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Abstract
Follow-the-Leader (FTL) is an intuitive sequential prediction strategy that guarantees con-
stant regret in the stochastic setting, but has poor performance for worst-case data. Other
hedging strategies have better worst-case guarantees but may perform much worse than
FTL if the data are not maximally adversarial. We introduce the FlipFlop algorithm,
which is the first method that provably combines the best of both worlds. As a stepping
stone for our analysis, we develop AdaHedge, which is a new way of dynamically tuning
the learning rate in Hedge without using the doubling trick. AdaHedge refines a method
by Cesa-Bianchi, Mansour, and Stoltz (2007), yielding improved worst-case guarantees. By
interleaving AdaHedge and FTL, FlipFlop achieves regret within a constant factor of the
FTL regret, without sacrificing AdaHedge’s worst-case guarantees. AdaHedge and FlipFlop
do not need to know the range of the losses in advance; moreover, unlike earlier methods,
both have the intuitive property that the issued weights are invariant under rescaling and
translation of the losses. The losses are also allowed to be negative, in which case they may
be interpreted as gains.
Keywords: Hedge, learning rate, mixability, online learning, prediction with expert
advice

1. Introduction

We consider sequential prediction in the general framework of Decision Theoretic Online
Learning (DTOL) or the Hedge setting (Freund and Schapire, 1997), which is a variant of
prediction with expert advice (Littlestone and Warmuth, 1994; Vovk, 1998; Cesa-Bianchi
and Lugosi, 2006). Our goal is to develop a sequential prediction algorithm that performs
well not only on adversarial data, which is the scenario most studies worry about, but also
when the data are easy, as is often the case in practice. Specifically, with adversarial data,
the worst-case regret (defined below) for any algorithm is Ω(

√
T ), where T is the number

of predictions to be made. Algorithms such as Hedge, which have been designed to achieve
this lower bound, typically continue to suffer regret of order

√
T , even for easy data, where
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the regret of the more intuitive but less robust Follow-the-Leader (FTL) algorithm (also
defined below) is bounded. Here, we present the first algorithm which, up to constant factors,
provably achieves both the regret lower bound in the worst case, and a regret not exceeding
that of FTL. Below, we first describe the Hedge setting. Then we introduce FTL, discuss
sophisticated versions of Hedge from the literature, and give an overview of the results and
contents of this paper.

1.1 Overview

In the Hedge setting, prediction proceeds in rounds. At the start of each round t = 1, 2, . . .,
a learner has to decide on a weight vector wt = (wt,1, . . . , wt,K) ∈ RK over K “experts”.
Each weight wt,k is required to be nonnegative, and the sum of the weights should be
1. Nature then reveals a K-dimensional vector containing the losses of the experts `t =
(`t,1, . . . , `t,K) ∈ RK . Learner’s loss is the dot product ht = wt ·`t, which can be interpreted
as the expected loss if Learner uses a mixed strategy and chooses expert k with probability
wt,k. We denote aggregates of per-trial quantities by their capital letter, and vectors are
in bold face. Thus, Lt,k = `1,k + . . . + `t,k denotes the cumulative loss of expert k after t
rounds, and Ht = h1 + . . .+ ht is Learner’s cumulative loss (the Hedge loss).

Learner’s performance is evaluated in terms of her regret, which is the difference between
her cumulative loss and the cumulative loss of the best expert:

Rt = Ht − L∗t , where L∗t = min
k
Lt,k.

We will always analyse the regret after an arbitrary number of rounds T . We will omit
the subscript T for aggregate quantities such as L∗T or RT wherever this does not cause
confusion.

A simple and intuitive strategy for the Hedge setting is Follow-the-Leader (FTL), which
puts all weight on the expert(s) with the smallest loss so far. More precisely, we will define
the weights wt for FTL to be uniform on the set of leaders {k | Lt−1,k = L∗t−1}, which is
often just a singleton. FTL works very well in many circumstances, for example in stochastic
scenarios where the losses are independent and identically distributed (i.i.d.). In particular,
the regret for Follow-the-Leader is bounded by the number of times the leader is overtaken
by another expert (Lemma 10), which in the i.i.d. case almost surely happens only a finite
number of times (by the uniform law of large numbers), provided the mean loss of the best
expert is strictly smaller than the mean loss of the other experts. As demonstrated by
the experiments in Section 5, many more sophisticated algorithms can perform significantly
worse than FTL.

The problem with FTL is that it breaks down badly when the data are antagonistic.
For example, if one out of two experts incurs losses 1

2 , 0, 1, 0, . . . while the other incurs
opposite losses 0, 1, 0, 1, . . ., the regret for FTL at time T is about T/2 (this scenario is
further discussed in Section 5.1). This has prompted the development of a multitude of
alternative algorithms that provide better worst-case regret guarantees.

The seminal strategy for the learner is called Hedge (Freund and Schapire, 1997, 1999).
Its performance crucially depends on a parameter η called the learning rate. Hedge can
be interpreted as a generalisation of FTL, which is recovered in the limit for η → ∞. In
many analyses, the learning rate is changed from infinity to a lower value that optimizes
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some upper bound on the regret. Doing so requires precognition of the number of rounds
of the game, or of some property of the data such as the eventual loss of the best expert
L∗. Provided that the relevant statistic is monotonically nondecreasing in t (such as L∗t ),
a simple way to address this issue is the so-called doubling trick: setting a budget on the
statistic, and restarting the algorithm with a double budget when the budget is depleted
(Cesa-Bianchi and Lugosi, 2006; Cesa-Bianchi et al., 1997; Hazan and Kale, 2008); η can
then be optimised for each individual block in terms of the budget. Better bounds, but
harder analyses, are typically obtained if the learning rate is adjusted each round based on
previous observations, see e.g. (Cesa-Bianchi and Lugosi, 2006; Auer et al., 2002).

The Hedge strategy presented by Cesa-Bianchi, Mansour, and Stoltz (2007) is a so-
phisticated example of such adaptive tuning. The relevant algorithm, which we refer to
as CBMS, is defined in (16) in Section 4.2 of their paper. To discuss its guarantees, we
need the following notation. Let `−t = mink `t,k and `+

t = maxk `t,k denote the smallest
and largest loss in round t, and let L−t = `−1 + . . . + `−t and L+

t = `+
1 + . . . + `+

t denote
the cumulative minimum and maximum loss respectively. Further let st = `+

t − `−t denote
the loss range in trial t and let St = max{s1, . . . , st} denote the largest loss range after t
trials. Then, without prior knowledge of any property of the data, including T , S and L∗,
the CBMS strategy achieves regret bounded by1

RCBMS ≤ 4

√
(L∗ − L−)(L− + ST − L∗)

T
lnK + lower order terms (1)

(Cesa-Bianchi et al., 2007, Corollary 3). Hence, in the worst case L∗ = L−+ ST/2 and the
bound is of order S

√
T , but when the loss of the best expert L∗ ∈ [L−, L−+ ST ] is close to

either boundary the guarantees are much stronger.
The contributions of this work are twofold: first, in Section 2, we develop AdaHedge,

which is a refinement of the CBMS strategy. A (very) preliminary version of this strategy
was presented at NIPS (Van Erven et al., 2011). Like CMBS, AdaHedge is completely
parameterless and tunes the learning rate in terms of a direct measure of past performance.
We derive an improved worst-case bound of the following form. Again without any assump-
tions, we have

Rah ≤ 2

√
S

(L∗ − L−)(L+ − L∗)
L+ − L−

lnK + lower order terms (2)

(see Theorem 8). The parabola under the square root is always smaller than or equal to its
CMBS counterpart (since it is nondecreasing in L+ and L+ ≤ L−+ST ); it expresses that the
regret is small if L∗ ∈ [L−, L+] is close to either boundary. It is maximized in L∗ at the mid-
point between L− and L+, and in this case we recover the worst-case bound of order S

√
T .

Like (1), the regret bound (2) is “fundamental”, which means that it is invariant under
translation of the losses and proportional to their scale. Moreover, not only AdaHedge’s
regret bound is fundamental: the weights issued by the algorithm are themselves invariant

1. As pointed out by a referee, it is widely known that the leading constant of 4 can be improved to
2
√

2 ≈ 2.83 using techniques by Györfi and Ottucsák (2007) that are essentially equivalent to our
Lemma 2 below; Gerchinovitz (2011, Remark 2.2) reduced it to approximately 2.63. AdaHedge allows a
slight further reduction to 2.
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under translation and scaling (see Section 4). The CBMS algorithm and AdaHedge are
insensitive to trials in which all experts suffer the same loss, a natural property we call
“timelessness”. An attractive feature of the new bound (2) is that it expresses this property.
A more detailed discussion appears below Theorem 8.

