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Abstract. Updating probabilities by conditioning can lead to bad pre-
dictions, unless one explicitly takes into account the mechanisms that
determine (1) what is observed and (2) what has to be predicted. Analo-
gous to the observation-CAR (coarsening at random) condition, used in
existing analyses of (1), we propose a new prediction task-CAR condition
to analyze (2). We redefine conditioning so that it remains valid if the
mechanisms (1) and (2) are unknown. This will often update a singleton
distribution to an imprecise set of probabilities, leading to dilation, but
we show how to mitigate this problem by marginalization. We illustrate
our notions using the Monty Hall Puzzle.

1 Introduction

Let P be a probability distribution on some space Y. Suppose we are given
information in the form of an event B ⊂ Y. We are then asked to give the
probability of another event A ⊂ Y, given information B. Many people would
be inclined to say “this probability is equal to P (A|B), defined as P (A,B)/P (B);
this is just the standard definition of conditional probability”. In this paper, we
boldly propose a little extension of probability theory, in which we always have
to make an additional calculation, to check whether predicting with P (A|B) is
valid, or at least safe. If it is unsafe, we should not use P (A|B); we then risk
getting answers that are wrong under any reasonable operational interpretation
of probability. We explain this in Section 2, right after Example 3, and give
formal definitions of safety and validity in Section 4.1, Definition 1; for now,
we just note that unsafety implies there are other ways of updating P based
on B that provably lead to better predictions. Indeed, we identify realistic
situations in which updating by a “predictive distribution” P̃ different from
standard conditioning is “safe”, whereas standard conditioning is “unsafe”.

All this may sound worrisome, especially to Bayesian readers: isn’t there a
plethora of evidence (by e.g. Savage (1954) and many, many others), axiomatic
and otherwise, implying that conditioning is the only reasonable way to update
probabilities? The answer is: yes, there is, and all our ‘safe’ updates are in fact
compatible with conditioning if we were to work in a larger sample space Z
that takes explicitly into account the observation selection mechanism (OSM)
and the task selection mechanism (TSM). Here a ‘task’ can be any decision,



prediction, or inference problem. Earlier work on OSM has been done within the
CAR (coarsening at random) literature (Heitjan and Rubin, 1991, Grünwald
and Halpern, 2003, De Cooman and Zaffalon, 2004). We generalize CAR-based
OSM’s and connect them to TSM’s, which, to the best of our knowledge, have
not been studied before. In practice such selection mechanisms, while relevant,
may often be unknown, so we do not know the appropriate distribution P ∗

on Z. We only know that P ∗ must be a member of some set of distributions
P∗, consisting of all distributions on Z that satisfy some known constraints.
The ‘safe’ predictive distributions P̃ that we advocate typically coincide with a
marginal distribution corresponding to some specific, special distribution in the
set P∗.

In the remainder of this introduction, we describe two well-known probability
puzzles that motivate our research. Section 2 summarizes relevant insights from
the CAR literature. Our original contributions are in Section 3 and beyond, in
which we develop two notions of safety: the strong guaranteed-validity notion
and a weaker notion which we just call safety. In the final section we return
to the two puzzles to see what safe probability implies for them. Mathematical
proofs and further discussion will be provided in the full paper of which this
submission is an extended abstract.

Example 1. [Monty Hall Puzzle] (vos Savant, 1994, Gill, 2011) Suppose that
you’re on a game show and given a choice of three doors, named a, b and c. Behind
one is a car; behind the others are goats. You pick door a. Before opening door
a, Monty Hall, the quiz master (who knows what is behind each door) opens
one of the other doors (say, door c), which has a goat. He then asks you if you
still want to take what’s behind door a, or to take what’s behind the closed door
(door b, in our case) instead. Should you switch? You may assume that, initially,
the car was equally likely to be behind each of the doors, so it seems natural to
define a sample space Y = {a, b, c} where Y = y indicates that the car is behind
door a, and P (a) = P (b) = P (c) = 1/3. You observe that the car is not behind
door c, i.e. the remaining possibilities are {a, b}, Conditioning now gives that
P (b | {a, b}) = (1/3)/(2/3) = 1/2, which suggests that the car is now equally
likely to be behind door a and door b. Thus, there seems no reason to switch.

