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Abstract

Bayesian model averaging, model selection and their ajypadions such as BIC
are generally statistically consistent, but sometimeseaehslower rates of con-
vergence than other methods such as AIC and leave-oneassg-galidation. On
the other hand, these other methods can be inconsistentantifyy thecatch-up
phenomenoms a novel explanation for the slow convergence of Bayesieti-m
ods. Based on this analysis we define the switch-distribuéianodification of the
Bayesian model averaging distribution. We prove that in yr&ituations model
selection and prediction based on the switch-distribuigohoth consistent and
achieves optimal convergence rates, thereby resolvingiieBIC dilemma. The
method is practical; we give an efficient algorithm.

1 Introduction

We consider inference based on a countable set of modedsofgabbability distributions), focusing
on two tasks: model selection and model averaging. In magletBon tasks, the goal is to select
the model that best explains the given data. In model avegagine goal is to find the weighted
combination of models that leads to the best prediction freudata from the same source.

An attractive property of some criteria for model selectisrthat they are consistent under weak
conditions, i.e. if the true distributiof** is in one of the models, then th&*-probability that this
model is selected goes to one as the sample size increase$l4) Bayes factor model selection
[8], Minimum Description Length (MDL) model selection [3hd prequential model validation [5]
are examples of widely used model selection criteria thatuemually consistent. However, other
model selection criteria such as AIC [1] and leave-one-oo$&-validation (LOO) [16], while of-
ten inconsistent, do typically yield better predictionshisTis especially the case in nonparametric
settings, wherdé®* can be arbitrarily well-approximated by a sequence of ithistions in the (para-
metric) models under consideration, but is not itself corgd in any of these. In many such cases,
the predictive distribution converges to the true disttitn at the optimal rate for AIC and LOO
[15, 9], whereas in general BIC, the Bayes factor method aedyential validation only achieve
the optimal rate to within a(log n) factor [13, 20, 6]. In this paper we reconcile these seemging|
conflicting approaches [19] by improving the rate of conesce achieved in Bayesian model se-
lection without losing its convergence properties. Firstpvovide an example to show why Bayes
sometimes converges too slowly.

Given priors on models\;, Ms, ... and parameters therein, Bayesian inference associaths eac
model M, with the marginal distributiop,,, given in (1), obtained by averaging over the parameters
according to the prior. In model selection the preferred edéglthe one with maximum a posteriori
probability. By Bayes’ rule this iarg max;, pi(z™)w(k), wherew(k) denotes the prior probability

of M. We can further average over model indices, a process cBigesian Model Averaging
(BMA). The resulting distributiompma(z™) = >, pr(2™)w(k) can be used for prediction. In a se-



guential setting, the probability of a data sequentte= x4, ..., z, under a distributiom typically
decreases exponentially fastinlt is therefore common to considerlog p(x™), which we call the
codelengtlof 2™ achieved by. We take all logarithms to bage allowing us to measure codelength
in bits. The name codelength refers to the correspondence betweeteagth functions and prob-
ability distributions based on the Kraft inequality, buttcomay also think of the codelength as the
accumulated log loss that is incurred if we sequentiallydjptethe z; by conditioning on the past,
i.e. usingp(-|z*~1) [3, 6, 5, 11]. For BMA, we have- log ppma(z™) = > i, logpbma(aclw‘_ ).
Here theith term represents the loss incurred when predictingiven z*—! usmgpbma( 2"~ b,
which turns out to be equal to the posterior averaggu(z;|z' ') = >, pi(zi|z" Hw(k|z ™).