Our second contribution is to develop a second algorithm, called FlipFlop, that retains
the worst-case bound (2) (up to a constant factor), but has even better guarantees for easy
data: its performance is never substantially worse than that of Follow-the-Leader. At first
glance, this may seem trivial to accomplish: simply take both FTL and AdaHedge, and
combine the two by using FTL or Hedge recursively. To see why such approaches do not
work, suppose that FTL achieves regret Rftl, while AdaHedge achieves regret Rah. We
would only be able to prove that the regret of the combined strategy compared to the
best original expert satisfies Rc ≤ min{Rftl,Rah} + Gc, where Gc is the worst-case regret
guarantee for the combination method, e.g. (1). In general, either Rftl or Rah may be close
to zero, while at the same time the regret of the combination method, or at least its bound
Gc, is proportional to

√
T . That is, the overhead of the combination method will dominate

the regret!
The FlipFlop approach we describe in Section 3 circumvents this by alternating between

Following the Leader and using AdaHedge in a carefully specified way. For this strategy we
can guarantee

Rff = O(min{Rftl,Gah}),

where Gah is the regret guarantee for AdaHedge; Theorem 15 provides a precise statement.
Thus, FlipFlop is the first algorithm that provably combines the benefits of Follow-the-
Leader with robust behaviour for antagonistic data.

A key concept in the design and analysis of our algorithms is what we call the mixability
gap, introduced in Section 2.1. This quantity also appears in earlier works, and seems to
be of fundamental importance in both the current Hedge setting as well as in stochastic
settings. We elaborate on this in Section 6.2 where we provide the big picture underlying
this research and we briefly indicate how it relates to practical work such as (Devaine et al.,
2013).

1.2 Related Work

As mentioned, AdaHedge is a refinement of the strategy analysed by Cesa-Bianchi et al.
(2007), which is itself more sophisticated than most earlier approaches, with two notable ex-
ceptions. First, Chaudhuri, Freund, and Hsu (2009) describe a strategy called NormalHedge
that can efficiently compete with the best ε-quantile of experts; their bound is incomparable
with the bounds for CBMS and for AdaHedge. Second, Hazan and Kale (2008) develop
a strategy called Variation MW that has especially low regret when the losses of the best
expert vary little between rounds. They show that the regret of Variation MW is of order√
VARmax

T lnK, where VARmax
T = maxt≤T

∑t
s=1

(
`s,k∗t −

1
tLt,k∗t

)2 with k∗t the best expert
after t rounds. This bound dominates our worst-case result (2) (up to a multiplicative con-
stant). As demonstrated by the experiments in Section 5, their method does not achieve
the benefits of FTL, however. In Section 5 we also discuss the performance of NormalHedge
and Variation MW compared to AdaHedge and FlipFlop.
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Other approaches to sequential prediction include Defensive Forecasting (Vovk et al.,
2005), and Following the Perturbed Leader (Kalai and Vempala, 2003). These radically
different approaches also allow competing with the best ε-quantile, as shown by Chernov
and Vovk (2010) and Hutter and Poland (2005); the latter also consider nonuniform weights
on the experts.

The “safe MDL” and “safe Bayesian” algorithms by Grünwald (2011, 2012) share the
present work’s focus on the mixability gap as a crucial part of the analysis, but are concerned
with the stochastic setting where losses are not adversarial but i.i.d. FlipFlop, safe MDL
and safe Bayes can all be interpreted as methods that attempt to choose a learning rate η
that keeps the mixability gap small (or, equivalently, that keeps the Bayesian posterior or
Hedge weights “concentrated”).

1.3 Outline

In the next section we present and analyse AdaHedge and compare its worst-case regret
bound to existing results, in particular the bound for CBMS. Then, in Section 3, we
build on AdaHedge to develop the FlipFlop strategy. The analysis closely parallels that of
AdaHedge, but with extra complications at each of the steps. In Section 4 we show that
both algorithms have the property that their behaviour does not change under translation
and scaling of the losses. We further illustrate the relationship between the learning rate
and the regret, and compare AdaHedge and FlipFlop to existing methods, in experiments
with artificial data in Section 5. Finally, Section 6 contains a discussion, with ambitious
suggestions for future work.

2. AdaHedge

In this section, we present and analyse the AdaHedge strategy. To introduce our notation
and proof strategy, we start with the simplest possible analysis of vanilla Hedge, and then
move on to refine it for AdaHedge.

2.1 Basic Hedge Analysis for Constant Learning Rate

Following Freund and Schapire (1997), we define the Hedge or exponential weights strategy
as the choice of weights

wt,k = w1,ke
−ηLt−1,k

Zt
, (3)

where w1 = (1/K, . . . , 1/K) is the uniform distribution, Zt = w1 · e−ηLt−1 is a normalizing
constant, and η ∈ (0,∞) is a parameter of the algorithm called the learning rate. If η = 1
and one imagines Lt−1,k to be the negative log-likelihood of a sequence of observations, then
wt,k is the Bayesian posterior probability of expert k and Zt is the marginal likelihood of
the observations. Like in Bayesian inference, the weights are updated multiplicatively, i.e.
wt+1,k ∝ wt,ke−η`t,k .

The loss incurred by Hedge in round t is ht = wt · `t, the cumulative Hedge loss is
Ht = h1 + . . . + ht, and our goal is to obtain a good bound on HT . To this end, it turns
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out to be technically convenient to approximate ht by the mix loss

mt = −1
η

ln(wt · e−η`t), (4)

which accumulates to Mt = m1 + . . . + mt. This approximation is a standard tool in the
literature. For example, the mix loss mt corresponds to the loss of Vovk’s (1998; 2001)
Aggregating Pseudo Algorithm, and tracking the evolution of −mt is a crucial ingredient
in the proof of Theorem 2.2 of Cesa-Bianchi and Lugosi (2006).

The definitions may be extended to η = ∞ by letting η tend to ∞. We then find that
wt becomes a uniform distribution on the set of experts {k | Lt−1,k = L∗t−1} that have
incurred smallest cumulative loss before time t. That is, Hedge with η = ∞ reduces to
Follow-the-Leader, where in case of ties the weights are distributed uniformly. The limiting
value for the mix loss is mt = L∗t − L∗t−1.

In our approximation of the Hedge loss ht by the mix loss mt, we call the approximation
error δt = ht − mt the mixability gap. Bounding this quantity is a standard part of the
analysis of Hedge-type algorithms (see, for example, Lemma 4 of Cesa-Bianchi et al. 2007)
and it also appears to be a fundamental notion in sequential prediction even when only
so-called mixable losses are considered (Grünwald, 2011, 2012); see also Section 6.2. We let
∆t = δ1 + . . .+ δt denote the cumulative mixability gap, so that the regret for Hedge may
be decomposed as

R = H − L∗ = M − L∗ + ∆. (5)

Here M − L∗ may be thought of as the regret under the mix loss and ∆ is the cumulative
approximation error when approximating the Hedge loss by the mix loss. Throughout the
paper, our proof strategy will be to analyse these two contributions to the regret, M − L∗
and ∆, separately.

The following lemma, which is proved in Appendix A, collects a few basic properties of
the mix loss:

Lemma 1 (Mix Loss with Constant Learning Rate) For any learning rate η ∈ (0,∞]

1. `−t ≤ mt ≤ ht ≤ `+
t , so that 0 ≤ δt ≤ st.

2. Cumulative mix loss telescopes: M =

−
1
η ln

(
w1 · e−ηL

)
for η <∞,

L∗ for η =∞.

3. Cumulative mix loss approximates the loss of the best expert: L∗ ≤M ≤ L∗ + lnK
η

.

4. The cumulative mix loss M is nonincreasing in η.

In order to obtain a bound for Hedge, one can use the following well-known bound on
the mixability gap, which is obtained using Hoeffding’s bound on the cumulant generating
function (Cesa-Bianchi and Lugosi, 2006, Lemma A.1):

δt ≤
η

8s
2
t , (6)
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from which ∆ ≤ S2Tη/8, where (as in the introduction) St = max{s1, . . . , st} is the max-
imum loss range in the first t rounds. Together with the bound M − L∗ ≤ ln(K)/η from
mix loss property #3 this leads to

R = (M − L∗) + ∆ ≤ lnK
η

+ ηS2T

8 . (7)

The bound is optimized for η =
√

8 ln(K)/(S2T ), which equalizes the two terms. This leads
to a bound on the regret of S

√
T ln(K)/2, matching the lower bound on worst-case regret

from the textbook by Cesa-Bianchi and Lugosi (2006, Section 3.7). We can use this tuned
learning rate if the time horizon T is known in advance. To deal with the situation where T
is unknown, either the doubling trick or a time-varying learning rate (see Lemma 2 below)
can be used, at the cost of a worse constant factor in the leading term of the regret bound.

