entropy associated with
the loss function L has a Bayes act a∗ ∈ A [achieving infa∈A L(P ∗, a)] that is a
robust Bayes (�-minimax) decision relative to L—thus generalizing the result for
the log loss described in Section 2.1. Some variations on this result are also given.

2.2.2. Generalized exponential families. In Section 7 we consider in detail the
case of mean-value constraints, of the form � = {P : EP (T ) = τ }. For fixed loss
function L and statistic T , as τ varies we obtain a family of maximum generalized
entropy distributions, one for each value of τ . For Shannon entropy, this turns out
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to coincide with the exponential family having natural sufficient statistic T [Csiszár
(1975)]. In close analogy we define the collection of maximum generalized entropy
distributions, as we vary τ , to be the generalized exponential family determined by
L and T , and we give several examples of such generalized exponential families.
In particular, Lafferty’s “additive models based on Bregman divergences” [Lafferty
(1999)] are special cases of our generalized exponential families (Section 8.4.2).

2.2.3. Generalized relative entropy and discrepancy. In Section 8 we describe
how generalized entropy extends to generalized relative entropy and show how this
in turn is intimately related to a discrepancy or divergence function. Maximum
generalized relative entropy then becomes a special case of the minimum
discrepancy method. For the log loss, the associated discrepancy function is just
the familiar Kullback–Leibler divergence, and the method then coincides with the
“classical” minimum relative entropy method [Jaynes (1989); note that, for Jaynes,
“relative entropy” is the same as Kullback–Leibler divergence; for us it is the
negative of this].

2.2.4. A generalized redundancy-capacity theorem. In many statistical deci-
sion problems it is more natural to seek minimax decisions with respect to the
discrepancy associated with a loss, rather than with respect to the loss directly.
With any game we thus associate a new “derived game,” in which the discrepancy
constructed from the loss function of the original game now serves as a new loss
function. In Section 9 we show that our minimax theorems apply to games of this
form too: broadly, whenever the conditions for such a theorem hold for the original
game, they also hold for the derived game. As a special case, we reprove a minimax
theorem for the Kullback–Leibler divergence [Haussler (1997)], known in infor-
mation theory as the redundancy-capacity theorem [Merhav and Feder (1995)].

2.2.5. The Pythagorean property. The Kullback–Leibler divergence has a
celebrated property reminiscent of squared Euclidean distance: it satisfies an
analogue of the Pythagorean theorem [Csiszár (1975)]. It has been noted [Csiszár
(1991), Jones and Byrne (1990) and Lafferty (1999)] that a version of this property
is shared by the broader class of Bregman divergences. In Section 10 we show
that a “Pythagorean inequality” in fact holds for the discrepancy based on an
arbitrary loss function L, so long as the game G� has a value; that is, an analogue
of (2) holds. Such decision-based discrepancies include Bregman divergences as
special cases. We demonstrate that, even for the case of mean-value constraints,
the Pythagorean inequality for a Bregman divergence may be strict.

2.2.6. Finally, Section 11 takes stock of what has been achieved and presents
some suggestions for further development.
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3. Decision problems. In this section we set out some general definitions and
properties we shall require. For more background on the concepts discussed here,
see Dawid (1998).

A DM has to take some action a selected from a given action space A, after
which Nature will reveal the value x ∈ X of a quantity X, and DM will then
suffer a loss L(x, a) in (−∞,∞]. We suppose that Nature takes no account of the
action chosen by DM. Then this can be considered as a zero-sum game between
Nature and DM, with both players moving simultaneously, and DM paying Nature
L(x, a) after both moves are revealed. We call such a combination G := (X,A,L)

a basic game.
Both DM and Nature are also allowed to make randomized moves, such a move

being described by a probability distribution P over X (for Nature) or ζ over A
(for DM). We assume that suitable σ -fields, containing all singleton sets, have been
specified in X and A, and that any probability distributions considered are defined
over the relevant σ -field; we denote the family of all such probability distributions
on X by P0. We further suppose that the loss function L is jointly measurable.

3.1. Expected loss. We shall permit algebraic operations on the extended real
line [−∞,∞], with definitions and exceptions as in Rockafellar (1970), Section 4.

For a function f :X → [−∞,∞], and P ∈ P0, we may denote EP {f (X)}
[i.e., EX∼P {f (X)}] by f (P ). When f is bounded below, f (P ) is construed
as ∞ if P {f (X) = ∞} > 0. When f is unbounded, we interpret f (P ) as
f +(P ) − f −(P ) ∈ [−∞,+∞], where f +(x) := max{f (x),0} and f −(x) :=
max{−f (x),0}, allowing either f +(P ) or f −(P ) to take the value ∞, but not
both. In this last case f (P ) is undefined, else it is defined (either as a finite number
or as ±∞).

If DM knows that Nature is generating X from P or, in the absence of such
knowledge, DM is using P to represent his or her own uncertainty about X,
then the undesirability to DM of any act a ∈ A will be assessed by means of its
expected loss,

L(P,a) := EP {L(X,a)}.(8)

We can similarly extend L to randomized acts: L(x, ζ ) := EA∼ζ {L(x,A)},
L(P, ζ ) = E(X,A)∼P×ζ {L(X,A)}.

Throughout this paper we shall mostly confine attention to probability measures
P ∈ P0 such that L(P,a) is defined for all a ∈ A, and we shall denote the family
of all such P by P . We further confine attention to randomized acts ζ such
that L(P, ζ ) is defined for all P ∈ P , denoting the set of all such ζ by Z. Note
that any distribution degenerate at a point x ∈ X is in P , and so L(x, ζ ) is defined
for all x ∈ X, ζ ∈ Z.

LEMMA 3.1. For all P ∈ P , ζ ∈ Z,

L(P, ζ ) = EX∼P {L(X, ζ )} = EA∼ ζ {L(P,A)}.(9)
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PROOF. When L(P, ζ ) is finite this is just Fubini’s theorem.
Now consider the case L(P, ζ ) = ∞. First suppose L ≥ 0 everywhere.

If L(x, ζ ) = ∞ for x in a subset of X having positive P -measure, then (9)
holds, both sides being +∞. Otherwise, L(x, ζ ) is finite almost surely [P ].
If EP {L(X, ζ )} were finite, then by Fubini it would be the same as L(P, ζ ).
So once again EP {L(X, ζ )} = L(P, ζ ) = +∞.

This result now extends easily to possibly negative L, on noting that L−(P, ζ )

must be finite; a parallel result holds when L(P, ζ ) = −∞.
Finally the whole argument can be repeated after interchanging the roles of x

and a and of P and ζ . �

COROLLARY 3.1. For any P ∈ P ,

inf
ζ∈Z

L(P, ζ ) = inf
a∈A

L(P,a).(10)

PROOF. Clearly infζ∈Z L(P, ζ ) ≤ infa∈A L(P,a). If infa∈A L(P,a) = −∞
we are done. Otherwise, for any ζ ∈ Z, L(P, ζ ) = EA∼ζL(P,A) ≥
infa∈A L(P,a). �

We shall need the fact that, for any ζ ∈ Z, L(P, ζ ) is linear in P in the
following sense.

LEMMA 3.2. Let P0,P1 ∈ P , and let Pλ := (1 −λ)P0 +λP1. Fix ζ ∈ Z, such
that the pair {L(P0, ζ ),L(P1, ζ )} does not contain both the values −∞ and +∞.
Then, for any λ ∈ (0,1), L(Pλ, ζ ) is finite if and only if both L(P1, ζ ) and L(P0, ζ )

are. In this case L(Pλ, ζ ) = (1 − λ)L(P0, ζ ) + λL(P1, ζ ).

PROOF. Consider a bivariate random variable (I,X) with joint distribution P ∗
over {0,1}×X specified by the following: I = 1,0 with respective probabilities λ,
1 − λ; and, given I = i, X has distribution Pi . By Fubini we have

EP ∗{L(X, ζ )} = EP ∗[EP ∗{L(X, ζ )|I }],
in the sense that, whenever one side of this equation is defined and finite, the same
holds for the other, and they are equal. Noting that, under P ∗, the distribution of X

is Pλ marginally, and Pi conditional on I = i (i = 0,1), the result follows. �

3.2. Bayes act. Intuitively, when X ∼ P an act aP ∈ A will be optimal if it
minimizes L(P,a) over all a ∈ A. Any such act aP is a Bayes act against P . More
generally, to allow for the possibility that L(P,a) may be infinite as well as to take
into account randomization, we call ζP ∈ Z a (randomized) Bayes act, or simply
Bayes, against P (not necessarily in P ) if

EP {L(X, ζ ) − L(X, ζP )} ∈ [0,∞](11)
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for all ζ ∈ Z. We denote by AP (resp. ZP ) the set of all nonrandomized (resp.
randomized) Bayes acts against P . Clearly AP ⊆ ZP , and L(P, ζP ) is the same
for all ζP ∈ ZP .

The loss function L will be called �-strict if, for each P ∈ �, there
exists aP ∈ A that is the unique Bayes act against P ; L is �-semistrict if, for
each P ∈ �, AP is nonempty, and a, a′ ∈ AP ⇒ L(·, a) ≡ L(·, a′). When L is
�-strict, and P ∈ �, it can never be optimal for DM to choose a randomized act;
when L is �-semistrict, even though a randomized act can be optimal there is never
any point in choosing one, since its loss function will be identical with that of any
nonrandomized optimal act.

Semistrictness is clearly weaker than strictness. For our purposes we can replace
it by the still weaker concept of relative strictness: L is �-relatively strict if
for all P ∈ � the set of Bayes acts AP is nonempty and, for all a, a′ ∈ AP ,
L(P ′, a) = L(P ′, a′) for all P ′ ∈ �.

3.3. Bayes loss and entropy. Whether or not a Bayes act exists, the Bayes loss
H(P ) ∈ [−∞,∞] of a distribution P ∈ P is defined by

H(P ) := inf
a∈A

L(P,a).(12)

It follows from Corollary 3.1 that it would make no difference if the infimum
in (12) were extended to be over ζ ∈ Z. We shall mostly be interested in Bayes acts
of distributions P with finite H(P ). In the context of Section 2.1, with L(x, q) the
log loss − log q(x), H(P ) is just the Shannon entropy of P .

PROPOSITION 3.1. Let P ∈ P and suppose H(P ) is finite. Then the
following hold:

(i) ζP ∈ Z is Bayes against P if and only if

EP {L(X,a) − L(X, ζP )} ∈ [0,∞](13)

for all a ∈ A.
(ii) ζP is Bayes against P if and only if L(P, ζP ) = H(P ).

(iii) If P admits some randomized Bayes act, then P also admits some
nonrandomized Bayes act; that is, AP is not empty.

PROOF. Items (i) and (ii) follow easily from (10) and finiteness. To prove (iii),
let f (P,a) := L(P,a) − H(P ). Then f (P,a) ≥ 0 for all a, while EA∼ζP

f (P,

A) = L(P, ζP ) − H(P ) = 0. We deduce that {a ∈ A :f (P,a) = 0} has probabil-
ity 1 under ζP and so, in particular, must be nonempty. �

We express the well-known concavity property of the Bayes loss [DeGroot
(1970), Section 8.4] as follows.
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PROPOSITION 3.2. Let P0,P1 ∈ P , and let Pλ := (1 − λ)P0 + λP1. Suppose
that H(Pi) < ∞ for i = 0,1. Then H(Pλ) is a concave function of λ on [0,1] (and
thus, in particular, continuous on (0,1) and lower semicontinuous on [0,1]). It is
either bounded above on [0,1] or infinite everywhere on (0,1).

PROOF. Let B be the set of all a ∈ A such that L(Pλ, a) < ∞ for
some λ ∈ (0,1)—and thus, by Lemma 3.2, for all λ ∈ [0,1]. If B is empty,
then H(Pλ) = ∞ for all λ ∈ (0,1); in particular, H(Pλ) is then concave on [0,1].
Otherwise, taking any fixed a ∈ B we have H(Pλ) ≤ L(Pλ, a) ≤ maxi L(Pi, a),
so H(Pλ) is bounded above on [0,1]. Moreover, as the pointwise infimum of
the nonempty family of concave functions {L(Pλ, a) :a ∈ A}, H(Pλ) is itself
a concave function of λ on [0,1]. �

COROLLARY 3.2. If for all a ∈ A, L(Pλ, a) < ∞ for some λ ∈ (0,1), then
for all λ ∈ [0,1], H(Pλ) = lim{H(Pµ) :µ ∈ [0,1],µ → λ} [it being allowed
that H(Pλ) is not finite].

PROOF. In this case B = A, so that H(Pλ) = infa∈B L(Pλ, a). Each func-
tion L(Pλ, a) is finite and linear, hence a closed concave function of λ on [0,1].
This last property is then preserved on taking the infimum. The result now follows
from Theorem 7.5 of Rockafellar (1970). �

COROLLARY 3.3. If in addition H(Pi) is finite for i = 0,1, then H(Pλ) is
a bounded continuous function of λ on [0,1].

Note that Corollary 3.3 will always apply when the loss function is bounded.
Under some further regularity conditions [see Dawid (1998, 2003) and

Section 3.5.4 below], a general concave function over P can be regarded as
generated from some decision problem by means of (12). Concave functions have
been previously proposed as general measures of the uncertainty or diversity in a
distribution [DeGroot (1962) and Rao (1982)], generalizing the Shannon entropy.
We shall thus call the Bayes loss H , as given by (12), the (generalized ) entropy
function or uncertainty function associated with the loss function L.

3.4. Scoring rule. Suppose the action space A is itself a set Q of distributions
for X. Note we are not here considering Q ∈ Q as a randomized act over X, but
rather as a simple act in its own right (e.g., a decision to quote Q as a description
of uncertainty about X). We typically write the loss as S(x,Q) in this case and
refer to S as a scoring rule or score. Such scoring rules are used to assess the
performance of probability forecasters [Dawid (1986)]. We say S is �-proper
if � ⊆ Q ⊆ P and, for all P ∈ �, the choice Q = P is Bayes against X ∼ P .
Then for P ∈ �,

H(P ) = S(P,P ).(14)



MAXIMUM ENTROPY AND ROBUST BAYES 1377

Suppose now we start from a general decision problem, with loss function L

such that ZQ is nonempty for all Q ∈ Q. Then we can define a scoring rule by

S(x,Q) := L(x, ζQ),(15)

where for each Q ∈ Q we suppose we have selected some specific Bayes
act ζQ ∈ ZQ. Then for P ∈ Q, S(P,Q) = L(P, ζQ) is clearly minimized
when Q = P , so that this scoring rule is Q-proper. If L is Q-semistrict, then (15)
does not depend on the choice of Bayes act ζQ. More generally, if L is Q-relatively
strict, then S(P,Q) does not depend on such a choice, for all P,Q ∈ Q.

We see that, for P ∈ Q, infQ∈Q S(P,Q) = S(P,P ) = L(P, ζP ) = H(P ).
In particular, the generalized entropy associated with the constructed scoring
rule (15) is identical with that determined by the original loss function L. In this
way, almost any decision problem can be reformulated in terms of a proper
scoring rule.

3.5. Some examples. We now give some simple examples, both to illustrate
the above concepts and to provide a concrete focus for later development. Further
examples may be found in Dawid (1998) and Dawid and Sebastiani (1999).

3.5.1. Brier score. Although it can be generalized, we restrict our treatment
of the Brier score [Brier (1950)] to the case of a finite sample space X =
{x1, . . . , xN}. A distribution P over X can be represented by its probability vector
p = (p(1), . . . , p(N)), where p(x) := P (X = x). A point x ∈ X may also be
represented by the N -vector δx corresponding to the point-mass distribution on {x}
having entries δx(j) = 1 if j = x, 0 otherwise. The Brier scoring rule is then
defined by

S(x,Q) := ‖δx − q‖2(16)

=
N∑

j=1

{δx(j) − q(j)}2

= ∑
j

q(j)2 − 2q(x) + 1.(17)

Then

S(P,Q) = ∑
j

q(j)2 − 2
∑
j

p(j) q(j) + 1,(18)

which is uniquely minimized for Q = P , so that this is a P -strict proper scoring
rule. The corresponding entropy function is (see Figure 1)

H(P ) = 1 − ∑
j

p(j)2.(19)
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FIG. 1. Brier, log and zero–one entropies for the case X = {0,1}.

3.5.2. Logarithmic score. An important scoring rule is the logarithmic score,
generalizing the discrete-case log loss as already considered in Section 2. For
a general sample space X, let µ be a fixed σ -finite measure (the base measure)
on a suitable σ -algebra in X, and take A to be the set of all finite nonnegative
measurable real functions q on X for which

∫
q(x) dµ(x) = 1. Any q ∈ A can be

regarded as the density of a distribution Q over X which is absolutely continuous
with respect to µ. We denote the set of such distributions by M. However,
because densities are only defined up to a set of measure 0, different q’s in A can
correspond to the same Q ∈ M. Note moreover that the many–one correspondence
between q and Q depends on the specific choice of base measure µ and will change
if we change µ.
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We define a loss function by

S(x, q) = − log q(x).(20)

If (and only if ) P ∈ M, then S(P,q) will be the same for all versions q of
the density of the same distribution Q ∈ M. Hence for P,Q ∈ M we can
write S(P,Q) instead of S(P,q), and we can consider S to be a scoring
rule. It is well known that, for P,Q,Q∗ ∈ M, EP {S(X,Q) − S(X,Q∗)} =
− ∫

p(x) log{q(x)/q∗(x)}dµ is nonnegative for all Q if and only if Q∗ = P .
That is, Q∗ is Bayes against P if and only if Q∗ = P , so that this scoring rule
is M-strictly proper.

We have, for P ∈ M,

H(P ) = −
∫

p(x) logp(x) dµ,(21)

the usual definition of the entropy of P with respect to µ. When X is discrete
and µ is counting measure, we recover the Shannon entropy. For the simple
case X = {0,1} this is depicted in Figure 1. Note that the whole decision problem,
and in particular the value of H(P ) as given by (21), will be altered if we change
(even in a mutually absolutely continuous way) the base measure µ.