Prediction usingyma has the advantage that the codelength it achieves®da close to the code-

length ofp;, wheref is the index of best of the marginals, p», . .. Namely, given a priow on
model indices, the difference betweeriogpbma( ") = —log(>_ pr(az™)w(k)) and—log p; (™)

must be in the rang@, — log w( )], whatever data:™ are observed. Thus, using BMA for pre-
diction is sensible if we are satisfied with doing essentiall well as the best model under con-
sideration. However, it is often possible to combineps, ... into a distribution that achieves

smaller codelength thap;! This is possible if the index of the best distributiorthanges with
the sample size in a predictable walhis is common in model selection, for example with nested
models, sayM; C M. In this casep; typically predicts better at small sample sizes (roughly,
becauseM, has more parameters that need to be learned than, while p, predicts better
eventually. Figure 1 illustrates this phenomenon. It shtivesaccumulated codelength difference
—log p2(z™) — (—log p1 (™)) on “The Picture of Dorian Gray” by Oscar Wilde, where andp,

are the Bayesian marginal distributions for the first-oraled second-order Markov chains, respec-
tively, and each character in the book is an outcome. Notdhieaxample model$1; and M, are
very crude; for this particular application much better ralsdare available. In more complicated,
more realistic model selection scenarios, the models nithjpstwrong, but it may not be known
how to improve them. Thus1; andM; serve as a simple illustration only. We used uniform priors
on the model parameters, but for other common priors sirhigdraviour can be expected. Clearly
p1 is better for about the first00 000 outcomes, gaining a head start of approximat&l900 bits.
Ideally we should predict the initialo0 000 outcomes using; and the rest using,. Howeverppma
only starts to behave like, when itcatches upvith p; at a sample size of abo8t0 000, when the
codelength op- drops below that op;. Thus, in the shaded aregm, behaves likep; while p, is
making better predictions of those outcomes: since &t 100 000, p- is 40 000 bits behind, and at

n = 310000, it has caught up, in between it must have outperformelly 40 000 bits!

The general pattern that first one model is
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to mimic p, almost immediatelyfter p, Figure 1: The Catch-up Phenomenon

starts making better predictions; it essen-

tially does thisno matter what sequence® is actually observedps,, differs from pyma in that it

is based on a prior distribution sequences of modelather than simply a prior distribution on
models. This allows us to avoid the implicit assumption tietre is one model which is best at
all sample sizes. After conditioning on past observatidghs, posterior we obtain gives a better
indication of which model performs beat the current sample sizéhereby achieving a faster rate
of convergence. Indeed, the switch-distribution is reldteearlier algorithms fotracking the best
expertdeveloped in the universal prediction literature [7, 18, 10]; however, the applications we
have in mind and the theorems we prove are completely differtn Sections 3 and 4 we show
that model selection based on the switch-distribution iss@ient (Theorem 1), but unlike standard
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Bayes factor model selection achieves optimal rates of eg@nce (Theorem 2). Proofs of the
theorems are in Appendix A. In Section 5 we give a practiogbathm that computes the switch-
distribution for K (rather thar) predictors in@(n - K) time. In the full paper, we will give further
details of the proof of Theorem 1 and a more detailed disonssi Theorem 2 and the implications
of both theorems.

2 The Switch-Distribution for Model Selection and Prediction

Preliminaries SupposeX > = (X, X», ...) is a sequence of random variables that take values
in sample spac&’ C R? for somed € Z* = {1,2,...}. Forn € N={0,1,2,...}, letz" = (x4,

..., Tp) denote the firsk outcomes ofX>°, such that:™ takes values in the product spat@ =

Xy x -+ x X,. (We letz® denote the empty sequence.) &t = 77  X™. Form > n, we write
X for (Xpg1, - .. X ), Wherem = oo is allowed and we omit the subscript when= 0.

Any distribution P(X°°) may be defined by a sequentjadediction strategyp that predicts the
next outcome at any time € N. To be precise: Given the previous outcomésat timen, this
prediction strategy should issue a conditional dengfty,1|z™) with corresponding distribution
P(X,,4+1|2™) for the next outcom&,, ;. Such sequential prediction strategies are sometimeszcall
prequential forecasting systerfig. An instance is given in Example 1 below. We assume that th
densityp(X,,+1|z™) is taken relative to either the usual Lebesgue measurd’ (§ continuous)
or the counting measure (i is countable). In the latter cagg X, 1|2") is a probability mass
function. It is natural to define the joint densijtyz™|z") = p(zpi1|2™) - - p(am,|z™ 1) and let
P(X25 1|=™) be the unique distribution such that, for all > n, p(X;", ;|z™) is the density of its
marginal distribution forX ", ;. To ensure thaP(X <, |z") is well-defined even ift’ is continuous,
we impose the natural requirement that for dny Z* and any fixed eventi;;; C X the
probability P( A 1|2*) is a measurable function ef', which holds automatically it is countable.

