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Abstract

We introduce algorithmic information theory, also known as the theory of Kol-
mogorov complexity. We explain the main concepts of this quantitative approach
to defining ‘information’. We discuss the extent to which Kolmogorov’s and Shan-
non’s information theory have a common purpose, and where they are fundamen-
tally different. We indicate how recent developments within the theory allow one to
formally distinguish between ‘structural’ (meaningful) and ‘random’ information
as measured by the Kolmogorov structure function, which leads to a mathematical
formalization of Occam’s razor in inductive inference. We end by discussing some
of the philosophical implications of the theory.

Keywords Kolmogorov complexity, algorithmic information theory, Shannon infor-
mation theory, mutual information, data compression, Kolmogorov structure function,
Minimum Description Length Principle.

1 Introduction

How should we measure the amount of information about a phenomenon that is given
to us by an observation concerning the phenomenon? Both ‘classical’ (Shannon) in-
formation theory (see the chapter by Harremoës and Topsøe [2007]) and algorithmic
information theory start with the idea that this amount can be measured by the mini-
mum number of bits needed to describe the observation. But whereas Shannon’s theory
considers description methods that are optimal relative to some given probability distri-
bution, Kolmogorov’s algorithmic theory takes a different, nonprobabilistic approach:
any computer program that first computes (prints) the string representing the observa-
tion, and then terminates, is viewed as a valid description. The amount of information
in the string is then defined as the size (measured in bits) of the shortest computer
program that outputs the string and then terminates. A similar definition can be given
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for infinite strings, but in this case the program produces element after element forever.
Thus, a long sequence of 1’s such as

10000 times
︷ ︸︸ ︷

11 . . . 1 (1)

contains little information because a program of size about log 10000 bits outputs it:

for i := 1 to 10000 ; print 1.

Likewise, the transcendental number π = 3.1415..., an infinite sequence of seemingly
‘random’ decimal digits, contains but a few bits of information (There is a short program
that produces the consecutive digits of π forever).

Such a definition would appear to make the amount of information in a string (or
other object) depend on the particular programming language used. Fortunately, it
can be shown that all reasonable choices of programming languages lead to quantifi-
cation of the amount of ‘absolute’ information in individual objects that is invariant
up to an additive constant. We call this quantity the ‘Kolmogorov complexity’ of the
object. While regular strings have small Kolmogorov complexity, random strings have
Kolmogorov complexity about equal to their own length. Measuring complexity and
information in terms of program size has turned out to be a very powerful idea with
applications in areas such as theoretical computer science, logic, probability theory,
statistics and physics.

This Chapter Kolmogorov complexity was introduced independently and with dif-
ferent motivations by R.J. Solomonoff (born 1926), A.N. Kolmogorov (1903–1987) and
G. Chaitin (born 1943) in 1960/1964, 1965 and 1966 respectively [Solomonoff 1964;
Kolmogorov 1965; Chaitin 1966]. During the last forty years, the subject has devel-
oped into a major and mature area of research. Here, we give a brief overview of the
subject geared towards an audience specifically interested in the philosophy of informa-
tion. With the exception of the recent work on the Kolmogorov structure function and
parts of the discussion on philosophical implications, all material we discuss here can
also be found in the standard textbook [Li and Vitányi 1997]. The chapter is struc-
tured as follows: we start with an introductory section in which we define Kolmogorov
complexity and list its most important properties. We do this in a much simplified (yet
formally correct) manner, avoiding both technicalities and all questions of motivation
(why this definition and not another one?). This is followed by Section 3 which pro-
vides an informal overview of the more technical topics discussed later in this chapter,
in Sections 4– 6. The final Section 7, which discusses the theory’s philosophical impli-
cations, as well as Section 6.3, which discusses the connection to inductive inference,
are less technical again, and should perhaps be glossed over before delving into the
technicalities of Sections 4– 6.
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2 Kolmogorov Complexity: Essentials

The aim of this section is to introduce our main notion in the fastest and simplest
possible manner, avoiding, to the extent that this is possible, all technical and motiva-
tional issues. Section 2.1 provides a simple definition of Kolmogorov complexity. We
list some of its key properties in Section 2.2. Knowledge of these key properties is an
essential prerequisite for understanding the advanced topics treated in later sections.

2.1 Definition

The Kolmogorov complexity K will be defined as a function from finite binary strings
of arbitrary length to the natural numbers N. Thus, K : {0, 1}∗ → N is a function
defined on ‘objects’ represented by binary strings. Later the definition will be extended
to other types of objects such as numbers (Example 3), sets, functions and probability
distributions (Example 7).

As a first approximation, K(x) may be thought of as the length of the shortest
computer program that prints x and then halts. This computer program may be
written in Fortran, Java, LISP or any other universal programming language. By this
we mean a general-purpose programming language in which a universal Turing Machine
can be implemented. Most languages encountered in practice have this property. For
concreteness, let us fix some universal language (say, LISP) and define Kolmogorov
complexity with respect to it. The invariance theorem discussed below implies that
it does not really matter which one we pick. Computer programs often make use of
data. Such data are sometimes listed inside the program. An example is the bitstring
"010110..." in the program

print”01011010101000110...010” (2)

In other cases, such data are given as additional input to the program. To prepare for
later extensions such as conditional Kolmogorov complexity, we should allow for this
possibility as well. We thus extend our initial definition of Kolmogorov complexity by
considering computer programs with a very simple input-output interface: programs
are provided a stream of bits, which, while running, they can read one bit at a time.
There are no end-markers in the bit stream, so that, if a program p halts on input y
and outputs x, then it will also halt on any input yz, where z is a continuation of y, and
still output x. We write p(y) = x if, on input y, p prints x and then halts. We define
the Kolmogorov complexity relative to a given language as the length of the shortest
program p plus input y, such that, when given input y, p computes (outputs) x and
then halts. Thus:

K(x) := min
y,p:p(y)=x

l(p) + l(y), (3)

where l(p) denotes the length of input p, and l(y) denotes the length of program y,
both expressed in bits. To make this definition formally entirely correct, we need to
assume that the program P runs on a computer with unlimited memory, and that the
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language in use has access to all this memory. Thus, while the definition (3) can be
made formally correct, it does obscure some technical details which need not concern
us now. We return to these in Section 4.

2.2 Key Properties of Kolmogorov Complexity

To gain further intuition about K(x), we now list five of its key properties. Three of
these concern the size of K(x) for commonly encountered types of strings. The fourth is
the invariance theorem, and the fifth is the fact that K(x) is uncomputable in general.
Henceforth, we use x to denote finite bitstrings. We abbreviate l(x), the length of a
given bitstring x, to n. We use boldface x to denote an infinite binary string. In that
case, x[1:n] is used to denote the initial n-bit segment of x.

1(a). Very Simple Objects: K(x) = O(log n). K(x) must be small for ‘simple’ or
‘regular’ objects x. For example, there exists a fixed-size program that, when input n,
outputs the first n bits of π and then halts. As is easy to see (Section 4.2), specification
of n takes O(log n) bits. Thus, when x consists of the first n bits of π, its complexity
is O(log n). Similarly, we have K(x) = O(log n) if x represents the first n bits of a
sequence like (1) consisting of only 1s. We also have K(x) = O(log n) for the first n
bits of e, written in binary; or even for the first n bits of a sequence whose i-th bit is
the i-th bit of e2.3 if the i − 1-st bit was a one, and the i-th bit of 1/π if the i − 1-st
bit was a zero. For certain ‘special’ lengths n, we may have K(x) even substantially
smaller than O(log n). For example, suppose n = 2m for some m ∈ N. Then we
can describe n by first describing m and then describing a program implementing the
function f(z) = 2z. The description of m takes O(logm) bits, the description of the
program takes a constant number of bits not depending on n. Therefore, for such values
of n, we get K(x) = O(logm) = O(log log n).

1(b). Completely Random Objects: K(x) = n+O(logn). A code or description
method is a binary relation between source words – strings to be encoded – and code
words – encoded versions of these strings. Without loss of generality, we can take the
set of code words to be finite binary strings [Cover and Thomas 1991]. In this chapter
we only consider uniquely decodable codes where the relation is one-to-one or one-to-
many, indicating that given an encoding E(x) of string x, we can always reconstruct
the original x. The Kolmogorov complexity of x can be viewed as the code length of x
that results from using the Kolmogorov code E∗(x): this is the code that encodes x by
the shortest program that prints x and halts.

The following crucial insight will be applied to the Kolmogorov code, but it is
important to realize that in fact it holds for every uniquely decodable code. For any
uniquely decodable code, there are no more than 2m strings x which can be described
by m bits. The reason is quite simply that there are no more than 2m binary strings of
length m. Thus, the number of strings that can be described by less than m bits can
be at most 2m−1 +2m−2 + . . .+1 < 2m. In particular, this holds for the code E∗ whose
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length function is K(x). Thus, the fraction of strings x of length n with K(x) < n−k is
less than 2−k: the overwhelming majority of sequences cannot be compressed by more
than a constant. Specifically, if x is determined by n independent tosses of a fair coin,
then all sequences of length n have the same probability 2−n, so that with probability
at least 1 − 2−k,

K(x) ≥ n− k.

On the other hand, for arbitrary x, there exists a program ‘print x; halt’. This
program seems to have length n+O(1) where O(1) is a small constant, accounting for
the ‘print’ and ‘halt’ symbols. We have to be careful though: computer programs are
usually represented as a sequence of bytes. Then in the program above x cannot be an
arbitrary sequence of bytes, because we somehow have to mark the end of x. Although
we represent both the program and the string x as bits rather than bytes, the same
problem remains. To avoid it, we have to encode x in a prefix-free manner (Section 4.2)
which takes n+ O(log n) bits, rather than n + O(1). Therefore, for all x of length n,
K(x) ≤ n + O(log n). Except for a fraction of 2−c of these, K(x) ≥ n− c so that for
the overwhelming majority of x,

K(x) = n+O(log n). (4)

Similarly, if x is determined by independent tosses of a fair coin, then (4) holds with
overwhelming probability. Thus, while for very regular strings, the Kolmogorov com-
plexity is small (sublinear in the length of the string), most strings have Kolmogorov
complexity about equal to their own length. Such strings are called (Kolmogorov) ran-
dom: they do not exhibit any discernible pattern. A more precise definition follows in
Example 4.

1(c). Stochastic Objects: K(x) = αn + o(n). Suppose x = x1x2 . . . where the
individual xi are realizations of some random variable Xi, distributed according to
some distribution P . For example, we may have that all outcomes X1, X2, . . . are
independently identically distributed (i.i.d.) with for all i, P (Xi = 1) = p for some
p ∈ [0, 1]. In that case, as will be seen in Section 5.3, Theorem 10,

K(x[1:n]) = n ·H(p) + o(n), (5)

where log is logarithm to the base 2, and H(p) = −p log p − (1 − p) log(1 − p) is the
binary entropy, defined in Section 5.1. For now the important thing to note is that
0 ≤ H(p) ≤ 1, with H(p) achieving its maximum 1 for p = 1/2. Thus, if data are
generated by independent tosses of a fair coin, (5) is consistent with (4). If data are
generated by a biased coin, then the Kolmogorov complexity will still increase linearly
in n, but with a factor less than 1 in front: the data can be compressed by a linear
amount. This still holds if the data are distributed according to some P under which
the different outcomes are dependent, as long as this P is ‘nondegenerate’.1 An example

1This means that there exists an ε > 0 such that, for all n ≥ 0, all xn ∈ {0, 1}n, for a ∈ {0, 1},
P (xn+1 = a | x1, . . . , xn) > ε.