Things simplify when µ is itself a probability measure. In this case A contains
the constant function 1. For any distribution P whatsoever, whether or not P ∈ M,
we have L(P,1) = 0, whence we deduce H(P ) ≤ 0 (with equality if and only
if P = µ). When P ∈ M, (21) asserts H(P ) = −KL(P,µ), where KL is the
Kullback–Leibler divergence [Kullback (1959)]. [Note that it is possible to have
KL(P,µ) = ∞, and thus H(P ) = −∞, even for P ∈ M.] If P /∈ M, there exist
a measurable set N and α > 0 such that µ(N) = 0 but P (N) = α. Define qn(x) = 1
(x /∈ N), qn(x) = n (x ∈ N ). Then qn ∈ A and L(P,qn) = −α logn. It follows
that H(P ) = −∞. Since the usual definition [Csiszár (1975) and Posner (1975)]
has KL(P,µ) = ∞ when P 
� µ, we thus have H(P ) = −KL(P,µ) in all cases.
This formula exhibits clearly the dependence of the entropy on the choice of µ.

3.5.3. Zero–one loss. Let X be finite or countable, take A = X and consider
the loss function

L(x, a) =
{ 0, if a = x,

1, otherwise.
(22)

Then L(P,a) = 1 − P (X = a), and a nonrandomized Bayes act under P is any
mode of P . When P has (at least) two modes, say aP and a′

P , then L(x, aP )

and L(x, a′
P ) are not identical, so that this loss function is not P -semistrict. This

means that we may have to take account of randomized strategies ζ for DM. Then,
writing ζ(x) := ζ(A = x), we have

L(x, ζ ) = 1 − ζ(x)(23)
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and

L(P, ζ ) = 1 − ∑
x∈X

p(x) ζ(x).(24)

A randomized act ζ is Bayes against P if and only if it puts all its mass on the set
of modes of P .

We have generalized entropy function

H(P ) = 1 − pmax,(25)

with pmax := supx∈X p(x). For the simple case X = {0,1}, this is depicted
in Figure 1.

3.5.4. Bregman score. Suppose that #(X) = N < ∞ and that we represent
a distribution P ∈ P over X by its probability mass function p ∈ 	, the unit
simplex in RN , which can in turn be considered as a subset of (N −1)-dimensional
Euclidean space. The interior 	◦ of 	 then corresponds to the subset Q ⊂ P of
distributions giving positive probability to each point of X.

Let H be a finite concave real function on 	. For any q ∈ 	◦, the set
∇H(q) of supporting hyperplanes to H at q is nonempty [Rockafellar (1970),
Theorem 27.3]—having a unique member when H is differentiable at q . Select for
each q ∈ 	◦ some specific member of ∇H(q), and let the height of this hyperplane
at arbitrary p ∈ 	 be denoted by lq(p): this affine function must then have equation
of the form

lq(p) = H(q) + αT
q (p − q).(26)

Although the coefficient vector αq ∈ RX in (26) is only defined up to addition of
a multiple of the unit vector, this arbitrariness will be of no consequence. We shall
henceforth reuse the notation ∇H(q) in place of αq .

By the supporting hyperplane property,

lq(p) ≥ H(p),(27)

lq (q) = H(q).(28)

Now consider the function S :X × Q defined by

S(x,Q) = H(q) + ∇H(q)T(δx − q),(29)

where δx is the vector having δx(j) = 1 if j = x, 0 otherwise.
Then we easily see that S(P,Q) = lq(p), so that, by (27) and (28), S(P,Q) is

minimized in Q when Q = P . Thus S is a Q-proper scoring rule.
We note that

0 ≤ d(P,Q) := S(P,Q) − S(P,P )
(30)

= H(q) + ∇H(q)T(p − q) − H(p).
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With further regularity conditions (including in particular differentiability),
(30) becomes the Bregman divergence [Brègman (1967), Csiszár (1991) and
Censor and Zenios (1997)] associated with the convex function −H . We therefore
call S, defined as in (29), a Bregman score associated with H . This will be unique
when H is differentiable on 	◦. In Section 8 we introduce a more general decision-
theoretic notion of divergence.

We note by (28) that the generalized entropy function associated with this score
is H ∗(P ) = S(P,P ) = lp(p) = H(p) (at any rate inside 	◦). That is to say, we
have exhibited a decision problem for which a prespecified concave function H

is the entropy. This construction can be extended to the whole of 	 and to certain
concave functions H that are not necessarily finite [Dawid (2003)]. Extensions can
also be made to more general sample spaces.

3.5.5. Separable Bregman score. A special case of the construction of
Section 3.5.4 arises when we take H(q) to have the form −∑

x∈X ψ{q(x)}, with
ψ a real-valued differentiable convex function of a nonnegative argument. In this
case we can take (∇H(q))(x) = −ψ ′{q(x)}, and the associated proper scoring
rule has

S(x,Q) = −ψ ′{q(x)} − ∑
t∈X

[ψ{q(t)} − q(t)ψ ′{q(t)}].(31)

We term this the separable Bregman scoring rule associated with ψ . The
corresponding separable Bregman divergence [confusingly, this special case
of (30) is sometimes also referred to simply as a Bregman divergence] is

dψ(P,Q) = ∑
x∈X

	ψ {p(x), q(x)},(32)

where we have introduced

	ψ(a, b) := ψ(a) − ψ(b) − ψ ′(b) (a − b).(33)

The nonnegative function 	ψ measures how much the convex function ψ

deviates at a from its tangent at b; this can be considered as a measure of “how
convex” ψ is.

We can easily extend the above definition to more general sample spaces. Thus
let X, µ, A and M be as in Section 3.5.2, and, in analogy with (31), consider the
following loss function:

S(x, q) := −ψ ′{q(x)} −
∫

[ψ{q(t)} − q(t)ψ ′{q(t)}]dµ(t).(34)

Clearly if q , q ′ are both µ-densities of the same Q ∈ M, then S(x, q) = S(x, q ′)
a.e. [µ], and so, for any P ∈ M, S(P,q) = S(P,q ′). Thus once again, for
P,Q ∈ M, we can simply write S(P,Q). We then have

S(P,Q) =
∫

[{q(t) − p(t)}ψ ′{q(t)} − ψ{q(t)}]dµ(t),(35)
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whence

S(P,P ) = −
∫

ψ{p(t)}dµ(t),(36)

and so, if S(P,P ) is finite,

dψ(P,Q) := S(P,Q) − S(P,P ) =
∫

	ψ {p(t), q(t)}dµ(t).(37)

Thus, for P,Q ∈ M, if S(P,P ) is finite, S(P,P ) ≤ S(P,Q). Using the extended
definition (11) of Bayes acts, we can show that P is Bayes against P even
when S(P,P ) is infinite. That is, S is an M-proper scoring rule. If ψ is strictly
convex, S is M-strict.

The quantity dψ(P,Q) defined by (37) is identical with the (separable)
Bregman divergence [Brègman (1967) and Csiszár (1991)] Bψ(p,q), based on ψ

(and µ), between the densities p and q of P and Q. Consequently, we shall
term S(x, q) given by (34) a separable Bregman score. For P ∈ M the associated
separable Bregman entropy is then, by (36),

Hψ(P ) = −
∫

ψ{p(t)}dµ(t).(38)

The logarithmic score arises as a special case of the separable Bregman score
on taking ψ(s) ≡ s log s; and the Brier score arises on taking µ to be counting
measure and ψ(s) ≡ s2 − 1/N .

3.5.6. More examples. Since every decision problem generates a generalized
entropy function, an enormous range of such functions can be constructed. As
a very simple case, consider the quadratic loss problem, with X = A = R,
L(x, a) = (x − a)2. Then aP = EP (X) is Bayes against P , and the associated
proper scoring rule and entropy are S(x,P ) = {x−EP (X)}2 and H(P ) = varP (X)

— a very natural measure of uncertainty. This cannot be expressed in the form (38),
so it is not associated with a separable Bregman divergence. Dawid and Sebastiani
(1999) characterize all those generalized entropy functions that depend only on the
variance of a (possibly multivariate) distribution.

4. Maximum entropy and robust Bayes. Suppose that Nature may be
regarded as generating X from a distribution P , but DM does not know P . All
that is known is that P ∈ �, a specified family of distributions over X. The
consequence DM faces if he or she takes act a ∈ A when Nature chooses X = x is
measured by the loss L(x, a). How should DM act?

4.1. Maximum entropy. One way of proceeding is to replace the family �

by some “representative” member P ∗ ∈ �, and then choose an act that is Bayes
against P ∗. A possible criterion for choosing P ∗, generalizing the standard
maximum Shannon entropy procedure, might be:

Maximize,over P ∈ �, the generalized entropy H(P ).
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4.2. Robust Bayes rules. Another approach is to conduct a form of “robust
Bayes analysis” [Berger (1985)]. In particular we investigate the �-minimax
criterion, a compromise between Bayesian and frequentist decision theory. For
a recent tutorial overview of this criterion, see Vidakovic (2000).

When X ∼ P ∈ �, the loss of an act a is evaluated by L(P,a). We can form
a new restricted game, G� = (�,A,L), where Nature selects a distribution P

from �, DM an act a from A, and the ensuing loss to DM is taken to be L(P,a).
Again, we allow DM to take randomized acts ζ ∈ Z, yielding loss L(P, ζ ) when
Nature generates X from P . In principle we could also let Nature choose her
distribution P in some random fashion, described by means of a law (distribution)
for a random distribution P̃ over X. However, with the exception of Section 10,
where randomization is in any case excluded, in all the cases we shall consider �

will be convex, and then every randomized act for Nature can be replaced by a
nonrandomized act (the mean of the law of P̃ ) having the identical loss function.
Consequently we shall not consider randomized acts for Nature.

In the absence of knowledge of Nature’s choice of P , we might apply the
minimax criterion to this restricted game. This leads to the prescription for DM:

Choose ζ = ζ ∗ ∈ Z, to achieve

inf
ζ∈Z

sup
P∈�

L(P, ζ ).(39)

We shall term any act ζ ∗ achieving (39) robust Bayes against �, or �-minimax.
When the basic game is defined in terms of a Q-proper scoring rule S(x,Q),

and � ⊆ Q, this robust Bayes criterion becomes:
Choose Q = Q∗, to achieve

inf
Q∈Q

sup
P∈�

S(P,Q).(40)

Note particularly that in this case there is no reason to require Q = �; we might
want to take Q larger than � (typically, Q = P ). Also, we have not considered
randomized acts in (40)—we shall see later that, for the problems we consider,
this has no effect.

Below we explore the relationship between the above two methods. In
particular, we shall show that, in very general circumstances, they produce
identical results. That is, maximum generalized entropy is robust Bayes. This will
be the cornerstone of all our results to come.

First note that from (12) the maximum entropy criterion can be expressed as:
Choose P = P ∗, to achieve

sup
P∈�

inf
ζ∈Z

L(P, ζ ).(41)

There is a striking duality with the criterion (39).



1384 P. D. GRÜNWALD AND A. P. DAWID

In the general terminology of game theory, (41) defines the extended real
lower value,

V := sup
P∈�

inf
ζ∈Z

L(P, ζ ),(42)

and (39) the upper value,

V := inf
ζ∈Z

sup
P∈�

L(P, ζ ),(43)

of the restricted game G� . In particular, the maximum achievable entropy is exactly
the lower value. We always have V ≤ V . When these two are equal and finite, we
say the game G� has a value, V := V = V .

DEFINITION 4.1. The pair (P ∗, ζ ∗) ∈ � × Z is a saddle-point (or equilib-
rium) in the game G� if H ∗ := L(P ∗, ζ ∗) is finite, and the following hold:

(a) L(P ∗, ζ ∗) ≤ L(P ∗, ζ ) for all ζ ∈ Z;
(b) L(P ∗, ζ ∗) ≥ L(P, ζ ∗) for all P ∈ �.

(44)

In Sections 5 and 6 we show for convex � the existence of a saddle-point in G�

under a variety of broadly applicable conditions.
In certain important special cases [see, e.g., Section 2.1, (3)], we may be able to

demonstrate (b) above by showing that ζ ∗ is an equalizer rule:

DEFINITION 4.2. ζ ∈ Z is an equalizer rule in G� if L(P, ζ ) is the same finite
constant for all P ∈ �.

LEMMA 4.1. Suppose that there exist both a maximum entropy distribu-
tion P ∗ ∈ � achieving (42), and a robust Bayes act ζ ∗ ∈ Z achieving (43).
Then V ≤ L(P ∗, ζ ∗) ≤ V . If, further, the game has a value, V say, then
V = H ∗ := L(P ∗, ζ ∗), and (P ∗, ζ ∗) is a saddle-point in the game G� .

PROOF. V = infζ L(P ∗, ζ ) ≤ L(P ∗, ζ ∗), and similarly L(P ∗, ζ ∗) ≤ V . If the
game has a value V , then L(P ∗, ζ ∗) = V = infζ∈Z L(P ∗, ζ ), and L(P ∗, ζ ∗) =
V = supP∈� L(P, ζ ∗). �

Note that, even when the game has a value, either or both of P ∗ and ζ ∗ may fail
to exist.

Conversely, we have the following theorem.

THEOREM 4.1. Suppose that a saddle-point (P ∗, ζ ∗) exists in the game G� .
Then:

(i) The game has value H ∗ = L(P ∗, ζ ∗).
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(ii) ζ ∗ is Bayes against P ∗.
(iii) H(P ∗) = H ∗.
(iv) P ∗ maximizes the entropy H(P ) over �.
(v) ζ ∗ is robust Bayes against �.

PROOF. Part (i) follows directly from (44) and the definitions of V , V . Part (ii)
is immediate from (44)(a) and finiteness, and in turn implies (iii). For any P ∈ �,
H(P ) ≤ L(P, ζ ∗) ≤ H ∗ by (44)(b). Then (iv) follows from (iii). For any ζ ∈ Z,
supP L(P, ζ ) ≥ L(P ∗, ζ ), so that, by (44)(a),

sup
P

L(P, ζ ) ≥ H ∗.(45)

Also, by (44)(b),

sup
P

L(P, ζ ∗) = H ∗.(46)

Comparing (45) and (46), we see that ζ ∗ achieves (39); that is, (v) holds. �

COROLLARY 4.1. Suppose that L is �-relatively strict, that there is a
unique P ∗ ∈ � maximizing the generalized entropy H and that ζ ∗ ∈ Z is a Bayes
act against P ∗. Then, if G� has a saddle-point, ζ ∗ is robust Bayes against �.

COROLLARY 4.2. Let the basic game G be defined in terms of a Q-strictly
proper scoring rule S(x,Q), and let � ⊆ Q. If a saddle-point in the restricted
game G� exists, it will have the form (P ∗,P ∗). The distribution P ∗ will then solve
each of the following problems:

(i) Maximize over P ∈ � the generalized entropy H(P ) ≡ S(P,P ).
(ii) Minimize over Q ∈ Q the worst-case expected score, supP∈� S(P,Q).

It is notable that, when Corollary 4.2 applies, the robust Bayes distribution
solving problem (ii) turns out to belong to �, even though this constraint was
not imposed.

We see from Theorem 4.1 that, when a saddle-point exists, the robust Bayes
problem reduces to a maximum entropy problem. This property can thus be
regarded as an indirect justification for applying the maximum entropy procedure.
In the light of Theorem 4.1, we shall be particularly interested in the sequel
in characterizing those decision problems for which a saddle-point exists in the
game G� .

4.3. A special case. A partial characterization of a saddle-point can be given
in the special case that the family � is closed under conditioning, in the sense
that, for all P ∈ � and B ⊆ X a measurable set such that P (B) > 0, PB , the
conditional distribution under P for X given X ∈ B , is also in �. This will hold,
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most importantly, when � is the set of all distributions supported on X or on some
measurable subset of X.

For the following lemma, we suppose that there exists a saddle-point (P ∗, ζ ∗)
in the game G� , and write H ∗ = L(P ∗, ζ ∗). In particular, we have L(P, ζ ∗) ≤ H ∗
for all P ∈ �. We introduce U := {x ∈ X :L(x, ζ ∗) = H ∗}.

LEMMA 4.2. Suppose that � is closed under conditioning and that P ∈ � is
such that L(P, ζ ∗) = H ∗. Then P is supported on U .

PROOF. Take h < H ∗, and define B := {x ∈ X :L(x, ζ ∗) ≤ h}, π := P (B).
By linearity, we have H ∗ = L(P, ζ ∗) = π L(PB, ζ ∗) + (1 − π)L(PBc, ζ ∗)
(where Bc denotes the complement of B). However, by the definition of B ,
L(PB, ζ ∗) ≤ h, while (if π 
= 1) L(PBc, ζ ∗) ≤ H ∗, by Definition 4.1(b) and the
fact that PBc ∈ �. It readily follows that π = 0. Since this holds for any h < H ∗,
we must have P {L(X, ζ ∗) ≥ H ∗} = 1. However, EP {L(X, ζ ∗)} = L(P, ζ ∗) = H ∗,
and the result follows. �

COROLLARY 4.3. L(X, ζ ∗) = H ∗ almost surely under P ∗.

COROLLARY 4.4. If there exists P ∈ � that is not supported on U , then ζ ∗ is
not an equalizer rule in G� .

Corollary 4.4 will apply, in particular, when � is the family of all distributions
supported on a subset A of X and (as will generally be the case) A is not a
subset of U . Furthermore, since � then contains the point mass at x ∈ A, we
must have L(x, ζ ∗) ≤ H ∗, all x ∈ A, so that U is the subset of A on which
the function L(·, ζ ∗) attains its maximum. In a typical such problem having a
continuous sample space, the maxima of this function will be isolated points, and
then we deduce that the maximum entropy distribution P ∗ will be discrete (and
the robust Bayes act ζ ∗ will not be an equalizer rule).

5. An elementary minimax theorem. Throughout this section we suppose
that X = {x1, . . . , xN } is finite and that L is bounded. In particular, L(P,a) and
H(P ) are finite for all distributions P over X, and the set P of these distributions
can be identified with the unit simplex in RN . We endow P with the topology
inherited from this identification.

In this case we can show the existence of a saddle-point under some simple
conditions. The following result is a variant of von Neumann’s original minimax
theorem [von Neumann (1928)]. It follows immediately from the general minimax
theorem of Corollary A.1, whose conditions are here readily verified.