Model Selection and Prediction The goal inmodel selections to choose an explanation for
observed data™ from a potentially infinite list of candidate modelst,, M-, ... We consider
parametric modelswhich are set§py : 6 € ©} of prediction strategies, that are indexed by ele-
ments of® C R?, for some smallest possibiec N, the number of degrees of freedom. Examples
of model selection are regression based on a set of basiidnasuch as polynomialgl (s the
number of coefficients of the polynomial), the variable stta problem in regression [15, 9, 20]
(d is the number of variables), and histogram density estongti3] (d is the number of bins). A
model selection criteriois a functiond : X* — Z™T that, given any data sequence ¢ X*, selects
the modelM, with indexk = §(2™).

We associate each mod#&l;, with a single prediction strategy,. The bar emphasizes tha} is a
meta-strategy based on the prediction strategiéstin In many approaches to model selection, for
example AIC and LOOp, is defined using some estimatéyr for each modelM,,, which maps a
sequence™ of previous observations to an estimated parameter vahtedpresents a “best guess”
of the true/best distribution in the model. Prediction isrtthased on this estimatopy, (X, 11 |
2") = P4, (on)(Xns1 | 2™), which also defines a joint densify. (") = pi(x1) - - (T |21,
The Bayesian approach to model selection or model averagiag the other way around. We start
out with a priorw on ©,, and define the Bayesian marginal density

pr(a™) = /0  pola)u(0) o, )

Whenpy (z™) is non-zero this joint density induces a unique conditiateaisitypy, (X, +1 | z™) =
Pr(Xnt1,2™)/Dr(x™), which is equal to the mixture ofy € M, according to the posterior,
w(fz™) = po(x™)w(0)/ [ pe(z™)w(H) db, based one™. Thus the Bayesian approach also de-
fines a prediction strategy, (X,,+1|2"), whose corresponding distribution may be thought of as
an estimator. From now on we sometimes call the distribstinduced byp,, ps, . . . “estimators”,
even if they are Bayesian. This unified view is knowrpesguentialor predictive MDL[11, 5].

Example 1. SupposeX = {0,1}. Then a prediction strategy may be based on the Bernoulli
modelM = {py | § € [0, 1]} that regards{>° as a sequence of independent, identically distributed
Bernoulli random variables witt# (X,11 = 1) = . We may predictX,,; using the maximum

likelihood (ML) estimator based on the past, i.e. us@rﬁg") =n~1Y " | x;. The prediction for
1 is then undefined. If we use a smoothed ML estimator such asaplace estimatof’ (z") =



(n+2)"1(>7, x; + 1), then all predictions are well-defined. Perhaps surpriginge predictor
P’ defined byp' (X, 41 | 2™) = pé,(mn)(XnJ,_l) equals the Bayesian predictive distribution based on
a uniform prior. Thus in this case a Bayesian predictor andstimation-based predictor coincide!

The Switch-Distribution Supposes, ps, ... is a list of prediction strategies fox *°. (Although
here the list is infinitely long, the developments below cath little modification be adjusted to the
case where the list is finite.) We first define a family= {¢s : s € S} of combinator prediction
strategies that switch between the original predictioategies. Here the parameter spé&ces
defined as

S={(ti, k1), -, (tm, k) € (NXZH)™ | meZT,0=1; <... <t} )

The parametes € S specifies the identities ofi constituent prediction strategies and the sample
sizes, calledwitch-pointsat which to switch between them. Foe ((¢), k1), ..., (., k../)), we

definet;(s) = ¢}, k;(s) = k, andm(s) = m’. We omit the argument when the paramaiés clear
from context, e.g. we write; for ¢5(s). For eachs € S the correspondings € Q is defined as:

Dy (Xpg1lz™)  ifn < to,
Dks (Xn+1|l‘n) if to <n <ts,

s(Xna]2") = : : ®3)
pkm_l(Xn+l|xn) |f tm—l S n < tm:
Pk, (Xnt1]z™) ift, <n.