5



is a k-th order Markov chain, where the probability of the i-th bit being a 1 depends
on the value of the previous k bits, but nothing else. If none of the 2k probabilities
needed to specify such a chain are either 0 or 1, then the chain will be ‘nondegenerate’
in our sense, implying that, with P -probability 1, K(x1, . . . , xn) grows linearly in n.

2. Invariance It would seem that K(x) depends strongly on what programming
language we used in our definition of K. However, it turns out that, for any two
universal languages L1 and L2, letting K1 and K2 denote the respective complexities,
for all x of each length,

|K1(x) −K2(x)| ≤ C, (6)

where C is a constant that depends on L1 and L2 but not on x or its length. Since
we allow any universal language in the definition of K, K(x) is only defined up to an
additive constant. This means that the theory is inherently asymptotic: it can make
meaningful statements pertaining to strings of increasing length, such as K(x [1:n]) =
f(n) + O(1) in the three examples 1(a), 1(b) and 1(c) above. A statement such as
K(a) = b is not very meaningful.

It is actually very easy to show (6). It is known from the theory of computation
that for any two universal languages L1 and L2, there exists a compiler, written in L1,
translating programs written in L2 into equivalent programs written in L1. Thus, let
L1 and L2 be two universal languages, and let Λ be a program in L1 implementing a
compiler translating from L2 to L1. For concreteness, assume L1 is LISP and L2 is
Java. Let (p, y) be the shortest combination of Java program plus input that prints a
given string x. Then the LISP program Λ, when given input p followed by y, will also
print x and halt.2 It follows that KLISP(x) ≤ l(Λ)+l(p)+l(y) ≤ KJava(x)+O(1), where
O(1) is the size of Λ. By symmetry, we also obtain the opposite inequality. Repeating
the argument for general universal L1 and L2, (6) follows.

3. Uncomputability Unfortunately K(x) is not a recursive function: the Kol-
mogorov complexity is not computable in general. This means that there exists no
computer program that, when input an arbitrary string, outputs the Kolmogorov com-
plexity of that string and then halts. We prove this fact in Section 4, Example 3.
Kolmogorov complexity can be computably approximated (technically speaking, it is
upper semicomputable [Li and Vitányi 1997]), but not in a practically useful way: while
the approximating algorithm with input x successively outputs better and better ap-
proximations t1 ≥ t2 ≥ t3 ≥ . . . to K(x), it is (a) excessively slow, and (b), it is in
general impossible to determine whether the current approximation ti is already a good
one or not. In the words of Barron and Cover [1991], (eventually) “You know, but you
do not know you know”.

Do these properties make the theory irrelevant for practical applications? Certainly
not. The reason is that it is possible to approximate Kolmogorov complexity after all,

2To formalize this argument we need to setup the compiler in a way such that p and y can be fed
to the compiler without any symbols in between, but this can be done; see Example 2.
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in the following, weaker sense: we take some existing data compression program C (for
example, gzip) that allows every string x to be encoded and decoded computably and
even efficiently. We then approximate K(x) as the number of bits it takes to encode
x using compressor C. For many compressors, one can show that for “most” strings
x in the set of all strings of interest, C(x) ≈ K(x). Both universal coding [Cover and
Thomas 1991] and the Minimum Description Length (MDL) Principle (Section 6.3) are,
to some extent, based on such ideas. Universal coding forms the basis of most practical
lossless data compression algorithms, and MDL is a practically successful method for
statistical inference. There is an even closer connection to the normalized compression
distance method, a practical tool for data similarity analysis that can explicitly be
understood as an approximation of an “ideal” but uncomputable method based on
Kolmogorov complexity [Cilibrasi and Vitányi 2005].

3 Overview and Summary

Now that we introduced our main concept, we are ready to give a summary of the
remainder of the chapter.

Section 4: Kolmogorov Complexity – Details We motivate our definition of Kol-
mogorov complexity in terms of the theory of computation: the Church–Turing
thesis implies that our choice of description method, based on universal comput-
ers, is essentially the only reasonable one. We then introduce some basic coding
theoretic concepts, most notably the so-called prefix-free codes that form the ba-
sis for our version of Kolmogorov complexity. Based on these notions, we give a
precise definition of Kolmogorov complexity and we fill in some details that were
left open in the introduction.

Section 5: Shannon vs. Kolmogorov Here we outline the similarities and differ-
ences in aim and scope of Shannon’s and Kolmogorov’s information theories. Sec-
tion 5.1 reviews the entropy, the central concept in Shannon’s theory. Although
their primary aim is quite different, and they are functions defined on different
spaces, there is a close relation between entropy and Kolmogorov complexity (Sec-
tion 5.3): if data are distributed according to some computable distribution then,
roughly, entropy is expected Kolmogorov complexity.

Entropy and Kolmogorov complexity are concerned with information in a single
object: a random variable (Shannon) or an individual sequence (Kolmogorov).
Both theories provide a (distinct) notion of mutual information that measures
the information that one object gives about another object. We introduce and
compare the two notions in Section 5.4.

Entropy, Kolmogorov complexity and mutual information are concerned with lossless
description or compression: messages must be described in such a way that from the
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description, the original message can be completely reconstructed. Extending the theo-
ries to lossy description or compression enables the formalization of more sophisticated
concepts, such as ‘meaningful information’ and ‘useful information’.

Section 6: Meaningful Information, Structure Function and Learning The idea
of the Kolmogorov Structure Function is to encode objects (strings) in two parts:
a structural and a random part. Intuitively, the ‘meaning’ of the string resides
in the structural part and the size of the structural part quantifies the ‘mean-
ingful’ information in the message. The structural part defines a ‘model’ for
the string. Kolmogorov’s structure function approach shows that the meaningful
information is summarized by the simplest model such that the corresponding
two-part description is not larger than the Kolmogorov complexity of the original
string. Kolmogorov’s structure function is closely related to J. Rissanen’s min-
imum description length principle, which we briefly discuss. This is a practical
theory of learning from data that can be viewed as a mathematical formalization
of Occam’s Razor.

Section 7: Philosophical Implications Kolmogorov complexity has implications for
the foundations of several fields, including the foundations of mathematics. The
consequences are particularly profound for the foundations of probability and
statistics. For example, it allows us to discern between different forms of ran-
domness, which is impossible using standard probability theory. It provides a
precise prescription for and justification of the use of Occam’s Razor in statis-
tics, and leads to the distinction between epistemological and metaphysical forms
of Occam’s Razor. We discuss these and other implications for the philosophy
of information in Section 7, which may be read without deep knowledge of the
technicalities described in Sections 4–6.

4 Kolmogorov Complexity: Details

In Section 2 we introduced Kolmogorov complexity and its main features without pay-
ing much attention to either (a) underlying motivation (why is Kolmogorov complexity
a useful measure of information?) or (b) technical details. In this section, we first
provide a detailed such motivation (Section 4.1). We then (Section 4.2) provide the
technical background knowledge needed for a proper understanding of the concept.
Based on this background knowledge, in Section 4.3 we provide a definition of Kol-
mogorov complexity directly in terms of Turing machines, equivalent to, but at the
same time more complicated and insightful than the definition we gave in Section 2.1.
With the help of this new definition, we then fill in the gaps left open in Section 2.

4.1 Motivation

Suppose we want to describe a given object by a finite binary string. We do not care
whether the object has many descriptions; however, each description should describe

8



but one object. From among all descriptions of an object we can take the length of
the shortest description as a measure of the object’s complexity. It is natural to call
an object “simple” if it has at least one short description, and to call it “complex” if
all of its descriptions are long. But now we are in danger of falling into the trap so
eloquently described in the Richard-Berry paradox, where we define a natural number
as “the least natural number that cannot be described in less than twenty words.”
If this number does exist, we have just described it in thirteen words, contradicting
its definitional statement. If such a number does not exist, then all natural numbers
can be described in fewer than twenty words. We need to look very carefully at what
kind of descriptions (codes) D we may allow. If D is known to both a sender and
receiver, then a message x can be transmitted from sender to receiver by transmitting
the description y withD(y) = x. We may define the descriptional complexity of x under
specification method D as the length of the shortest y such that D(y) = x. Obviously,
this descriptional complexity of x depends crucially on D: the syntactic framework of
the description language determines the succinctness of description. Yet in order to
objectively compare descriptional complexities of objects, to be able to say “x is more
complex than z,” the descriptional complexity of x should depend on x alone. This
complexity can be viewed as related to a universal description method that is a priori
assumed by all senders and receivers. This complexity is optimal if no other description
method assigns a lower complexity to any object.

We are not really interested in optimality with respect to all description methods.
For specifications to be useful at all it is necessary that the mapping from y to D(y) can
be executed in an effective manner. That is, it can at least in principle be performed
by humans or machines. This notion has been formalized as that of “partial recursive
functions”, also known simply as computable functions. According to generally accepted
mathematical viewpoints – the so-called ‘Church-Turing thesis’ – it coincides with the
intuitive notion of effective computation [Li and Vitányi 1997].

The set of partial recursive functions contains an optimal function that minimizes
description length of every other such function. We denote this function byD0. Namely,
for any other recursive function D, for all objects x, there is a description y of x under
D0 that is shorter than any description z of x under D. (That is, shorter up to an
additive constant that is independent of x.) Complexity with respect to D0 minorizes
the complexities with respect to all partial recursive functions (this is just the invariance
result (6) again).

We identify the length of the description of x with respect to a fixed specification
function D0 with the “algorithmic (descriptional) complexity” of x. The optimality of
D0 in the sense above means that the complexity of an object x is invariant (up to
an additive constant independent of x) under transition from one optimal specification
function to another. Its complexity is an objective attribute of the described object
alone: it is an intrinsic property of that object, and it does not depend on the description
formalism. This complexity can be viewed as “absolute information content”: the
amount of information that needs to be transmitted between all senders and receivers
when they communicate the message in absence of any other a priori knowledge that
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restricts the domain of the message. This motivates the program for a general theory
of algorithmic complexity and information. The four major innovations are as follows:

1. In restricting ourselves to formally effective descriptions, our definition covers
every form of description that is intuitively acceptable as being effective according
to general viewpoints in mathematics and logic.

2. The restriction to effective descriptions entails that there is a universal description
method that minorizes the description length or complexity with respect to any
other effective description method. Significantly, this implies Item 3.

3. The description length or complexity of an object is an intrinsic attribute of the
object independent of the particular description method or formalizations thereof.

4. The disturbing Richard-Berry paradox above does not disappear, but resurfaces
in the form of an alternative approach to proving Gödel’s famous result that
not every true mathematical statement is provable in mathematics (Example 4
below).