THEOREM 5.1. Let � be a closed convex subset of P . Then the restricted
game G� has a finite value H ∗, and the entropy H(P ) achieves its maximum H ∗
over � at some distribution P ∗ ∈ �.
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Theorem 5.1 does not automatically ensure the existence of a robust Bayes
act. For this we impose a further condition on the action space. This involves the
risk-set S of the unrestricted game G, that is, the convex subset of RN consisting
of all points l(ζ ) := (L(x1, ζ ), . . . ,L(xN, ζ )) arising as the risk function of some
possibly randomized act ζ ∈ Z.

THEOREM 5.2. Suppose that � is convex, and that the unrestricted risk-set S

is closed. Then there exists a robust Bayes act ζ ∗ ∈ Z. Moreover, there exists P ∗ in
the closure � of � such that ζ ∗ is Bayes against P ∗ and (P ∗, ζ ∗) is a saddle-point
in the game G� .

PROOF. First assume � closed. By Theorem 5.1 the game G� has a finite
value H ∗. Then there exists a sequence (ζn) in Z such that limn→∞ supP∈� L(P,

ζn) = infζ∈Z supP∈� L(P, ζ ) = H ∗. Since S is compact, on taking a subsequence
if necessary we can find ζ ∗ ∈ Z such that l(ζn) → l(ζ ∗). Then, for all Q ∈ �,

L(Q,ζ ∗) = lim
n→∞L(Q,ζn) ≤ lim

n→∞ sup
P∈�

L(P, ζn) = H ∗,(47)

whence

sup
P∈�

L(P, ζ ∗) ≤ H ∗.(48)

However, for P = P ∗, as given by Theorem 5.1, we have L(P ∗, ζ ∗) ≥
H(P ∗) = H ∗, so that L(P ∗, ζ ∗) = H ∗. The result now follows.

If � is not closed, we can apply the above argument with � replaced by �

to obtain ζ ∗ ∈ Z and P ∗ ∈ �. Then sup� L(P, ζ ∗) ≤ sup� L(P, ζ ), all ζ ∈ Z.
Since L(P, ζ ) is linear, hence continuous, in P for all ζ , sup� L(P, ζ ) =
sup� L(P, ζ ), and the general result follows. �

Note that S is the convex hull of S0, the set of risk functions of nonrandomized
acts. A sufficient condition for S to be closed is that S0 be closed. In particular this
will always hold if A is finite.

The above theorem gives a way of restricting the search for a robust Bayes
act ζ ∗: first find a distribution P ∗ maximizing the entropy over �, then look for
acts that are Bayes against P ∗. In some cases this will yield a unique solution, and
we are done. However, as will be seen below, this need not always be the case, and
then further principles may be required.

5.1. Examples.

5.1.1. Brier score. Consider the Brier score (16) for X = {0,1} and � = P .
Let H be the corresponding entropy as in (19). From Figure 1, or directly, we see
that the entropy is maximized for P ∗ having p∗(0) = p∗(1) = 1/2 . Since the Brier
score is P -strictly proper, the unique Bayes act against P ∗ is P ∗ itself. It follows
that P ∗ is the robust Bayes act against �. Hence in this case we can find the robust
Bayes act simply by maximizing the entropy.
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5.1.2. Zero–one loss. Now consider the zero–one loss (22) for X = {0,1} and
� = P . Let H be the corresponding entropy as in (25). From Figure 1, or directly,
we see that the entropy is again maximized for P ∗ with p∗(0) = p∗(1) = 1/2.
However, in contrast to the case of the Brier score, P ∗ now has several Bayes
acts. In fact, every distribution ζ over A = {0,1} is Bayes against P ∗—yet only
one of them (namely, ζ ∗ = P ∗) is robust Bayes. Therefore finding the maximum
entropy P ∗ is of no help whatsoever in finding the robust Bayes act ζ ∗ here. As we
shall see in Section 7.6.3, however, this does not mean that the procedure described
here (find a robust Bayes act by first finding the maximum entropy P ∗ and then
determine the Bayes acts of P ∗) is never useful for zero–one loss: if � 
= P , it may
help in finding ζ ∗ after all.

6. More general minimax theorems. We are now ready to formulate more
general minimax theorems. The proofs are given in the Appendix.

Let (X,B) be a metric space together with its Borel σ -algebra. Recall
[Billingsley (1999), Section 5] that a family � of distributions on (X,B) is called
(uniformly) tight if, for all ε > 0, there exists a compact set C ∈ B such that
P (C) > 1 − ε for all P ∈ �.

THEOREM 6.1. Let � ⊆ P be a convex, weakly closed and tight set of
distributions. Suppose that for each a ∈ A the loss function L(x, a) is bounded
above and upper semicontinuous in x. Then the restricted game G� = (�,A,L)

has a value. Moreover, a maximum entropy distribution P ∗, attaining

sup
P∈�

inf
a∈A

L(P,a),

exists.

We note that if X is finite or countable and endowed with the discrete topology,
then L(x, a) is automatically a continuous, hence upper semicontinuous, function
of x.

Theorem 6.1 cannot be applied to the logarithmic score, which is not bounded
above in general. In such cases we may be able to use the theorems below. Note
that these all refer to possibly randomized Bayes acts ζ ∗, but by Proposition 3.1
it will always be possible to choose such acts to be nonrandomized.

THEOREM 6.2. Let � ⊆ P be convex, and let P ∗ ∈ �, with Bayes act ζ ∗, be
such that −∞ < H(P ∗) = H ∗ := supP∈� H(P ) < ∞. Suppose that for all P ∈ �

there exists P0 ∈ P such that, on defining Qλ := (1 − λ)P0 + λP , the following
hold:

(i) P ∗ = Qλ∗ for some λ∗ ∈ (0,1).
(ii) The function H(Qλ) is differentiable at λ = λ∗.
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Then (P ∗, ζ ∗) is a saddle-point in G�.

Theorem 6.2 essentially gives differentiability of the entropy as a condition for
the existence of a saddle-point. This condition is strong but often easy to check.
We now introduce a typically weaker condition, which may, however, be harder
to check.

CONDITION 6.1. Let (Qn) be a sequence of distributions in �, with
respective Bayes acts (ζn), such that the sequence (H(Qn)) is bounded below
and (Qn) converges weakly to some distribution Q0 ∈ P0. Then we require that
Q0 ∈ P , Q0 has a Bayes act ζ0 and, for some choice of the Bayes acts (ζn) and ζ0,
L(P, ζ0) ≤ lim infn→∞ L(P, ζn) for all P ∈ �.

One would typically aim to demonstrate Condition 6.1 in its stronger “�-free”
form, wherein all mentions of � are replaced by P , or both � and P are replaced
by some family Q with � ⊆ Q ⊆ P . In particular, in the case of a Q-proper scoring
rule S, Condition 6.1 is implied by the following.

CONDITION 6.2. Let (Qn) be a sequence of distributions in Q such that the
sequence (H(Qn)) is bounded below and (Qn) converges weakly to Q0. Then we
require Q0 ∈ Q and S(P,Q0) ≤ lim infn→∞ S(P,Qn) for all P ∈ Q.

This displays the condition as one of weak lower semicontinuity of the score in
its second argument.

We shall further consider the following possible conditions on �:

CONDITION 6.3. � is convex; every P ∈ � has a Bayes act ζP and finite
entropy H(P ); and H ∗ := supP∈� H(P ) < ∞.

CONDITION 6.4. Furthermore, there exists P ∗ ∈ � with H(P ∗) = H ∗.

THEOREM 6.3. Suppose Conditions 6.1, 6.3 and 6.4 hold. Then there
exists ζ ∗ ∈ Z such that (P ∗, ζ ∗) is a saddle-point in the game G� .

If H(P ) is not upper-semicontinuous or if � is not closed in the weak topology,
then supP∈� H(P ) may not be achieved. As explained in the Appendix, for a
general sample space these are both strong requirements. If they do not hold, then
Theorem 6.3 will not be applicable. In that case we may instead be able to apply
Theorem 6.4:

THEOREM 6.4. Suppose Conditions 6.1 and 6.3 hold and, in addition, � is
tight. Then there exists ζ ∗ ∈ Z such that

sup
P∈�

L(P, ζ ∗) = inf
ζ∈Z

sup
P∈�

L(P, ζ ) = sup
P∈�

inf
a∈A

L(P,a) = H ∗.(49)

In particular, the game G� has value H ∗, and ζ ∗ is robust Bayes against �.
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In the Appendix we prove the more general Theorem A.2, which implies The-
orem 6.4. We also prove Proposition A.1, which shows that (under some restric-
tions) the conditions of Theorem A.2 are satisfied when L is the logarithmic score.

The theorems above supply sufficient conditions for the existence of a robust
Bayes act, but do not give any further characterization of it, nor do they assist in
finding it. In the next sections we shall consider the important special case of �

defined by linear constraints, for which we can develop explicit characterizations.

7. Mean-value constraints. Let T ≡ t (X), with t :X → Rk , be a fixed real-
or vector-valued statistic. An important class of problems arises on imposing
mean-value constraints, where we take

� = �τ := {P ∈ P : EP (T ) = τ },(50)

for some τ ∈ Rk . This is the type of constraint for which the maximum entropy and
minimum relative entropy principles have been most studied [Jaynes (1957a, b)
and Csiszár (1975)].

We denote the associated restricted game (�τ ,A,L) by Gτ . We call T the
generating statistic.

In some problems of this type (e.g., with logarithmic score on a continuous
sample space), the family �τ will be so large that the conditions of the theorems of
Section 6 will not hold. Nevertheless, the special linear structure will often allow
other arguments for showing the existence of a saddle-point.

7.1. Duality. Before continuing our study of saddle-points, we note some
simple duality properties of such mean-value problems.

DEFINITION 7.1. The specific entropy function h :Rk → [−∞,∞] (associ-
ated with the loss function L and generating statistic T ) is defined by

h(τ ) := sup
P∈�τ

H(P ).(51)

In particular, if �τ = ∅, then h(τ ) = −∞.

Now define T := {τ ∈ Rk :h(τ ) > −∞} and P ∗ := {P ∈ P : EP (T ) ∈ T }.

LEMMA 7.1. The set T ⊆ Rk is convex, and the function h is concave on T .

PROOF. Take τ0, τ1 ∈ T and λ ∈ (0,1), and let τλ := (1 − λ)τ0 + λτ1.
There exist P0,P1 ∈ P with Pi ∈ �τi

and H(Pi) > −∞, i = 0,1. Let Pλ :=
(1 − λ)P0 + λP1. Then, for any a ∈ A, L(Pi, a) ≥ H(Pi) > −∞, so that
L(Pλ, a) = (1 − λ)L(P0, a) + λL(P1, a) is defined, that is, Pλ ∈ P . Moreover,
clearly Pλ ∈ �τλ

. We thus have h(τλ) ≥ H(Pλ) ≥ (1−λ)H(P0)+λH(P1) > −∞.



MAXIMUM ENTROPY AND ROBUST BAYES 1391

Thus τλ ∈ T ; that is, T is convex. Now letting P0 and P1 vary independently, we
obtain h(τλ) ≥ (1 − λ)h(τ0) + λh(τ1); that is, h is concave. �

For τ ∈ T , define

Pτ := arg sup
P∈�τ

H(P )(52)

whenever this supremum is finite and is attained. It is allowed that Pτ is not unique,
in which case we consider an arbitrary such maximizer. Then H(Pτ ) = h(τ ). By
Theorem 4.1(iv), (52) will hold if (Pτ , ζτ ) is a saddle-point in Gτ .

Dually, for β ∈ Rk , we introduce

Qβ := arg sup
P∈P ∗

{H(P ) − βTEP (T )},(53)

whenever this supremum is finite and is attained. Again, Qβ is not necessarily
unique. For any such Qβ we can define a corresponding value of τ by

τ = EQβ
(T ).(54)

Then Qβ ∈ �τ , and on restricting the supremum in (53) to P ∈ �τ , we see that we
can take Qβ for Pτ in (52). More generally, we write τ ↔ β whenever there is a
common distribution that can serve as both Pτ in (52) and Qβ in (53) (in cases of
nonuniqueness this correspondence may not define a function in either direction).

It follows easily from (53) that, when τ ↔ β ,

h(σ ) − βTσ ≤ h(τ ) − βTτ,(55)

or equivalently

h(σ ) ≤ h(τ ) + βT(σ − τ )(56)

for all σ ∈ T . Equation (56) expresses the fact that the hyperplane through the
point (τ, h(τ )) with slope coefficients β is a supporting hyperplane to the concave
function h :T → R. Thus τ and β can be regarded as dual coordinates for the
specific entropy function. In particular, if τ ↔ β and h is differentiable at τ , we
must have

β = h′(τ ).(57)

More generally, if τ1 ↔ β1 and τ2 ↔ β2, then on combining two applications
of (55) we readily obtain

(τ2 − τ1)
T(β2 − β1) ≤ 0.(58)

In particular, when k = 1 the correspondence τ ↔ β is nonincreasing in the
sense that τ2 > τ1 ⇒ β2 ≤ β1.
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7.2. Linear loss condition. Theorem 7.1 gives a simple sufficient condition
for an act to be robust Bayes against �τ of the form (50). We first introduce the
following definition.

DEFINITION 7.2. An act ζ ∈ Z is linear (with respect to loss function L and
statistic T ) if, for some β0 ∈ R and β = (β1, . . . , βk)

T ∈ Rk and all x ∈ X,

L(x, ζ ) = β0 + βTt (x).(59)

A distribution P ∈ P is linear if it has a Bayes act ζ that is linear. In this case
we call (P, ζ ) a linear pair. If EP (T ) = τ is finite, we then call τ a linear point
of T . In all cases we call (β0, β) the associated linear coefficients.

Note that, if the problem is formulated in terms of a Q-strictly proper scoring
rule S, and P ∈ Q, the conditions “P is a linear distribution,” “P is a linear act”
and “(P,P ) is a linear pair” are all equivalent, holding when we have

S(x,P ) = β0 +
k∑

j=1

βj tj (x)(60)

for all x ∈ X.

THEOREM 7.1. Let τ ∈ T be linear, with associated linear pair (Pτ , ζτ ) and
linear coefficients (β0, β). Let �τ be given by (50). Then the following hold:

(i) ζτ is an equalizer rule against �τ .
(ii) (Pτ , ζτ ) is a saddle-point in Gτ .

(iii) ζτ is robust Bayes against �τ .
(iv) h(τ ) = H(Pτ ) = β0 + βTτ .
(v) τ ↔ β .

PROOF. For any P ∈ P ∗ we have

L(P, ζτ ) = β0 + βTEP (T ).(61)

By (61) L(P, ζτ ) = β0 + βTτ = L(Pτ , ζτ ) for all P ∈ �. Thus (44)(b) holds
with equality, showing (i). Since L(Pτ , ζτ ) is finite and ζτ is Bayes against Pτ ,
(44)(a) holds. We have thus shown (ii). Then (iii) follows from Theorem 4.1(v),
and (iv) follows from Theorem 4.1(i), (iii) and (iv). For (v), we have from (61)
that, for P ∈ P ∗,

H(P ) − βTEP (T ) ≤ L(P, ζτ ) − βTEP (T )(62)

= β0(63)

= H(Pτ ) − βTEPτ (T )(64)

from (iv). Thus we can take Qβ in (53) to be Pτ . �
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COROLLARY 7.1. The same result holds if (59) is only required to hold with
probability 1 under every P ∈ �τ .

We now develop a partial converse to Theorem 7.1, giving a necessary condition
for a saddle-point. This will be given in Theorem 7.2.

DEFINITION 7.3. A point τ ∈ T is regular if there exists a saddle-point
(Pτ , ζτ ) in Gτ , and there exists β = (β1, . . . , βk)

T ∈ Rk such that:

(i) Pτ can serve as Qβ in (53) (so that τ ↔ β).
(ii) With ζ = ζτ and (necessarily)

β0 := h(τ ) − βTτ,(65)

the linear loss property (59) holds with Pτ -probability 1.

If τ satisfies the conditions of Theorem 7.1 or of Corollary 7.1 it will be regular,
but in general the force of the “almost sure” linearity requirement in (ii) above is
weaker than needed for Corollary 7.1.

We shall denote the set of regular points of T by T r , and its subset of linear
points by T l . For discrete X, τ ∈ T r will by (ii) be linear whenever Pτ gives
positive probability to every x ∈ X. More generally, as soon as we know τ ∈ T r ,
the following property, which follows trivially from (ii), can be used to simplify
the search for a saddle-point:

LEMMA 7.2. If τ is regular, the support Xτ of Pτ is such that, for some ζ ∈ Z,
L(x, ζ ) is a linear function of t (x) on Xτ .

The following lemma and corollary are equally trivial.

LEMMA 7.3. Suppose τ ∈ T r . If P ∈ �τ and P � Pτ , then L(P, ζτ ) = h(τ ).

COROLLARY 7.2. If τ ∈ T r and P � Pτ for all P ∈ �τ , then ζτ is an
equalizer rule in Gτ .

We now show that, under mild conditions, a point τ in the relative interior
[Rockafellar (1970), page 44] T 0 of T will be regular. Fix τ ∈ T 0 and consider �τ ,
given by (50). We shall suppose that there exists a saddle-point (Pτ , ζτ ) for
the game Gτ —this could be established by the theory of Section 5 or 6, for
example. The value L(Pτ , ζτ ) of the game will then be h(τ ), which will be finite.

Consider the function ψτ on T defined by

ψτ(σ ) := sup
P∈�σ

L(P, ζτ ).(66)

In particular, ψτ (τ ) = h(τ ).
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PROPOSITION 7.1. ψτ is finite and concave on T .

PROOF. For σ ∈ T there exists P ∈ �σ with H(P ) > −∞; so ψτ(σ ) ≥
L(P, ζτ ) ≥ H(P ) > −∞.

Now take σ0, σ1 ∈ T and λ ∈ (0,1), and consider σλ := (1 − λ)σ0 + λσ1.
Then �σλ

⊇ {(1 − λ)P0 + λP1 :P0 ∈ �σ0,P1 ∈ �σ1}, so that ψτ (σλ) ≥ (1 − λ) ×
ψτ (σ0) + λψτ (σ1). Thus ψτ is concave on T .