Switching to the same predictor multiple times is allowecheTextra switch-point; is included
to simplify notation; we always takg = 0. Now the switch-distribution is defined as a Bayesian
mixture of the elements a according to a priotr onS:

Definition 1 (Switch-Distribution) Let 7w be a probability mass function di Then the switch-
distribution Ps,, with prior  is the distribution forX > such that, for any. € Z*, the density of its
marginal distribution forX™ is given by

poule”™) = 3 as(a™) - (). )

seS

Although the switch-distribution provides a general wayctmbine prediction strategies, in this
paper it will only be applied to combine prediction strategji,, po, ... that correspond to models.
In this case we may define a corresponding model selectitarior ds,,. To this end, letk,,; :
S — Z* be a random variable that denotes the strategy/model theseid to predictX,, ;1 given
past observations™. Formally, K, 11(s) = k;i(s) iff ¢;(s) < nandi = m(s) Vn < t;41(s).
Algorithm 1, given in Section 5, efficiently computes the fgo®r distribution onk,,; givenz™:
do(siK _pr 7(s)gs(z™)
T(Kpi1=k|2") = Honp1 ()=} , 5

( +1 | ) psw(xn) ( )
which is defined wheneveps,(z") is non-zero. We turn this into a model selection criterion
dsw(z™) = arg maxy, 7(K, 11 = k|2™) that selects the model with maximum posterior probability.

3 Consistency

If one of the models, say with indeX*, is actually true, then it is natural to ask whetligy, is
consistentin the sense that it asymptotically selektswith probability 1. Theorem 1 below states
that this is the case under certain conditions which are sligintly stronger than those required for
the consistency of standard Bayes factor model selection.

Bayes factor model selection is consistent if forialk’ # k, P,(X>°) and Py, (X°°) are mutually
singular, that is, if there exists a measurable4et X>° such thatP,(A) = 1 and Py (A) = 0 [3].

For example, this can usually be shown to hold if the modelsasted and for eadh O is a subset

of ©4+1 of wi1-measurd [6]. For consistency afs,, we need to strengthen this to the requirement
that, for allx’” # & and allz” € &A™, the distributionsP, (X%, | 2™) and Py (X5, | 2™) are
mutually singular. For example, X, X5, ... are i.i.d. according to each, in all models, but also

if X is countable ang@y (z,,+1 | x,) > 0 forall &, all 2" ™! € X"+, then this conditional mutual
singularity is automatically implied by ordinary mutuahgularity of P, (X °°) and Py, (X °).



Let Es = {s" € S | m(s") > m(s), (t:(s'), ki(s')) = (ti(s),ki(s)) fori =1,...,m(s)} denote
the set of all possible extensionssfo more switch-points. Let;, ps, ... be Bayesian prediction
strategies with respective parameter sp&esd,, ... and priorsw;, ws, .. ., and letr be the prior
of the corresponding switch-distribution.

Theorem 1 (Consistency of the Switch-DistributionSupposer is positive everywhere ofs €

S | m(s) = 1} and is such that there exists a positive constasuch that, for everg € S,
c-7(s) > n(Es). Suppose further thak, (X5, | ) and P/ (X5, | 2™) are mutually singular
forall k, k' € Z*, k # k', 2™ € X*. Then, for allk* € Z*, for all * ¢ ©- except for a subset of
O~ of wg«-measurd), the posterior distribution ori,, |, satisfies

(K1 =k | X™) =31  with Py.-probability 1. (6)

The requirement that- 7(s) > 7 (Es) is automatically satisfied if is of the form:
m(s) = ﬂ-M(m')ﬂ-K(kl)Hﬂ'T(ti“i > ti1)m(ki), (7)
1=2
wherer,, 7 andr, are priors orZ ™ with full support, andr,, is geometricxr, (m) = ™ ~1(1—0)
for some0 < 6 < 1. In this case: = /(1 — ).