4.2 Coding Preliminaries

Strings and Natural Numbers Let X be some finite or countable set. We use the
notation X ∗ to denote the set of finite strings or sequences over X . For example,

{0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . .},

with ε denoting the empty word ‘’ with no letters. We identify the natural numbers N

and {0, 1}∗ according to the correspondence

(0, ε), (1, 0), (2, 1), (3, 00), (4, 01), . . . (7)

The length l(x) of x is the number of bits in the binary string x. For example, l(010) = 3
and l(ε) = 0. If x is interpreted as an integer, we get l(x) = blog(x+1)c and, for x ≥ 2,

blog xc ≤ l(x) ≤ dlog xe. (8)

Here, as in the sequel, dxe is the smallest integer larger than or equal to x, bxc is
the largest integer smaller than or equal to x and log denotes logarithm to base two.
We shall typically be concerned with encoding finite-length binary strings by other
finite-length binary strings. The emphasis is on binary strings only for convenience;
observations in any alphabet can be so encoded in a way that is ‘theory neutral’.

Codes We repeatedly consider the following scenario: a sender (say, A) wants to
communicate or transmit some information to a receiver (say, B). The information to
be transmitted is an element from some set X . It will be communicated by sending a
binary string, called the message. When B receives the message, he can decode it again
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and (hopefully) reconstruct the element of X that was sent. To achieve this, A and B
need to agree on a code or description method before communicating. Intuitively, this is
a binary relation between source words and associated code words. The relation is fully
characterized by the decoding function. Such a decoding functionD can be any function
D : {0, 1}∗ → X . The domain of D is the set of code words and the range of D is the set
of source words. D(y) = x is interpreted as “y is a code word for the source word x”.
The set of all code words for source word x is the set D−1(x) = {y : D(y) = x}. Hence,
E = D−1 can be called the encoding substitution (E is not necessarily a function).
With each code D we can associate a length function LD : X → N such that, for each
source word x, LD(x) is the length of the shortest encoding of x:

LD(x) = min{l(y) : D(y) = x}.

We denote by x∗ the shortest y such that D(y) = x; if there is more than one such y,
then x∗ is defined to be the first such y in lexicographical order.

In coding theory attention is often restricted to the case where the source word set
is finite, say X = {1, 2, . . . , N}. If there is a constant l0 such that l(y) = l0 for all code
words y (equivalently, L(x) = l0 for all source words x), then we call D a fixed-length
code. It is easy to see that l0 ≥ logN . For instance, in teletype transmissions the source
has an alphabet of N = 32 letters, consisting of the 26 letters in the Latin alphabet
plus 6 special characters. Hence, we need l0 = 5 binary digits per source letter. In
electronic computers we often use the fixed-length ASCII code with l0 = 8.

Prefix-free code In general we cannot uniquely recover x and y from E(xy). Let
E be the identity mapping. Then we have E(00)E(00) = 0000 = E(0)E(000). We
now introduce prefix-free codes, which do not suffer from this defect. A binary string
x is a proper prefix of a binary string y if we can write y = xz for z 6= ε. A set
{x, y, . . .} ⊆ {0, 1}∗ is prefix-free if for any pair of distinct elements in the set neither
is a proper prefix of the other. A function D : {0, 1}∗ → N defines a prefix-free code3 if
its domain is prefix-free. In order to decode a code sequence of a prefix-free code, we
simply start at the beginning and decode one code word at a time. When we come to
the end of a code word, we know it is the end, since no code word is the prefix of any
other code word in a prefix-free code. Clearly, prefix-free codes are uniquely decodable:
we can always unambiguously reconstruct an outcome from its encoding. Prefix codes
are not the only codes with this property; there are uniquely decodable codes which are
not prefix-free. In the next section, we will define Kolmogorov complexity in terms of
prefix-free codes. One may wonder why we did not opt for general uniquely decodable
codes. There is a good reason for this: It turns out that every uniquely decodable code
can be replaced by a prefix-free code without changing the set of code-word lengths.
This follows from a sophisticated version of the Kraft inequality [Cover and Thomas
1991, Kraft-McMillan inequality, Theorem 5.5.1]; the basic Kraft inequality is found in

3The standard terminology [Cover and Thomas 1991] for such codes is ‘prefix codes’. Following
Harremoës and Topsøe [2007], we use the more informative ‘prefix-free codes’.
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[Harremoës and Topsøe 2007], Equation 1.1. In Shannon’s and Kolmogorov’s theories,
we are only interested in code word lengths of uniquely decodable codes rather than
actual encodings. The Kraft-McMillan inequality shows that without loss of generality,
we may restrict the set of codes we work with to prefix-free codes, which are much
easier to handle.

Codes for the integers; Pairing Functions Suppose we encode each binary string
x = x1x2 . . . xn as

x̄ = 11 . . . 1
︸ ︷︷ ︸

n times

0x1x2 . . . xn.

The resulting code is prefix-free because we can determine where the code word x̄ ends
by reading it from left to right without backing up. Note l(x̄) = 2n + 1; thus, we
have encoded strings in {0, 1}∗ in a prefix-free manner at the price of doubling their
length. We can get a much more efficient code by applying the construction above to
the length l(x) of x rather than x itself: define x′ = l(x)x, where l(x) is interpreted
as a binary string according to the correspondence (7). Then the code that maps x to
x′ is a prefix-free code satisfying, for all x ∈ {0, 1}∗, l(x′) = n + 2 log n + 1 (here we
ignore the ‘rounding error’ in (8)). We call this code the standard prefix-free code for
the natural numbers and use LN(x) as notation for the codelength of x under this code:
LN(x) = l(x′). When x is interpreted as a number (using the correspondence (7) and
(8)), we see that LN(x) = log x+ 2 log log x+ 1.

We are often interested in representing a pair of natural numbers (or binary strings)
as a single natural number (binary string). To this end, we define the standard 1-1
pairing function 〈·, ·〉 : N × N → N as 〈x, y〉 = x′y (in this definition x and y are
interpreted as strings).

4.3 Formal Definition of Kolmogorov Complexity

In this subsection we provide a formal definition of Kolmogorov complexity in terms of
Turing machines. This will allow us to fill in some details left open in Section 2. Let
T1, T2, . . . be a standard enumeration of all Turing machines [Li and Vitányi 1997]. The
functions implemented by Ti are called the partial recursive or computable functions.
For technical reasons, mainly because it simplifies the connection to Shannon’s infor-
mation theory, we are interested in the so-called prefix complexity, which is associated
with Turing machines for which the set of programs (inputs) resulting in a halting
computation is prefix-free4. We can realize this by equipping the Turing machine with
a one-way input tape, a separate work tape, and a one-way output tape. Such Turing
machines are called prefix machines since the halting programs for any one of them
form a prefix-free set.

We first define KTi
(x), the prefix Kolmogorov complexity of x relative to a given

prefix machine Ti, where Ti is the i-th prefix machine in a standard enumeration of

4There exists a version of Kolmogorov complexity corresponding to programs that are not necessarily
prefix-free, but we will not go into it here.
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them. KTi
(x) is defined as the length of the shortest input sequence y such that

Ti(y) = x; that is, the i-th Turing machine, when run with input y, produces x on its
output tape and then halts. If no such input sequence exists, KTi

(x) remains undefined.
Of course, this preliminary definition is still highly sensitive to the particular prefix
machine Ti that we use. But now the ‘universal prefix machine’ comes to our rescue.
Just as there exists universal ordinary Turing machines, there also exist universal prefix
machines. These have the remarkable property that they can simulate every other prefix
machine. More specifically, there exists a prefix machine U such that, with as input
the concatenation i′y (where i′ is the standard encoding of integer y, Section 4.2), U
outputs Ti(y) and then halts. If U gets any other input then it does not halt.

Definition 1 Let U be our reference prefix machine, i.e. for all i ∈ N, y ∈ {0, 1}∗,
U(〈i, y〉) = U(i′y) = Ti(y). The prefix Kolmogorov complexity of x is defined as
K(x) := KU (x), or equivalently:

K(x) = min
z

{l(z) : U(z) = x, z ∈ {0, 1}∗} =

= min
i,y

{l(i′) + l(y) : Ti(y) = x, y ∈ {0, 1}∗, i ∈ N}. (9)

We can alternatively think of z as a program that prints x and then halts, or as z = i ′y
where y is a program such that, when Ti is input program y, it prints x and then halts.

Thus, by definition K(x) = l(x∗), where x∗ is the lexicographically first shortest
self-delimiting (prefix-free) program for x with respect to the reference prefix machine.
Consider the mapping E∗ defined by E∗(x) = x∗. This may be viewed as the encoding
function of a prefix-free code (decoding function)D∗ withD∗(x∗) = x. By its definition,
D∗ is a very parsimonious code.

Example 2 In Section 2, we defined K(x) as the shortest program for x in some
standard programming language such as LISP or Java. We now show that this definition
is equivalent to the prefix Turing machine Definition 1. Let L1 be a universal language;
for concreteness, say it is LISP. Denote the corresponding Kolmogorov complexity
defined as in (3) by KLISP. For the universal prefix machine U of Definition 1, there
exists a program p in LISP that simulates it [Li and Vitányi 1997]. By this we mean
that, for all z ∈ {0, 1}∗, either p(z) = U(z) or neither p nor U ever halt on input z.
Run with this program, our LISP computer computes the same function as U on its
input, so that

KLISP(x) ≤ l(p) +KU (x) = KU (x) +O(1).

On the other hand, LISP, when equipped with the simple input/output interface de-
scribed in Section 2, is a language such that for all programs p, the set of inputs y
for which p(y) is well-defined forms a prefix-free set. Also, as is easy to check, the set
of syntactically correct LISP programs is prefix-free. Therefore, the set of strings py
where p is a syntactically correct LISP program and y is an input on which p halts, is
prefix-free. Thus we can construct a prefix Turing machine with some index i0 such
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that Ti0(py) = p(y) for all y ∈ {0, 1}∗. Therefore, the universal machine U satisfies for
all y ∈ {0, 1}∗, U(i′0py) = Ti0(py) = p(y), so that

KU (x) ≤ KLISP(x) + l(i′0) = KLISP(x) +O(1).

We are therefore justified in calling KLISP(x) a version of (prefix) Kolmogorov complex-
ity. The same holds for any other universal language, as long as its set of syntactically
correct programs is prefix-free. This is the case for every programming language we
know of.

Example 3 [K(x) as an integer function; uncomputability] The correspondence
between binary strings and integers established in (7) shows that Kolmogorov com-
plexity may equivalently be thought of as a function K : N → N where N are the
nonnegative integers. This interpretation is useful to prove that Kolmogorov complex-
ity is uncomputable.

Indeed, let us assume by means of contradiction that K is computable. Then the
function ψ(m) := minx∈N{x : K(x) ≥ m} must be computable as well (note that x
is interpreted as an integer in the definition of ψ). The definition of ψ immediately
implies K(ψ(m)) ≥ m. On the other hand, since ψ is computable, there exists a
computer program of some fixed size c such that, on input m, the program outputs
ψ(m) and halts. Therefore, since K(ψ(m)) is the length of the shortest program plus
input that prints ψ(m), we must have that K(ψ(m)) ≤ LN(m)+ c ≤ 2 logm+ c. Thus,
we have m ≤ 2 logm+ c which must be false from some m onwards: contradiction.