Finally, if ψτ were to take the value +∞ anywhere on T , then by Lemma 4.2.6
of Stoer and Witzgall (1970) it would do so at τ ∈ T 0, which is impossible
since ψτ(τ ) = h(τ ) has been assumed finite. �

For the proof of Theorem 7.2 we need to impose a condition allowing the
passage from (70) to (71). For the examples considered in this paper, we can use
the simplest such condition:

CONDITION 7.1. For all x ∈ X, t (x) ∈ T .

This is equivalent to t (X) ⊆ T , or in turn to T being the convex hull
of t (X). For other applications (e.g., involving unbounded loss functions on
continuous sample spaces) this may not hold, and then alternative conditions may
be more appropriate.

THEOREM 7.2. Suppose that τ ∈ T 0 and (Pτ , ζτ ) is a saddle-point for the
game Gτ . If Condition 7.1 holds, then τ is regular.

PROOF. T is convex, ψτ :T → R is concave, and τ ∈ T 0. The supporting
hyperplane theorem [Stoer and Witzgall (1970), Corollary 4.2.9] then implies that
there exists β ∈ Rk such that, for all σ ∈ T ,

ψτ (τ ) + βT(σ − τ ) ≥ ψτ (σ ).(67)

That is, for any P ∈ P ∗,

h(τ ) + βT{EP (T ) − τ } ≥ ψτ {EP (T )}.(68)

However, for P ∈ P ∗,

ψτ {EP (T )} ≥ L(P, ζτ ) ≥ inf
ζ

L(P, ζ ) = H(P ).(69)

Thus, for all P ∈ P ∗,

h(τ ) + βT{EP (T ) − τ } ≥ H(P ),

with equality when P = Pτ . This yields Definition 7.3(i).
For (ii), (68) and (69) imply that

h(τ ) − L(P, ζτ ) + βT{EP (T ) − τ } ≥ 0 for all P ∈ P ∗.(70)
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Take x ∈ X, and let Px be the point mass on x. By Condition 7.1, Px ∈ P ∗, and so

h(τ ) − L(x, ζτ ) + βT{t (x) − τ } ≥ 0 for all x ∈ X.(71)

On the other hand,

EPτ [h(τ ) − L(X, ζτ ) + βT{t (X) − τ }] = 0.(72)

Together (71) and (72) imply that

Pτ [h(τ ) − L(X, ζτ ) + βT{t (X) − τ } = 0] = 1.(73)

The result follows. �

7.3. Exponential families. Here we relate the above theory to familiar proper-
ties of exponential families [Barndorff-Nielsen (1978)].

Let µ be a fixed σ -finite measure on a suitable σ -algebra in X. The set of all
distributions P � µ having a µ-density p that can be expressed in the form

p(x) = exp

{
α0 +

k∑
j=1

αj tj (x)

}
(74)

for all x ∈ X is the exponential family E generated by the base measure µ and the
statistic T .

We remark that (74) is trivially equivalent to

S(x,p) = β0 +
k∑

j=1

βj tj (x),(75)

for all x ∈ X, where S is the logarithmic score (20), and βj = −αj . In particular,
(P,p) is a linear pair.

Now under regularity conditions on µ and T [Barndorff-Nielsen (1978),
Chapter 9; see also Section 7.4.1 below], for all τ ∈ T 0 there will exist a
unique Pτ ∈ �τ ∩ E ; that is, Pτ has a density pτ of the form (74), and
EPτ (T ) = τ . Comparing (75) with (59), it follows from Theorem 7.1 that (as
already demonstrated in detail in Section 2.1) (Pτ ,pτ ) is a saddle-point in Gτ .
In particular, as is well known [Jaynes (1989)], the distribution Pτ will maximize
the entropy (21), subject to the mean-value constraints (50). However, we regard
this property as less fundamental than the concomitant dual property: that pτ is the
robust Bayes act under the logarithmic score when all that we know of Nature’s
distribution P is that it satisfies the mean-value constraint P ∈ �τ . Furthermore,
by Theorem 7.1(i), in this case pτ will be an equalizer strategy against �τ [cf. (3)].

We remark that pτ of the form (74) is only one version of the density for Pτ with
respect to µ; any other such density can differ from pτ on a set of µ-measure 0.
However, our game requires DM to specify a density, rather than a distribution, and
from this point of view certain other versions of the density of Pτ (which are of



1396 P. D. GRÜNWALD AND A. P. DAWID

course still Bayes against Pτ ) will not do: they are not robust Bayes. For example,
let X = R, let µ = Lebesgue measure and consider the constraints EP (X) = 0,
EP (X2) = 1. Let P0 be the standard Normal distribution N(0,1), and let p0 be
its usual density formula, p0(x) = (2π)−1/2 exp−1

2x2. Then the conditions of
Theorem 7.1 hold, P0 is maximum entropy (as is well known) and the choice p0
for its density is robust Bayes against the set �0 of all distributions P —including,
importantly, discrete distributions—that satisfy the constraints. This would not
have been true if instead of p0 we had taken p′

0, identical with p0 except for
p′

0(x) = p0(x)/2 at x = ±1. While p′
0 is still Bayes against P0, its Bayes loss

against the distribution in �0 that puts equal probability 1/2 at −1 and +1 exceeds
the (constant) Bayes loss of p0 by log 2. Consequently, p′

0 is not a robust Bayes
act. It is in fact easy to see that a density p will be robust Bayes in this problem
if and only if p(x) ≥ p0(x) everywhere (the set on which strict inequality holds
necessarily having Lebesgue measure 0).

We further remark that none of the theorems of Section 6 applies to the above
problem. The boundedness and weak closure requirements of Theorem 6.1 both
fail; condition (ii) of Theorem 6.2 fails; and although Condition 6.2 holds, the
existence of a Bayes act and finite entropy required for Condition 6.3 fail for those
distributions in �τ having a discrete component.

7.4. Generalized exponential families. We now show how our game-theoretic
approach supports the extension of many of the concepts and properties of standard
exponential family theory to apply to what we shall term a generalized exponential
family, specifically tailored to the relevant decision problem. Although the link
to exponentiation has now vanished, analogues of familiar duality properties of
exponential families [Barndorff-Nielsen (1978), Chapter 9] can be based on the
theory of Section 7.1.

Consider the following condition.

CONDITION 7.2. For all τ ∈ T , h(τ ) = supP∈�τ
H(P ) is finite and is

achieved for a unique Pτ ∈ �τ .

In particular, this will hold if (i) X is finite, (ii) L is bounded and (iii) H is
strictly convex. For under (i) and (ii) Theorem 5.1 guarantees that a maximum
generalized entropy distribution Pτ exists, which must then be unique by (iii).

Under Condition 7.2 we can introduce the following parametric family of
distributions over X:

Em := {Pτ : τ ∈ T }.(76)

We call Em the full generalized exponential family generated by L and T ; and we
call τ its mean-value parameter. Condition 7.2 ensures that the map τ �→ Pτ is
one-to-one.

Alternatively, consider the following condition:
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CONDITION 7.3. For all β ∈ Rk , supP∈P ∗{H(P ) − βTEP (T )} is finite and
is achieved for a unique distribution Qβ ∈ P ∗.

Again, this will hold if, in particular, (i)–(iii) below Condition 7.2 are satisfied.
Under Condition 7.3 we can introduce the parametric family

En := {Qβ :β ∈ Rk}.(77)

We call this family the natural generalized exponential family generated by the loss
function L and statistic T ; we call β its natural parameter. This definition extends
a construction of Lafferty (1999) based on Bregman divergence: see Section 8.4.2.
Note that in general the natural parameter β in En need not be identified; that is,
the map β �→ Qβ may not be one-to-one. See, however, Proposition 7.2, which
sets limits to this nonidentifiability.

From this point on, we suppose that both Conditions 7.2 and 7.3 are satisfied.
For any β ∈ Rk , (54) yields τ ∈ T with τ ↔ β , that is, Pτ = Qβ . It follows
that En ⊆ Em.

We further define E r := {Pτ : τ ∈ T r}, the regular generalized exponential
family, and E l := {Pτ : τ ∈ T l}, the linear generalized exponential family,
generated by L and T . Then E l ⊆ E r ⊆ Em. In general, E l may be a proper
subset of E r : then for Pτ ∈ E r \ E l we can only assert the “almost sure linear
loss” property of Lemma 7.2.

The following result follows immediately from Definition 7.3(ii).

PROPOSITION 7.2. If Qβ1 = Qβ2 = Q ∈ E r , then (β1 − β2)
TT = 0 almost

surely under Q.

For τ ∈ T r choose β as in Definition 7.3. Then τ ↔ β , and it follows
that E r ⊆ En. We have thus demonstrated the following.

PROPOSITION 7.3. When Conditions 7.2 and 7.3 both apply,

E r ⊆ En ⊆ Em.

Now consider E0 := {Pτ : τ ∈ T 0}, the open generalized exponential family
generated by L and T . From Theorem 7.2 we have the following:

PROPOSITION 7.4. Suppose Conditions 7.1–7.3 all apply and a saddle-point
exists in Gτ for all τ ∈ T 0. Then

E0 ⊆ E r ⊆ En ⊆ Em.(78)
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7.4.1. Application to standard exponential families. We now consider more
closely the relationship between the above theory and standard exponential
family theory.

Let E∗ be the standard exponential family (74) generated by some base
measure µ and statistic T . Taking as our loss function the logarithmic score S,
(75) shows that E l ⊆ E∗ (distributions in E∗ \ E l being those for which the
expectation of T does not exist). We can further ask: What is the relationship
between E∗ and En? As a partial answer to this, we give sufficient conditions
for E∗, E l and En to coincide.

For β = (β1, . . . , βk) ∈ Rk , define

κ(β) := log
∫

e−βTt (x) dµ,(79)

χ(β) := sup
P∈P ∗

{H(P ) − βTEP (T )}.(80)

Let B denote the convex set {β ∈ Rk :κ(β) < ∞}, and let B0 denote its relative
interior. For β ∈ B , let Q∗

β be the distribution in E∗ with µ-density q∗
β(x) :=

exp{−κ(β) − βTt (x)}, and let Qβ , if it exists, achieve the supremum in (80).

PROPOSITION 7.5. (i) For all β ∈ B0, the act q∗
β is linear, and Qβ = Q∗

β

uniquely. Moreover, χ(β) = κ(β).
(ii) If B = Rk , then Condition 7.3 holds and E∗ = E l = En.

(iii) If Condition 7.3 holds, B is nonempty and E∗ is minimal and steep,
then B = Rk and E∗ = E l = En.

[Note that the condition for (ii) will apply whenever the sample space X
is finite.]

PROOF OF PROPOSITION 7.5. Linearity of the act q∗
β (β ∈ B) is immediate,

the associated linear coefficients being (β0, β) with β0 = κ(β). Suppose β ∈ B0.
Then τ := EQ∗

β
(T ) exists [Barndorff-Nielsen (1978), Theorem 8.1]. We may also

write Pτ for Q∗
β . Then τ is a linear point, with (Pτ ,pτ ) the associated linear

pair. By Theorem 7.1(iv) κ(β) = H(Pτ ) − βTτ . Also, by Theorem 7.1(v) we can
take Pτ = Q∗

β as Qβ . The supremum in (80) thus being achieved by Pτ , we have
χ(β) = H(Pτ ) − βTτ = κ(β).

To show that the supremum in (80) is achieved uniquely at Q∗
β , note that any

P achieving this supremum must satisfy

H(P ) − βTEP (T ) = H(Q∗
β) − βTEQ∗

β
(T )

(81)
= κ(β) = S(P,q∗

β) − βTEP (T ),
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the last equality deriving from the definition of q∗
β . It follows that S(P,q∗

β) =
H(P ) = S(P,p), whence

∫
log{p(x)/q∗

β(x)}p(x) dµ = 0. However, this can only
hold if P = Q∗

β .
Part (ii) follows immediately.
For part (iii), assume Condition 7.3 holds. Then, for all β ∈ Rk ,

χ(β) = sup
τ∈T

sup
P∈�τ

{H(P ) − βTτ } = sup
τ∈T

{h(τ ) − βTτ },(82)

with h(τ ) as in (51). By Lemma 7.1 T is convex. It follows that χ is a closed
convex function on Rk .

Steepness of E∗ means that |κ(βn)| → ∞ whenever (βn) is a sequence in B0

converging to a relative boundary point β∗ of B . Since κ is convex [Barndorff-
Nielsen (1978), Chapter 8] and χ coincides with κ on B0, we must thus have
|χ(βn)| → ∞ as (βn) → β∗. Since by Condition 7.3 the closed convex function χ

is finite on Rk , B cannot have any relative boundary points—hence, under
minimality, any boundary points—in Rk . Since B is nonempty, it must thus
coincide with Rk . Then, by (ii) E∗ = E l = En. �

To see that even under the above conditions we need not have E∗ = Em, consider
the case X = {0,1}, T = X. Then Em consists of all distributions on X, whereas
E∗ = E l = En excludes the one-point distributions at 0 and 1.

7.4.2. Characterization of specific entropy. We now generalize a result of
Kivinen and Warmuth (1999). For the case of finite X, they attack the problem
of minimizing the Kullback–Leibler discrepancy KL(P,P0) over all P such
that EP (T ) = 0. Equivalently (see Section 3.5.2), they are maximizing the entropy
H(P ) = −KL(P,P0), associated with the logarithmic score relative to base
measure P0, subject to P ∈ �0.

Let E∗ be the standard exponential family (74) generated by base measure P0

and statistic T , with typical member Q∗
β (β ∈ Rk) having probability mass

function of the form

q∗
β(x) = p0(x) e−κ(β)−βTt (x)(83)

and entropy h(τ ) = κ(β) + βTτ , where τ = EQβ
(T ).

Suppose 0 ∈ T 0. By Chapter 9 of Barndorff-Nielsen (1978), there then exists
within �0 a unique member Q∗

β∗ of E∗. By Theorem 7.1 the maximum of the
entropy −KL(P,P0) is achieved for P = Q∗

β∗ ; its maximized value is thus
h(0) = κ(β∗), where

κ(β) = log
∑
x

p0(x) e−βTt (x).(84)
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Equation (1.5) of Kivinen and Warmuth (1999) essentially states that the
maximized entropy h(0) over �0 can equivalently be obtained as

h(0) = min
β∈Rk

κ(β).(85)

By Proposition 7.5(i) this can also be written as

h(0) = min
β∈Rk

χ(β).(86)

We now extend the above property to a more general decision problem,
satisfying Conditions 7.2 and 7.3. Let τ ↔ β , σ ↔ γ (τ, σ ∈ T ). Then χ(β) =
β0 = h(τ ) − βTτ , χ(γ ) = γ0 = h(σ ) − γ Tσ , with β0, and correspondingly γ0, as
in (65). From (56) we have

h(σ ) ≤ β0 + βTσ.(87)

Moreover, we have equality in (87) when β = γ . It follows that for σ ∈ T

h(σ ) = inf
β∈Rk

{χ(β) + βTσ },(88)

the infimum being attained when β ↔ σ . In particular, when 0 ∈ T we recover (86)
in this more general context. Equations (82) and (88) express a conjugacy relation
between the convex function χ and the concave function h.

7.5. Support. Fix x ∈ X. For any act ζ ∈ Z we term the negative loss sx(ζ ) :=
−L(x, ζ ) the support for act ζ based on data x. Likewise, sP (ζ ) := −L(P, ζ )

is the support for ζ based on a (theoretical or empirical) distribution P for X.
If F ⊆ Z is a family of contemplated acts, then the function ζ �→ sP (ζ ) on F is
the support function over F based on “data” P . When the maximum of sP (ζ )

over ζ ∈ F is achieved at ζ̂ ∈ F , we may term ζ̂ the maximum support act
(in F , based on P ). Then ζ̂ is just the Bayes act against P in the game with
loss function L(x, ζ ), when ζ is restricted to the set F .

For the special case of the logarithmic score (20), sx(q) = logq(x) is
the log-likelihood of a tentative explanation q(·), on the basis of data x;
if P is the empirical distribution formed from a sample of n observations,
sP (q) is (n−1 times) the log-likelihood for the explanation whereby these were
independently and identically generated from density q(·). Thus our definition
of the support function generalizes that used in likelihood theory [Edwards
(1992)], while our definition of maximum support act generalizes that of maximum
likelihood estimate. In particular, maximum likelihood is Bayes in the sense of the
previous paragraph.

Typically we are only interested in differences of support (between different
acts, for fixed data x or distribution P ), so that we can regard this function as
defined only up to an additive constant; this is exactly analogous to regarding
a likelihood function as defined only up to a positive multiplicative constant.
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7.5.1. Maximum support in generalized exponential families. Let T ≡ t (X)

be a statistic, and let E r be the regular generalized exponential family generated
by L and T . Fix a distribution P ∗ over X, and consider the associated support
function s∗(·) := sP ∗(·) over the family F r := {ζτ : τ ∈ T r}. It is well known
[Barndorff-Nielsen (1978), Section 9.3] that, in the case of an ordinary exponential
family (when L is logarithmic score and F r = {pτ (·) : τ ∈ T r} is the set of
densities of distributions in E r ), the likelihood over F r based on data x∗ (or
more generally on a distribution P ∗) is under regularity conditions maximized
at pτ∗ , where τ ∗ = t (x∗) [or τ ∗ = EP ∗(T )]. The following result gives a partial
generalization of this property.

THEOREM 7.3. Suppose τ ∗ := EP ∗(T ) ∈ T r . Let τ ∈ T r be such that either
of the following holds:

(i) ζτ is linear;
(ii) P ∗ � Pτ .

Then

s∗(ζτ∗) ≥ s∗(ζτ ).(89)

PROOF. Since P ∗ ∈ �τ∗ and (Pτ∗, ζτ∗) is a saddle-point in Gτ∗
, we have

s∗(ζτ∗) ≥ −h(τ ∗).(90)

Under (i), (59) holds everywhere; under (ii), by Definition 7.3(ii) it holds with
P ∗-probability 1. In either case we obtain

L(P ∗, ζτ ) = h(τ ) + βT(τ ∗ − τ ).(91)

By (56), the right-hand side is at least as large as h(τ ∗), whence s∗(ζτ ) ≤ −h(τ ∗).
Combining this with (90), the result follows. �

COROLLARY 7.3. If for all τ ∈ E r either ζτ is linear or P ∗ � Pτ , then ζτ∗ is
the maximum support act in F r .