4 Optimal Risk Convergence Rates

SupposeX;, X», ... are distributed according t8*. We define theisk at sample size > 1 of the
estimatorP relative toP* as

Rn(P*aP) = EX“*1~P*[D(P*(X7L = | Xnil)HP(Xn = | Xnil))]v
where D(-||-) is the Kullback-Leibler (KL) divergence [4]. This is the stiard definition of risk
relative to KL divergence. The risk is always well-defineddaequal to0 if P(X, 11 | X") is
equal toP*(X,,+1 | X™). The following identity connects information-theoretedundancy and

accumulated statistical risk (see [4] or [6, Chapter 15f):PF admits a densityp*, then for all
prediction strategies,

Exnop-[~log p(X") +logp*(X")] = > Ri(P*, P). ®)
i=1

For a union of parametric model$t = (J,., M, we define thenformation closure{M) =
{P* | infpesm D(P*||P) = 0}, i.e. the set of distributions foK *> that can be arbitrarily well
approximated by elements 8fl. Theorem 2 below shows that, for a very large clas®bic (M),

the switch-distribution defined relative to estimatéts P, . . . achieves the same risk as any other
model selection criterion defined with respect to the santienators, up to lower order terms; in
other words, model averaging based on the switch-distdbudichieves at least the same rate of
convergence as model selection based on any model selectierion whatsoever (the issue of
averaging vs selection will be discussed at length in thiepfaher). The theorem requires that the
prior 7 in (4) is of the form (7), and satisfies

—logmy(m) =0(m) ; —logm (k) =O(logk) ; —logm(t) = O(logt). 9
Thus,n,, the prior on the total number of switch points, is allowedi&zrease either polynomially

or exponentially (as required for Theorem 1};andw, must decrease polynomially. For example,
we could setr (t) = m(t) = 1/(t(t + 1)), or we could take the universal prior on the integers [12].

Let M* C (M) be some subset of interest of the information closure of hmade AM* may consist

of just a single, arbitrary distributioR* in (M)\ M —in that case Theorem 2 shows that the switch-
distribution converges as fast as any other model selectiterion on any distribution ifAM) that
cannot be expressed parametrically relativéMio— or it may be a large, nonparametric family. In
that case, Theorem 2 shows that the switch-distributioieaek the minimax convergence rate. For
example, if the models\1,, are k-bin histograms [13], theM) contains every distribution on
[0, 1] with bounded continuous densities, and we may, for exantale M* to be the set of all
distributions on[0, 1] which have a differentiable densip/ such thap*(x) and(d/dz)p*(x) are
bounded from below and above by some positive constants.

We restrict ourselves to model selection criteria whictsahple size:, never select a mode¥1,,
with k£ > n” for some arbitrarily large but fixed > 0; note that this condition will be met for most



practical model selection criteria. Let: ZT — R™ denote the minimax optimal achievable risk as
a function of the sample size, i.e.
= inf 3 3 (P*, P, 1

h(n) S:xn{1,2,..., (nﬂ}P*bg/I\)A*s,uZ%Rn(  Fs), (10)
where the infimum is over all model selection criteria reséd to sample size, and[-] denotes
rounding up to the nearest integeps is the prediction strategy satisfying, for all > n, all
2 € X", Ps(Xpgr | %) = Ps(an) (X1 | 2), i.€. at sample size it predictsz,, 1 using
pr for thek = §(X™) chosen by, and it keeps predicting future,, ., by thisk. We callh(n)
the minimax optimal rate of convergence for model select&ative to data fromM*, model list
My, Mo, ..., and estimator$, P, ... The definition is slightly nonstandard, in that we require a
second supremum ovef > n. This is needed because, as will be discussed in the fullrpiean
sometimes happen that, for soRé, somek, somen’ > n, R,/ (P*, P;) > R,(P*, Py) (see also
[4, Section 7.1]). In cases where this cannot happen, suelyesssion with standard ML estimators,
and in cases where, uniformly for &) sup,, ~.,, R, (P*, Py)— R, (P*, Py) = o(>_ 1, h(4)) (inthe
full paper we show that this holds for, for example, histogrdensity estimation), our Theorem 2
also implies minimax convergence in terms of the standafuhiien, without thesup,,/~.,,. We
expect that theup,,,~.,, can be safely ignored for most “reasonable” models and astirs.