Example 4 [Gödel’s incompleteness theorem and randomness] We say that
a formal system (definitions, axioms, rules of inference) is consistent if no statement
which can be expressed in the system can be proved to be both true and false in the
system. A formal system is sound if only true statements can be proved to be true in
the system. (Hence, a sound formal system is consistent.)

Let x be a finite binary string of length n. We write ‘x is c-random’ if K(x) > n−c.
That is, the shortest binary description of x has length not much smaller than x. We
recall from Section 2.2 that the fraction of sequences that can be compressed by more
than c bits is bounded by 2−c. This shows that there are sequences which are c-random
for every c ≥ 1 and justifies the terminology: the smaller c, the more random x.

Now fix any sound formal system F that is powerful enough to express the statement
‘x is c-random’. Suppose F can be described in f bits. By this we mean that there is
a fixed-size program of length f such that, when input the number i, outputs a list of
all valid proofs in F of length (number of symbols) i. We claim that, for all but finitely
many random strings x and c ≥ 1, the sentence ‘x is c-random’ is not provable in F .
Suppose the contrary. Then given F , we can start to exhaustively search for a proof
that some string of length n� f is random, and print it when we find such a string x.
This procedure to print x of length n uses only log n+ f +O(1) bits of data, which is
much less than n. But x is random by the proof and the fact that F is sound. Hence
F is not consistent, which is a contradiction.
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Pushing the idea of Example 4 much further, Chaitin [1987] proved a particularly strong
variation of Gödel’s theorem, using Kolmogorov complexity but in a more sophisticated
way, based on the number Ω defined below. Roughly, it says the following: there exists
an exponential Diophantine equation,

A(n, x1, . . . , xm) = 0 (10)

for some finite m, such that the following holds: let F be a formal theory of arithmetic.
Then for all F that are sound and consistent, there is only a finite number of values of
n for which the theory determines whether (10) has finitely or infinitely many solutions
(x1, . . . , xm) (n is to be considered a parameter rather than a variable). For all other,
infinite number of values for n, the statement ‘(10) has a finite number of solutions’ is
logically independent of F .

Chaitin’s Number of Wisdom Ω An axiom system that can be effectively de-
scribed by a finite string has limited information content – this was the basis for our
proof of Gödel’s theorem above. On the other hand, there exist quite short strings
which are mathematically well-defined but uncomputable, which have an astounding
amount of information in them about the truth of mathematical statements. Following
Chaitin [1975], we define the halting probability Ω as the real number defined by

Ω =
∑

U(p)<∞

2−l(p),

the sum taken over all inputs p for which the reference machine U halts. We call Ω the
halting probability because it is the probability that U halts if its program is provided
by a sequence of fair coin flips. It turns out that Ω represents the halting problem very
compactly. The following theorem is proved in [Li and Vitányi 1997]:

Theorem 5 Let y be a binary string of length at most n. There exists an algorithm
A which, given the first n bits of Ω, decides whether the universal machine U halts on
input y; i.e. A outputs 1 if U halts on y; A outputs 0 if U does not halt on y; and A
is guaranteed to run in finite time.

The halting problem is a prime example of a problem that is undecidable [Li and Vitányi
1997], from which it follows that Ω must be uncomputable.

Knowing the first 10000 bits of Ω enables us to solve the halting of all programs
of less than 10000 bits. This includes programs looking for counterexamples to Gold-
bach’s Conjecture, Riemann’s Hypothesis, and most other conjectures in mathematics
which can be refuted by a single finite counterexample. Moreover, for all axiomatic
mathematical theories which can be expressed compactly enough to be conceivably in-
teresting to human beings, say in less than 10000 bits, Ω[1:10000] can be used to decide
for every statement in the theory whether it is true, false, or independent. Thus, Ω is
truly the number of Wisdom, and ‘can be known of, but not known, through human
reason’ [C.H. Bennett and M. Gardner, Scientific American, 241:11(1979), 20–34].
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4.4 Conditional Kolmogorov complexity

In order to fully develop the theory, we also need a notion of conditional Kolmogorov
complexity. Intuitively, the conditional Kolmogorov complexity K(x|y) of x given y can
be interpreted as the shortest program p such that, when y is given to the program p as
input ‘for free’, the program prints x and then halts. Based on conditional Kolmogorov
complexity, we can then further define Kolmogorov complexities of more complicated
objects such as functions and so on (Example 7).

The idea of providing p with an input y is realized by putting 〈y, p〉 rather than
just p on the input tape of a universal conditional prefix machine U . This is a prefix
machine U such that for all y, i, q, U(〈y, 〈i, q〉〉) = Ti(〈y, q〉), whereas for any input not
of this form, U does not halt. Here T1, T2, . . . is some effective enumeration of prefix
machines. It is easy to show that such a universal conditional prefix machine U exists
[Li and Vitányi 1997]. We now fix a reference conditional universal prefix machine U
and define K(x|y) as follows:

Definition 6 [Conditional and Joint Kolmogorov Complexity] The conditional
prefix Kolmogorov complexity of x given y (for free) is

K(x|y) = min
p

{l(p) : U(〈y, p〉) = x, p ∈ {0, 1}∗}. (11)

= min
q,i

{l(〈i, q〉) : U(〈y, 〈i, q〉〉) = x, q ∈ {0, 1}∗, i ∈ N} (12)

= min
q,i

{l(i′) + l(q) : Ti(y
′q) = x, q ∈ {0, 1}∗, i ∈ N}. (13)

We define the unconditional complexity K(x) as K(x) = K(x|ε). We define the joint
complexity K(x, y) as K(x, y) = K(〈x, y〉).

Note that we just redefined K(x) so that the unconditional Kolmogorov complexity is
exactly equal to the conditional Kolmogorov complexity with empty input. This does
not contradict our earlier definition: having chosen some reference conditional prefix
machine U , we can always find an effective enumeration T ′

1, T
′
2 and a corresponding

unconditional universal prefix machine U ′ such that for all p, U(〈ε, p〉) = U ′(p). Then
we automatically have, for all x, KU ′(x) = KU (x|ε).

Example 7 [K for general objects: functions, distributions, sets, ...] We have
defined the Kolmogorov complexity K of binary strings and natural numbers, which
we identified with each other. It is straightforward to extend the definition to objects
such as real-valued functions, probability distributions and sets. We briefly indicate
how to do this. Intuitively, the Kolmogorov complexity of a function f : N → R is the
length of the shortest prefix-free program that computes (outputs) f(x) to precision
1/q on input x′q′ for q ∈ {1, 2, . . .}. In terms of conditional universal prefix machines:

K(f) = min
p∈{0,1}∗

{
l(p) : for all q ∈ {1, 2, . . .}, x ∈ N: |U(〈x, 〈q, p〉〉) − f(x)| ≤ 1/q

}
. (14)

16



The Kolmogorov complexity of a function f : N × N → R is defined analogously, with
〈x, 〈q, p〉〉 replaced by 〈x, 〈y, 〈q, p〉〉〉, and f(x) replaced by f(x, y); similarly for functions
f : N

k×N → R for general k ∈ N. As a special case of (14), the Kolmogorov complexity
of a probability distribution P is the shortest program that outputs P (x) to precision
q on input 〈x, q〉. We will encounter K(P ) in Section 5.

The Kolmogorov complexity of sets can be defined in various manners [Gács, Tromp,
and Vitányi 2001]. In this chapter we only consider finite sets S consisting of finite
strings. One reasonable method of defining their complexity K(S) is as the length
of the shortest program that sequentially outputs the elements of S (in an arbitrary
order) and then halts. Let S = {x1, . . . , xn}, and assume that x1, x2, . . . , xn reflects
the lexicographical order of the elements of S. In terms of conditional prefix machines,
K(S) is the length of the shortest binary program p such that U(〈ε, p〉) = z, where

z = 〈x1, 〈x2, . . . , 〈xn−1, xn〉 . . .〉〉. (15)

This definition of K(S) will be used in Section 6. There we also need the notion of
the Kolmogorov complexity of a string x given that x ∈ S, denoted as K(x|S). This
is defined as the length of the shortest binary program p from which the (conditional
universal) U computes x from input S given literally, in the form of (15).

This concludes our treatment of the basic concepts of Kolmogorov complexity theory.
In the next section we compare these to the basic concepts of Shannon’s information
theory.

5 Shannon and Kolmogorov

In this section we compare Kolmogorov complexity to Shannon’s [1948] information the-
ory, more commonly simply known as ‘information theory’. Shannon’s theory predates
Kolmogorov’s by about 25 years. Both theories measure the amount of information in
an object as the length of a description of the object. In the Shannon approach, how-
ever, the method of encoding objects is based on the presupposition that the objects
to be encoded are outcomes of a known random source—it is only the characteristics
of that random source that determine the encoding, not the characteristics of the ob-
jects that are its outcomes. In the Kolmogorov complexity approach we consider the
individual objects themselves, in isolation so-to-speak, and the encoding of an object
is a computer program that generates it. In the Shannon approach we are interested
in the minimum expected number of bits to transmit a message from a random source
of known characteristics through an error-free channel. In Kolmogorov complexity we
are interested in the minimum number of bits from which a particular message can
effectively be reconstructed. A little reflection reveals that this is a great difference:
for every source emitting but two messages the Shannon information is at most 1 bit,
but we can choose both messages concerned of arbitrarily high Kolmogorov complexity.
Shannon stresses in his founding article that his notion is only concerned with com-
munication, while Kolmogorov stresses in his founding article that his notion aims at
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supplementing the gap left by Shannon theory concerning the information in individual
objects. To be sure, both notions are natural: Shannon ignores the object itself but
considers only the characteristics of the random source of which the object is one of the
possible outcomes, while Kolmogorov considers only the object itself to determine the
number of bits in the ultimate compressed version irrespective of the manner in which
the object arose.

These differences notwithstanding, there exist very strong connections between both
theories. In this section we given an overview of these. In Section 5.1 we recall the
relation between probability distributions and codes, and we review Shannon’s funda-
mental notion, the entropy. We then (Section 5.2) indicate how Kolmogorov complexity
resolves a lacuna in the Shannon theory, namely its inability to deal with information in
individual objects. In Section 5.3 we make precise and explain the important relation

Entropy ≈ expected Kolmogorov complexity.

Section 5.4 deals with Shannon and algorithmic mutual information, the second funda-
mental concept in both theories.

5.1 Probabilities, Codelengths, Entropy

We now briefly recall the two fundamental relations between probability distributions
and codelength functions, and indicate their connection to the entropy, the fundamen-
tal concept in Shannon’s theory. These relations are essential for understanding the
connection between Kolmogorov’s and Shannon’s theory. For (much) more details, we
refer to Harremoës and Topsøe [2007]’s chapter in this handbook, and, in a Kolmogorov
complexity context, to [Grünwald and Vitányi 2003]. We use the following notation:
let P be a probability distribution defined on a finite or countable set X . In the re-
mainder of the chapter, we denote by X the random variable that takes values in X ;
thus P (X = x) = P ({x}) is the probability that the event {x} obtains. We write P (x)
as an abbreviation of P (X = x), and we write EP [f(X)] to denote the expectation of
a function f : X → R, so that EP [f(X)] =

∑

x∈X P (x)f(x).