For the case of the logarithmic score (20) over a continuous sample space,
with P ∗ a discrete distribution (e.g., the empirical distribution based on a sample),
Theorem 7.3(ii) may fail, and we need to apply (i). For this we must be sure to
take as the Bayes act p(·) against P ∈ E the specific choice where (74) holds
everywhere (rather than almost everywhere). Then Corollary 7.3 holds.

See Section 7.6.1 for a case where neither (i) nor (ii) of Theorem 7.3 applies,
leading to failure of Corollary 7.3.
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7.6. Examples. We shall now illustrate the above theory for the Brier score,
the logarithmic score and the zero–one loss. In particular we analyze in detail the
simple case having X = {−1,0,1} and T ≡ X. For each decision problem we
(i) show how Theorems 7.1 and 7.2 can be used to find robust Bayes acts, (ii) give
the corresponding maximum entropy distributions and (iii) exhibit the associated
generalized exponential family and specific entropy function.

7.6.1. Brier score. Consider the Brier score for X = {x1, . . . , xN}. By (17) we
may write this score as

S(x,Q) = 1 − 2q(x) + ∑
j

q(j)2.

To try to apply Theorem 7.1 we search for a linear distribution Pτ ∈ �τ . That is,
we must find (βj ) such that, for all x ∈ X,

1 − 2pτ (x) + ∑
y

pτ (y)2 = β0 +
k∑

j=1

βj tj (x).(92)

Equivalently, we must find (αj ) such that, for all x,

pτ (x) ≡ α0 +
k∑

j=1

αj tj (x).(93)

The mean-value constraints∑
x

tj (x)pτ (x) = τj , j = 1, . . . , k,

together with the normalization constraint∑
x

pτ (x) = 1,

will typically determine a unique solution for the k + 1 coefficients (αj ) in (93).
As long as this procedure leads to a nonnegative value for each pτ (x), by
Theorem 7.1 and the fact that the Brier score is proper we shall then have obtained
a saddle-point (Pτ ,Pτ ).

However, as we shall see below, for certain values of τ this putative “solution”
for Pτ might have some pτ (x) negative—showing that it is simply not possible
to satisfy (92). By Theorem 5.2 we know that, even in this case a saddle-point
(Pτ ,Pτ ) exists. We can find it by applying Theorem 7.2: we first restrict the sample
space to some X∗ ⊆ X and try to find a probability distribution Pτ satisfying the
mean-value and normalization constraints, such that pτ (x) = 0 for x /∈ X∗ and for
which, for some (βj ) (92) holds for all x ∈ X∗ [or, equivalently, for some (αj )

(93) holds for all x ∈ X∗]. Among all such restrictions X∗ that lead to an
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everywhere nonnegative solution for (pτ (x)), we choose that yielding the largest
value of H . Then the resulting distribution Pτ will supply a saddle-point and so,
simultaneously, (i) will have H(Pτ ) = h(τ ), the maximum possible generalized
entropy 1 − ∑

x p(x)2 subject to the mean-value constraints, and (ii) (which we
regard as more important) will be robust Bayes for the Brier score against all
distributions satisfying that constraint.

A more intuitive and more efficient geometric variant of the above procedure
will be given in Section 8.

EXAMPLE 7.1. Suppose X = {−1,0,1} and T ≡ X. Consider the constraint
E(X) = τ , for τ ∈ [−1,1]. We first look for linear acts satisfying (93). The mean-
value constraint

∑
x x pτ (x) = τ and normalization constraint

∑
x pτ (x) = 1

provide two independent linear equations for the coefficients (α0, α1) in (93), so
uniquely determining (α0, α1), and hence pτ . We easily find α0 = 1

3 , α1 = 1
2τ

and thus pτ (x) = 1
3 + 1

2τx (x = −1,0,1) (whence β1 = −τ , β0 = 2
3 + 1

3τ 2).
We thus obtain a nonnegative solution for (pτ (−1),pτ (0),pτ (1)) only so long
as τ ∈ [−2/3,2/3]: in this and only this case the act pτ is linear. When τ falls
outside this interval we can proceed by trying the restricted sample spaces {−1},
{0}, {1}, {0,1}, {−1,0}, {−1,1}, as indicated above. All in all, we find that the
optimal distribution Pτ has probabilities, entropy and β satisfying Definition 7.3,
as given in Table 1.

The family {Pτ :−1 ≤ τ ≤ 1} constitutes the regular generalized exponential
family over X generated by the Brier score and the statistic T ≡ X. The location
of this family in the probability simplex is depicted in Figure 2.

We note that h(τ ) = β0 + β1τ and β1 = h′(τ ) (−1 < τ < 1). The function h(τ )

is plotted in Figure 3; Figure 4 shows the correspondence between β1 and τ .
By Theorem 7.1(i), the robust Bayes act Pτ will be an equalizer rule when τ is

linear, that is, for τ ∈ [−2
3 , 2

3 ], and also (trivially) when τ = ±1.

The above example demonstrates the need for condition (i) or (ii) in Theo-
rem 7.3 and Corollary 7.3: typically both these conditions fail here for τ /∈ [−2

3 , 2
3 ].

TABLE 1
Brier score: maximum entropy distributions

pτ (−1) pτ (0) pτ (1) h(τ ) β0 β1

τ = −1 1 0 0 0 = β1 β1 ≥ 2
−1 < τ ≤ − 2

3 −τ 1 + τ 0 −2τ(1 + τ) 2τ2 −2 − 4τ

− 2
3 < τ < 2

3
1
3 − 1

2τ 1
3

1
2τ + 1

3
2
3 − 1

2 τ2 2
3 + 1

2 τ2 −τ

2
3 ≤ τ < 1 0 1 −τ τ 2τ(1 − τ) 2τ2 2 − 4τ

τ = 1 0 0 1 0 = −β1 β1 ≤ −2
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FIG. 2. Brier score, logarithmic score and zero–one loss: the probability simplex for
X = {−1,0,1}, with entropy contours and generalized exponential family (maximum entropy dis-
tributions for the constraint E(X) = τ , τ ∈ [−1,1]). The set of distributions satisfying E(X) = τ

corresponds to a vertical line intersecting the base at τ ; this is displayed for τ = −0.25 and τ = 0.75.
The intersection of the bold curve and the vertical line corresponding to τ represents the maximum
entropy distribution for constraint E(X) = τ .

Thus let P ∗ have probabilities (p∗(−1),p∗(0),p∗(1)) = (0.9,0,0.1), so that
τ ∗ = EP ∗(X) = −0.8 and ζτ∗ = (0.8,0.2,0). From (18) we find s∗(ζτ∗) = −0.24.
However, ζτ∗ = ζ−0.8 is not the maximum support act in F r in this case:
it can be checked that this is given by ζ−0.95 = (0.95,0.05,0), having support
s∗(ζτ ) = −0.195.

7.6.2. Log loss. We now specialize the analysis of Section 7.3 to the case
X = {−1,0,1}, T ≡ X, with µ counting measure.

For τ ∈ (−1,1), the maximum entropy distribution Pτ will have (robust
Bayes) probability mass function of the form pτ (x) = exp−(β0 + β1x). That
is, the probability vector pτ = (pτ (−1),pτ (0),pτ (1)) will be of the form
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FIG. 3. Specific entropy function h(τ) for Brier score, logarithmic score and zero–one loss.

(peβ1,p,pe−β1), subject to the normalization and mean-value constraints

p (1 + eβ1 + e−β1) = 1,(94)

p (e−β1 − eβ1) = τ,(95)

which uniquely determine p ∈ (0,1), β1 ∈ R. Then h(τ ) = β0 + β1τ , where
β0 = − log p.

We thus have

p = (1 + eβ1 + e−β1)−1,(96)

τ = p (e−β1 − eβ1),(97)

h = − logp + β1τ.(98)
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FIG. 4. Correspondence between mean-value parameter τ (x-axis) and natural parameter β1
(y-axis) of generalized exponential family, for Brier score, logarithmic score and zero–one loss.

On varying β1 in (−∞,∞), we obtain the parametric curve (τ, h) displayed in
Figure 3; Figure 4 displays the correspondence between β1 and τ . It is readily
verified that dh/dτ = (dh/dβ1)/(dτ/dβ1) = β1, in accordance with (57).

In the terminology of Section 7.4, the above family {Pτ : τ ∈ (0,1)} constitutes
the natural exponential family associated with the logarithmic score and the
statistic T . It is also the usual exponential family for this problem. However,
the full exponential family further includes τ = ±1. The family �1 consists
of the single distribution P1 putting all its mass on the point 1. Then trivially
P1 is maximum entropy [with specific entropy h(1) = 0], and p1 = (0,0,1), with
loss vector L(·,p1) = (∞,∞,0), is unique Bayes against P1 and robust Bayes
against �1. Clearly (59) fails in this case, but even though τ = 1 is not regular the
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property of Lemma 7.2 does hold there (albeit trivially). Similar properties apply
at τ = −1.

7.6.3. Zero–one loss. We now consider the zero–one loss (22) and seek robust
Bayes acts against mean-value constraints �τ of form (76). Once again we can
try to apply Theorem 7.1 by looking for an act ζτ ∈ Z that is Bayes against
some Pτ ∈ �τ , and such that

L(x, ζτ ) ≡ 1 − ζτ (x) = β0 +
k∑

j=1

βj tj (x)(99)

for all x ∈ X. When this proves impossible, we can again proceed by restricting
the sample space and using Theorem 7.2. The distribution Pτ will again maximize
the generalized entropy. However, in this problem, in contrast to the log and
Brier score cases, because of nonsemistrictness the Bayes act against Pτ may be
nonunique—and, if we want to ensure that (99) (or its restricted version) holds,
it may matter which of the Bayes acts (including randomized acts) we pick. Thus
the familiar routine “maximize the generalized entropy, and then use a Bayes act
against this distribution” is not, by itself, fully adequate to derive the robust Bayes
act: additional care must be taken to select the right Bayes act.

EXAMPLE 7.2. Again take X = {−1,0,1} and T ≡ X. Consider the con-
straint E(X) = τ , where τ ∈ [−1,1]. We find that for each τ a unique max-
imum entropy Pτ exists. By some algebra we can then find the probabilities
(pτ (−1),pτ (0),pτ (1)); they are given in Table 2, together with the corresponding
specific entropy h(τ ) (also plotted in Figure 3).

The family of distributions {Pτ : τ ∈ [−1,1]} thus constitutes the full gener-
alized exponential family over X generated by the zero–one loss and the sta-

TABLE 2
Zero–one loss: maximum entropy distributions

pτ (−1) pτ (0) pτ (1) h(τ )

τ = −1 1 0 0 0
−1 < τ < − 1

2 −τ 1 + τ 0 1 + τ

τ = − 1
2

1
2

1
2 0 1

2

− 1
2 < τ < 0 1−τ

3
1−τ

3
1+2τ

3
2+τ

3

τ = 0 1
3

1
3

1
3

2
3

0 < τ < 1
2

1−2τ
3

1+τ
3

1+τ
3

2−τ
3

τ = 1
2 0 1

2
1
2

1
2

1
2 < τ < 1 0 1 −τ τ 1 − τ

τ = 1 0 0 1 0
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tistic T ≡ X. The location of this family in the probability simplex is depicted
in Figure 2.

How can we determine the robust Bayes acts ζτ ? We know that any such
ζτ is Bayes against Pτ and thus puts all its mass on the modes of Pτ . As can
be seen, for −0.5 ≤ τ ≤ 0.5 the set APτ of these modes has more than one
element. We additionally use (99), restricted to x in the support of Pτ , to find
out which ζτ ∈ APτ are robust Bayes. For τ ∈ [−1

2 , 1
2 ] this requires

−β1 + β0 = 1 − ζτ (−1),

β0 = 1 − ζτ (0),(100)

β1 + β0 = 1 − ζτ (1),

from which we readily deduce β0 = 2
3 . The condition that ζτ put all its mass on the

modes of Pτ then uniquely determines ζτ for −0.5 ≤ τ < 0 and for 0 < τ < 0.5.
If τ = 0, all acts ζ are Bayes for some P ∈ �τ (take P uniform), and hence by
Theorem 7.1 all solutions to (100) [i.e., such that ζτ (0) = 1

3 ] are robust Bayes acts.
Finally, for τ = 0.5 (the case τ = −0.5 is similar) we must have ζτ (−1) = 0, and
we can use the “supporting hyperplane” property (56) to deduce that ζτ (0) ≤ 1

3 .
Table 3 gives the robust Bayes acts ζτ for each τ ∈ [−1,1], together with the

corresponding values of β0, β1. Thus ζτ is a linear act for −0.5 ≤ τ ≤ 0.5 (where
we must choose a = 1

3 at the endpoints). Again we see that h(τ ) = β0 + β1τ , and
that β1 = h′(τ ) where this exists.

Figure 4 shows the relationship between β1 and τ . In this case the uniqueness
part of Condition 7.3 is not satisfied, with the consequence that neither β1 nor τ

uniquely determines the other. However, the full exponential family {Pτ :−1 ≤
τ ≤ 1} is clearly specified by the one-one map τ �→ Pτ , and most of the properties
of such families remain valid.

TABLE 3
Zero–one loss: robust Bayes acts

ζτ (−1) ζτ (0) ζτ (1) β0 β1

τ = −1 1 0 0 = β1 β1 ≥ 1
−1 < τ < − 1

2 1 0 0 1 1
τ = − 1

2 1 − a a ≤ 1
3 0 1 − a 1 − 2a

− 1
2 < τ < 0 2

3
1
3 0 2

3
1
3

τ = 0 a ≤ 2
3

1
3

2
3 − a 2

3 a − 1
3

0 < τ < 1
2 0 1

3
2
3

2
3 − 1

3
τ = 1

2 0 a ≤ 1
3 1 − a 1 − a 2a − 1

1
2 < τ < 1 0 0 1 1 −1
τ = 1 0 0 1 = −β1 β1 ≤ −1
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8. Relative entropy, discrepancy, divergence. Analogous to our generalized
definition of entropy, we now introduce generalized relative entropy with respect
to a decision problem, and we show how the negative relative entropy has a natural
interpretation as a measure of discrepancy. This allows us to extend our minimax
results to a more general setting and leads to a generalization of the Pythagorean
property of the relative Shannon entropy [Csiszár (1975)].

We first introduce the concept of the discrepancy between a distribution P and
a (possibly randomized) act ζ , induced by a decision problem.

8.1. Discrepancy. Suppose first that H(P ) is finite. We define, for any ζ ∈ Z,
the discrepancy D(P, ζ ) between the distribution P and the act ζ by

D(P, ζ ) := L(P, ζ ) − H(P ).(101)

In the general terminology of decision theory, D(P, ζ ) measures DM’s regret
[Berger (1985), Section 5.5.5] associated with taking action ζ when Nature
generates X from P . Also, since −D(P, ζ ) differs from −L(P, ζ ) by a term only
involving P , we can use it in place of the support function sP (ζ ): thus maximizing
support is equivalent to minimizing discrepancy.

We note that, if a Bayes act ζP against P exists, then

D(P, ζ ) = EP {L(X, ζ ) − L(X, ζP )}.(102)

We shall also use (102) as the definition of D(P, ζ ) when P /∈ P , or H(P ) is not
finite, but P has a Bayes act (in which case it will not matter which such Bayes
act we choose). This definition can itself be generalized further to take account of
some cases where no Bayes act exists; we omit the details.

The function D has the following properties:

(i) D(P, ζ ) ∈ [0,∞].
(ii) D(P, ζ ) = 0 if and only if ζ is Bayes against P .

(iii) For any a, a′ ∈ A, D(P,a) − D(P,a′) is linear in P (in the sense of
Lemma 3.2).

(iv) D is a convex function of P .

Conversely, under regularity conditions any function D satisfying (i)–(iii) above
can be generated from a suitable decision problem by means of (101) or (102)
[Dawid (1998)].

8.1.1. Discrepancy and divergence. When our loss function is a Q-proper
scoring rule S, we shall typically denote the corresponding discrepancy function
by d . Thus for P,Q ∈ Q with H(P ) finite,

d(P,Q) = S(P,Q) − H(P ).(103)

We now have d(P,Q) ≥ 0, with equality when Q = P ; if S is Q-strict,
then d(P,Q) > 0 for Q 
= P . Conversely, if for any scoring rule S, S(P,Q) −
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S(P,P ) is nonnegative for all P,Q ∈ Q, then the scoring rule S is Q-proper. We
refer to d(P,Q) as the divergence between the distributions P and Q. As we shall
see in Section 10, divergence can be regarded as analogous to a measure of squared
Euclidean distance.

The following lemma, generalizing Lemmas 4 and 7 of Topsøe (1979), follows
easily from (103) and the linearity of S(P,Q) in P .

LEMMA 8.1. Let S be a proper scoring rule, with associated entropy
function H and divergence function d . Let P1, . . . ,Pn have finite entropies, and
let (p1, . . . , pn) be a probability vector. Then

H(P) = ∑
pi H(Pi) + ∑

pi d(Pi,P ),(104)

d(P ,Q) = ∑
pi d(Pi,Q) − ∑

pi d(Pi,P ),(105)

where P := ∑
pi Pi .

We can also associate a divergence with a more general decision problem, with
loss function L such that ZQ is nonempty for all Q ∈ Q, by

d(P,Q) := D(P, ζQ) = EP {L(X, ζQ) − L(X, ζP )},(106)

where again for each Q ∈ Q we suppose we have selected some specific Bayes
act ζQ. This will then be identical with the divergence associated directly [using,
e.g., (103)] with the corresponding scoring rule given by (15), and (104) and (105)
will continue to hold with this more general definition.