Theorem 2. Define Py, for some model clas8t = U,>1 M, as in(4), where the priorr sat-
isfies (9). LetM* be a subset of M) with minimax rateh such thatnh(n) is increasing, and
nh(n)/(logn)? — co. Then

cerr Doy Ri(P*, P,
lim sup S1Pp EMZZ;l_lll(i)( ) <1 (12)
n— 00 i=1

The requirement thath(n)/(logn)? — oo will typically be satisfied wheneveM* \ M is
nonempty. Then\* containsP* that are “nonparametric” relative to the chosen sequenceoak
elsM;, Ms, ... Thus, the problem should not be “too simple”: we do not knovethier (11) holds

in the parametric setting whe®* € M, for somek on the list. Theorem 2 expresses that the
accumulated rislof the switch-distribution, as increases, is not significantly larger than de
cumulated riskof any other procedure. This “convergence in sum” has beesidered before by,
for example, [13, 4], and is compared to ordinary convergandhe full paper, where we will also
give example applications of the theorem and further dis¢W8). The proof works by bounding
the redundancy of the switch-distribution, which, by (8)jdentical to the accumulated risk. It is
not clear whether similar techniques can be used to bounidiadual risk.

5 Computing the Switch-Distribution

Algorithm 1 sequentially computes the posterior prob&pdn predictors, ps, . . .. It requires that

m is a prior of the form in (7), aner, is geometric, as is also required for Theorem 1 and permitted
in Theorem 2. The algorithm resemblesxED-SHARE [7], but whereas FXED-SHARE implicitly
imposes a geometric distribution fat, we allow general priors by varying the shared weight with
n. We do require slightly more space to cope with

Algorithm 1 SwiTcH(z)
> K is the number of expert$;is as in the definition of,.
for k=1,..., K doinitialise w{ « 0 - m((k); w? « (1 — ) - m (k) od
Report priorr(K) = w§, (aK-sized array)
forn=1,..., N do

for k=1,..., K dow{ «— w{ - py(zn|z"1); wh — w? - p(z,]2" 1) od (loss update)
pool —m(Z=n|Z>n) >, w} (share update)
for k=1,...,K do

wi —wp - (Z#n|Z>n) + 6 - pool - (k)

wh — w? + (1-20)-pool - m (k)
od

Report posterior (K11 | 2") = (w§ , +wk, )/ > (wi +wy) (aK-sized array)
od

This algorithm can be used to obtain fast convergence in ¢hsesof Theorem 2, which can be
extended to cope with a restriction to only the fifStexperts. Theorem 1 can be extended to show



consistency in this case as wellaf(Z = n | Z > n) andr (k) can be computed in constant time,
then the running time i®(N - K), which is of the same order as that of fast model selectidardi
like AIC and BIC. We will explain this algorithm in more dekt#éi a forthcoming publication.
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A Proofs

Proof of Theorem 1. LetU,, = {s € S | K,,+1(s) # k*} denote the set of ‘bad’ parameterthat
select an incorrect model. It is sufficient to show that

lim ZSGUHW(S)QS(XR)
o Yees m(8)gs(XT)

To see this, suppose the theorem is false. Then there existS &, with wy«(®) > 0 such that
(6) does not hold for ang* € ®. But then by definition ofP;- we have a contradiction with (12).
Now letA = {s € S : k,,(s) # k*} denote the set of parameters that are bad for sufficientjetar
We observe that for each € U, there exists at least one elemsrit A that uses the same sequence
of switch-points and predictors on the first+- 1 outcomes (this implies thak;(s) = K;(s’) for
i=1,...,n+ 1) and has no switch-points beyondi.e.t,,(s) < n). Consequently, eithef = s
ors’ € Es. Therefore

Y w()as (@) < Y (w(s) + w(E))as(a") < (1+¢) ) m(s)gs(@™).  (13)