In the remainder of this section, we introduce a completely parameterless algorithm
called AdaHedge. We then refine the steps of the analysis above to obtain a better regret
bound.

2.2 AdaHedge Analysis

In the previous section, we split the regret for Hedge into two parts: M − L∗ and ∆,
and we obtained a bound for both. The learning rate η was then tuned to equalise these
two bounds. The main distinction between AdaHedge and other Hedge approaches is that
AdaHedge does not consider an upper bound on ∆ in order to obtain this balance: instead
it aims to equalize ∆ and ln(K)/η. As the cumulative mixability gap ∆t is nondecreasing in
t (by mix loss property #1) and can be observed on-line, it is possible to adapt the learning
rate directly based on ∆t.

Perhaps the easiest way to achieve this is by using the doubling trick: each subsequent
block uses half the learning rate of the previous block, and a new block is started as soon
as the observed cumulative mixability gap ∆t exceeds the bound on the mix loss ln(K)/η,
which ensures these two quantities are equal at the end of each block. This is the approach
taken in an earlier version of AdaHedge (Van Erven et al., 2011). However, we can achieve
the same goal much more elegantly, by decreasing the learning rate with time according to

ηaht = lnK
∆ah
t−1

(8)

(where ∆ah
0 = 0, so that ηah1 =∞). Note that the AdaHedge learning rate does not involve

the end time T or any other unobserved properties of the data; all subsequent analysis is
therefore valid for all T simultaneously. The definitions (3) and (4) of the weights and the
mix loss are modified to use this new learning rate:

wah
t,k =

wah
1,ke
−ηaht Lt−1,k

wah
1 · e−ηaht Lt−1

and mah
t = − 1

ηaht
ln(wah

t · e−ηaht `t), (9)

with wah
1 = (1/K, . . . , 1/K) uniform. Note that the multiplicative update rule for the

weights no longer applies when the learning rate varies with t; the last three results of
Lemma 1 are also no longer valid. Later we will also consider other algorithms to determine
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Single round quantities for trial t:
`t Loss vector
`−t = mink `t,k, `+

t = maxk `t,k Min and max loss
st = `+

t − `−t Loss range
walg
t = e−η

alg
t ·Lt−1/

∑
k e
−ηalgt Lt−1,k Weights played

halgt = walg
t · `t Hedge loss

malg
t = − 1

ηalgt

ln
(
walg
t · e−η

alg
t `t

)
Mix loss

δalgt = halgt −m
alg
t Mixability gap

valgt = Var
k∼walg

t
[`t,k] Loss variance

Aggregate quantities after t rounds:
(The final time T is omitted from the subscript where possible, e.g. L∗ = L∗T )
Lt, L−t , L+

t , H
alg
t , Malg

t , ∆alg
t , V alg

t

∑t
τ=1 of `τ , `−τ , `+

τ , halgτ , malg
τ , δalgτ , valgτ

St = max{s1, . . . , st} Maximum loss range
L∗t = mink Lt,k Cumulative loss of the best expert
Ralg
t = Halg

t − L∗t Regret

Algorithms (the “alg” in the superscript above):
(η) Hedge with fixed learning rate η
ah AdaHedge, defined by (8)
ftl Follow-the-Leader (ηftl =∞)
ff FlipFlop, defined by (16)

Table 1: Notation

variable learning rates; to avoid confusion the considered algorithm is always specified in
the superscript in our notation. See Table 1 for reference. From now on, AdaHedge will
be defined as the Hedge algorithm with learning rate defined by (8). For concreteness, a
matlab implementation appears in Figure 1.

Our learning rate is similar to that of Cesa-Bianchi et al. (2007), but it is less pessimistic
as it is based on the mixability gap ∆t itself rather than its bound, and as such may
exploit easy sequences of losses more aggressively. Moreover our tuning of the learning rate
simplifies the analysis, leading to tighter results; the essential new technical ingredients
appear as Lemmas 3, 5 and 7 below.

We analyse the regret for AdaHedge like we did for a fixed learning rate in the previous
section: we again considerMah−L∗ and ∆ah separately. This time, both legs of the analysis
become slightly more involved. Luckily, a good bound can still be obtained with only a small
amount of work. First we show that the mix loss is bounded by the mix loss we would have
incurred if we would have used the final learning rate ηahT all along:

Lemma 2 Let dec be any strategy for choosing the learning rate such that η1 ≥ η2 ≥ . . .
Then the cumulative mix loss for dec does not exceed the cumulative mix loss for the strategy
that uses the last learning rate ηT from the start: Mdec ≤M (ηT ).
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% Returns the losses of AdaHedge.
% l(t,k) is the loss of expert k at time t
function h = adahedge(l)

[T, K] = size(l);
h = nan(T,1);
L = zeros(1,K);
Delta = 0;

for t = 1:T
eta = log(K)/Delta;
[w, Mprev] = mix(eta, L);
h(t) = w * l(t,:)’;
L = L + l(t,:);
[~, M] = mix(eta, L);
delta = max(0, h(t)-(M-Mprev));
% max clips numeric Jensen violation
Delta = Delta + delta;

end
end

% Returns the posterior weights and mix loss
% for learning rate eta and cumulative loss
% vector L, avoiding numerical instability.
function [w, M] = mix(eta, L)

mn = min(L);
if (eta == Inf) % Limit behaviour: FTL

w = L==mn;
else

w = exp(-eta .* (L-mn));
end
s = sum(w);
w = w / s;
M = mn - log(s/length(L))/eta;

end

Figure 1: Numerically robust matlab implementation of AdaHedge

This lemma was first proved in its current form by Kalnishkan and Vyugin (2005,
Lemma 3), and an essentially equivalent bound was introduced by Györfi and Ottucsák
(2007) in the proof of their Lemma 1. Related techniques for dealing with time-varying
learning rates go back to Auer et al. (2002).
Proof Using mix loss property #4, we have

Mdec
T =

T∑
t=1

mdec
t =

T∑
t=1

(
M

(ηt)
t −M (ηt)

t−1

)
≤

T∑
t=1

(
M

(ηt)
t −M (ηt−1)

t−1

)
= M

(ηT )
T ,

which was to be shown.

We can now show that the two contributions to the regret are still balanced.

Lemma 3 The AdaHedge regret is Rah = Mah − L∗ + ∆ah ≤ 2∆ah.

Proof As δaht ≥ 0 for all t (by mix loss property #1), the cumulative mixability gap
∆ah
t is nondecreasing. Consequently, the AdaHedge learning rate ηaht as defined in (8) is

nonincreasing in t. Thus Lemma 2 applies to Mah; together with mix loss property #3
and (8) this yields

Mah ≤M (ηahT ) ≤ L∗ + lnK
ηahT

= L∗ + ∆ah
T−1 ≤ L∗ + ∆ah

T .

Substitution into the trivial decomposition Rah = Mah − L∗ + ∆ah yields the result.

The remaining task is to establish a bound on ∆ah. As before, we start with a bound on
the mixability gap in a single round, but rather than (6), we use Bernstein’s bound on the
mixability gap in a single round to obtain a result that is expressed in terms of the variance
of the losses, vaht = Vark∼wah

t
[`t,k] =

∑
k w

ah
t,k(`t,k − haht )2.
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Lemma 4 (Bernstein’s Bound) Let ηt = ηalgt ∈ (0,∞) denote the finite learning rate
chosen for round t by any algorithm “alg”. The mixability gap δalgt satisfies

δalgt ≤
g(stηt)
st

valgt , where g(x) = ex − x− 1
x

. (10)

Further, valgt ≤ (`+
t − h

alg
t )(halgt − `−t ) ≤ s2

t /4.

Proof This is Bernstein’s bound (Cesa-Bianchi and Lugosi, 2006, Lemma A.5) on the
cumulant generating function, applied to the random variable (`t,k − `−t )/st ∈ [0, 1] with k
distributed according to walg

t .

Bernstein’s bound is more sophisticated than Hoeffding’s bound (6), because it expresses
that the mixability gap δt is small not only when ηt is small, but also when all experts have
approximately the same loss, or when the weights wt are concentrated on a single expert.