8.2. Relative loss. Given a game G = (X,A,L), choose, once and for all,
a reference act ζ0 ∈ Z. We can construct a new game G0 = (X,A,L0), where the
new loss function L0 is given by

L0(x, a) := L(x, a) − L(x, ζ0).(107)

This extends naturally to randomized acts: L0(x, ζ ) := L(x, ζ ) − L(x, ζ0). We
call L0 the relative loss function and G0 the relative game with respect to the
reference act ζ0. In order that L0 > −∞ we shall require L(x, ζ0) < ∞ for
all x ∈ X. We further restrict attention to distributions in P ′ := {P :L0(P, a)

is defined for all a ∈ A} and randomized acts in Z′ := {ζ :L0(P, ζ ) is defined
for all P ∈ P ′}. In general, P ′ and Z′ may not be identical with P and Z.

The expected relative loss L0(P, ζ ) satisfies

L0(P, ζ ) = L(P, ζ ) − L(P, ζ0)(108)

whenever L(P, ζ0) is finite. Whether or not this is so, it is easily seen that the
Bayes acts against any P are the same in both games.
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DEFINITION 8.1. An act ζ0 ∈ Z is called neutral if the loss function L(x, ζ0)

is a finite constant, k say, on X.

If a neutral act exists, and we use it as our reference act, then L0(P, ζ ) =
L(P, ζ ) − k, all P ∈ P . The relative game G0 is then effectively the same
as the original game G, and maximum entropy distributions, saddle-points, and
other properties of the two games, or of their restricted subgames, will coincide.
However, these equivalences are typically not valid for more general relative
games.

8.3. Relative entropy. When a Bayes act ζP against P exists, the generalized
relative entropy H0(P ) := infa∈A L0(P, a) associated with the relative loss L0 is
seen to be

H0(P ) = EP {L(X, ζP ) − L(X, ζ0)}.(109)

[In particular, we must have −∞ ≤ H0(P ) ≤ 0.] When L(P, ζ0) is finite,
this becomes

H0(P ) = H(P ) − L(P, ζ0).(110)

Comparing (109) with (102), we observe the simple but fundamental relation

H0(P ) = −D(P, ζ0).(111)

The maximum generalized relative entropy criterion thus becomes identical to
the minimum discrepancy criterion:

Choose P ∈ � to minimize, over P ∈ �, its discrepancy D(P, ζ0) from the
reference act ζ0.

Note that, even though Bayes acts are unaffected by changing from L to the
relative loss L0, the corresponding entropy function (110) is not unaffected. Thus
in general the maximum entropy criterion (for the same constraints) will deliver
different solutions in the two problems. Related to this, we can also expect to
obtain different robust Bayes acts in the two problems.

Suppose we construct the relative loss taking as our reference act ζ0 a Bayes
act against a fixed reference distribution P0. Alternatively, start with a proper
scoring rule S, and construct directly the relative score with reference to the
act P0. The minimum discrepancy criterion then becomes the minimum divergence
criterion: choose P ∈ � to minimize the divergence d(P,P0) from the reference
distribution P0.

This reinterpretation can often assist in finding a maximum relative entropy
distribution. If moreover we can choose P0 to be neutral, this minimum divergence
criterion becomes equivalent to maximizing entropy in the original game.
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8.4. Relative loss and generalized exponential families.

8.4.1. Invariance relative to linear acts. Suppose the reference act ζ0 is linear
with respect to L and T , so that we can write

L(x, ζ0) = δ0 + δTt (x).(112)

Then if EP (T ) exists,

L0(P, ζ ) = L(P, ζ ) − δ0 − δTEP (T ),(113)

H0(P ) = H(P ) − δ0 − δTEP (T ).(114)

In particular, for all P ∈ �τ ,

L0(P, ζ ) = L(P, ζ ) − δ0 − δTτ,(115)

H0(P ) = H(P ) − δ0 − δTτ.(116)

We see immediately from the definitions that the full, the natural, the regular
and the linear generalized exponential families generated by L0 and T are identical
with those generated by L and T . The correspondence τ �→ Pτ is unaffected; for
the natural case, if Qβ arises from L and Q0,β from L0, we have Q0,β = Qβ+δ .

Suppose in particular that we take any Pσ ∈ E l . In this case we can take ζ0
having property (112) to be the corresponding Bayes act ζσ . We thus see that a
generalized exponential family is unchanged when the loss function is redefined
by taking it relative to some linear member of the family. This property is well
known for the case of a standard exponential family, where every regular member
is linear (with respect to the logarithmic score). In that case, the relative loss can
also be interpreted as the logarithmic score when the base measure µ is changed
to Pσ ; the exponential family is unchanged by such a choice.

8.4.2. Lafferty additive models. Lafferty (1999) defines the additive model
relative to a Bregman divergence d , reference measure P0 and constraint random
variable T :X → R as the family of probability measures {Qβ :β ∈ R} where

Qβ := arg min
P∈P

βEP {T (X)} + d(P,P0).(117)

We note that P0 = Q0 is in this family.
Let S be the Bregman score (29) associated with d and let S0 be the

associated relative score S0(x,Q) ≡ S(x,Q) − S(x,P0). Note that by (111)
d(P,P0) = −H0(P ), where H0(P ) is the entropy associated with S0. Lafferty’s
additive models are thus special cases of our natural generalized exponential
families as defined in Section 7.4, being generated by the specific loss function S0
and statistic T . As shown in Section 8.4.1, when P0 is linear (with respect to
S and T ) the previous sentence remains true on replacing S0 by S.

These considerations do not rely on any special Bregman properties, and so
extend directly to any loss-based divergence function d of the form given by
(103) or (106).
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8.5. Examples.

8.5.1. Brier score. In the case of the Brier score, the divergence between
P and Q is given by the squared Euclidean distance between their probabil-
ity vectors:

d(P,Q) = ‖p − q‖2 = ∑
j

{p(j) − q(j)}2.(118)

Using a reference distribution P0, the relative entropy thus becomes

H0(P ) = −∑
j

{p(j) − p0(j)}2.(119)

The uniform distribution over X is neutral. Therefore the distribution within a
set � that maximizes the Brier entropy is just that minimizing the discrepancy
from the uniform reference distribution P0.

To see the consequences of this for the construction of generalized Brier
exponential families, let X = {−1,0,1} and consider the Brier score picture in
Figure 2. The bold line depicts the maximum entropy distributions for constraints
E(T ) = τ , τ ∈ [−1,1]. By the preceding discussion, these coincide with the
minimum P0-discrepancy distributions. For each fixed value of τ , the set �τ =
{P : EP (X) = τ } is represented by the vertical line through the simplex intersecting
the base line at the coordinate τ . In Figure 2 the cases τ = −0.25 and τ = 0.75 are
shown explicitly. The minimum discrepancy distribution within �τ will be given
by the point on that line within the simplex that is nearest to the center of the
simplex. This gives us a simple geometric means to find the minimum relative
discrepancy distributions for τ ∈ [−1,1], involving less work than the procedure
detailed in Section 7.6.1. We easily see that for τ ∈ [−2/3,2/3] the minimizing
point pτ is in the interior of the line segment, while for τ outside this interval the
minimizing point is at one end of the segment.

8.5.2. Logarithmic score. For P ∈ M (i.e., P � µ) any version p of the
density dP/dµ is Bayes against P . Then, with q any version of dQ/dµ,
D(P,q) = EP [log{p(X)/q(X)}] is the Kullback–Leibler divergence KL(P,Q)

and does not depend on the choice of the versions of either p or q . Again, for
P,Q ∈ M we can treat S as a proper scoring rule S(x,Q), with d(P,Q) ≡
KL(P,Q) as its associated divergence. [For P /∈ M there is no Bayes act (see
Section 3.5.2), and so, according to our definition (102), the discrepancy D(P,q)

is not defined: we might define it as +∞ in this case.] Maximizing the relative
entropy is thus equivalent to minimizing the Kullback–Leibler divergence in
this case.

There is a simple relationship between the choice of base measure µ, which
is a necessary input to our specification of the decision problem, and the use
of a reference distribution for defining relative loss. If we had constructed our
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logarithmic loss using densities starting with a different choice µ0 of base measure,
where µ0 is mutually absolutely continuous with µ, we should have obtained
instead the loss function S0(x,Q) = − logq0(x), with q0(x) = (dQ/dµ0)(x) =
(dQ/dµ)(x) × (dµ/dµ0)(x). Thus S0(x,Q) = S(x,Q) + k(x), with k(x) ≡
− log d(x), where d is some version of dµ/dµ0. In particular, when µ0 is a
probability measure, this is exactly the relative loss function (107) with respect
to the reference distribution µ0, when we start from the problem constructed in
terms of µ (in particular, it turns out that this relative game will not depend on the
starting measure µ). As already determined, the corresponding relative entropy
function is H0(P ) = −KL(P,µ0).

8.5.3. Zero–one loss. In this case, the discrepancy between P and an act ζ ∈ Z
is given by

D(P, ζ ) = pmax − ∑
j∈X

p(j)ζ(j).(120)

When X has finite cardinality N , and ζ0 is the randomized act that chooses
uniformly from X, we have S(x, ζ0) ≡ 1−1/N , so that this choice of ζ0 is neutral.

Take X = {−1,0,1} and T ≡ X, let ζ0 be uniform on X and consider the
minimum zero–one ζ0-discrepancy distributions shown in Figure 2. Determining
this family of distributions geometrically is easy once one has determined the
contours of constant generalized entropy, since these are also the contours of
constant discrepancy from ζ0.

8.5.4. Bregman divergence. In a finite sample space, the Bregman score (29)
generates the Bregman divergence (30). Thus minimizing the Bregman divergence
is equivalent to maximizing the associated relative entropy, which is in turn
equivalent to finding a distribution that is robust Bayes against the associated
relative loss function. Minimizing a Bregman divergence has become a popular
tool in the construction and analysis of on-line learning algorithms [Lafferty (1999)
and Azoury and Warmuth (2001)], on account of numerous pleasant properties it
enjoys. As shown by properties (i)–(iv) of Section 8.1 and as will further be seen
in Section 10, many of these properties generalize to an arbitrary decision-based
divergence function as defined by (103) or (106).

In more general sample spaces, the separable Bregman score (34) generates the
separable Bregman divergence dψ given by (37). When the measure µ appearing
in these formulae is itself a probability distribution, µ will be neutral (uniquely so
if ψ is strictly convex); then minimizing over P the separable Bregman divergence
dψ(P,µ) of P from µ becomes equivalent to maximizing the separable Bregman
entropy H(P ) as given by (38).

9. Statistical problems: discrepancy as loss. In this section we apply the
general ideas presented so far to more specifically statistical problems.
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9.1. Parametric prediction problems. In a statistical decision problem, we
have a family {Pω :ω ∈ Ω} of distributions for an observable X over X, labelled
by the values ω of a parameter � ranging over Ω ; the consequence of taking
an action a depends on the value of �. We shall show how one can construct a
suitable loss function for this purpose, starting from a general decision problem G
with loss depending on the value of X, and relate the minimax properties of the
derived statistical game Ĝ to those of the underlying basic game G.

In our context X is best thought of as a future outcome to be predicted, perhaps
after conducting a statistical experiment to learn about �. The distributions of X

given � = ω would often be taken to be the same as those governing the data in
the experiment, but this is not essential. Our emphasis is thus on statistical models
for prediction, rather than for observed data: the latter will not enter directly.
For applications of this predictive approach to problems of experimental design,
see Dawid (1998) and Dawid and Sebastiani (1999).

9.2. Technical framework. Let (X,B) be a separable metric space with its
Borel σ -field, and let P0 be the family of all probability distributions over (X,B).
We shall henceforth want to consider P0 itself (and subsets thereof) as an abstract
“parameter space.” When we wish to emphasize this point of view we shall
denote P0 by Θ0, and its typical member by θ ; when θ is considered in its original
incarnation as a probability distribution on (X,B), we may also denote it by Pθ .

Θ0 becomes a metric space under the Prohorov metric in P0, and the associated
topology is then identical with the weak topology on P0 [Billingsley (1999),
page 72]. We denote the set of all probability distributions, or laws, on the Borel
σ -field C in Θ0 by L0. Such a law can be regarded as a “prior distribution” for
a parameter random variable � taking values in Θ0. For such a law � ∈ L0, we
denote by P� ∈ P0 its mean, given by P�(A) = E�{P�(A)} (A ∈ B): this is just
the marginal “predictive” (mixture) distribution for X over X, obtained by first
generating a value θ for � from �, and then generating X from Pθ .

9.3. The derived game. Starting from a basic game G = (X,A,L), we
construct a new derived game, Ĝ := (Θ,A, L̂). The new loss function L̂ on Θ ×A
is just the discrepancy function for the original game Ĝ,

L̂(θ, a) := D(Pθ, a),(121)

and the original sample space X is replaced by Θ := {θ ∈ Θ0 :D(Pθ, a) is defined
for all a ∈ A}.

We have

L̂(θ, a) = L(Pθ, a) − H(Pθ)(122)

when H(Pθ) is finite. Properties (121) and (122) then extend directly to
randomized acts ζ ∈ Z for DM. A randomized act for Nature in Ĝ is a law putting
all its mass on Θ ⊆ Θ0. We shall denote the set of such laws by L ⊆ L0.
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Note that L̂(θ, a) is just the regret associated with taking action a when X ∼ Pθ .
It is nonnegative, and it vanishes if and only if a is Bayes against Pθ . Such a regret
function will often be a natural loss function to use in a statistical decision problem.

Since L̂ ≥ 0, the expected loss L̂(�, ζ ) is defined in [0,∞] for all � ∈ L,
ζ ∈ Z. From (122) we obtain

L̂(�, ζ ) = L(P�, ζ ) −
∫

H(Pθ) d�(θ)(123)

when the integral exists. An act ζ0 will thus be Bayes against � in Ĝ if and only
if it is Bayes against P� in G. More generally, this equivalence follows from
the property E�{L̂(�, ζ ) − L̂(�, ζ0)} = EP�

{L(X, ζ ) − L(X, ζ0)}. In particular,
if L is a Q-proper scoring rule in the basic game G, and the mixture distribution
P� ∈ Q, then P� will be Bayes against � in Ĝ.

The derived entropy function is

Ĥ (�) = H(P�) −
∫

H(Pθ) d�(θ)(124)

(when the integral exists) and is nonnegative. This measures the expected reduction
in uncertainty about X obtainable by learning the value of �, when initially
� ∼ �: it is the expected value of information [DeGroot (1962)] in � about X.

The derived discrepancy is just

D̂(�, ζ ) = D(P�, ζ ).(125)

9.4. A statistical model. Let Ω ⊆ Θ0: for example, Ω might be a parametric
family of distributions for X. We can think of Ω as the statistical model for the
generation of X. We will typically write ω or Pω for a member of Ω and use �

to denote the parameter � when it is restricted to taking values in Ω . We denote
by 	 ⊆ L0 the class of laws on Θ0 that give all their mass to Ω and can thus
serve as priors for the parameter � of the model; we denote by � ⊆ P0 the family
{P� :� ∈ 	} of all distributions for X obtainable as mixtures over the model Ω .
Clearly both 	 and � are convex.

LEMMA 9.1. Suppose that the family Ω of distributions on (X,B) is tight.
Then so too are � and 	 [the latter as a family of laws on (Θ0,C)].

PROOF. The tightness of � follows easily from the definition.
Let Ω denote the closure of Ω in Θ0. Since Ω is tight, so is Ω [use, e.g.,

Theorem 3.1.5(iii) of Stroock (1993)], and then Prohorov’s theorem [Billingsley
(1999), Theorem 5.1] implies that Ω is compact in the weak topology. Any
collection (in particular, 	) of distributions on (Θ0,C) supported on Ω is then
necessarily tight. �
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9.5. Minimax properties. Now consider a statistical model with Ω ⊆ Θ

(so that 	 ⊆ L). We can tailor the derived game Ĝ to this model by simply
restricting the domain of L̂ to Ω × A. We would thus be measuring the loss
(regret) of taking act ζ ∈ Z, when the true parameter value is ω ∈ Ω , by
L̂(ω, ζ ) = D(Pω, ζ ). Alternatively, and equivalently, we can focus attention on the
restricted game Ĝ	 as defined in Section 4.2, with 	 the family of laws supported
on the model Ω . In the present context we shall denote this by ĜΩ .

We will often be interested in the existence and characterization of a value,
saddle-point, maximum entropy (maximin) prior �̂∗ or robust Bayes (minimax)
act ζ̂ ∗, in the game ĜΩ . Note in particular that, when we do have a saddle-point
(�̂∗, ζ̂ ∗) in ĜΩ , with value Ĥ ∗, we can use Lemma 4.2 to deduce that �̂∗ must
put all its mass on Υ := {ω ∈ Ω :D(Pω, ζ̂ ∗) = Ĥ ∗}: in particular, with �̂∗-prior
probability 1 the discrepancy from the minimax act is constant. When, as will
typically hold, Υ is a proper subset of Ω , we further deduce from Corollary 4.4
that ζ̂ ∗ is not an equalizer rule in ĜΩ .

To investigate further the minimax and related properties of the game ĜΩ , we
could try to verify directly for this game the requirements of the general theorems
already proved in Sections 5–7. However, under suitable conditions these required
properties will themselves follow from properties of the basic game G. We now
detail this relationship for the particular case of Theorem 6.4.

We shall impose the following condition:

CONDITION 9.1. There exists K ∈ R such that H(Pω) ≥ K for all ω ∈ Ω .

By concavity of H , Condition 9.1 is equivalent to H(Q) ≥ K for all Q ∈ �.
The following lemma is proved in the Appendix.

LEMMA 9.2. Suppose Condition 9.1 holds. Then if Conditions 6.1 and 6.3
hold for L and � (in G), they likewise hold for L̂ and 	 (in Ĝ).

The next theorem now follows directly from Lemmas 9.1 and 9.2 and
Theorem 6.4.