Now, 23 years after this problem was popularized, almost everybody agrees
that this simple answer is wrong: as vos Savant pointed out, it is strongly in your
interest to switch. However, initially, most people who heard about the puzzle,
including some professors of probability theory (see (vos Savant, 1994)), were
very hard to convince of this. It is here that safe probability can be useful: from
the definition of safety in Section 3, one immediately sees that conditioning as
we did above is ‘unsafe’, implying it will lead to suboptimal decisions. Briefly,
for general spaces Y, if the set of events X on which you can condition is not a
partition of Y, then conditioning on any of these events is unsafe. In the present
case, the set of events is X = {{a, b}, {a, c}} (the latter would be observed if the
quiz master had opened door b). The two events overlap (a is a member of both),
hence do not form a partition, and hence you should not update by conditioning.
This part is only of limited novelty — it has been argued before by many authors
(perhaps most notably Shafer (1985)) that updating by conditioning only makes



sense if a protocol is specified (corresponding to what we call an ‘observation
selection mechanism’ below). Shafer (1996) formalizes this in terms of event trees
which implicitly require conditioning events to form a partition. The only novelty
here is our insight that, in practical cases in which the ‘correct’ event tree may
be hard to construct, checking for overlap provides a very simple sanity check
which immediately indicates that a problem is represented in a space in which
conditioning makes no sense.

The real novelty of safe probability relates to the question whether, if the
quiz master opens door c, the probability that the car is behind a remains 1/3.
If one assumes that, in those cases in which the car is actually behind door a,
the quiz master tosses a fair coin to decide whether to open door b or c, then
the answer that P (a) remains 1/3 is valid. However, it is unclear whether in the
game as it was actually played on TV, Monty Hall really tossed a fair coin; for
all we know he might have followed a very different rule, for example, open door
c whenever you can. Previous analyses such as by Grünwald and Halpern (2003)
that take into account that Monty’s protocol is unknown, conclude that after
the quiz master opened door b or c, a precise probability of the car being behind
door a cannot be given any more: it can be anything between 0 and 1/2. In other
words, the probability has dilated (Seidenfeld and Wasserman, 1993): it seems
that, by observing additional information, one knows less than before (this will
be explained in Example 2). But this does not seem satisfactory either: many
people would reason that, since the quiz master in fact has to open door b or c,
he gives no information about a, so the probability should remain 1/3. Using safe
probability we can partially vindicate this intuition: we show that 1/3 does have
a special status, even if the quiz master’s protocol is unknown — the reasoning
is, to some extent, correct after all, if our goal is just to asses whether the car
is behind door a: let Y ′ = 1 iff a obtains, Y ′ = 0 otherwise. In Section 4 we
show that P̃ defined by P̃ (Y ′ = 1 | {a, b}) = P̃ (Y ′ = 1 | {a, c}) = 1/3 is a sort
of marginal distribution, and we show that predictions based on P̃ will behave
exactly as they would if P̃ were actually the correct conditional distribution.
Hence it is safe to act as if the probability remains 1/3.

2 The Problem with Overlapping Sets

Notation All sets we introduce below are finite. All probability distributions
mentioned below are defined on Z, our generic symbol for the sample space. A
random variable (RV) is any function from Z to some arbitrary finite set. For a
given RV we denote its range in calligraphic script. For example, a RV X maps
z ∈ Z to X . For RV Y with range {y1, . . . , ym}, when we write P (Y ) we really
mean the vector (P (y1), . . . , P (ym)), where P (y) abbreviates P (Y = y).

Example 2. [Dice] This example is really just Monty Hall, without any mislead-
ing aspects. Suppose you and me play the following game: I roll a die, which we
both know to be fair, i.e. Z = Y = {1, . . . , 6}. I get to see the outcome, but
you don’t. I only tell you whether the outcome is below 3 or not, i.e. whether
Y ∈ {1, 2} or Y ∈ {3, 4, 5, 6}. Given this information, you are asked to give