The Two Relations between probabilities and code lengths

1. For every distribution P defined on a finite or countable set X , there exists a
code with lengths LP (x), satisfying, for all x ∈ X , LP (x) = d− log P (x)e. This is
the so-called Shannon-Fano code corresponding to P . The result follows directly
from the Kraft inequality [Harremoës and Topsøe 2007, Section 1.2].

2. If X is distributed according to P , then the Shannon-Fano code corresponding to
P is (essentially) the optimal code to use in an expected sense.

Of course, we may choose to encode outcomes of X using a code corresponding
to a distribution Q, with lengths d− logQ(x)e, whereas the outcomes are actually
distributed according to P 6= Q. But, as expressed in the noiseless coding theorem
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or, more abstractly, in [Harremoës and Topsøe 2007, Section 1.3] as the First
main theorem of information theory, such a code cannot be significantly better,
and may in fact be much worse than the code with lengths d− log P (X)e: the
noiseless coding theorem says that

EP [− log P (X)] ≤ min
C: C is a prefix-free code

EP [LC(X)] ≤ EP [− log P (X)] + 1, (16)

so that it follows in particular that the expected length of the Shannon-Fano code
satisfies

EP d− logP (X)e ≤ EP [− log P (X)] + 1 ≤ min
C: C is a prefix-free code

EP [LC(X)] + 1.

and is thus always within just bit of the code that is optimal in expectation.

In his 1948 paper, Shannon proposed a measure of information in a distribution, which
he called the ‘entropy’, a concept discussed at length in the chapter by Harremoës and
Topsøe [2007] in this handbook. It is equal to the quantity appearing on the left and
on the right in (16):

Definition 8 [Entropy] Let X be a finite or countable set, let X be a random variable
taking values in X with distribution P . Then the (Shannon-) entropy of random variable
X is given by

H(P ) = −
∑

x∈X

P (x) log P (x), (17)

Entropy is defined here as a functional mapping a distribution on X to real numbers.
In practice, we often deal with a pair of random variables (X,Y ) defined on a joint
space X × Y. Then P is the joint distribution of (X,Y ), and PX is its corresponding
marginal distribution on X, PX(x) =

∑

y P (x, y). In that case, rather than writing
H(PX) it is customary to write H(X); we shall follow this convention below.

Entropy can be interpreted in a number of ways. The noiseless coding theorem
(16) gives a precise coding-theoretic interpretation: it shows that the entropy of P is
essentially equal to the average code length when encoding an outcome of P , if outcomes
are encoded using the optimal code (the code that minimizes this average code length).

5.2 A Lacuna in Shannon’s Theory

Example 9 Assuming that x is emitted by a random source X with probability P (x),
we can transmit x using the Shannon-Fano code. This uses (up to rounding) − logP (x)
bits. By Shannon’s noiseless coding theorem this is optimal on average, the average
taken over the probability distribution of outcomes from the source. Thus, if x = 00 . . . 0
(n zeros), and the random source emits n-bit messages with equal probability 1/2n each,
then we require n bits to transmit x (the same as transmitting x literally). However,
we can transmit x in about log n bits if we ignore probabilities and just describe x
individually. Thus, the optimality with respect to the average may be very sub-optimal
in individual cases.
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In Shannon’s theory ‘information’ is fully determined by the probability distribution
on the set of possible messages, and unrelated to the meaning, structure or content of
individual messages. In many cases this is problematic, since the distribution generating
outcomes may be unknown to the observer or (worse), may not exist at all5. For
example, can we answer a question like “what is the information in this book” by
viewing it as an element of a set of possible books with a probability distribution on
it? This seems unlikely. Kolmogorov complexity provides a measure of information
that, unlike Shannon’s, does not rely on (often untenable) probabilistic assumptions,
and that takes into account the phenomenon that ‘regular’ strings are compressible.
Thus, it measures the information content of an individual finite object. The fact that
such a measure exists is surprising, and indeed, it comes at a price: unlike Shannon’s,
Kolmogorov’s measure is asymptotic in nature, and not computable in general. Still,
the resulting theory is closely related to Shannon’s, as we now discuss.

5.3 Entropy and Expected Kolmogorov Complexity

We call a distribution P computable if it can be computed by a finite-size program,
i.e. if it has finite Kolmogorov complexity K(P ) (Example 7). The set of computable
distributions is very large: it contains, for example, all Markov chains of each order
with rational-valued parameters. In the following discussion we shall restrict ourselves
to computable distributions; extensions to the uncomputable case are discussed by
Grünwald and Vitányi [2003].

If X is distributed according to some distribution P , then the optimal (in the
average sense) code to use is the Shannon-Fano code. But now suppose it is only
known that P ∈ P, where P is a large set of computable distributions, perhaps even
the set of all computable distributions. Now it is not clear what code is optimal. We
may try the Shannon-Fano code for a particular P ∈ P, but such a code will typically
lead to very large expected code lengths if X turns out to be distributed according to
some Q ∈ P, Q 6= P . We may ask whether there exists another code that is ‘almost’ as
good as the Shannon-Fano code for P , no matter what P ∈ P actually generates the
sequence? We now show that, (perhaps surprisingly), the answer is yes.

Let X be a random variable taking on values in the set {0, 1}∗ of binary strings
of arbitrary length, and let P be the distribution of X. K(x) is fixed for each x
and gives the shortest code word length (but only up to a fixed constant). It is in-
dependent of the probability distribution P . Nevertheless, if we weigh each individ-
ual code word length for x with its probability P (x), then the resulting P -expected
code word length

∑

x P (x)K(x) almost achieves the minimal average code word length
H(P ) = −

∑

x P (x) log P (x). This is expressed in the following theorem (taken from
[Li and Vitányi 1997]):

5Even if we adopt a Bayesian (subjective) interpretation of probability, this problem remains
[Grünwald 2007].
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Theorem 10 Let P be a computable probability distribution on {0, 1}∗. Then

0 ≤

(
∑

x

P (x)K(x) −H(P )

)

≤ K(P ) +O(1).

The theorem becomes interesting if we consider sequences of P that assign mass to
binary strings of increasing length. For example, let Pn be the distribution on {0, 1}n

that corresponds to n independent tosses of a coin with bias q, where q is computable
(e.g., a rational number). We have K(Pn) = O(log n), since we can compute Pn with
a program of constant size and input n, q with length l(n′) + l(q′) = O(log n). On
the other hand, H(Pn) = nH(P1) increases linearly in n (see, e.g., the chapter by
Harremoës and Topsøe [2007] in this handbook; see also paragraph 1(c) in Section 2.2
of this chapter). So for large n, the optimal code for Pn requires on average nH(P1)
bits, and the Kolmogorov code E∗ requires only O(log n) bits extra. Dividing by n, we
see that the additional number of bits needed per outcome using the Kolmogorov code
goes to 0. Thus, remarkably, whereas the entropy is the expected codelength according
to P under the optimal code for P (a code that will be wildly different for different
P ), there exists a single code (the Kolmogorov code), which is asymptotically almost
optimal for all computable P .

5.4 Mutual Information

Apart from entropy, the mutual information is perhaps the most important concept in
Shannon’s theory. Similarly, apart from Kolmogorov complexity itself, the algorithmic
mutual information is one of the most important concepts in Kolmogorov’s theory. In
this section we review Shannon’s notion, we introduce Kolmogorov’s notion, and then
we provide an analogue of Theorem 10 which says that essentially, Shannon mutual
information is averaged algorithmic mutual information.

Shannon Mutual Information How much information can a random variable X
convey about a random variable Y ? This is determined by the (Shannon) mutual
information between X and Y . Formally, it is defined as

I(X;Y ) := H(X) −H(X|Y ) (18)

= H(X) +H(Y ) −H(X,Y )

where H(X|Y ) is the conditional entropy of X given Y , and H(X,Y ) is the joint
entropy of X and Y ; the definition of H(X,Y ),H(X|Y ) as well as an alternative
but equivalent definition if I(X;Y ), can be found in [Harremoës and Topsøe 2007].
The equality between the first and second line follows by straightforward rewriting.
The mutual information can be thought of as the expected (average) reduction in the
number of bits needed to encode X, when an outcome of Y is given for free. In
accord with intuition, it is easy to show that I(X;Y ) ≥ 0, with equality if and only
if X and Y are independent, i.e. X provides no information about Y . Moreover, and
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less intuitively, a straightforward calculation shows that this information is symmetric:
I(X;Y ) = I(Y ;X).

Algorithmic Mutual Information In order to define algorithmic mutual informa-

tion, it will be convenient to introduce some new notation: We will denote by
+

< an
inequality to within an additive constant. More precisely, let f, g be functions from

{0, 1}∗ to R. Then by ‘f(x)
+

< g(x)’ we mean that there exists a c such that for all

x ∈ {0, 1}∗, f(x) < g(x) + c. We write ‘f(x)
+

> g(x)’ if g(x)
+

< f(x). We denote by
+
=

the situation when both
+

< and
+

> hold.
Since K(x, y) = K(x′y) (Section 4.4), trivially, the symmetry property holds:

K(x, y)
+

= K(y, x). An interesting property is the “Additivity of Complexity” property

K(x, y)
+
= K(x) +K(y | x∗)

+
= K(y) +K(x | y∗). (19)

where x∗ is the first (in standard enumeration order) shortest prefix program that gen-
erates x and then halts. (19) is the Kolmogorov complexity equivalent of the entropy
equality H(X,Y ) = H(X)+H(Y |X) (see Section I.5 in the chapter by Harremoës and
Topsøe [2007]). That this latter equality holds is true by simply rewriting both sides
of the equation according to the definitions of averages of joint and marginal probabil-
ities. In fact, potential individual differences are averaged out. But in the Kolmogorov
complexity case we do nothing like that: it is quite remarkable that additivity of com-
plexity also holds for individual objects. The result (19) is due to Gács [1974], can be
found as Theorem 3.9.1 in [Li and Vitányi 1997] and has a difficult proof. It is perhaps
instructive to point out that the version with just x and y in the conditionals doesn’t
hold with

+

=, but holds up to additive logarithmic terms that cannot be eliminated.
To define the algorithmic mutual information between two individual objects x and

y with no probabilities involved, it is instructive to first recall the probabilistic notion
(18). The algorithmic definition is, in fact, entirely analogous, with H replaced by K
and random variables replaced by individual sequences or their generating programs:
The information in y about x is defined as

I(y : x) = K(x) −K(x | y∗)
+
= K(x) +K(y) −K(x, y), (20)

where the second equality is a consequence of (19) and states that this information is

symmetric, I(x : y)
+
= I(y : x), and therefore we can talk about mutual information.6

Theorem 10 showed that the entropy of distribution P is approximately equal to
the expected (under P ) Kolmogorov complexity. Theorem 11 gives the analogous result
for the mutual information.