THEOREM 9.1. Suppose Conditions 6.1, 6.3 and 9.1 all hold for L and �

in G and, in addition, the statistical model Ω is tight. Then Ĥ ∗ := sup�∈	 Ĥ (�)

is finite, the game ĜΩ has value Ĥ ∗ and there exists a minimax (robust Bayes)
act ζ̂ ∗ in ĜΩ such that

sup
ω∈Ω

L̂(ω, ζ̂ ∗) = inf
ζ∈Z

sup
ω∈Ω

L̂(ω, ζ ) = sup
�∈	

inf
a∈A

L̂(�,a) = Ĥ ∗.(126)

We remark that the convexity requirement on � in Condition 6.3 will be
satisfied automatically, while the finite entropy requirement is likewise guaranteed
by Condition 9.1 and the assumed finiteness of H ∗.
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The proof of Theorem A.2 shows that we can take ζ̂ ∗ to be Bayes in Ĝ against
some law �̂∗ in the weak closure 	 of 	 (or, equivalently, Bayes in G against
P̂ ∗ := P�̂∗ in the weak closure � of �). However, in general, if 	 is not weakly
closed, ζ̂ ∗ need not be a Bayes act in Ĝ against any prior distribution � ∈ 	

(equivalently, not Bayes in G against any mixture distribution P� ∈ �).
On noting that for any reference act ζ0 the games G� and G�

0 induce the same
derived game, and using (111), we have the following.

COROLLARY 9.1. Suppose that there exists ζ0 ∈ Z such that Conditions
6.1 and 6.3 hold for L0 and � in the relative game G�

0 , and, in addition, that
L is tight. Suppose further that D(Pω, ζ0) is bounded above for ω ∈ Ω . Then
there exists a minimax (robust Bayes) act ζ̂ ∗ in the game ĜΩ .

If the boundedness condition in Corollary 9.1 fails, we shall have

sup
ω∈Ω

L̂(ω, ζ0) = sup
ω∈Ω

D(Pω, ζ0) = ∞.(127)

It can thus fail for all ζ0 ∈ Z only when infζ∈Z supω∈Ω L̂(ω, ζ ) = ∞; that is,
the upper value of the game ĜΩ is ∞. In this case the game has no value,
and any ζ ∈ Z will trivially be minimax in ĜΩ . In the contrary case, we would
normally expect to be able to find a suitable ζ0 ∈ Z to satisfy all the conditions of
Corollary 9.1 and thus demonstrate the existence of a robust Bayes act ζ̂ ∗ in ĜΩ .

9.6. Kullback–Leibler loss: the redundancy-capacity theorem. An important
special case arises when the model Ω is dominated by a σ -finite measure µ, and
the loss function L in G is given by the logarithmic score (20) with respect to µ. In
this case, for any possible choice of µ, the derived loss is just the Kullback–Leibler
divergence, L̂(ω,P ) ≡ KL(Pω,P ). We call such a game a Kullback–Leibler game.
The corresponding derived entropy Ĥ (�), as given by (124), becomes the mutual
information, I�(X,�), between X and �, in their joint distribution generated by
the prior distribution � for � [Lindley (1956)]. There has been much research,
especially for asymptotic problems, into the existence and properties of a maximin
“reference” prior distribution � over Ω maximizing this mutual information, or of
a minimax act (which can be regarded as a distribution P̂ ∗ ∈ M over X) for DM
[Bernardo (1979), Berger and Bernardo (1992), Clarke and Barron (1990, 1994),
Haussler (1997) and Xie and Barron (2000)].

The following result follows immediately from Corollary 9.1 and Proposi-
tion A.1.

THEOREM 9.2. Suppose that loss on Ω × A is measured by L̂(ω,P ) =
KL(Pω,P ), and that the model Ω is tight. Then there exists a minimax act P̂ ∗ ∈ M
for ĜΩ , achieving infP∈M supω∈Ω KL(Pω,P ). When this quantity is finite it is
the value of the game and equals the maximum attainable mutual information,
I ∗ := sup�∈	 I�(X,�).
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Theorem 9.2, a version of the “redundancy-capacity theorem” of information
theory [Gallager (1976), Ryabko (1979), Davisson and Leon-Garcia (1980) and
Krob and Scholl (1997)], constitutes the principal result (Lemma 3) of Haussler
(1997). Our proof techniques are different, however.

If I ∗ is achieved for some �̂∗ ∈ 	, then (�̂∗, P̂ ∗) is a saddle-point in ĜΩ ,
whence, since P̂ ∗ is then Bayes in Ĝ against �̂∗, P̂ ∗ is the mixture distribution
P�̂∗ = ∫

Pω d�̂∗(ω). Furthermore, since Lemma 4.2 applies in this case, we find
that �̂∗ must be supported on the subspace Υ := {ω ∈ Ω : KL(Pω, P̂ ∗) = I ∗}.
As argued in Section 4.3, for the case of a continuous parameter-space �̂∗ will
typically be a discrete distribution. Notwithstanding this, it is known that, for
suitably regular problems, as sample size increases this discrete maximin prior
converges weakly to the absolutely continuous Jeffreys invariant prior distribution
[Bernardo (1979), Clarke and Barron (1994) and Scholl (1998)].

10. The Pythagorean inequality. The Kullback–Leibler divergence satisfies
a property reminiscent of squared Euclidean distance. This property was called
the Pythagorean property by Csiszár (1975). The Pythagorean property leads
to an interpretation of minimum relative entropy inference as an information
projection operation. This view has been emphasized by Csiszár and others in
various papers [Csiszár (1975, 1991) and Lafferty (1999)]. Here we investigate
the Pythagorean property in our more general framework and show how it is
intrinsically related to the minimax theorem: essentially, a Pythagorean inequality
holds for a discrepancy function D if and only if the loss function L on which D is
based admits a saddle-point in a suitable restricted game. Below we formally state
and prove this; in Section 10.2 we shall give several examples.

Let � ⊆ P be a family of distributions over X, and let ζ0 be a reference
act, such that L(P, ζ0) is finite for all P ∈ � [so that L0(P, ζ ) is defined
for all P ∈ �, ζ ∈ Z]. We impose no further restrictions on � (in particular,
convexity is not required). Consider the relative restricted game G�

0 , with loss
function L0(P, a), for P ∈ �, a ∈ A. We allow randomization over A but
not over �. The entropy function for this game is H0(P ) = −D(P, ζ0) and is
always nonpositive.

THEOREM 10.1. Suppose (P ∗, ζ ∗) is a saddle-point in G�
0 . Then for all P ∈ �,

D(P, ζ ∗) + D(P ∗, ζ0) ≤ D(P, ζ0).(128)

Conversely, if (128) holds with its right-hand side finite for all P ∈ �, then
(P ∗, ζ ∗) is a saddle-point in G�

0 .

PROOF. Let H ∗
0 := H0(P

∗) = −D(P ∗, ζ0). If (P ∗, ζ ∗) is a saddle-point
in G�

0 , then H ∗
0 = L0(P

∗, ζ ∗) and is finite. Also, for all P ∈ �,

L0(P, ζ ∗) ≤ H ∗
0 .(129)



1420 P. D. GRÜNWALD AND A. P. DAWID

If H0(P ) = −∞, then D(P, ζ0) = ∞, so that (128) holds trivially. Otherwise,
(129) is equivalent to

{L0(P, ζ ∗) − H0(P )} + {−H ∗
0 } ≤ {−H0(P )},(130)

which is just (128).
Conversely, in the case that D(P, ζ0) is finite for all P ∈ �, (128) implies (129).

Also, putting P = P ∗ in (128) gives D(P ∗, ζ ∗) = 0, which is equivalent to ζ ∗
being Bayes against P ∗. Moreover, H(P ∗) = D(P ∗, ζ0) is finite. By (44),
(P ∗, ζ ∗) is a saddle-point in G�

0 . �

COROLLARY 10.1. If S is a Q-proper scoring rule and � ⊆ Q, then in the
restricted relative game G�

0 having loss S0(P,Q) ( for fixed reference distribution
P0 ∈ Q), if (P ∗,P ∗) is a saddle-point (in which case P ∗ is both maximum entropy
and robust Bayes), then for all P ∈ �,

d(P,P ∗) + d(P ∗,P0) ≤ d(P,P0).(131)

Conversely, if (131) holds and d(P,P0) < ∞ for all P ∈ �, then (P ∗,P ∗) is a
saddle-point in G�

0 .

We shall term (128), or its special case (131), the Pythagorean inequality.
We deduce from (128), together with D(P, ζ0) = −H0(P ), that for all P ∈ �,

H0(P
∗) − H0(P ) ≥ D(P, ζ ∗),(132)

providing a quantitative strengthening of the maximum relative entropy property,
H0(P

∗) − H0(P ) ≥ 0, of P ∗. Similarly, (131) yields

H0(P
∗) − H0(P ) ≥ d(P,P ∗).(133)

Often we are interested not in the relative game G�
0 but in the original game G� .

The following corollary relates the Pythagorean inequality to this original game:

COROLLARY 10.2. Suppose that in the restricted game G� there exists an act
ζ0 ∈ Z such that L(P, ζ0) = k ∈ R, for all P ∈ � (in particular, this will hold if ζ0
is neutral ). Then, if (P ∗, ζ ∗) is a saddle-point in G� , (128) holds for all P ∈ �;
the converse holds if H(P ) is finite for all P ∈ �.

10.1. Pythagorean equality. Related work to date has largely confined itself
to the case of equality in (128). This has long been known to hold for the
Kullback–Leibler divergence of Section 8.5.2 [Csiszár (1975)]. More recently
[Jones and Byrne (1990), Csiszár (1991) and Della Pietra, Della Pietra and Lafferty
(2002)], it has been shown to hold for a general Bregman divergence under certain
additional conditions. This result extends beyond our framework in that it allows
for divergences not defined on probability spaces. On the other hand, when we try
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to apply it to probability spaces as in Section 3.5.4, its conditions are seen to be
highly restrictive, requiring not only differentiability but also, for example, that the
tangent space ∇H(q) of H at q should become infinitely steep as q approaches the
boundary of the probability simplex. This is not satisfied even for such simple cases
as the Brier score: see Section 10.2.1, where we obtain strict inequality in (128).

The following result follows easily on noting that we have equality in (128) if
and only if we have it in (129):

THEOREM 10.2. Suppose (P ∗, ζ ∗) is a saddle-point in G�
0 . If ζ ∗ is an

equalizer rule in G�
0 [i.e., L0(P, ζ ∗) = H0(P

∗) for all P ∈ �], then (128)
holds with equality for all P ∈ �. Conversely, if (128) holds with equality, then
L0(P, ζ ∗) = H0(P

∗) for all P ∈ � such that D(P, ζ0) < ∞; in particular, if
D(P, ζ0) < ∞ for all P ∈ �, ζ ∗ is an equalizer rule in G�

0 .

Combining Theorem 10.2 with Theorem 7.1(i) or Corollary 7.2 now gives the
following:

COROLLARY 10.3. Let � = �τ = {P ∈ P : EP {t (X)} = τ }. Suppose
(P ∗, ζ ∗) := (Pτ , ζτ ) is a saddle-point in Gτ

0. If either (Pτ , ζτ ) is a linear pair
or P � Pτ , then (128) holds with equality.

10.2. Examples. We now illustrate the Pythagorean theorem and its conse-
quences for our running examples.

10.2.1. Brier score. Let X be finite. As remarked in Section 8.5.1, the
Brier divergence d(P,Q) between two distributions P and Q is just ‖p − q‖2.
Let � ⊆ P be closed and convex. By Theorem 5.2, we know that there then exists
a P ∗ ∈ � such that (P ∗,P ∗) is a saddle-point in the relative game G�

0 . Therefore,
by Corollary 10.1 we have, for all P ∈ �,

‖p − p∗‖2 + ‖p∗ − p0‖2 ≤ ‖p − p0‖2,(134)

or equivalently,

(p − p∗)T(p∗ − p0) ≤ 0.(135)

The distribution P ∗ within � that maximizes the Brier entropy relative to P0,
or equivalently that minimizes the Brier discrepancy to P0, is given by the
point closest to P0 in �, that is, the Euclidean projection of P0 onto �.
That this distribution is also a saddle-point is reflected in the fact that the angle
∠(p, p∗,p0) ≥ 90◦ for all P ∈ �.

Consider again the case X = {−1,0,1} and constraint EP (X) = τ . For
τ ∈ [−2/3,2/3], where (except for the extreme cases) the minimizing point pτ

is in the interior of the line segment, (135), and so (134), holds with equality for
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all P ∈ �τ ; while for τ outside this interval, where the minimizing point is at one
end of the segment, (135) and (134) hold with strict inequality for all P ∈ �τ \{Pτ }.
Note further that in the former case pτ is linear; for τ ∈ (−2/3,2/3) pτ is in the
interior of the simplex, so that Pτ has full support. Hence, by Theorem 7.1(i) or
Corollary 7.2, pτ is an equalizer rule. In the latter case Pτ does not have full
support, and indeed the strict inequality in (134) implies by Theorem 10.2 that it
cannot be an equalizer rule.

We can also use (135) to investigate the existence of a saddle-point for certain
nonconvex �. Thus suppose, for example, that � is represented in the simplex by
a spherical surface. Then the necessary and sufficient condition (135) for a saddle-
point will hold for a reference point p0 outside the sphere, but fail for p0 inside.
In the latter case Corollary 4.1 does not apply, and the maximum Brier entropy
distribution in � (the point in � closest to the center of the simplex) will not be
robust Bayes against �.

10.2.2. Logarithmic score. In this case d(P,Q) becomes the Kullback–
Leibler divergence KL(P,Q) (P,Q ∈ M). This has been intensively studied
for the case of mean-value constraints �M

τ = {P ∈ M : EP (T ) = τ } (τ ∈ T 0),
when the Pythagorean property (131) holds with equality [Csiszár (1975)]. By
Theorem 10.2 this is essentially equivalent to the equalizer property of the
maximum relative entropy density pτ , as already demonstrated (in a way that even
extends to distributions P ∈ �τ \ M) in Section 7.3. (Recall from Section 8.5.2
that in this case the relative entropy, with respect to a reference distribution P0, is
simply the ordinary entropy under base measure P0.)

In the simple discrete example studied in Section 7.6.2, the above equalizer
property also extended (trivially) to the boundary points τ = ±1. Such an
extension also holds for more general discrete sample spaces, since the condition
of Corollary 7.2 can be shown to apply when τ is on the boundary of T . So in all
such cases the Pythagorean inequality (131) is in fact an equality.

10.2.3. Zero–one loss. For the case X = {−1,0,1} and constraint EP (X) = τ ,
with ζ0 uniform on X, we have H0(P ) = H(P )−1+1/N , and then (132) (equiva-
lent to both the Pythagorean and the saddle-point property) asserts: for all P ∈ �τ ,

H(Pτ ) − H(P ) ≥ D(P, ζτ ).(136)

Using (25) and (120), (136) becomes

pτ,max ≤ ∑
p(x) ζτ (x).(137)

This can be confirmed for the specifications of Pτ and ζτ given in Tables 2 and 3.
Specifically, for 0 ≤ τ < 1

2 , both sides of (137) are (1 + τ )/3 (the equality
confirming that in this case we have an equalizer rule), while, for 1

2 < τ ≤ 1,
(137) becomes τ ≤ p(1), which holds since τ = p(1) − p(−1) (in particular we
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have strict inequality, and hence do not have an equalizer rule, unless τ = 1). For
τ = 1

2 , we calculate
∑

p(x)ζτ (x)−pτ,max = (1−3a)p(−1), which is nonnegative
since a ≤ 1/3, so verifying the Pythagorean inequality, and hence the robust Bayes
property of ζ1/2 = (0, a,1 − a) for a ≤ 1

3 —although this will be an equalizer rule
only for a = 1

3 . Similar results hold when −1 ≤ τ < 0.

11. Conclusions and further work.

11.1. What has been achieved. In this paper we started by interpreting the
Shannon entropy of a distribution P as the smallest expected logarithmic loss
a DM can achieve when the data are distributed according to P . We showed
how this interpretation (a) allows for a reformulation of the maximum entropy
procedure as a robust Bayes procedure and (b) can be generalized to supply a
natural extension of the concept of entropy to arbitrary loss functions. Both these
ideas were already known. Our principal novel contribution lies in the combination
of the two: the generalized entropies typically still possess a minimax property,
and therefore maximum generalized entropy can again be justified as a robust
Bayes procedure. For some simple decision problems, as in Section 5, this result is
based on an existing minimax theorem due to Ferguson (1967); see the Appendix,
Section A.1. For others, as in Section 6, we need more general results, such as
Lemma A.1, which uses a (so far as we know) novel proof technique.

We have also considered in detail in Section 7 the special minimax results
available when the constraints have the form of known expectations for certain
quantities. Arising out of this is our second novel contribution: an extension of
the usual definition of “exponential family” to a more general decision framework,
as described in Section 7.4. We believe that this extension holds out the promise
of important new general statistical theory, such as variations on the concept
of sufficiency.

Our third major contribution lies in relating the above theory to the problem
of minimizing a discrepancy between distributions. This in turn leads to two
further results: in Section 9.5 we generalize Haussler’s minimax theorem for the
Kullback–Leibler divergence to apply to arbitrary discrepancies; in Section 10
we demonstrate the equivalence between the existence of a saddle-point and a
“Pythagorean inequality.”

11.2. Possible developments. We end by discussing some possible extensions
of our work.

11.2.1. Moment inequalities. As an extension to the moment equalities
discussed in Section 7, one may consider robust Bayes problems for moment
inequalities, of the form � = {P : EP (T ) ∈ A}, where A is a general (closed,
convex) subset of Rk . A direct approach to (39) is complicated by the combination
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of inner maximization and outer minimization [Noubiap and Seidel (2001)].
Replacement of this problem by a single maximization of entropy over � could
well simplify analysis.

11.2.2. Nonparametric robust Bayes. Much of robust Bayes analysis in-
volves “nonparametric” families �: for example, we might have a reference
distribution P0, but, not being sure of its accurate specification, wish to guard
against any P in the “ε-neighborhood” of P0, that is, {P0 + c(P − P0) : |c| ≤ ε,

P arbitrary}. Such a set being closed and convex, a saddle-point will typically ex-
ist, and then we can again, in principle, find the robust Bayes act by maximizing
the generalized entropy. However, in general it may not be easy to determine or
describe the solution to this problem.

11.2.3. Other generalizations of entropy and entropy optimization problems.
It would be interesting to make connections between the generalized entropies and
discrepancies defined in this text and the several other generalizations of entropy
and relative entropy which exist in the literature. Two examples are the Rényi
entropies [Rényi (1961)] and the family of entropies based on expected Fisher
information considered by Borwein, Lewis and Noll (1996).