The next step is to use Bernstein’s inequality to obtain a bound on the cumulative
mixability gap ∆ah. In the analysis of Cesa-Bianchi et al. (2007) this is achieved by first
applying Bernstein’s bound for each individual round, and then using a telescoping argument
to obtain a bound on the sum. With our learning rate (8) it is convenient to reverse these
steps: we first telescope, which can now be done with equality, and subsequently apply
Bernstein’s inequality in a stricter way.

Lemma 5 AdaHedge’s cumulative mixability gap satisfies(
∆ah)2≤ V ah lnK + (2

3 lnK + 1)S∆ah.

Proof In this proof we will omit the superscript “ah”. Using the definition of the learning
rate (8) and δt ≤ st (from mix loss property #1), we get

∆2 =
T∑
t=1

(
∆2
t −∆2

t−1

)
=
∑
t

(
(∆t−1 + δt)2 −∆2

t−1

)
=
∑
t

(
2δt∆t−1 + δ2

t

)
=
∑
t

(
2δt

lnK
ηt

+ δ2
t

)
≤
∑
t

(
2δt

lnK
ηt

+ stδt

)
≤ 2 lnK

∑
t

δt
ηt

+ S∆.
(11)

The inequalities in this equation replace a δt term by S, which is of no concern: the resulting
term S∆ adds at most 2S to the regret bound. We will now show

δt
ηt
≤ 1

2vt + 1
3stδt. (12)

This supersedes the bound δt/ηt ≤ (e − 2)vt for ηtst ≤ 1 used by Cesa-Bianchi et al.
(2007). Even though at first sight circular, the form (12) has two major advantages. First,
inclusion of the overhead 1

3stδt will only affect smaller order terms of the regret, but admits
a reduction of the leading constant to the optimal factor 1

2 . This gain directly percolates
to our regret bounds below. Second, (12) holds for unbounded ηt, which simplifies tuning
considerably.
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First note that (12) is clearly valid if ηt =∞. Assuming that ηt is finite, we can obtain
this result by rewriting Bernstein’s bound (10) as follows:

1
2vt ≥ δt ·

st
2g(stηt)

= δt
ηt
− stf(stηt)δt, where f(x) =

ex − 1
2x

2 − x− 1
xex − x2 − x

.

Remains to show that f(x) ≤ 1/3 for all x ≥ 0. After rearranging, we find this to be the
case if

(3− x)ex ≤ 1
2x

2 + 2x+ 3.

Taylor expansion of the left-hand side around zero reveals that (3 − x)ex = 1
2x

2 + 2x +
3 − 1

6x
3ueu for some 0 ≤ u ≤ x, from which the result follows. The proof is completed by

plugging (12) into (11) and finally relaxing st ≤ S.

Combination of these results yields the following natural regret bound, analogous to
Theorem 5 of Cesa-Bianchi et al. (2007).

Theorem 6 AdaHedge’s regret is bounded by

Rah ≤ 2
√
V ah lnK + S(4

3 lnK + 2).

Proof Lemma 5 is of the form

(∆ah)2 ≤ a+ b∆ah, (13)

with a and b nonnegative numbers. Solving for ∆ah then gives

∆ah ≤ 1
2b+ 1

2

√
b2 + 4a ≤ 1

2b+ 1
2(
√
b2 +

√
4a) =

√
a+ b,

which by Lemma 3 implies that
Rah ≤ 2

√
a+ 2b.

Plugging in the values a = V ah lnK and b = S(2
3 lnK + 1) from Lemma 5 completes the

proof.

This first regret bound for AdaHedge is difficult to interpret, because the cumulative loss
variance V ah depends on the actions of the AdaHedge strategy itself (through the weights
wah
t ). Below, we will derive a regret bound for AdaHedge that depends only on the data.

However, AdaHedge has one important property that is captured by this first result that
is no longer expressed by the worst-case bound we will derive below. Namely, if the data
are easy in the sense that there is a clear best expert, say k∗, then the weights played
by AdaHedge will concentrate on that expert. If wah

t,k∗ → 1 as t increases, then the loss
variance must decrease: vaht → 0. Thus, Theorem 6 suggests that the AdaHedge regret may
be bounded if the weights concentrate on the best expert sufficiently quickly. This indeed
turns out to be the case: we can prove that the regret is bounded for the stochastic setting
where the loss vectors `t are independent, and E[Lt,k∗ − Lt,k] = Ω(tβ) for all k 6= k∗ and
any β > 1/2. This is an important feature of AdaHedge when it is used as a stand-alone
algorithm, and Van Erven et al. (2011) provide a proof for the previous version of the
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strategy. See Section 5.4 for an example of concentration of the AdaHedge weights. Here
we will not pursue this further, because the Follow-the-Leader strategy also incurs bounded
loss in that case; we rather focus attention on how to successfully compete with FTL in
Section 3.

We now proceed to derive a bound that depends only on the data, using an approach
similar to the one taken by Cesa-Bianchi et al. (2007). We first bound the cumulative loss
variance as follows:

Lemma 7 Assume L∗ ≤ H. The cumulative loss variance for AdaHedge satisfies

V ah ≤ S (L+ − L∗)(L∗ − L−)
L+ − L−

+ 2S∆.

In the degenerate case L− = L+ the fraction reads 0/0, but since we then have V ah = 0,
from here on we define the ratio to be zero in that case, which is also its limiting value.
Proof We omit all “ah” superscripts. By Lemma 4 we have vt ≤ (`+

t − ht)(ht − `−t ). Now

V =
T∑
t=1

vt ≤
∑
t

(`+
t − ht)(ht − `−t ) ≤ S

∑
t

(`+
t − ht)(ht − `−t )

st

= ST
∑
t

1
T

(`+
t − ht)(ht − `−t )

(`+
t − ht) + (ht − `−t ) ≤ S

(L+ −H)(H − L−)
L+ − L−

, (14)

where the last inequality is an instance of Jensen’s inequality applied to the function B
defined on the domain x, y ≥ 0 by B(x, y) = xy

x+y for xy > 0 and B(x, y) = 0 for xy = 0
to ensure continuity. To verify that B is jointly concave, we will show that the Hessian is
negative semi-definite on the interior xy > 0. Concavity on the whole domain then follows
from continuity. The Hessian, which turns out to be the rank one matrix

∇2B(x, y) = − 2
(x+ y)3

(
y
−x

)(
y
−x

)ᵀ

,

is negative semi-definite since it is a negative scaling of a positive outer product.
Subsequently using H ≥ L∗ (by assumption) and H ≤ L∗ + 2∆ (by Lemma 3) yields

(L+ −H)(H − L−)
L+ − L−

≤ (L+ − L∗)(L∗ + 2∆− L−)
L+ − L−

≤ (L+ − L∗)(L∗ − L−)
L+ − L−

+ 2∆

as desired.

This can be combined with Lemmas 5 and 3 to obtain our first main result:

Theorem 8 (AdaHedge Worst-Case Regret Bound) AdaHedge’s regret is bounded by

Rah ≤ 2

√
S

(L+ − L∗)(L∗ − L−)
L+ − L−

lnK + S(16
3 lnK + 2). (15)
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Proof If Hah < L∗, then Rah < 0 and the result is clearly valid. But if Hah ≥ L∗, we
can bound V ah using Lemma 7 and plug the result into Lemma 5 to get an inequality of
the form (13) with a = S(L+ − L∗)(L∗ − L−)/(L+ − L−) and b = S(8

3 lnK + 1). Following
the steps of the proof of Theorem 6 with these modified values for a and b we arrive at the
desired result.

This bound has several useful properties:

1. It is always smaller than the CBMS bound (1), with a leading constant that has been
reduced from the previously best-known value of 2.63 to 2. To see this, note that (15)
increases to (1) if we replace L+ by the upper bound L−+ST . It can be substantially
stronger than (1) if the range of the losses st is highly variable.

2. The bound is “fundamental”, a concept discussed in detail by Cesa-Bianchi et al.
(2007): it is invariant to translations of the losses and proportional to their scale. It is
therefore valid for arbitrary loss ranges, regardless of sign. In fact, not just the bound,
but AdaHedge itself is fundamental in this sense: see Section 4 for a discussion and
proof.

3. The regret is small when the best expert either has a very low loss, or a very high loss.
The latter is important if the algorithm is to be used for a scenario in which we are
provided with a sequence of gain vectors gt rather than losses: we can transform these
gains into losses using `t = −gt, and then run AdaHedge. The bound then implies
that we incur small regret if the best expert has very small cumulative gain relative
to the minimum gain.