6The notation of the algorithmic (individual) notion I(x : y) distinguishes it from the probabilistic
(average) notion I(X; Y ). We deviate slightly from Li and Vitányi [1997] where I(y : x) is defined as
K(x) − K(x | y).
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Theorem 11 Let P be a computable probability distribution on {0, 1}∗×{0, 1}∗. Then

I(X;Y ) −K(P )
+

<
∑

x

∑

y

p(x, y)I(x : y)
+

< I(X;Y ) + 2K(P ).

Thus, analogously to Theorem 10, we see that the expectation of the algorithmic mutual
information I(x : y) is close to the probabilistic mutual information I(X;Y ).

Theorems 10 and 11 do not stand on their own: it turns out that just about ev-
ery concept in Shannon’s theory has an analogue in Kolmogorov’s theory, and in all
such cases, these concepts can be related by theorems saying that if data are gen-
erated probabilistically, then the Shannon concept is close to the expectation of the
corresponding Kolmogorov concept. Examples are the probabilistic vs. the algorithmic
sufficient statistics, and the probabilistic rate-distortion function [Cover and Thomas
1991] vs. the algorithmic Kolmogorov structure function. The algorithmic sufficient
statistic and structure function are discussed in the next section. For a comparison to
their counterparts in Shannon’s theory, we refer to [Grünwald and Vitányi 2004].

6 Meaningful Information

The information contained in an individual finite object (like a finite binary string) is
measured by its Kolmogorov complexity—the length of the shortest binary program
that computes the object. Such a shortest program contains no redundancy: every
bit is information; but is it meaningful information? If we flip a fair coin to obtain
a finite binary string, then with overwhelming probability that string constitutes its
own shortest program. However, also with overwhelming probability all the bits in the
string are meaningless information, random noise. On the other hand, let an object
x be a sequence of observations of heavenly bodies. Then x can be described by the
binary string pd, where p is the description of the laws of gravity and the observational
parameter setting, while d accounts for the measurement errors: we can divide the
information in x into meaningful information p and accidental information d. The main
task for statistical inference and learning theory is to distill the meaningful information
present in the data. The question arises whether it is possible to separate meaningful
information from accidental information, and if so, how. The essence of the solution to
this problem is revealed as follows. As shown by Vereshchagin and Vitányi [2004], for
all x ∈ {0, 1}∗, we have

K(x) = min
i,p

{K(i) + l(p) : Ti(p) = x} +O(1), (21)

where the minimum is taken over p ∈ {0, 1}∗ and i ∈ {1, 2, . . .}.
To get some intuition why (21) holds, note that the original definition (1) expresses

that K(x) is the sum of the description length LN(i) of some Turing machine i when
encoded using the standard code for the integers, plus the length of a program such
that Ti(p) = x. (21) expresses that the first term in this sum may be replaced by K(i),
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i.e. the shortest effective description of i. It is clear that (21) is never larger than
(9) plus some constant (the size of a computer program implementing the standard
encoding/decoding of integers). The reason why (21) is also never smaller than (9)
minus some constant is that there exists a Turing machine Tk such that, for all i, p,
Tk(i

∗p) = Ti(p), where i∗ is the shortest program that prints i and then halts, i.e. for
all i, p, U(〈k, i∗p〉) = Ti(p) where U is the reference machine used in Definition 1. Thus,
K(x) is bounded by the constant length l(k ′) describing k, plus l(i∗) = K(i), plus l(p).

The expression (21) shows that we can think of Kolmogorov complexity as the
length of a two-part code. This way, K(x) is viewed as the shortest length of a two-part
code for x, one part describing a Turing machine T , or model, for the regular aspects
of x, and the second part describing the irregular aspects of x in the form of a program
p to be interpreted by T . The regular, or “valuable,” information in x is constituted
by the bits in the “model” while the random or “useless” information of x constitutes
the remainder. This leaves open the crucial question: How to choose T and p that
together describe x? In general, many combinations of T and p are possible, but we
want to find a T that describes the meaningful aspects of x. Below we show that this
can be achieved using the Algorithmic Minimum Sufficient Statistic. This theory, built
on top of Kolmogorov complexity so to speak, has its roots in two talks by Kolmogorov
[1974a, 1974b]. Based on Kolmogorov’s remarks, the theory has been further developed
by several authors, culminating in Vereshchagin and Vitányi [2004], some of the key
ideas of which we outline below.

Data and Model We restrict attention to the following setting: we observe data
x in the form of a finite binary string of some length n. As models for the data, we
consider finite sets S that contain x. In statistics and machine learning, the use of
finite sets is nonstandard: one usually models the data using probability distributions
or functions. However, the restriction of sets is just a matter of convenience: the theory
we are about to present generalizes straightforwardly to the case where the models are
arbitrary computable probability density functions and, in fact, other model classes
such as computable functions [Vereshchagin and Vitányi 2004]; see also Section 6.3.

The intuition behind the idea of a set as a model is the following: informally, ‘S is
a good model for x’ or equivalently, S captures all structure in x, if, in a sense to be
made precise further below, it summarizes all simple properties of x. In Section 6.1
below, we work towards the definition of the algorithmic minimal sufficient statistic
(AMSS) via the fundamental notions of ‘typicality’ of data and ‘optimality’ of a set.
Section 6.2 investigates the AMSS further in terms of the important Kolmogorov Struc-
ture Function. In Section 6.3, we relate the AMSS to the more well-known Minimum
Description Length Principle.

6.1 Algorithmic Sufficient Statistic

We are now about to formulate the central notions ‘x is typical for S’ and ‘S is optimal
for x’. Both are necessary, but not sufficient requirements for S to precisely capture
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the ‘meaningful information’ in x. After having introduced optimal sets, we investigate
what further requirements we need. The development will make heavy use of the
Kolmogorov complexity of sets, and conditioned on sets. These notions, written as
K(S) and K(x|S), where defined in Example 7.

6.1.1 Typical Elements

Consider a string x of length n and prefix complexity K(x) = k. We look for the
structure or regularity in x that is to be summarized with a set S of which x is a random
or typical member: given S containing x, the element x cannot be described significantly
shorter than by its maximal length index in S, that is, K(x | S) ≥ log |S| + O(1).
Formally,

Definition 12 Let β ≥ 0 be an agreed-upon, fixed, constant. A finite binary string x
is a typical or random element of a set S of finite binary strings, if x ∈ S and

K(x | S) ≥ log |S| − β. (22)

We will not indicate the dependence on β explicitly, but the constants in all our in-
equalities (O(1)) will be allowed to be functions of this β.

This definition requires a finite S. Note that the notion of typicality is not absolute
but depends on fixing the constant implicit in the O-notation.

Example 13 Consider the set S of binary strings of length n whose every odd position
is 0. Let x be an element of this set in which the subsequence of bits in even positions
is an incompressible string. Then x is a typical element of S. But x is also a typical
element of the set {x}.

Note that, if x is not a typical element of S, then S is certainly not a ‘good model’ for x
in the intuitive sense described above: S does not capture all regularity in x. However,
the example above (S = {x}) shows that even if x is typical for S, S may still not
capture ‘all meaningful information in x’.

Example 14 If y is not a typical element of S, this means that it has some simple
special property that singles it out from the vast majority of elements in S. This can
actually be proven formally [Vitányi 2005]. Here we merely give an example. Let S be
as in Example 13. Let y be an element of S in which the subsequence of bits in even
positions contains two times as many 1s than 0s. Then y is not a typical element of
S: the overwhelming majority of elements of S have about equally many 0s as 1s in
even positions (this follows by simple combinatorics). As shown in [Vitányi 2005], this
implies that K(y|S) � | log S|, so that y is not typical.
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6.1.2 Optimal Sets

Let x be a binary data string of length n. For every finite set S 3 x, we have K(x) ≤
K(S) + log |S| + O(1), since we can describe x by giving S and the index of x in a
standard enumeration of S. Clearly this can be implemented by a Turing machine
computing the finite set S and a program p giving the index of x in S. The size of a set
containing x measures intuitively the number of properties of x that are represented:
The largest set is {0, 1}n and represents only one property of x, namely, being of length
n. It clearly “underfits” as explanation or model for x. The smallest set containing x is
the singleton set {x} and represents all conceivable properties of x. It clearly “overfits”
as explanation or model for x.

There are two natural measures of suitability of such a set as a model for x. We
might prefer either (a) the simplest set, or (b) the smallest set, as corresponding to the
most likely structure ‘explaining’ x. Both the largest set {0, 1}n [having low complexity
of about K(n)] and the singleton set {x} [having high complexity of about K(x)], while
certainly statistics for x, would indeed be considered poor explanations. We would like
to balance simplicity of model vs. size of model. Both measures relate to the optimality
of a two-stage description of x using a finite set S that contains it. Elaborating on the
two-part code described above,

K(x) ≤ K(S) +K(x | S) +O(1) (23)

≤ K(S) + log |S| +O(1),

where the first inequality follows because there exists a program p producing x that first
computes S and then computes x based on S; if p is not the shortest program generating
x, then the inequality is strict. The second substitution of K(x | S) by log |S| + O(1)
uses the fact that x is an element of S. The closer the right-hand side of (23) gets to
the left-hand side, the better the two-stage description of x is. This implies a trade-off
between meaningful model information, K(S), and meaningless “noise” log |S|. A set
S (containing x) for which (23) holds with equality,

K(x) = K(S) + log |S| +O(1), (24)

is called optimal. The first line of (23) implies that if a set S is optimal for x, then x
must be a typical element of S. However, the converse does not hold: a data string x
can be typical for a set S without that set S being optimal for x.

Example 15 It can be shown that the set S of Example 13 is also optimal, and so is
{x}. Sets for which x is typical form a much wider class than optimal sets for x: the
set {x, y} is still typical for x but with most y it will be too complex to be optimal for
x. A less artificial example can be found in [Vereshchagin and Vitányi 2004].

While ‘optimality’ is a refinement of ‘typicality’, the fact that {x} is still an optimal set
for x shows that it is still not sufficient by itself to capture the notion of ‘meaningful
information’. In order to discuss the necessary refinement, we first need to connect
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optimal sets to the notion of a ‘sufficient statistic’, which, as its name suggests, has its
roots in the statistical literature.

6.1.3 Algorithmic Sufficient Statistic

A statistic of the data x = x1 . . . xn is a function f(x). Essentially, every function will
do. For example, f1(x) = n, f2(x) =

∑n
i=1 xi, f3(x) = n− f2(x), and f4(x) = f2(x)/n,

are statistics. A “sufficient” statistic of the data contains all information in the data
about the model. In introducing the notion of sufficiency in classical statistics, Fisher
[1922] stated: “The statistic chosen should summarize the whole of the relevant infor-
mation supplied by the sample. This may be called the Criterion of Sufficiency . . . In
the case of the normal distributions it is evident that the second moment is a sufficient
statistic for estimating the standard deviation.” For example, in the Bernoulli model
(repeated coin flips with outcomes 0 and 1 according to fixed bias), the statistic f4 is
sufficient. It gives the mean of the outcomes and estimates the bias of the Bernoulli
process, which is the only relevant model information. For the classic (probabilistic)
theory see, for example, [Cover and Thomas 1991]. Gács, Tromp, and Vitányi [2001]
develop an algorithmic theory of sufficient statistics (relating individual data to individ-
ual model) and establish its relation to the probabilistic version; this work is extended
by Grünwald and Vitányi [2004]. The algorithmic basics are as follows: Intuitively,
a model expresses the essence of the data if the two-part code describing the data
consisting of the model and the data-to-model code is as concise as the best one-part
description. In other words, we call a shortest program for an optimal set with respect
to x an algorithmic sufficient statistic for x.