Finally, very recently, Harremoës and Topsøe [Topsøe (2002) and Harremoës
and Topsøe (2002)] have proposed a generalization of Topsøe’s original minimax
characterization of entropy [Topsøe (1979)]. They show that a whole range
of entropy-related optimization problems can be interpreted from a minimax
perspective. While Harremoës and Topsøe’s results are clearly related to ours, the
exact relation remains a topic of further investigation.

APPENDIX: PROOFS OF MINIMAX THEOREMS

We first prove Theorem 6.1, which can be used for loss functions that
are bounded from above, and Theorem 6.2, which relates saddle-points to
differentiability of the entropy. We then prove a general lemma, Lemma A.1,
which can be used for unbounded loss functions but imposes other restrictions.
This lemma is used to prove Theorem 6.3. Next we demonstrate a general result,
Theorem A.2, which implies Theorem 6.4. Finally we prove Lemma 9.2.

A.1. Theorem 6.1: L upper-bounded, � closed and tight. The following
result follows directly from Theorem 2 of Ferguson [(1967), page 85].

THEOREM A.1. Consider a game (X,A,L). Suppose that L is bounded
below and that there is a topology on Z, the space of randomized acts, such that
the following hold:

(i) Z is compact.
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(ii) L :X × ζ → R is lower semicontinuous in ζ for all x ∈ X.

Then the game has a value, that is, supP∈P infa∈A L(P,a) = infζ∈Z supx∈X L(x, ζ ).
Moreover, a minimax ζ , attaining infζ∈Z supx∈X L(x, ζ ), exists.

Note that Z could be any convex set. By symmetry considerations, we thus have
the following.

COROLLARY A.1. Consider a game (�,A,L). Suppose that L is bounded
above and there is a topology on � such that the following hold:

(i) � is convex and compact.
(ii) L :� × A → R is upper semicontinuous in P for all a ∈ A.

Then the game has a value, that is, infζ∈Z supx∈X L(x, ζ ) = supP∈� infa∈A L(P,a).
Moreover, a maximin P , attaining supP∈� infa∈A L(P,a), exists.

PROOF OF THEOREM 6.1. Since � is tight and weakly closed, by Prohorov’s
theorem [Billingsley (1999), Theorem 5.1] it is weakly compact. Also, under the
conditions imposed L(P,a) is, for each a ∈ A, upper semicontinuous in P in
the weak topology [Stroock (1993), Theorem 3.1.5(v)]. Theorem 6.1 now follows
from Corollary A.1. �

A.2. Theorems 6.2 and 6.3: L unbounded, supH(P ) achieved. Through-
out this section, we assume that � is convex and that H ∗ := supP∈� H(P ) is finite
and is achieved for some P ∗ ∈ � admitting a not necessarily unique Bayes act ζ ∗.

To prove that (P ∗, ζ ∗) is a saddle-point, it is sufficient to show that L(P, ζ ∗) ≤
L(P ∗, ζ ∗) = H ∗ for all P ∈ �.

PROOF OF THEOREM 6.2. By Lemma 3.2, L(P, ζ ∗) and L(P0, ζ
∗) are finite,

and f (λ) := L(Qλ, ζ
∗) is linear in λ ∈ [0,1]. Also, f (λ) ≥ H(Qλ) for all λ

and f (λ∗) = H(Qλ∗) = H ∗. Thus f (λ) must coincide with the tangent to the
curve H(Qλ) at λ = λ∗. It follows that

L(P, ζ ∗) = f (1) = H ∗ + (1 − λ)

{(
d

dλ

)
H(Qλ)

}
λ=λ∗

.(138)

However, {(
d

dλ

)
H(Qλ)

}
λ=λ∗

= lim
λ↓λ∗

H(Qλ) − H ∗

λ − λ∗ ≤ 0,

since H(Qλ) ≤ H ∗ for λ > λ∗. We deduce L(P, ζ ∗) ≤ H ∗. �

NOTE. If P0 in the statement of Theorem 6.2 can be chosen to be in �, then we
further have H(Qλ) ≤ H ∗ for λ < λ∗, which implies {(d/dλ)H(Qλ)}λ=λ∗ = 0,
and hence L(P, ζ ∗) = H ∗. In particular, if this can be done for all P ∈ � (i.e.,
P ∗ is an “algebraically interior” point of �), then ζ ∗ will be an equalizer rule.
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From this point on, for any P ∈ �, λ ∈ [0,1] we write Pλ := λP + (1 − λ)P ∗.
Then, since we are assuming � convex, Pλ ∈ �.

LEMMA A.1. Suppose Conditions 6.3 and 6.4 hold. Let ζλ be Bayes
against Pλ (in particular, ζ ∗ := ζ0 is Bayes against P ∗, and ζ1 is Bayes
against P ). Then

L(P, ζλ) − L(P ∗, ζλ) = H(Pλ) − L(P ∗, ζλ)

λ
(139)

≤ 0(140)

(0 < λ < 1). Moreover, limλ↓0 L(P ∗, ζλ) and limλ↓0 L(P, ζλ) both exist as finite
numbers, and

lim
λ↓0

L(P ∗, ζλ) = H ∗.(141)

PROOF. First note that, since H(Pλ) = L(Pλ, ζλ) is finite, by Lemma 3.2 both
L(P, ζλ) and L(P ∗, ζλ) are finite for 0 < λ < 1. Also by Lemma 3.2, for all ζ ∈ Z,
L(Pλ, ζ ) is, when finite, a linear function of λ ∈ [0,1]. Then

λL(P, ζ ) + (1 − λ)L(P ∗, ζ ) = L(Pλ, ζ )

≥ H(Pλ) = L(Pλ, ζλ)(142)

= λL(P, ζλ) + (1 − λ)L(P ∗, ζλ).(143)

On putting ζ = ζλ we have equality in (142); then rearranging yields (139), and
(140) follows from L(P ∗, ζλ) ≥ H ∗ and H(Pλ) ≤ H ∗.

For general ζ ∈ Z we obtain (when all terms are finite)

λ{L(P, ζλ) − L(P, ζ )} ≤ (1 − λ){L(P ∗, ζ ) − L(P ∗, ζλ)}.(144)

Put ζ = ζ1, so that L(P, ζ1) = H(P ) is finite, and first suppose that L(P ∗, ζ1)

is finite. Then the left-hand side of (144) is nonnegative, and so L(P ∗, ζ1) ≥
L(P ∗, ζλ) (0 ≤ λ ≤ 1)—which inequality clearly also holds if L(P ∗, ζ1) = ∞.
An identical argument can be applied on first replacing ζ1 by ζλ′ (0 < λ′ < 1), and
we deduce that L(P ∗, ζλ′) ≥ L(P ∗, ζλ) (0 ≤ λ ≤ λ′ ≤ 1). That is to say, L(P ∗, ζλ)

is a nondecreasing function of λ on [0,1]. It follows that

lim
λ↓0

L(P ∗, ζλ) ≥ L(P ∗, ζ0) = H ∗.(145)

A parallel argument, interchanging the roles of P ∗ and P , shows that L(P, ζλ)

is nonincreasing in λ ∈ [0,1]. Since, by (140), for all λ ∈ (0,0.5], L(P, ζλ) ≤
L(P ∗, ζλ) ≤ L(P ∗, ζ0.5) < ∞, it follows that limλ↓0 L(P, ζλ) exists and is finite.

Since P ∗ maximizes entropy over �,

H(P ∗) − L(P ∗, ζλ) ≥ H(Pλ) − L(P ∗, ζλ)
(146)

= λ{L(P, ζλ) − L(P ∗, ζλ)},
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by (143). On noting L(P ∗, ζλ) ≤ L(P ∗, ζ1) since L(P ∗, ζλ) is nondecreasing, and
using L(P, ζλ) ≥ H(P ), (146) implies H ∗ − L(P ∗, ζλ) ≥ λ{H(P ) − L(P ∗, ζ1)}.
If L(P ∗, ζ1) < ∞, then letting λ ↓ 0 we obtain H ∗ ≥ limλ↓0 L(P ∗, ζλ), which,
together with (145), establishes (141). Otherwise, noting that L(P ∗, ζ0.5) < ∞,
we can repeat the argument with P replaced by P0.5. �

COROLLARY A.2.

lim
λ↓0

L(P, ζλ) − H ∗ = lim
λ↓0

H(Pλ) − L(P ∗, ζλ)

λ
.(147)

COROLLARY A.3 (Condition for existence of a saddle-point). L(P, ζ ∗) ≤
H(P ∗) if and only if

lim
λ↓0

H(Pλ) − L(P ∗, ζλ)

λ
≤ lim

λ↓0
L(P, ζλ) − L(P, ζ ∗).(148)

PROOF OF THEOREM 6.3. The conditions of Lemma A.1 are satisfied. By
Corollary A.3 and (140), we see that it is sufficient to prove that, for all P ∈ �,

0 ≤ lim
λ↓0

L(P, ζλ) − L(P, ζ ∗).(149)

However, (149) is implied by Condition 6.1. �

A.3. If supP∈� H(P ) is not achieved. In some cases supP∈� H(P ) may not
be achieved in � [Topsøe (1979)]. We might then think of enlarging � to, say,
its weak closure �. However, this can be much bigger than �. For example, for
uncountable X, the weak closure of a set, all of whose members are absolutely
continuous with respect to µ, typically contains distributions that are not. Then
Theorem 6.3 may not be applicable.

EXAMPLE A.1. Consider the logarithmic score, as in Section 3.5.2, with
X = R and µ Lebesgue measure, and let � = {P :P � µ,E(X) = 0,E(X2) = 1}.
Then � contains the distribution P with P (X = 1) = P (X = −1) = 1/2, for
which H(P ) = −∞. There is no Bayes act against this P .

This example illustrates that, in case supP∈� H(P ) is not achieved [for an
instance of this, see Cover and Thomas (1991), Chapter 9], we cannot simply take
its closure and then apply Theorem 6.3, since Condition 6.3 could still be violated.

The following theorem, which in turn implies Theorem 6.4 of Section 6, shows
that the game (�,A,L) will often have a value even when � is not weakly closed.
We need to impose an additional condition:

CONDITION A.1. Every sequence (Qn) of distributions in � such that H(Qn)

converges to H ∗ has a weak limit point in P0.
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THEOREM A.2. Suppose Conditions 6.1, 6.3 and A.1 hold. Then there
exists ζ ∗ ∈ Z such that

sup
P∈�

L(P, ζ ∗) = inf
ζ∈Z

sup
P∈�

L(P, ζ ) = sup
P∈�

inf
a∈A

L(P,a) = H ∗.(150)

In particular, the game G� has value H ∗, and ζ ∗ is robust Bayes against �.

PROOF. Let (Qn) be a sequence in � such that H(Qn) converges to H ∗. In
particular, (H(Qn)) is bounded below. On choosing a subsequence if necessary,
we can suppose by Condition A.1 that (Qn) has a weak limit P ∗, and further that
for all n H ∗ − H(Qn) < 1/n. By Condition 6.1, P ∗ has a Bayes act ζ ∗.

Now pick any P ∈ �. We will show that L(P, ζ ∗) ≤ H ∗. First fix n and define
Rn

λ := λP + (1 − λ)Qn, Hn
λ := H(Rn

λ) (0 ≤ λ ≤ 1). In particular, Rn
0 = Qn,

Rn
1 = P . Then Rn

λ ∈ �, with Bayes act ζ n
λ , say. We have Hn

λ = L(Rn
λ, ζ n

λ ) =
λL(P, ζ n

λ ) + (1 − λ)L(Rn
0 , ζ n

λ ), while Hn
0 ≤ L(Rn

0 , ζ n
λ ). It follows that

L(P, ζ n
λ ) ≤ Hn

0 + (Hn
λ − Hn

0 )/λ.(151)

Since Hn
0 = H(Qn) > H ∗ − 1/n and Hn

0 , Hn
λ ≤ H ∗, we obtain

L
(
P, ζn

1/
√

n

) ≤ H ∗ + 1/n + 1/
√

n.(152)

Now with Q′
n := Rn

1/
√

n
, (Q′

n) converges weakly to P ∗. Moreover, H(Q′
n) ≥

(1/
√

n )H(P )+ (1 −1/
√

n )H(Qn) is bounded below. On applying Condition 6.1
to Q′

n, and using (152), we deduce

L(P, ζ ∗) ≤ H ∗.(153)

It now follows that

inf
ζ∈Z

sup
P∈�

L(P, ζ ) ≤ sup
P∈�

L(P, ζ ∗) ≤ H ∗.(154)

However,

H ∗ = sup
P∈�

inf
a∈A

L(P,a) = sup
P∈�

inf
ζ∈Z

L(P, ζ ) ≤ inf
ζ∈Z

sup
P∈�

L(P, ζ ),(155)

where the the second equality follows from Proposition 3.1 and the third inequality
is standard. Together, (154) and (155) imply the theorem. �

PROOF OF THEOREM 6.4. If � is tight, then by Prohorov’s theorem any
sequence (Qn) in � must have a weak limit point, so that, in particular,
Condition A.1 holds. �

It should be noted that, for P ∗ appearing in the above proof, we may
have H(P ∗) 
= H ∗. In the case of Shannon entropy, we have H(P ∗) ≤ H ∗;
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a detailed study of the case of strict inequality has been carried out by Harremoës
and Topsøe (2001).

We now show, following Csiszár (1975) and Topsøe (1979), that the conditions
of Theorem A.2 are satisfied by the logarithmic score. We take L = S, the
logarithmic score (20) defined with respect to a measure µ. This is M-strictly
proper, where M is the set of all probability distributions absolutely continuous
with respect to µ.

PROPOSITION A.1. Conditions A.1 and 6.2 are satisfied for the logarithmic
score S relative to a measure µ if either of the following holds:

(i) µ is a probability measure and Q = M;
(ii) X is countable, µ is counting measure and Q = {P ∈ P :H(P ) < ∞}.

PROOF. To show Condition A.1, under either (i) or (ii), let (Qn) be a sequence
of distributions in � such that H(Qn) converges to H ∗. Given ε > 0, choose N

such that, for n ≥ N , H ∗ − H(Qn) < ε. Then for n,m ≥ N , on applying (104)
we have

H ∗ ≥ H
{1

2(Qn + Qm)
}

= 1
2

[
H(Qn) + H(Qm) + KL

{
Qn,

1
2(Qn + Qm)

}
(156)

+ KL
{
Qm, 1

2 (Qn + Qm)
}]

≥ H ∗ − ε + 1
16‖Qn − Qm‖2,

where ‖ · ‖ denotes total variation and the last inequality is an application of
Pinsker’s inequality KL(P1,P2) ≥ (1/4)‖P1 − P2‖2 [Pinsker (1964)]. That is,
n,m ≥ N ⇒ ‖Qn − Qm‖2 ≤ 16ε, so that (Qn) is a Cauchy sequence under ‖ · ‖.
Since the total variation metric is complete, (Qn) has a limit Q in the uniform
topology, which is then also a weak limit [Stroock (1993), Section 3.1]. This shows
Condition A.1.

To demonstrate Condition 6.2, suppose Qn ∈ Q, H(Qn) ≥ K > −∞ for
all n, and (Qn) converges weakly to some distribution Q0 ∈ P0. By Posner
(1975), Theorem 1, KL(P,Q) is jointly weakly lower semicontinuous in both
arguments. In case (i), the entropy H(P ) ≡ −KL(P,µ) is thus upper semicon-
tinuous in P ∈ P , and it follows that 0 ≥ H(Q0) ≥ K > −∞, which implies
Q0 ∈ M = Q. In case (ii), the entropy function is lower semicontinuous [Topsøe
(2001)], whence 0 ≤ H(Q0) < ∞, and again Q0 ∈ Q. In either case, the lower
semicontinuity of KL(P,Q) in Q then implies that, for P ∈ Q, S(P,Q0) =
KL(P,Q0)+H(P ) ≤ lim infn→∞{KL(P,Qn)+H(P )} = lim infn→∞S(P,Qn).

�

Theorem A.2 essentially extends the principal arguments and results of Topsøe
(1979) to nonlogarithmic loss functions. In such cases it might sometimes be
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possible to establish the required conditions by methods similar to Proposition A.1,
but in general this could require new techniques.

A.4. Proof of Lemma 9.2. Suppose Condition 9.1 holds, and Conditions
6.1 and 6.3 hold for L and � in G. We note that H(Pω) is then bounded below
by K and above by H ∗ for ω ∈ Ω ; for � ∈ 	, the integral in (123) and (124) is
then bounded by the same quantities.

To show Condition 6.1 holds for L̂ and 	 in Ĝ, let �n ∈ 	, with Bayes
act ζn ∈ Z in Ĝ, be such that (Ĥ (�n)) is bounded below and (�n) converges
weakly to �0 ∈ 	. Defining Qn := P�n,Q0 := P�0 , we then have Qn ∈ �, with
Bayes act ζn ∈ Z in G. Now let f :X → R be bounded and continuous, and
define g :Θ0 → R by g(θ) = EPθ

{f (X)}. By the definition of weak convergence,
the function g is continuous. It follows that EQn{f (X)} = E�n{g(�)} →
E�0{g(�)} = EQ0{f (X)}. This shows that (Qn) converges weakly to Q0. Also,
by (124) and Condition 9.1, the sequence (H(Qn)) is bounded below. It now
follows from Condition 6.1 in G� that Q0 has a Bayes act ζ0 in G—any such
act likewise being Bayes against �0 in Ĝ. Also, for an appropriate choice of
the Bayes acts (ζn) and ζ0, L(P, ζ0) ≤ lim infn→∞ L(P, ζn), for all P ∈ �. By
finiteness of the integral in (123) we then obtain L̂(�, ζ0) ≤ lim infn→∞ L̂(�, ζn),
for all � ∈ 	.

We now show that Condition 6.3 holds for L̂ and 	 in Ĝ. First it is clear
that 	 is convex. Since � ∈ 	 and P� ∈ � have the same Bayes acts (in their
respective games), if P� ∈ � has a Bayes act, then so does �. Also, the integral
in (123) is bounded as a function of �, whence Ĥ (�) is finite if H(P�) is, and
sup�∈	 Ĥ (�) is finite if supP∈� H(P ) is.
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