the probability that Y = 3. We agreed beforehand that, after throwing the
die, I will tell you exactly one of the two statements, and that I won’t lie. If
I tell you {1, 2}, you would probably answer ‘the probability of 3 is now 0’,
and if I tell you {3, 4, 5, 6}, you would say ‘the probability of 3 is now 1/4’.
This is the answer you get by conditioning: P (Y = 3 | Y ∈ {1, 2}) = 0 and
P (Y = 3 | Y ∈ {3, 4, 5, 6}) = 1/4, and here it is obviously valid.
But now let’s slightly change the game: we now agree beforehand that, after
throwing the die, I will tell you either “Y ∈ {1, 2, 3, 4}” or “Y ∈ {3, 4, 5, 6}”.
Suppose that, when we actually play, I tell you Y ∈ {3, 4, 5, 6}. Given this ob-
servation, what is now the probability of 3? Many people would still say 1/4 but
this answer is wrong. To see this, note that if, after throwing the die, I observe
outcome 3 or 4, then I have a choice in what to tell you, and you do not know how
I choose. For example, I may decide to always say {1, 2, 3, 4} whenever I observe
3 or 4. In that case, if I say Y ∈ {3, 4, 5, 6}, the actual probability that Y = 3 is
0 rather than 1/4! (for if I had observed 3, I had certainly told you {1, 2, 3, 4}).
Even if I am ‘fair’, i.e., when I observe 3 or 4, I flip a fair coin to decide whether
to tell you {1, 2, 3, 4} or {3, 4, 5, 6}, the answer 1/4 is still wrong: as we calculate
below in (2), the probability of Y = 3 given {3, 4, 5, 6} then becomes 1/6. Note
that when we write ‘1/4 is invalid’ we do not refer to the mathematical definition
of conditional probability (the statement P (Y = 6 | {3, 4, 5, 6}) = 1/4 is after
all a correct application of the definition of conditional probability). We explain
what ‘invalid’ means here right after Example 3.
As explained by e.g. Grünwald and Halpern (2003) (GH from now on), to for-
malize problems such as this correctly, we need to move to a larger sample space
in which we can explicitly represent the fact that I sometimes have a choice in
what to tell you. This can be done by representing the problem in the space
Z := X × Y, where Y is the outcome space as before, and X is the observation
space, with associated RVs Y and X, respectively. Z was called the “sophisti-
cated space” by GH. We assume (uncontroversially, see e.g. (Heitjan and Rubin,
1991)) that in this larger space, conditioning is the valid thing to do. In our case,
Y = {1, . . . , 6} as before, and X = {{1, 2, 3, 4}, {3, 4, 5, 6}}. We know that the
distribution P on Z must be compatible with the distribution on Y, and we also
agreed that I don’t lie, so in our case this means that P (Y = y) = 1/6 for all
y ∈ Y, and P (Y ∈ x | X = x) = 1 for both x ∈ X . This is not sufficient to spec-
ify P ((x, y)) for all (x, y) ∈ Z. For this, we would need two more probabilities p
and q in [0, 1], defined by setting

P (X = {3, 4, 5, 6} | Y = 3) = p, P (X = {3, 4, 5, 6} | Y = 4) = q. (1)

Once we specify p and q, we can determine P (x, y), and, more importantly for
us, P (y | x), for each (x, y) ∈ Z.The interpretation is that when e.g. Y = 3, I flip
a coin with bias p. If it lands heads I say {3, 4, 5, 6}, otherwise I say {1, 2, 3, 4}.

Example 3. We can now calculate the actual probability that Y = 6 given that
I say {3, 4, 5, 6} as



P (Y = 6 | X = {3, 4, 5, 6}) = P (Y=6,X={3,4,5,6})
P (X={3,4,5,6})

= P (6)
P (3,X={3,4,5,6})+P (4,X={3,4,5,6})+P (5)+P (6)

= P (6)
P (3)P (X=3..6|3)+P (4)P (X=3..6|4)+P (5)+P (6) =

1
6

1
6 ·(p+q+2)

= 1
p+q+2 ,

(2)

where in the third line we abbreviated all occcurrences of Y = y to y, for
y ∈ {3, . . . , 6}. Suppose that we make no assumptions on p and q. This includes
the deterministic cases (if p = q = 1 or p = q = 0) in which, when I have
a choice, I’ll always say the same thing. By varying p and q in (2), we find
that P (Y = 6 | X = {3, 4, 5, 6}) can take on any value between 1/4 and 1/2,
depending on the value of p and q.

All this shows that conditioning cannot always be valid. The meaning of ‘valid’
can be understood in three ways: (I) frequentist: conditioning is not calibrated
, i.e. if we were to repeat the game of Example 2 independently many times,
each time casting the die anew, then conditional relative frequencies will not
converge to the corresponding conditional probabilities. For example, if I follow
the strategy with p = q = 0, and we play, say, 6000 times, then each time I
say {3, 4, 5, 6}, you will say that the probability of 3 is now 1/4; but of all the
(approximately 2000) times that I will say {3, 4, 5, 6}, the actual outcome will
be 5 or 6, so the conditional frequency of 3 is 0 rather than 1/4. (II) (perhaps
more appealing to a Bayesian): decision-theoretic: not surprisingly, in the light
of (I), using the conditional distributions to make predictions about Y can be
suboptimal; we will see several examples of this in the next sections. (III) As
we just saw, even if we do assume that conditioning is valid if the problem
is modelled in the large space X × Y, which takes into account the protocol,
then, even if the protocol is ‘fair’, conditioning in the small space, omitting the
protocol, can be invalid.