Example 16 (Sufficient Statistic) Let us look at a coin toss example. Let k be a
number in the range 0, 1, . . . , n of complexity log n+O(1) given n and let x be a string
of length n having k 1s of complexity K(x | n, k) ≥ log

(
n
k

)
given n, k. This x can be

viewed as a typical result of tossing a coin with a bias about p = k/n. A two-part
description of x is given by first specifying the number k of 1s in x, followed by the
index j ≤ log |S| of x in the set S of strings of length n with k 1s. This set is optimal,
since, to within O(1), K(x) = K(x, 〈n, k〉) = K(n, k) +K(x | n, k) = K(S) + log |S|.
The shortest program for S, which amounts to an encoding of n and then k given n, is
an algorithmic sufficient statistic for x.

The optimal set that admits the shortest possible program (or rather that shortest
program) is called algorithmic minimal sufficient statistic of x. In general there can be
more than one such set and corresponding program:

Definition 17 (Algorithmic minimal sufficient statistic) An algorithmic sufficient
statistic of x is a shortest program for a set S containing x that is optimal, i.e. it sat-
isfies (24). An algorithmic sufficient statistic with optimal set S is minimal if there
exists no optimal set S ′ with K(S′) < K(S).
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The algorithmic minimal sufficient statistic (AMSS) divides the information in x in a
relevant structure expressed by the set S, and the remaining randomness with respect to
that structure, expressed by x’s index in S of log |S| bits. The shortest program for S is
itself alone an algorithmic definition of structure, without a probabilistic interpretation.

Example 18 (Example 13, Cont.) The shortest program for the set S of Exam-
ple 13 is a minimum sufficient statistic for the string x mentioned in that example. The
program generating the set {x}, while still an algorithmic sufficient statistic, is not a
minimal sufficient statistic.

Example 19 (Example 16, Cont.) The S of Example 16 encodes the number of 1s
in x. The shortest program for S is an algorithmic minimal sufficient statistic for most
x of length n with k 1’s, since only a fraction of at most 2−m x’s of length n with k 1s
can have K(x) < log |S|−m (Section 4). But of course there exist x’s with k ones which
have much more regularity. An example is the string starting with k 1’s followed by
n−k 0’s. For such strings, S is not optimal anymore, nor is S an algorithmic sufficient
statistic.

To analyze the minimal sufficient statistic further, it is useful to place a constraint on
the maximum complexity of set K(S), say K(S) ≤ α, and to investigate what happens
if we vary α. The result is the Kolmogorov Structure Function, which we now discuss.

6.2 The Kolmogorov Structure Function

The Kolmogorov structure function [Kolmogorov 1974a; Kolmogorov 1974b; Vereshcha-
gin and Vitányi 2004] hx of given data x is defined by

hx(α) = min
S

{log |S| : S 3 x, K(S) ≤ α}, (25)

where S 3 x is a contemplated model for x, and α is a non-negative integer value
bounding the complexity of the contemplated S’s. Clearly, the Kolmogorov structure
function is nonincreasing and reaches log |{x}| = 0 for α = K(x) + c1 where c1 is the
number of bits required to change x into {x}. For every S 3 x we have (23), and hence
K(x) ≤ α+hx(α)+O(1); that is, the function hx(α) never decreases more than a fixed
independent constant below the diagonal sufficiency line L defined by L(α)+α = K(x),
which is a lower bound on hx(α) and is approached to within a constant distance by
the graph of hx for certain α’s (e.g., for α = K(x) + c1). For these α’s we thus have
α + hx(α) = K(x) + O(1); a model corresponding to such an α (witness for hx(α)) is
a sufficient statistic, and it is minimal for the least such α [Cover and Thomas 1991;
Gács, Tromp, and Vitányi 2001]. This is depicted in Figure 1. Note once again that
the structure function is defined relative to given data (a single sequence x); different
sequences result in different structure functions. Yet, all these different functions share
some properties: for all x, the function hx(α) will lie above the diagonal sufficiency
line for all α ≤ αx. Here αx is the complexity K(S) of the AMSS for x. For α ≥ αx,
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Figure 1: Structure functions hx(i), βx(α), λx(α), and minimal sufficient statistic.

the function hx(α) remains within a constant of the diagonal. For stochastic strings
generated by a simple computable distribution (finite K(P )), the sufficiency line will
typically be first hit for α close to 0, since the AMSS will grow as O(log n). For example,
if x is generated by independent fair coin flips, then, with probability 1, one AMSS will
be S = {0, 1}n with complexity K(S) = K(n) = O(log n). One may suspect that
all intuitively ‘random’ sequences have a small sufficient statistic of order O(log n) or
smaller. Surprisingly, this turns out not to be the case, as we show in Example 21.

Example 20 (Lossy Compression) The Kolmogorov structure function hx(α) is
relevant to lossy compression (used, e.g., to compress images). Assume we need to
compress x to α bits where α� K(x). Of course this implies some loss of information
present in x. One way to select redundant information to discard is as follows: let
S0 be the set generated by the Algorithmic Minimum Sufficient Statistic S∗

0 (S∗
0 is a

shortest program that prints S0 and halts). Assume that l(S∗
0) = K(S0) ≤ α. Since S0

is an optimal set, it is also a typical set, so that K(x|S0) ≈ log |S0|. We compress x by
S∗

0 , taking α bits. To reconstruct an x′ close to x, a decompressor can first reconstruct
the set S0, and then select an element x′ of S0 uniformly at random. This ensures
that with very high probability x′ is itself also a typical element of S0, so it has the
same properties that x has. Therefore, x′ should serve the purpose of the message x
as well as does x itself. However, if l(S∗

0) > α, then it is not possible to compress all
meaningful information of x into α bits. We may instead encode, among all sets S with
K(S) ≤ α, the one with the smallest log |S|, achieving hx(α). But inevitably, this set
will not capture all the structural properties of x.

Let us look at an example. To transmit a picture of “rain” through a channel with
limited capacity α, one can transmit the indication that this is a picture of the rain and
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Figure 2: Data string x is “positive random” or “stochastic” and data string y is just
“negative random” or “non-stochastic”.

the particular drops may be chosen by the receiver at random. In this interpretation,
the complexity constraint α determines how “random” or “typical” x will be with
respect to the chosen set S —and hence how “indistinguishable” from the original x
the randomly reconstructed x′ can be expected to be.

We end this section with an example of a strange consequence of Kolmogorov’s theory:

Example 21 “Positive” and “Negative” Individual Randomness: Gács, Tromp,
and Vitányi [2001] showed the existence of strings for which essentially the singleton
set consisting of the string itself is a minimal sufficient statistic (Section 6.1). While a
sufficient statistic of an object yields a two-part code that is as short as the shortest
one part code, restricting the complexity of the allowed statistic may yield two-part
codes that are considerably longer than the best one-part code (so that the statistic
is insufficient). In fact, for every object there is a complexity bound below which this
happens; this is just the point where the Kolmogorov structure function hits the diag-
onal. If that bound is small (logarithmic) we call the object “stochastic” since it has a
simple satisfactory explanation (sufficient statistic). Thus, Kolmogorov [1974a] makes
the important distinction of an object being random in the “negative” sense by having
this bound high (it has high complexity and is not a typical element of a low-complexity
model), and an object being random in the “positive, probabilistic” sense by both hav-
ing this bound small and itself having complexity considerably exceeding this bound
(like a string x of length n with K(x) ≥ n, being typical for the set {0, 1}n, or the
uniform probability distribution over that set, while this set or probability distribution
has complexity K(n) +O(1) = O(log n)). We depict the distinction in Figure 2.
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6.3 The Minimum Description Length Principle

Learning The main goal of statistics and machine learning is to learn from data.
One common way of interpreting ‘learning’ is as a search for the structural, regular
properties of the data – all the patterns that occur in it. On a very abstract level,
this is just what is achieved by the AMSS, which can thus be related to learning, or,
more generally, inductive inference. There is however another, much more well-known
method for learning based on data compression. This is the Minimum Description
Length (MDL) Principle, mostly developed by J. Rissanen [1978, 1989] – see [Grünwald
2007] for a recent introduction; see also [Wallace 2005] for the related MML Principle.
Rissanen took Kolmogorov complexity as an informal starting point, but was not aware
of the AMSS when he developed the first, and, with hindsight, somewhat crude version
of MDL [Rissanen 1978], which roughly says that the best theory to explain given data
x is the one that minimizes the sum of

1. The length, in bits, of the description of the theory, plus

2. The length, in bits, of the description of the data x when the data is described
with the help of the theory.

Thus, data is encoded by first encoding a theory (constituting the ‘structural’ part of
the data) and then encoding the data using the properties of the data that are pre-
scribed by the theory. Picking the theory minimizing the total description length leads
to an automatic trade-off between complexity of the chosen theory and its goodness of
fit on the data. This provides a principle of inductive inference that may be viewed
as a mathematical formalization of ‘Occam’s Razor’. It automatically protects against
overfitting, a central concern of statistics: when allowing models of arbitrary complex-
ity, we are always in danger that we model random fluctuations rather than the trend
in the data [Grünwald 2007].

The MDL Principle has been designed so as to be practically useful. This means
that the codes used to describe a ‘theory’ are not based on Kolmogorov complexity.
However, there exists an ‘ideal’ version of MDL [Li and Vitányi 1997; Barron and Cover
1991] which does rely on Kolmogorov complexity. Within our framework (binary data,
models as sets), it becomes [Vereshchagin and Vitányi 2004; Vitányi 2005]: pick a set
S 3 x minimizing the two-part codelength

K(S) − log |S|. (26)

In other words: any “optimal set” (as defined in Section 6.1.2) is regarded as a good
explanation of the theory. It follows that every set S that is an AMSS also minimizes
the two-part codelength to within O(1). However, as we already indicated, there exist
optimal sets S (that, because of their optimality, may be selected by MDL), that are
not minimal sufficient statistics. As explained by Vitányi [2005], these do not capture
the idea of ‘summarizing all structure in x’. Thus, the AMSS may be considered a
refinement of the idealized MDL approach.
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Practical MDL The practical MDL approach uses probability distributions rather
than sets as models. Typically, one restricts to distributions in some model class such as
the set of all Markov chain distributions of each order, or the set of all polynomials f of
each degree, where f expresses that Y = f(X)+Z, and Z is some normally distributed
noise variable (this makes f a ‘probabilistic’ hypothesis). These model classes are still
‘large’ in that they cannot be described by a finite number of parameters; but they are
simple enough so that admit efficiently computable versions of MDL – unlike the ideal
version above which, because it involves Kolmogorov complexity, is uncomputable. The
Kolmogorov complexity, set-based theory has to be adjusted at various places to deal
with such practical models, one reason being that they have uncountably many ele-
ments. MDL has been successful in practical statistical and machine learning problems
where overfitting is a real concern [Grünwald 2007]. Technically, MDL algorithms are
very similar to the popular Bayesian methods, but the underlying philosophy is very
different: MDL is based on finding structure in individual data sequences; distributions
(models) are viewed as representation languages for expressing useful properties of the
data; they are neither viewed as objectively existing but unobservable objects according
to which data are ‘generated’; nor are they viewed as representing subjective degrees
of belief, as in a mainstream Bayesian interpretation.