4. The bound is not dependent on the number of trials but only on the losses; it is a
“timeless” bound as discussed below.

2.3 What are Timeless Bounds?

All bounds presented for AdaHedge (and FlipFlop) are “timeless”. We call a regret bound
timeless if it does not change under insertion of additional trials where all experts are
assigned the same loss. Intuitively, the prediction task does not become more difficult if
nature should insert same-loss trials. Since these trials do nothing to differentiate between
the experts, they can safely be ignored by the learner without affecting her regret; in fact,
many Hedge strategies, including Hedge with a fixed learning rate, FTL, AdaHedge and
CBMS already have the property that their future behaviour does not change under such
insertions: they are robust against such time dilation. If any strategy does not have this
property by itself, it can easily be modified to ignore equal-loss trials.

It is easy to imagine practical scenarios where this robustness property would be im-
portant. For example, suppose you hire a number of experts who continually monitor the
assets in your portfolio. Usually they do not recommend any changes, but occasionally,
when they see a rare opportunity or receive subtle warning signs, they may urge you to
trade, resulting in a potentially very large gain or loss. It seems only beneficial to poll
the experts often, and there is no reason why the many resulting equal-loss trials should
complicate the learning task.
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The oldest bounds for Hedge scale with
√
T or

√
L∗, and are thus not timeless. From

the results above we can obtain fundamental and timeless variants with, for parameterless
algorithms, the best known leading constants (the first item below follows Corollary 1 of
Cesa-Bianchi et al. 2007):

Corollary 9 The AdaHedge regret satisfies the following inequalities:

Rah ≤
√∑T

t=1 s
2
t lnK + S(4

3 lnK + 2) (analogue of traditional T -based bounds),

Rah ≤ 2
√
S(L∗ − L−) lnK + S(16

3 lnK + 2) (analogue of traditional L∗-based bounds),

Rah ≤ 2
√
S(L+ − L∗) lnK + S(16

3 lnK + 2) (symmetric bound, useful for gains).

Proof We could get a bound that depends only on the loss ranges st by substituting the
worst case L∗ = (L+ + L−)/2 into Theorem 8, but a sharper result is obtained by plugging
the inequality vt ≤ s2

t /4 from Lemma 4 directly into Theorem 6. This yields the first item
above. The other two inequalities follow easily from Theorem 8.

In the next section, we show how we can compete with FTL while at the same time
maintaining all these worst-case guarantees up to a constant factor.

3. FlipFlop

AdaHedge balances the cumulative mixability gap ∆ah and the mix loss regret Mah − L∗
by reducing ηaht as necessary. But, as we observed previously, if the data are not hopelessly
adversarial we might not need to worry about the mixability gap: as Lemma 4 expresses,
δaht is also small if the variance vaht of the loss under the weights wah

t,k is small, which is the
case if the weight on the best expert maxk wah

t,k becomes close to one.
AdaHedge is able to exploit such a lucky scenario to an extent: as explained in the

discussion that follows Theorem 6, if the weight of the best expert goes to one quickly,
AdaHedge will have a small cumulative mixability gap, and therefore, by Lemma 3, a small
regret. This happens, for example, in the stochastic setting with independent, identically
distributed losses, when a single expert has the smallest expected loss. Similarly, in the
experiment of Section 5.4, the AdaHedge weights concentrate sufficiently quickly for the
regret to be bounded.

There is the potential for a nasty feedback loop, however. Suppose there are a small
number of difficult early trials, during which the cumulative mixability gap increases rela-
tively quickly. AdaHedge responds by reducing the learning rate (8), with the effect that
the weights on the experts become more uniform. As a consequence, the mixability gap in
future trials may be larger than what it would have been if the learning rate had stayed
high, leading to further unnecessary reductions of the learning rate, and so on. The end
result may be that AdaHedge behaves as if the data are difficult and incurs substantial
regret, even in cases where the regret of Hedge with a fixed high learning rate, or of Follow-
the-Leader, is bounded! Precisely this phenomenon occurs in the experiment in Section 5.2
below: AdaHedge’s regret is close to the worst-case bound, whereas FTL hardly incurs any
regret at all.
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It appears, then, that we must either hope that the data are easy enough that we can
make the weights concentrate quickly on a single expert, by not reducing the learning rate
at all; or we fear the worst and reduce the learning rate as much as we need to be able
to provide good guarantees. We cannot really interpolate between these two extremes: an
intermediate learning rate may not yield small regret in favourable cases and may at the
same time destroy any performance guarantees in the worst case.

It is unclear a priori whether we can get away with keeping the learning rate high, or that
it is wiser to play it safe using AdaHedge. The most extreme case of keeping the learning
rate high, is the limit as η tends to ∞, for which Hedge reduces to Follow-the-Leader. In
this section we work out a strategy that combines the advantages of FTL and AdaHedge:
it retains AdaHedge’s worst-case guarantees up to a constant factor, but its regret is also
bounded by a constant times the regret of FTL (Theorem 15). Perhaps surprisingly, this
is not easy to achieve. To see why, imagine a scenario where the average loss of the best
expert is substantial, whereas the regret of either Follow-the-Leader or AdaHedge, is small.
Since our combination has to guarantee a similarly small regret, it has only a very limited
margin for error. We cannot, for example, simply combine the two algorithms by recursively
plugging them into Hedge with a fixed learning rate, or into AdaHedge: the performance
guarantees we have for those methods of combination are too weak. Even if both FTL and
AdaHedge yield small regret on the original problem, choosing the actions of FTL for some
rounds and those of AdaHedge for the other rounds may fail if we do it naively, because the
regret is not necessarily increasing, and we may end up picking each algorithm precisely in
those rounds where the other one is better.

Luckily, alternating between the optimistic FTL strategy and the worst-case-proof Ada-
Hedge does turn out to be possible if we do it in a careful way. In this section we explain
the appropriate strategy, called FlipFlop (superscript: “ff”), and show that it combines the
desirable properties of both FTL and AdaHedge.

3.1 Exploiting Easy Data by Following the Leader

We first investigate the potential benefits of FTL over AdaHedge. Lemma 10 below identifies
the circumstances under which FTL will perform well, which is when the number of leader
changes is small. It also shows that the regret for FTL is equal to its cumulative mixability
gap when FTL is interpreted as a Hedge strategy with infinite learning rate.

Lemma 10 Let ct be an indicator for a leader change at time t: define ct = 1 if there
exists an expert k such that Lt−1,k = L∗t−1 while Lt,k 6= L∗t , and ct = 0 otherwise. Let
Ct = c1 + . . .+ct be the cumulative number of leader changes. Then the FTL regret satisfies

Rftl = ∆(∞) ≤ S C.

Proof We have M (∞) = L∗ by mix loss property #3, and consequently Rftl = ∆(∞) +
M (∞) − L∗ = ∆(∞).

To bound ∆(∞), notice that, for any t such that ct = 0, all leaders remained leaders and
incurred identical loss. It follows that m(∞)

t = L∗t − L∗t−1 = h
(∞)
t and hence δ(∞)

t = 0. By
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bounding δ(∞)
t ≤ S for all other t we obtain

∆(∞) =
T∑
t=1

δ
(∞)
t =

∑
t : ct=1

δ
(∞)
t ≤

∑
t : ct=1

S = S C,

as required.

We see that the regret for FTL is bounded by the number of leader changes. This
quantity is both fundamental and timeless. It is a natural measure of the difficulty of the
problem, because it remains small whenever a single expert makes the best predictions on
average, even in the scenario described above, in which AdaHedge gets caught in a feedback
loop. One example where FTL outperforms AdaHedge is when the losses for two experts are
(1, 0) on the first round, and keep alternating according to (1, 0), (0, 1), (1, 0), . . . for the
remainder of the rounds. Then the FTL regret is only 1/2, whereas AdaHedge’s performance
is close to the worst-case bound (because its weights wah

t converge to (1/2, 1/2), for which
the bound (6) on the mixability gap is tight). This scenario is illustrated further in the
experiments, Section 5.2.