The original space Y was called the ‘naive space’ by GH. We may now ask
when conditioning in the naive space is valid. The answer is given by the coars-
ening at random (CAR) condition (Heitjan and Rubin, 1991). For us, only a
partial characterization is important: let X be a collection of subsets of Y and
P ∗ be a distribution on Y, and suppose that there is ‘no lying’. If X partitions
Y, then naive conditioning is valid, i.e. conditioning in the naive space must
coincide with conditioning in the sophisticated space. If X does not partition Y,
then naive condititioning can always be invalid: there exist distributions P on
X × Y with marginal on Y equal to P ∗ and x ∈ X such that P ∗(X = x) > 0,
P ∗(Y | Y ∈ x) 6= P (Y | X = x); see Prop. 4.1 and Theorem 4.4(b) of GH.

3 Towards Safe Probability

First Attempt to restrict Conditioning The partition result above suggests a
very simple definition of ‘validity’: we say conditional probability P (A | B) is
undefined unless a set B with B ∈ B is specified; we then write P (A | B) as



PB(A | B). B is the set of alternative events that might have been observed
instead of B. We could then simply define conditioning PB(A | B) to be ‘valid’
iff B is a partition, and restrict conditioning to valid cases: if B is not a partition,
then it is undefined. This would already take care of the sanity check for the
Monty Hall problem (Example 1), but it falls short of dealing with the second
issue in Example 1 (how to assess the probability P̃ (Y ′ | {a, b})), as well as
the more general type of prediction task selection problems we will encounter
below. We found these issues a lot more amenable to a random-variable based
treatment, so that is the direction we take below.

Random Variables and Partitions The main advantage of a RV treatment is
that the problem of invalid conditioning goes away — to some extent — auto-
matically, since for every arbitrary random variables X, there is a partition Π
such that conditioning on the value of X is equivalent to conditioning on the
element of the partition that obtains (trivial proof provided in full paper). Thus,
by our preliminary definition of validity based on event-conditioning as above,
conditioning on a fixed RV X must always be valid. Thus, we could define con-
ditional probability as P (Y | X) for fixed RVs Y and X, and leave probabilities
of the sort P (event A | event B) undefined. One might argue that under such
a definition of conditional probability, our problem of invalid conditioning goes
away automatically. But it is more complicated than that: the problem goes
away automatically only if it is implicitly understood that the distribution P for
which P (Y | X) is specified, will only be used to make predictions or decisions
about Y given the value of X, irrespective of the value of X that is actually
observed. Thus, for example, if Y = (Y1, Y2), it is not valid in general to make
a prediction about just Y1 if X = a is observed, and a prediction about just
Y2 if X = b is observed (see Example 5 below). Yet if the prediction problem
at hand satisfies the implicit fixed X, fixed Y—requirement, then conditioning
on a fixed RV is indeed valid. This requirement often holds in signal processing,
information-theoretic and machine learning applications such as classification
and regression with i.i.d. random design.

Beyond Fixed RVs However, in many other standard applications of probabil-
ity, we routinely make predictions about various RVs Y1, Y2, . . . conditioned on
various RVs X1, X2, . . ., and it is not precisely specified on what grounds a spe-
cific Xs or Yt is chosen. For example, the Monty Hall and dice example can be
interpreted in this way, as we show in Example 7. As a practically more relevant
example, Bayes nets are often used to compute, e.g., how the probability that
a patient has a certain disease would change counterfactually if (a) we were to
observe that X1 = x1, or (b) we were to observe that X2 = x2; the result is then
used to determine whether we should, in fact, observe RV X1 or RV X2 — both
X1 and X2 may correspond to costly medical tests, and we may want to avoid
doing two tests rather than one.

We only get away with such applications of probability if particular additional
independence assumptions hold, which are usually left implicit. Rather than
relying on such tacitly made assumptions to hold, as is usually done, it seems



safer to use probability in a way which forces us to explicitly represent the
task selection mechanism TSM (which determines what Yj is observed) and the
observation selection mechanism OSM (which determines what Xi is observed),
so that we cannot violate our assumptions by mistake (which happens in the
invalid P (b | {a, b}) answer to the Monty Hall problem, Ex. 1) or unnecessarily
dilate a distribution (as happens in the Monty Hall problem when the probability
P (Y ′ = 1 | {a, b}) is merely assessed to be in [0, 1/2] instead of 1/3). We now
develop such an explicit representation of OSMs and TSMs.

4 Observation and Task Selection Mechanisms

We start with two examples that motivate the general definitions further below.
Example 4 concerns OSMs: we show that event-based conditioning with over-
lap in the conditioning events (as in our three examples) can be rephrased as
conditioning on a RV XS selected from a set of RV {Xs | s ∈ S}, where S is
itself random. S then represents the OSM. Example 5 then concerns TSMs that
determine what random variable YT has to be predicted.