=0  with P.-probability 1. (12)

s’eU, scA scA
Defining the mixture-(z™) = > . 4 7(s)gs(x™), we will show that
lim r(X*) —0  with P,.-probability 1. (14)

n—oo 7(s = (0,k%)) - pr- (X™)
Using (13) and the fact th@jSGS m(s)gs(z™) > w(s = (0,k*)) - P+ (™), this implies (12). For
alls € Aandz!=(®) € Xt py definitionQs(X{° ,,|z'™) equalspy,, (X° . |z'), which is
mutually singular witth*(X,?iH\xtm) by assumption. It is a separable metric space, which
holds becaus& C R¢ for somed € Z*, it can be shown that this conditional mutual singularity
implies mutual singularity of)s(X >°) and Py (X°°). To see this for countabl&, let B,:... be any
event such thaQs (B, [z') = 1 and Py« (Bgem |z') = 0. Then, forB = {y> € X> | y° | €
Byt }, we have tha@s(B) = 1 and Py.- (B) = 0. In the uncountable case, howevBrmay not be
measurable. We omit the full proof, which was shown to us BydPremdas. Any countable mixture
of distributions that are mutually singular wii,., in particularR, is mutually singular withPy .

This implies (14) by Lemma 3.1 of [2], which says that for amptmutually singular distributions
R andP, the density ratio'(X"™)/p(X™) goes ta) asn — oo with P-probability 1. O

Proof of Theorem 2. We will show that for everyx > 1,

sup ZR P*, Ps) <aZh +ea$nih(i)7 (15)
=1

P*GM*

wheree, =% 0, and €a,1,€a,2, - - - are fixed constants that only depend @nbut not on the
chosen subseM* of (M). Theorem 2 is a consequence of (15), which we will proceedduep
Letd, : X" — {1,...,[n"]} be a model selection criterion, restricted to samples a&f sjzhat

is minimax optimal, i.e. it achieves the infimum in (10). Ifcbuad,, does not exist, we take &,
that is almost minimax optimal in the sense that it achiebesinfimum to withinih(n)/n. For

j > 1,lett; = [a/~!] — 1. Fix an arbitraryn > 0 and letm be the unique integer such that
tm < < tpy1. We will first show that for arbitrary:™, psw achieves redundancy not much worse
thangs with s = (t1,k1), ..., (tm, km), wherek; = §;,(z*"). Then we show that the redundancy of
this ¢s is small enough for (15) to hold. Thus, to achieve this redunay, it is sufficient to take only
a logarithmic numbem — 1 of switch-points:m — 1 < log,(n + 1). Formally, we have, for some
¢ > 0, uniformly for all n, ™ € X™,



—log psw(z™) = —log Z gs' ( —log ¢s(z™) — log my(m) — Z log 7+ (t;)m (k;)
s’eS j
—log gs(z™) + clog(n + 1) + cm(7 + 1) logn = —log gs(z™) + O((logn)?).  (16)
Here the second inequality follows because of (9), and thed fiquality follows because: <

log,, (n + 1) + 1. Now fix any P* € (M). SinceP* € (M), it must have some densipy. Thus,
applying (8), and then (16), and then (8) again, we find that

Z Ri(P*, Psw) = Exnnp+[—log psw(X™) + log p™ (X™)]
=1
< Exnnp-[~loggs(X™) +logp*(X™)] + O((logn)?)
n m min{t;y1,n}
Z &) +O((logn)? Z Z R;(P*, Py,) + O((logn)?). (17)
i=1 j=1 i=t;+1
For i appearing in the second sum, with < i < t;14, we haveRi(P*,ij) <

supi/ZtHl Ri’ (P*,pkj) = supi/ZtHl Ri/(P*7p6tj (;rt7)) S h(t] + 1)7 so that

_ o tivt .. .
(P* P, ) < St + DRt +1) < : < It <
Ri(P*, Py;) < | (t; + Dht; +1) < ] ih(i) < thh(z)_ah(Z),

where the middle inequality follows becausé(n) is increasing (condition (b) of the theorem).
Summing overi, we get) " | Zf“?{_:’fl ™ R(P*, B %,) < ad i, h(i). Combining this with
(17), it follows thatd " | R;(P*, Psw) < aY i, h(i) + O((log n)?). Because this holds for arbi-

trary P* € M* (with the constant in thé notation not depending af*), (15) now follows by the
requirement of Theorem 2 that,(n)/(logn)? — oc. O
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