3.2 FlipFlop

FlipFlop is a Hedge strategy in the sense that it uses exponential weights defined by (9),
but the learning rate ηfft now alternates between infinity, such that the algorithm behaves
like FTL, and the AdaHedge value, which decreases as a function of the mixability gap
accumulated over the rounds where AdaHedge is used. In Definition 11 below, we will
specify the “flip” regime Rt, which is the subset of times {1, . . . , t} where we follow the
leader by using an infinite learning rate, and the “flop” regime Rt = {1, . . . , t} \ Rt, which
is the set of times where the learning rate is determined by AdaHedge (mnemonic: the
position of the bar refers to the value of the learning rate). We accumulate the mixability
gap, the mix loss and the variance for these two regimes separately:

∆t =
∑
τ∈Rt

δffτ ; M t =
∑
τ∈Rt

mff
τ ; (flip)

∆t =
∑
τ∈Rt

δffτ ; M t =
∑
τ∈Rt

mff
τ ; V t =

∑
τ∈Rt

vffτ . (flop)

We also change the learning rate from its definition for AdaHedge in (8) to the following,
which differentiates between the two regimes of the strategy:

ηfft =
{
ηflipt if t ∈ Rt,
ηflopt if t ∈ Rt,

where ηflipt = ηftlt =∞ and ηflopt = lnK
∆t−1

. (16)

Like for AdaHedge, ηflopt = ∞ as long as ∆t−1 = 0, which now happens for all t such that
Rt−1 = ∅. Note that while the learning rates are defined separately for the two regimes,
the exponential weights (9) of the experts are still always determined using the cumulative
losses Lt,k over all rounds. We also point out that, for rounds t ∈ R, the learning rate
ηfft = ηflopt is not equal to ηaht , because it uses ∆t−1 instead of ∆ah

t−1. For this reason, the
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% Returns the losses of FlipFlop
% l(t,k) is the loss of expert k at time t; phi > 1 and alpha > 0 are parameters
function h = flipflop(l, alpha, phi)

[T, K] = size(l);
h = nan(T,1);
L = zeros(1,K);
Delta = [0 0];
scale = [phi/alpha alpha];
regime = 1; % 1=FTL, 2=AH

for t = 1:T
if regime==1, eta = Inf; else eta = log(K)/Delta(2); end
[w, Mprev] = mix(eta, L);
h(t) = w * l(t,:)’;
L = L + l(t,:);
[~, M] = mix(eta, L);
delta = max(0, h(t)-(M-Mprev));
Delta(regime) = Delta(regime) + delta;
if Delta(regime) > scale(regime) * Delta(3-regime)

regime = 3-regime;
end

end
end

Figure 2: FlipFlop, with new ingredients in boldface

FlipFlop regret may be either better or worse than the AdaHedge regret; our results below
only preserve the regret bound up to a constant factor. In contrast, we do compete with
the actual regret of FTL.

It remains to define the “flip” regime Rt and the “flop” regime Rt, which we will do by
specifying the times at which to switch from one to the other. FlipFlop starts optimistically,
with an epoch of the “flip” regime, which means it follows the leader, until ∆t becomes too
large compared to ∆t. At that point it switches to an epoch of the “flop” regime, and keeps
using ηflopt until ∆t becomes too large compared to ∆t. Then the process repeats with the
next epochs of the “flip” and “flop” regimes. The regimes are determined as follows:

Definition 11 (FlipFlop’s Regimes) Let ϕ > 1 and α > 0 be parameters of the algo-
rithm (tuned below in Corollary 16). Then

• FlipFlop starts in the “flip” regime.

• If t is the earliest time since the start of a “flip” epoch where ∆t > (ϕ/α)∆t, then the
transition to the subsequent “flop” epoch occurs between rounds t and t + 1. (Recall
that during “flip” epochs ∆t increases in t whereas ∆t is constant.)

• Vice versa, if t is the earliest time since the start of a “flop” epoch where ∆t > α∆t,
then the transition to the subsequent “flip” epoch occurs between rounds t and t+ 1.

This completes the definition of the FlipFlop strategy. See Figure 2 for a matlab imple-
mentation.

The analysis proceeds much like the analysis for AdaHedge. We first show that, analo-
gously to Lemma 3, the FlipFlop regret can be bounded in terms of the cumulative mixa-
bility gap; in fact, we can use the smallest cumulative mixability gap that we encountered
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in either of the two regimes, at the cost of slightly increased constant factors. This is the
fundamental building block in our FlipFlop analysis. We then proceed to develop analogues
of Lemmas 5 and 7, whose proofs do not have to be changed much to apply to FlipFlop.
Finally, all these results are combined to bound the regret of FlipFlop in Theorem 15, which,
after Theorem 8, is the second main result of this paper.

Lemma 12 (FlipFlop version of Lemma 3) The following two bounds hold simultane-
ously for the regret of the FlipFlop strategy with parameters ϕ > 1 and α > 0:

Rff ≤
(

ϕα

ϕ− 1 + 2α+ 1
)

∆ + S

(
ϕ

ϕ− 1 + 2
)

; (17)

Rff ≤
(

ϕ

ϕ− 1 + ϕ

α
+ 2

)
∆ + S. (18)

Proof The regret can be decomposed as

Rff = Hff − L∗ = ∆ + ∆ +M +M − L∗. (19)

Our first step will be to bound the mix loss M + M in terms of the mix loss Mflop of the
auxiliary strategy that uses ηflopt for all t. As ηflopt is nonincreasing, we can then apply
Lemma 2 and mix loss property #3 to further bound

Mflop ≤M (ηflopT ) ≤ L∗ + lnK
ηflop

= L∗ + ∆T−1 ≤ L∗ + ∆. (20)

Let 0 = u1 < u2 < . . . < ub < T denote the times just before the epochs of the “flip”
regime begin, i.e. round ui + 1 is the first round in the i-th “flip” epoch. Similarly let
0 < v1 < . . . < vb ≤ T denote the times just before the epochs of the “flop” regime begin,
where we artificially define vb = T if the algorithm is in the “flip” regime after T rounds.
These definitions ensure that we always have ub < vb ≤ T . For the mix loss in the “flop”
regime we have

M = (Mflop
u2 −M

flop
v1 ) + (Mflop

u3 −M
flop
v2 ) + . . .+ (Mflop

ub
−Mflop

vb−1) + (Mflop −Mflop
vb

). (21)

Let us temporarily write ηt = ηflopt to avoid double superscripts. For the “flip” regime, the
properties in Lemma 1, together with the observation that ηflopt does not change during the
“flip” regime, give

M =
b∑
i=1

(
M (∞)
vi
−M (∞)

ui

)
=

b∑
i=1

(
M (∞)
vi
− L∗ui

)
≤

b∑
i=1

(
M

(ηvi )
vi − L∗ui

)

≤
b∑
i=1

(
M

(ηvi )
vi −M (ηvi )

ui + lnK
ηvi

)
=

b∑
i=1

(
Mflop
vi
−Mflop

ui
+ lnK
ηui+1

)

=
(
Mflop
v1 −M

flop
u1

)
+
(
Mflop
v2 −M

flop
u2

)
+ . . .+

(
Mflop
vb
−Mflop

ub

)
+

b∑
i=1

∆ui
. (22)

From the definition of the regime changes (Definition 11), we know the value of ∆ui
very

accurately at the time ui of a change from a “flop” to a “flip” regime:

∆ui
> α∆ui = α∆vi−1 > ϕ∆vi−1 = ϕ∆ui−1 .
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By unrolling from low to high i, we see that

b∑
i=1

∆ui
≤

b∑
i=1

ϕ1−i∆ub
≤
∞∑
i=1

ϕ1−i∆ub
= ϕ

ϕ− 1∆ub
.

Adding up (21) and (22), we therefore find that the total mix loss is bounded by

M +M ≤Mflop +
b∑
i=1

∆ui
≤Mflop + ϕ

ϕ− 1∆ub
≤ L∗ +

(
ϕ

ϕ− 1 + 1
)

∆,

where the last inequality uses (20). Combination with (19) yields

Rff ≤
(

ϕ

ϕ− 1 + 2
)

∆ + ∆. (23)

Our next goal is to relate ∆ and ∆: by construction of the regimes, they are always
within a constant factor of each other. First, suppose that after T trials we are in the bth
epoch of the “flip” regime, that is, we will behave like FTL in round T + 1. In this state,
we know from Definition 11 that ∆ is stuck at the value ∆ub

that prompted the start of the
current epoch. As the regime change happened after ub, we have ∆ub

− S ≤ α∆ub
, so that

∆ − S ≤ α∆. At the same time, we know that ∆ is not large enough to trigger the next
regime change. From this we can deduce the following bounds:

1
α

(∆− S) ≤ ∆ ≤ ϕ

α
∆.

On the other hand, if after T rounds we are in the bth epoch of the “flop” regime, then a
similar reasoning yields

α

ϕ
(∆− S) ≤ ∆ ≤ α∆.

In both cases, it follows that

∆ < α∆ + S;

∆ <
ϕ

α
∆ + S.