Additional Notation in This Section For an event E ⊂ Z, we define the indicator
random variable IE to be 1 if E holds and 0 otherwise. For distribution P on
Z and RV U we define supportP (U) = {u ∈ U : P (U = u) > 0}. For a set
of distributions P∗ on Z and RVs U, V,W on Z we write U ⊥P∗ V | W iff U
and V are conditionally independent given W , that is, if for all P ∈ P∗, for all
(u, v, w) ∈ supportP (U, V,W ), it holds P (U = u | V = v,W = w) = P (U =
u | W = w). We say that P, P ′ ∈ P∗ agree on an event E if P (E) = P ′(E).
We write P∗(E) to denote the set {P (E) : P ∈ P∗}. If all P ∈ P∗ agree on E ,
the probability of E is known relative to P∗ and we write P ∗(E) rather than
P∗(E). For two RVs U, V on Z, we write U  V (“U determines V ” or “U is a
coarsening of V ”) if there is a function f such that for all z ∈ Z, V (z) = f(U(z)).

Example 4. [Observation Selection] We define S = {a, b} and set RV Xa :=
{1, 2, 3, 4} if Y ∈ {1, 2, 3, 4} and RV Xa = {5, 6} otherwise. We set Xb :=
{3, 4, 5, 6} if Y ∈ {3, 4, 5, 6} and Xb = {1, 2} otherwise. Example 2 is equivalent
to a scenario in which you observe XS , where S is set to a if Y ∈ {1, 2}; S is set
to b if Y ∈ {5, 6}, and if Y ∈ {3, 4}, then whether you observe Xa or Xb depends
on my protocol. To this end, we define the extended sample space Z = Y × S.
We then set P ∗(S = a | Y = 1) = P ∗(S = a | Y = 2) = P ∗(S = b | Y = 5) =
P ∗(S = b | Y = 6) = 1, and P ∗(S = b | Y = 3) = p, P ∗(S = b | Y = 4) = q.
S — which in this case is just my protocol — is an example of what we call
an observation-selection mechanism. We set P∗ to be the set of all distributions
on Z of the form above. The fact that we now have a set, rather than a single
distribution reflects our ignorance of the precise protocol. The resulting setting
is equivalent to Example 3: for example, if Y = 3, we will, with probability
1 − p, observe {1, 2, 3, 4}. Note that S = a iff RV X in Example 3 is equal to
{1, 2, 3, 4}, and S = b iff X = {3, 4, 5, 6}. Thus, observing S is equivalent to
observing X and we see that Z = Y × S as here has equivalent representative
power as Z = X × Y as defined above Example 3.



Example 5. [Task Selection] Let X ∈ {0, 1} and Y ∈ {a, b, c}. Imagine your
goal is to predict aspects of Y given X, where an ‘aspect’ is a function that is
determined by Y — for example, you might want to either predict Y1 = IY=a or
Y2 = IY=b — and ‘predicting Yj ’ means coming up with a distribution P̃ for Yj
(P̃ may then be used as the basis for making decisions about Y under various loss
function in the standard way, i.e. you choose the act that minimizes expected
loss under P̃ ). Some external process determines whether Y1 or Y2 should be
predicted. This process is modelled by an additional RV T ∈ T = {1, 2}. T is
what we call a (prediction) task selection mechanism. The idea is that, in any
realization of the system, YT (rather than the full Y ) has to be predicted. Suppose
you represent your uncertainty on (X,Y, T ) by a set of distributions P∗, all of
which agree on (X,Y ); hence the marginal distribution P ∗(X,Y ) is known but
the dependencies between (X,Y ) and T may not be known. For concreteness,
let’s take some P ∗(X,Y ) such that P ∗(Y = a | X = 1) = 0.8, P ∗(Y = b | X =
0) = 0.9, P ∗(Y = a) = 0.6. If you think that T is determined independently of
Y (for example, I ask you to predict either Y1 or Y2, and you know that I make
my choice on external grounds, without knowing X or Y or P ∗(X,Y ) myself),
then P∗ would be the set of all distributions P on Z with P (X,Y ) = P ∗(X,Y )
and with (X,Y ) ⊥P T . Yet, if you don’t know how I determine what RV I ask
you to predict, you may want to choose for P∗ the set of all distributions P on
(X,Y, T ) with P (X,Y ) = P ∗(X,Y ).
In standard uses of probability, the process T is rarely modelled explicitly, and
upon observing X = x and being asked to predict Yt, you may be tempted
to predict Yt with the conditional distribution P ∗(Yt | X = x). But in fact,
this standard procedure is only valid if you are indeed in the situation with
Y ⊥P∗ T , i.e. the process determining what you are asked is independent of
Y itself. For otherwise, it would, for example, be possible to ask you about Y1