In recent years, ever more sophisticated refinements of the original MDL have de-
veloped [Rissanen 1996; Rissanen and Tabus 2005; Grünwald 2007]. For example, in
modern MDL approaches, one uses universal codes which may be two-part, but in
practice are often one-part codes.

7 Philosophical Implications and Conclusion

We have given an overview of algorithmic information theory, focusing on some of
its most important aspects: Kolmogorov complexity, algorithmic mutual information,
their relations to entropy and Shannon mutual information, the Algorithmic Minimal
Sufficient Statistic and the Kolmogorov Structure Function, and their relation to ‘mean-
ingful information’. Throughout the chapter we emphasized insights that, in our view,
are ‘philosophical’ in nature. It is now time to harvest and make the philosophical con-
nections explicit. Below we first discuss some implications of algorithmic information
theory on the philosophy of (general) mathematics, probability theory and statistics.
We then end the chapter by discussing the philosophical implications for ‘information’
itself. As we shall see, it turns out that nearly all of these philosophical implications
are somehow related to randomness.

Philosophy of Mathematics: Randomness in Mathematics In and after Exam-
ple 4 we indicated that the ideas behind Kolmogorov complexity are intimately related
to Gödel’s incompleteness theorem. The finite Kolmogorov complexity of any effective
axiom system implied the existence of bizarre equations like (10), whose full solution is,
in a sense, random: no effective axiom system can fully determine the solutions of this
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single equation. In this context, Chaitin writes: “This is a region in which mathemati-
cal truth has no discernible structure or pattern and appears to be completely random
[...] Quantum physics has shown that there is randomness in nature. I believe that we
have demonstrated [...] that randomness is already present in pure Mathematics. This
does not mean that the universe and Mathematics are completely lawless, it means
that laws of a different kind apply: statistical laws. [...] Perhaps number theory should
be pursued more openly in the spirit of an experimental science!”.

Philosophy of Probability: Individual Randomness The statement ‘x is a ran-
dom sequence’ is essentially meaningless in classical probability theory, which can only
make statements that hold for ensembles, such as ‘relative frequencies converge to prob-
abilities with high probability, or with probability 1’. But in reality we only observe one
sequence. What then does the statement ‘this sequence is a typical outcome of distri-
bution P ’ or, equivalently, is ‘random with respect to P ’ tell us about the sequence?
We might think that it means that the sequence satisfies all properties that hold with
P -probability 1. But this will not work: if we identify a ‘property’ with the set of
sequences satisfying it, then it is easy to see that the intersection of all sets correspond-
ing to properties that hold ‘with probability 1’ is empty. The Martin-Löf theory of
randomness [Li and Vitányi 1997] essentially resolves this issue. Martin-Löf’s notion
of randomness turns out to be, roughly, equivalent with Kolmogorov randomness: a
sequence x is random if K(x) ≈ l(x), i.e. it cannot be effectively compressed. This
theory allows us to speak of the randomness of single, individual sequences, which is
inherently impossible for probabilistic theories. Yet, as shown by Martin-Löf, his no-
tion of randomness is entirely consistent with probabilistic ideas. It opens up a whole
new area, which is illustrated by Example 21, in which we made distinctions between
different types of random sequences (‘positive’ and ‘negative’) that cannot be expressed
in, let alone understood from, a traditional probabilistic perspective.

Philosophy of Statistics/Inductive Inference: Epistemological Occam’s Ra-
zor There exist two close connections between algorithmic information theory and
inductive inference: one via the algorithmic sufficient statistic and the MDL Principle;
the other via Solomonoff’s induction theory, which there was no space to discuss here
[Li and Vitányi 1997]. The former deals with finding structure in data; the latter is
concerned with sequential prediction. Both of these theories implicitly employ a form
of Occam’s Razor: when two hypotheses fit the data equally well, they prefer the sim-
plest one (with the shortest description). Both the MDL and the Solomonoff approach
are theoretically quite well-behaved: there exist several convergence theorems for both
approaches. Let us give an example of such a theorem for the MDL framework: Barron
and Cover [1991] and Barron [1985] show that, if data are distributed according to
some distribution in a contemplated model class (set of candidate distributions) M,
then two-part MDL will eventually find this distribution; it will even do so based on a
reasonably small sample. This holds both for practical versions of MDL (with restricted
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model classes) as well as for versions based on Kolmogorov complexity, where M con-
sists of the huge class of all distributions which can be arbitrarily well approximated by
finite computer programs. Such theorems provide a justification for MDL. Looking at
the proofs, one finds that the preference for simple models is crucial: the convergence
occurs precisely because complexity of each probabilistic hyoptheses P is measured by
its codelength L(P ), under a some prefix-code that allows one to encode all P under
consideration. If a complexity measure L′(P ) is used that does not correspond to any
prefix code, then, as is easy to show, in some situations MDL will not converge at
all, and, no matter how many data are observed, will keep selecting overly complex,
suboptimal hypotheses for the data. In fact, even if the world is such that data are gen-
erated by a very complex (high K(P )) distribution, it is wise to prefer simple models at
small sample sizes [Grünwald 2007]! This provides a justification for the use of MDL’s
version of Occam’s razor in inductive inference. It should be stressed that this is an
epistemological rather than a (meta-) physical form of Occam’s Razor: it is used as an
effective strategy, which is something very different from a belief that ‘the true state
of the world is likely to have a short description’. This issue, as well as the related
question to what extent Occam’s Razor can be made representation-independent, is
discussed in great detail in [Grünwald 2007].

A further difference between statistical inference based on algorithmic information
theory and almost all other approaches to statistics and learning is that the algorithmic
approach focuses on individual data sequences: there is no need for the (often unten-
able) assumption of classical statistics that there is some distribution P according to
which the data are distributed. In the Bayesian approach to statistics, probability is
often interpreted subjectively, as a degree of belief. Still, in many Bayesian approaches
there is an underlying assumption that there exists ‘states of the world’ which are
viewed as probability distributions. Again, such assumptions need not be made in the
present theories; neither in the form which explicitly uses Kolmogorov complexity, nor
in the restricted practical form. In both cases, the goal is to find regular patterns in
the data, no more. All this is discussed in detail in [Grünwald 2007].

Philosophy of Information On the first page of the chapter on Shannon informa-
tion theory in this handbook [Harremoës and Topsøe 2007], we read “information is
always information about something.” This is certainly the case for Shannon informa-
tion theory, where a string x is always used to communicate some state of the world,
or of those aspects of the world that we care about. But if we identify ‘amount of
information in x’ with K(x), then it is not so clear anymore what this ‘information’ is
about. K(x), the algorithmic information in x looks at the information in x itself, inde-
pendently of anything outside. For example, if x consists of the first billion bits of the
binary expansion of π, then its information content is the size of the smallest program
which prints these bits. This sequence does not describe any state of the world that
is to be communicated. Therefore, one may argue that it is meaningless to say that
‘x carries information’, let alone to measure its amount. At a workshop where many
of the contributors to this handbook were present, there was a long discussion about
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this question, with several participants insisting that “algorithmic information misses
“aboutness” (sic), and is therefore not really information”. In the end the question
whether algorithmic information should really count as “information” is, of course, a
matter of definition. Nevertheless, we would like to argue that there exist situations
where intuitively, the word “information” seems exactly the right word to describe what
is being measured, while nevertheless, “aboutness” is missing. For example, K(y|x) is
supposed to describe the amount of “information” in y that is not already present in x.
Now suppose y is equal to 3x, expressed in binary, and x is a random string of length
n, so that K(x) ≈ K(y) ≈ n. Then K(y|x) = O(1) is much smaller than K(x) or K(y).
The way an algorithmic information theorist would phrase this is “x provides nearly all
the information needed to generate y.” To us, this seems an eminently reasonable use
of the word information. Still, this “information” does not refer to any outside state of
the world.7

Let us assume then that the terminology “algorithmic information theory” is jus-
tified. What lessons can we draw from the theory for the philosophy of information?

First, we should emphasize that the amount of ‘absolute, inherent’ information in
a sequence is only well-defined asymptotically and is in general uncomputable. Thus,
an objective measure of information without ‘aboutness’ is possible, but at an (un-
avoidable) price. If we want a nonasymptotic and efficiently computable measure, we
are forced to use a restricted class of description methods. Such restrictions naturally
lead one to universal coding and practical MDL. The resulting notion of information
is always defined relative to a class of description methods and can make no claims
to objectivity or absoluteness. Interestingly though, unlike Shannon’s notion, it is still
meaningful for individual sequences, independently of any outside probabilistic assump-
tions: this is an aspect of the general theory that can be retained in the restricted forms
[Grünwald 2007].

Second, the algorithmic theory allows us to formalize the notion of ‘meaningful
information’ in a distinctly novel manner. It leads to a separation of the meaningful
information from the noise in a sequence, once again without making any probabilistic
assumptions. Since learning can be seen as an attempt to find the meaningful informa-
tion in data, this connects the theory to inductive inference.

Third, the theory re-emphasizes the connection between measuring amounts of in-
formation and data compression, which was also the basis of Shannon’s theory. In fact,
algorithmic information has close connections to Shannon information after all, and if
the data x are generated by some probabilistic process P , so that the information in
x is actually really ‘about’ something, then the algorithmic information in x behaves
very similarly to the Shannon entropy of P , as explained in Section 5.3.

Further Reading Kolmogorov complexity has many applications which we could
not discuss here. It has implications for aspects of physics such as the second law of

7We may of course say that x carries information “about” y. The point, however, is that y is not a
state of any imagined external world, so here “about” does not refer to anything external. Thus, one
cannot say that x contains information about some external state of the world.
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thermodynamics; it provides a novel mathematical proof technique called the incom-
pressibility method, and so on. These and many other topics in Kolmogorov complexity
are thoroughly discussed and explained in the standard reference [Li and Vitányi 1997].
Additional (and more recent) material on the relation to Shannon’s theory can be found
in Grünwald and Vitányi [2003, 2004]. Additional material on the structure function
is in [Vereshchagin and Vitányi 2004; Vitányi 2005]; and additional material on MDL
can be found in [Grünwald 2007].
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Grünwald, P. D. and P. M. Vitányi (2004). Shannon information and Kolmogorov
complexity,. Submitted for publication. Available at the Computer Science CoRR
arXiv as http://de.arxiv.org/abs/cs.IT/0410002.
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