The two bounds of the lemma are obtained by plugging first one, then the other of these
bounds into (23).

The “flop” cumulative mixability gap ∆ is related, as before, to the variance of the losses.

Lemma 13 (FlipFlop version of Lemma 5) The cumulative mixability gap for the “flop”
regime is bounded by the cumulative variance of the losses for the “flop” regime:

∆2 ≤ V lnK + (2
3 lnK + 1)S∆. (24)
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Proof The proof is analogous to the proof of Lemma 5, with ∆ instead of ∆ah, V instead
of V ah, and using ηt = ηflopt = ln(K)/∆t−1 instead of ηt = ηaht = ln(K)/∆ah

t−1. Furthermore,
we only need to sum over the rounds R in the “flop” regime, because ∆ does not change
during the “flip” regime.

As it is straight-forward to prove an analogue of Theorem 6 for FlipFlop by solving
the quadratic inequality in (24), we proceed directly towards establishing an analogue of
Theorem 8. The following lemma provides the equivalent of Lemma 7 for FlipFlop. It can
probably be strengthened to improve the lower order terms; we provide the version that is
easiest to prove.

Lemma 14 (FlipFlop version of Lemma 7) Suppose Hff ≥ L∗. The cumulative loss
variance for FlipFlop with parameters ϕ > 1 and α > 0 satisfies

V ≤ S (L+ − L∗)(L∗ − L−)
L+ − L−

+
(

ϕ

ϕ− 1 + ϕ

α
+ 2

)
S∆ + S2.

Proof The sum of variances satisfies

V =
∑
t∈R

vfft ≤
T∑
t=1

vfft ≤ S
(L+ −Hff)(Hff − L−)

L+ − L−
,

where the first inequality simply includes the variances for FTL rounds (which are often all
zero), and the second follows from the same reasoning as employed in (14). Subsequently
using L∗ ≤ Hff (by assumption) and, from Lemma 12, Hff ≤ L∗ + γ, where γ denotes the
right-hand side of the bound (18), we find

V ≤ S (L+ − L∗)(L∗ + γ − L−)
L+ − L−

≤ S (L+ − L∗)(L∗ − L−)
L+ − L−

+ Sγ,

which was to be shown.

Combining Lemmas 12, 13 and 14, we obtain our second main result:

Theorem 15 (FlipFlop Regret Bound) The regret for FlipFlop with doubling parame-
ters ϕ > 1 and α > 0 simultaneously satisfies the two bounds

Rff ≤
(

ϕα

ϕ− 1 + 2α+ 1
)
Rftl + S

(
ϕ

ϕ− 1 + 2
)
,

Rff ≤ c1

√
S

(L+ − L∗)(L∗ − L−)
L+ − L−

lnK + c1S
(
(c1 + 2

3) lnK +
√

lnK + 1
)

+ S,

where c1 = ϕ

ϕ− 1 + ϕ

α
+ 2.

This shows that, up to a multiplicative factor in the regret, FlipFlop is always as good
as the best of Follow-the-Leader and AdaHedge’s bound from Theorem 8. Of course, if
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AdaHedge significantly outperforms its bound, it is not guaranteed that FlipFlop will out-
perform the bound in the same way.

In the experiments in Section 5 we demonstrate that the multiplicative factor is not just
an artifact of the analysis, but can actually be observed on simulated data.
Proof From Lemma 10, we know that ∆ ≤ ∆(∞) = Rftl. Substitution in (17) of Lemma 12
yields the first inequality.

For the second inequality, note that L∗ > Hff means the regret is negative, in which
case the result is clearly valid. We may therefore assume w.l.o.g. that L∗ ≤ Hff and apply
Lemma 14. Combination with Lemma 13 yields

∆2 ≤ V lnK + (2
3 lnK + 1)S∆ ≤ S (L+ − L∗)(L∗ − L−)

L+ − L−
lnK + S2 lnK + c2S∆,

where c2 = (c1 + 2
3) lnK + 1. We now solve this quadratic inequality as in (13) and relax it

using
√
a+ b ≤

√
a+
√
b for nonnegative numbers a, b to obtain

∆ ≤

√
S

(L+ − L∗)(L∗ − L−)
L+ − L−

lnK + S2 lnK + c2S

≤

√
S

(L+ − L∗)(L∗ − L−)
L+ − L−

lnK + S
(√

lnK + c2
)
.

In combination with Lemma 12, this yields the second bound of the theorem.

Finally, we propose to select the parameter values that minimize the constant factor in
front of the leading terms of these regret bounds.

Corollary 16 The parameter values ϕ∗ = 2.37 and α∗ = 1.243 approximately minimize
the worst of the two leading factors in the bounds of Theorem 15. The regret for FlipFlop
with these parameters is simultaneously bounded by

Rff ≤ 5.64Rftl + 3.73S,

Rff ≤ 5.64

√
S

(L+ − L∗)(L∗ − L−)
L+ − L−

lnK + S
(
35.53 lnK + 5.64

√
lnK + 6.64

)
.

Proof The leading factors f(ϕ, α) = ϕα
ϕ−1 + 2α + 1 and g(ϕ, α) = ϕ

ϕ−1 + ϕ
α + 2 are

respectively increasing and decreasing in α. They are equalized for α(ϕ) =
(
2ϕ − 1 +√

12ϕ3 − 16ϕ2 + 4ϕ+ 1
)
/(6ϕ− 4). The analytic solution for the minimum of f(ϕ, α(ϕ)) in

ϕ is too long to reproduce here, but it is approximately equal to ϕ∗ = 2.37, at which point
α(ϕ∗) ≈ 1.243.

4. Invariance to Rescaling and Translation

A common simplifying assumption made in the literature is that the losses `t,k are translated
and normalised to take values in the interval [0, 1]. However, doing so requires a priori
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knowledge of the range of the losses. One would therefore prefer algorithms that do not
require the losses to be normalised. As discussed by Cesa-Bianchi et al. (2007), the regret
bounds for such algorithms should not change when losses are translated (because this does
not change the regret) and should scale by σ when the losses are scaled by a factor σ > 0
(because the regret scales by σ). They call such regret bounds fundamental and show that
most of the methods they introduce satisfy such fundamental bounds.

Here we go even further: it is not just our bounds that are fundamental, but also our
algorithms, which do not change their output weights if the losses are scaled or translated.

Theorem 17 Both AdaHedge and FlipFlop are invariant to translation and rescaling of
the losses. Starting with losses `1, . . . , `T , obtain rescaled, translated losses `′1, . . . , `

′
T by

picking any σ > 0 and arbitrary reals τ1, . . . , τT , and setting `′t,k = σ`t,k+τt for t = 1, . . . , T
and k = 1, . . . ,K. Both AdaHedge and FlipFlop issue the exact same sequence of weights
w′t = wt on `′t as they do on `t.

Proof We annotate any quantity with a prime to denote that it is defined with respect to
the losses `′t. We omit the algorithm name from the superscript. First consider AdaHedge.
We will prove the following relations by induction on t:

∆′t−1 = σ∆t−1; η′t = ηt
σ

; w′t = wt. (25)

For t = 1, these are valid since ∆′0 = σ∆0 = 0, η′1 = η1/σ = ∞, and w′1 = w1 are
uniform. Now assume towards induction that (25) is valid for some t ∈ {1, . . . , T}. We
can then compute the following values from their definition: h′t = w′t · `′t = σht + τt;
m′t = −(1/η′t) ln(w′t · e−η

′
t`
′
t) = σmt + τt; δ′t = h′t − m′t = σ(ht − mt) = σδt. Thus, the

mixability gaps are also related by the scale factor σ. From there we can re-establish the
induction hypothesis for the next round: we have ∆′t = ∆′t−1 + δ′t = σ∆t−1 + σδt = σ∆t,
and η′t+1 = ln(K)/∆′t = ηt+1/σ. For the weights we get w′t+1 ∝ e−η

′
t+1L

′
t = e−(ηt+1/σ)(σLt) ∝

wt+1, which means the two must be equal since both sum to one. Thus the relations of (25)
are also valid for time t+ 1, proving the result for AdaHedge.

For FlipFlop, if we assume regime changes occur at the same times for `′ and `, then
similar reasoning reveals ∆′t = σ∆t; ∆′t = σ∆t, η′

flip
t = ηflipt /σ = ∞, η′flopt = ηflopt /σ, and

w′t = wt. Remains to check that the regime changes do indeed occur at the same times.
Note that in Definition 11, the “flop” regime is started when ∆′t > (ϕ/α)∆′t, which is equiv-
alent to testing ∆t > (ϕ/α)∆t since both sides of the inequality are scaled by σ. Similarly,
the “flip” regime starts when ∆′t > α∆′t, which is equivalent to the test ∆t > α∆t.