whenever Y = a and to ask about Y2 whenever Y 6= a. Then, when observing
X = 1, you will predict Y1 with distribution P ∗(Y1 = 1 | X = 1) = 0.8,
whereas the probability of Y1 = 1 given that you are asked about it is really 1.
Clearly standard conditioning is once again invalid, unless some independences
involving (T,X, Y ) hold. It seems we implicitly must assume, when we condition,
that ‘something like’ T ⊥P∗ Y | X is the casee (this includes the case that T
is constant, fixed in advance); see Definition 3 below for a sharper formulation.
Indeed, consider a scenario B in which I always ask you to predict Y1 whenever
X = 1 and Y2 whenever X = 0, i.e. T = f(X) with f(1) = 1 and f(0) = 2. Then
T still depends on (X,Y ) but now T ⊥ Y | X and indeed T can now be safely
ignored: the answers P (Y1 = 1 | X = 1) = 0.8 and P (Y2 = 1 | X = 0) = 0.9 are
now valid.
But now, suppose that X is hidden from you yet you are still asked to predict
Yt; I still play scenario B but you don’t know this. It is then standard practice
for you to use the marginal distribution of Yt, P ∗(Yt) :=

∑
x P
∗(Yt, X = x).

In this case, when you predict Y1, you will say that P (Y1 = 1) = 0.6 (the
marginal) whereas in fact, because I asked you for Y1, it is 0.8 in this case. The
problem is that, since you don’t condition on X, Y still depends on T and hence



you cannot ignore T when predicting Y . Thus, standard marginalization can be
invalid when T is not independent of Y — just as we saw that conditioning on
X could be invalid when T is not conditionally independent of Y given X. Now
a sufficient (not necessary, see Def. 3 below) condition for valid prediction is
that T ⊥P∗ Y (since we marginalize, there is no conditioning on X any more).
Whenever we marginalize a probability in a practical application, we implicitly
make an assumption like this!

4.1 Main Definitions and Main Result

As in the examples, in our definition of a predictive system below, we represent a
situation by a set P∗ rather than a single P ∗ to reflect our ignorance: we believe
that one P ∗ ∈ P∗ is true (in a more Bayesian interpretation, it is the appropriate
representation of our uncertainty), but we do not know which one.

Definition 1. Let P∗ be a set of distributions on Z, and let X, Y be RVs on Z
with ranges X ,Y such that (∗) all P ∗ ∈ P∗ agree on (X,Y ). Let S, T be finite
sets, let {Xs | s ∈ S} be a collection of RVs on Z such that for all s ∈ S,
Xs  X; let {Yt | t ∈ T } be a collection of RVs on Z such that for all t ∈ T ,
Yt  Y . We call the collection PS = (P∗,Z,S, T , {Xs | s ∈ S}, {Yt | t ∈ T })
a predictive system. We call any RV (typically denoted S) that maps Z to S an
OSM for PS ; and any RV (denoted T ) that maps Z to T a TSM for PS .

Thus, we consider a setting in which, by (∗), the distribution P ∗(X,Y ) is known
to the DM (decision-maker). Since (X,Y ) determine all variables Xs that we
may observe and all variables Yt to be predicted, the distribution of these RVs
is known as well. The DM observes XS = x, i.e. Xs = x is observed for some
Xs; but the Xs whose value is presented, is itself determined, perhaps randomly,
by OSM S. Given this observation, DM has to predict RV YT , i.e. specify a
distribution on Yt for a t which itself determined, perhaps randomly, by TSM T .
Since we specifically do not require that all P ∗ ∈ P∗ agree on (S, T ), DM may
be ignorant on the actual details of the distribution of (S, T ). Our goal is to
find out whether it makes sense for DM to predict YT given XS , S, T based on
distributions that ignore S and/or T — this is what actual DMs (people) usually
do and we want to see when they can get away with it. In many cases S and/or T
are not observed, so DM cannot even condition on them; also their distribution
may be unknown (not all P ∗ ∈ P∗ may agree on them), so in such cases DM
cannot even marginalize them out; he can just ignore them by acting as if the
randomly determined (S, T ) are actually not random but fixed in advance. The
standard predictive distribution used by such a DM upon observing x is thus
given by

P̃standard(y | x, s, t) := P ∗(Yt = y | Xs = x), (3)

the conditional distribution of YT that would arise if T were fixed in advance
to t and S were fixed in advance to s. Yet the ‘correct’ conditional distribution
is a member of the set {P (Yt = y | Xs = x, S = s, T = t) : P ∈ P∗}, and
P̃standard(y | x, s, t) may not be equal to it. We want to find out when it can be



safely used any way — this is determined in Definition 2 and Theorem 1 below.
Note that P̃standard can be calculated without knowing the distribution of T or
S and in some cases even without knowing the realized value s (CAR settings,
Example 6 below). Note also that P̃standard does not ‘marginalize out’ S or T ;
it just pretends they are not random at all.

As seen in Example 5, a DM sometimes likes to predict Y or YT based on
the marginal distribution of Y , with X marginalized out. In our setting, if X is
marginalized out and S and T are ignored, this marginal distribution becomes

P̃marginal(y | x, s, t) := P ∗(Yt = y) = EXs∼P∗ [P ∗(Yt = y | Xs)] (4)

Note that this distribution can be calculated without knowing either x or s or
the distribution of S or T , but the treatment is asymmetrical: S and T are just
ignored, X is marginalized out. Below we will see that it is sometimes smart to
use P̃marginal rather than P̃standard even in situations in which x is observable.

The following definition can be applied to more general predictive distribu-
tions P̃φ defined as P̃φ(y | x, s, t) := P ∗(Yt = y | φ(Xs) = φ(x)), for some
function φ :

⋃
s∈S Xs → Φ (the special case with S ≡ T ≡ 0 and X0 ≡ X,

Y0 ≡ Y , so that the TSM and OSM play no role, corresponds to the notion
of “C-conditioning” from Grünwald and Halpern (2011) with φ(x) = C(x)).
P̃marginal and P̃standard are the special cases that use φ(x) ≡ 1 and φ(x) = x
respectively; for overall notational consistency we always include argument x in
P̃φ(y | x, s, t), even for P̃marginal which doesn’t really depend on x.

Definition 2. We say that a predictive distribution P̃ is guaranteed-to-be-valid
(GTBV) for YT | XS relative to a predictive system PS if for all P ∈ P∗, all
s, t, x, y ∈ supportP (S, T,Xs, Y ),

P̃ (y | x, s, t) = P (Yt = y | Xs = x, S = s, T = t). (5)

We say that P̃φ is safe for YT | XS if for all (s, t) ∈ supportP∗(S, T ), for all
P ∈ P∗, all x, y with (s, t, x, y) ∈ supportP (S, T,Xs, Y ),

P̃φ(y | x, s, t) = P (Yt = y | φ(Xs) = φ(x), S = s, T = t). (6)

In the full paper we extend the definition of safety to general P̃ , but below we
only use it for P̃ equal to P̃φ for some φ as above. Intuitively, when observing
XS and having to predict YT , we would ideally like to use a P̃ that is GTBV.
However, when the distributions of S and/or T are unknown, we cannot always
determine this P̃ . In some cases, we may still have that P̃standard is GTBV;
but this will in general only be the case if the OSM S and TSM T play no
crucial role, as formalized in Theorem 1 below. If S cannot be ignored, then we
cannot determine a GTBV P̃ any more; but, as also shown in Theorem 1, if S
cannot but T can be ignored, we can resort to predicting by P̃marginal and our
predictions will still be ‘safe’. ‘Safety’ is the condition that we always implicitly
have to assume any way whenever we want to use a marginal distribution. In a
frequentist view, if we use a ‘safe’ P̃φ to repeatedly predict YT given XS , where



the (XS , YT ) pairs are sampled i.i.d. from some P ∗ ∈ P∗ (hence P∗ is ‘true’),
then the data will behave exactly as if P̃φ were the true conditional distribution.
The only way to find out whether data behave differently than predicted by P̃φ
would be to test P̃φ (use it to make predictions) in situations in which Yt depends
on (S, T ) given φ(Xs), yet does not depend on (S, T ) given Xs (as in the final
example in Ex. 5, where φ(Xs) ≡ 0). Yet, since for P̃φ the left-hand-side in (6)
is equal to P ∗(Yt = y | φ(Xs) = φ(x)), the definition of ‘safe’ rules out exactly
such T . In a Bayesian interpretation, no Dutch book can be made against P̃φ
by an adversary, unless that adversary has information about X that gets lost
under the coarsening φ(X).

Definition 3. We say that T represents an ignorable TSM for YT | XS if for
all t ∈ supportP∗(T ), Yt ⊥P∗ IT=t | XS. We say that S represents an ignorable
OSM for YT | XS if for all s ∈ supportP∗(S), YT ⊥P∗ IS=s | Xs.

We encountered ignorable TSMs in Example 5, where we had XS ≡ X (so the
OSM plays no role), and we suggested the simpler but unnecessarily strong con-
dition Y ⊥P∗ T | X, which implies that for all supported t, P ∗(Yt | T = t,X) =
P ∗(Yt | X), which coincides with the form in Definition 3. The analogously de-
fined ignorable OSMs are related to CAR (Example 6). In normal, day-to-day
probability uses, if X is not observed, we would like to use the marginal distri-
bution P̃marginal = P̃φ for φ ≡ 0, but if the TSM is not ignorable for YT , i.e. for
YT | φ(X), then the resulting predictions can be disastrous, as shown at the end
of Ex. 5; marginalization if X is unobserved can only be justified if T is ignor-
able for YT | φ(X). Now we turn the argument on its head: if T is ignorable for
YT | φ(X) and X is observed, but the set of conditional distributions P∗(Y | X)
may lead to bad predictions because it is too widely dilated, then it is preferable
to use P̃marginal — since it is safe and the testing process is ignorable, data will
behave exactly as if P̃marginal were fully valid, as shown in Theorem 1, part 2:

Theorem 1. Let PS be a predictive system. (1) Suppose that T is an ignorable
TSM for YT | XS and that S is an ignorable OSM for Y | XS. Then P̃standard

is safe for YT | XS. (2) Suppose that T is ignorable for YT | φ(XS) for some
function φ. Then (even if S is not ignorable for Y | XS), P̃φ is safe for YT | XS.

Example 6. [Embedding Event-Based Conditioning] We can extend the
idea of Example 4 to represent general overlapping event-based conditioning
scenarios to our predictive systems. Given any collection X of nonempty subsets
of Y, we may simply set S = X , set Z = Y × S and define, for each s ∈ S,
the RV Xs by Xs((y, s′)) = s if y ∈ s and Xs((y, s′)) = Y \ s otherwise —
thus Xs = s iff Y ∈ s. Assuming a trivial task selection mechanism (T = {1},
Y1 = Y , only the fixed RV Y has to be predicted), this re-represents event-based
conditioning in terms of RVs. Observing set y translates to observing XS = y;
P̃standard corresponds to naive conditioning, since now P̃standard(y | x, s, t) =
P ∗(Y1 = y | Xs = x) = P ∗(Y = y | Xs = s) = P ∗(Y = y | y ∈ s). The
CAR condition (end of Section 2) expresses under what conditions on P∗ naive
conditioning is valid, i.e., in our new language, when P̃standard coincides with the



true conditional distribution P ∗(Y = y | XS = x, S = s) (we assumed T ≡ 1 so
T can be ignored). By Definition 2 and Theorem 1 we see that CAR is implied
if S is an ignorable OSM. With a little more work one shows that, for every
event-based conditioning problem, one can construct an S as above, leading to
the conclusion that ‘ignorable S’ generalizes standard CAR; similarly, we can
think of ‘ignorable T ’ as a kind of general ‘prediction-task CAR’.

Example 7. [Conclusion: Monty Hall, revisited] We can model Monty Hall
as a predictive system as in Definition 1 in complete analogy to the dice example:
Y ∈ {a, b, c}; we observe XS , with S ∈ {1, 2}, X1 = {a, b} and S = 1 if door c is
opene; and X2 = {a, c} and S = 2 otherwise. We set T ≡ 1, i.e. the prediction
task is independent of (X,Y ). We want to find the distribution of Y1 = IY=a.
Checking Def. 2 we find that P̃standard (naive conditioning, see above) is unsafe
for Y1 | XS . Yet, by Theorem 1, P̃marginal is safe for Y1 | XS . Hence, P̃standard

should be avoided; yet if the goal is to predict Y1 = IY=a, we advocate the use
of P̃marginal: if all uncertainty can be represented by a single distribution P ∗ and
X is observable, then it is always preferable to predict with P̃φ with φ(X) ≡ X
and not marginalize, since our predictions will be sharper. Yet if uncertainty is
represented by a set P∗, as here, then the set of true conditional distributions
given XS may be dilated; and then, as long as it is safe, updating by P̃φ for
coarser φ may be preferable. This is the case here, where P∗(Y1 = 1 | {a, b}) =
[0, 1/2] whereas P̃marginal(Y1 = 1 | {a, b}) = 1/3 is precise, undilated and safe —
so let’s use it!

But now let Y2 = IY=b. Can we also say that P̃ (Y2 | {a, b}) = 2/3? It turns
out that this is still ‘safe’, but in a weaker sense than before; this will be treated
in the full paper.
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