5. Experiments

We performed four experiments on artificial data, designed to clarify how the learning rate
determines performance in a variety of Hedge algorithms. These experiments are designed
to illustrate as clearly as possible the intricacies involved in the central question of this
paper: whether to use a high learning rate (by following the leader) or to play it safe by
using a smaller learning rate instead. Rather than mimic real-world data, on which high
learning rates often seem to work well (Devaine et al., 2013), we vary the main factor that
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appears to drive the best choice of learning rate: the difference in cumulative loss between
the experts.

We have kept the experiments as simple as possible: the data are deterministic, and
involve two experts. In each case, the data consist of one initial hand-crafted loss vector `1,
followed by a sequence of loss vectors `2, . . ., `T , which are either (0, 1) or (1, 0). For each
experiment ξ ∈ {1, 2, 3, 4}, we want the cumulative loss difference Lt,1 − Lt,2 between the
experts to follow a target fξ(t), which will be a continuous, nondecreasing function of t. As
the losses are binary, we cannot make Lt,1−Lt,2 exactly equal to the target fξ(t), but after
the initial loss `1, we choose every subsequent loss vector such that it brings Lt,1 − Lt,2 as
close as possible to fξ(t). All functions fξ change slowly enough that |Lt,1−Lt,2−fξ(t)| ≤ 1
for all t.

For each experiment, we let the number of trials be T = 1000, and we first plot the regret
R(η) of the Hedge algorithm as a function of the fixed learning rate η. We subsequently
plot the regret Ralg

t as a function of t = 1, . . . , T , for each of the following algorithms “alg”:

1. Follow-the-Leader (Hedge with learning rate ∞)

2. Hedge with fixed learning rate η = 1

3. Hedge with the learning rate that optimizes the worst-case bound (7), which equals
η =

√
8 ln(K)/(S2T ) ≈ 0.0745; we will call this algorithm “safe Hedge” for brevity.

4. AdaHedge

5. FlipFlop, with parameters ϕ∗ = 2.37 and α∗ = 1.243 as in Corollary 16

6. Variation MW by Hazan and Kale (2008), using the fixed learning rate that optimises
the bound provided in their Theorem 4

7. NormalHedge, described by Chaudhuri et al. (2009)

Note that the safe Hedge strategy (the third item above) can only be used in practice if
the horizon T is known in advance. Variation MW (the sixth item) additionally requires
precognition of the empirical variance of the sequence of losses of the best expert up until
T (that is, VARmax

T as defined in Section 1.2), which is not available in practice, but which
we are supplying anyway.

We include algorithms 6 and 7 because, as explained in Section 1.2, they are the state
of the art in Hedge-style algorithms. Like AdaHedge, Variation MW is a refinement of
the CBMS strategy described by Cesa-Bianchi et al. (2007). They modify the definition
of the weights in the Hedge algorithm to include second-order terms; the resulting bound
is never more than a constant factor worse than the bounds (1) for CBMS and (15) for
AdaHedge, but for some easy data it can be substantially better. For this reason it is a
natural performance target for AdaHedge.

The bounds for CBMS and AdaHedge are incomparible with the bound for NormalHedge,
being better for some, worse for other data. The reason we include it in the experiments
is because, compared to the other methods, its performance in practice turns out to be ex-
cellent. We do not know whether there are data sequences on which FlipFlop significantly
outperforms NormalHedge, nor whether there is a theoretical reason for this good perfor-
mance, as the NormalHedge bound (Chaudhuri et al., 2009) is not tight for our experiments.
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To reduce clutter, we omit results for CBMS; its behaviour is very similar to that of
AdaHedge. Below we provide an exact description of each experiment, and discuss the
results.

5.1 Experiment 1. Worst Case for FTL

The experiment is defined by `1 = (1
2 0), and f1(t) = 0. This yields the following losses:(

1/2
0

)
,

(
0
1

)
,

(
1
0

)
,

(
0
1

)
,

(
1
0

)
, . . .

These data are the worst case for FTL: each round, the leader incurs loss one, while each of
the two individual experts only receives a loss once every two rounds. Thus, the FTL regret
increases by one every two rounds and ends up around 500. For any learning rate η, the
weights used by the Hedge algorithm are repeated every two rounds, so the regret Ht − L∗t
increases by the same amount every two rounds: the regret increases linearly in t for every
fixed η that does not vary with t. However, the constant of proportionality can be reduced
greatly by reducing the value of η, as the top graph in Figure 3 shows: for T = 1000,
the regret becomes negligible for any η less than about 0.01. Thus, in this experiment, a
learning algorithm must reduce the learning rate to shield itself from incurring an excessive
overhead.

The bottom graph in Figure 3 shows the expected breakdown of the FTL algorithm;
Hedge with fixed learning rate η = 1 also performs quite badly. When η is reduced to the
value that optimises the worst-case bound, the regret becomes competitive with that of the
other algorithms. Note that Variation MW has the best performance; this is because its
learning rate is tuned in relation to the bound proved in the paper, which has a relatively
large constant in front of the leading term. As a consequence the algorithm always uses a
relatively small learning rate, which turns out to be helpful in this case but harmful in later
experiments.

FlipFlop behaves as theory suggests it should: its regret increases alternately like the
regret of AdaHedge and the regret of FTL. The latter performs horribly, so during those
intervals the regret increases quickly, on the other hand the FTL intervals are relatively
short-lived so in the end they do not harm the regret by more than a constant factor.

The NormalHedge algorithm still has acceptable performance, although its regret is
relatively large in this experiment; we have no explanation for this but in fairness we do
observe good performance of NormalHedge in the other three experiments as well as in
numerous further unreported simulations.

5.2 Experiment 2. Best Case for FTL

The second experiment is defined by `1 = (1, 0) and f2(t) = 3/2. This leads to the sequence
of losses (

1
0

)
,

(
1
0

)
,

(
0
1

)
,

(
1
0

)
,

(
0
1

)
, . . .

in which the loss vectors are alternating for t ≥ 2. These data look very similar to the first
experiment, but as the top graph in Figure 4 illustrates, because of the small changes at
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the start of the sequence, it is now viable to reduce the regret by using a very high learning
rate. In particular, since there are no leader changes after the first round, FTL incurs a
regret of only 1/2.

As in the first experiment, the regret increases linearly in t for every fixed η (provided it
is less than ∞); but now the constant of linearity is large only for learning rates close to 1.
Once FlipFlop enters the FTL regime for the second time, it stays there indefinitely, which
results in bounded regret. After this small change in the setup compared to the previous
experiment, NormalHedge also suddenly adapts very well to the data. The behaviour of the
other algorithms is very similar to the first experiment: their regret grows without bound.

5.3 Experiment 3. Weights do not Concentrate in AdaHedge

The third experiment uses `1 = (1, 0), and f3(t) = t0.4. The first few loss vectors are the
same as in the previous experiment, but every now and then there are two loss vectors (1, 0)
in a row, so that the first expert gradually falls behind the second in terms of performance.
By t = T = 1000, the first expert has accumulated 508 loss, while the second expert has
only 492.

For any fixed learning rate η, the weights used by Hedge now concentrate on the second
expert. We know from Lemma 4 that the mixability gap in any round t is bounded by a
constant times the variance of the loss under the weights played by the algorithm; as these
weights concentrate on the second expert, this variance must go to zero. One can show that
this happens quickly enough for the cumulative mixability gap to be bounded for any fixed
η that does not vary with t or depend on T . From (5) we have

R(η) = M − L∗ + ∆(η) ≤ lnK
η

+ bounded = bounded.

So in this scenario, as long as the learning rate is kept fixed, we will eventually learn the
identity of the best expert. However, if the learning rate is very small, this will happen so
slowly that the weights still have not converged by t = 1000. Even worse, the top graph
in Figure 5 shows that for intermediate values of the learning rate, not only do the weights
fail to converge on the second expert sufficiently quickly, but they are sensitive enough to
the alternation of the loss vectors to increase the overhead incurred each round.

For this experiment, it really pays to use a large learning rate rather than a safe small
one. Thus FTL, Hedge with η = 1, FlipFlop and NormalHedge perform excellently, while
safe Hedge, AdaHedge and Variation MW incur a substantial overhead. Extrapolating the
trend in the graph, it appears that the overhead of these algorithms is not bounded. This
is possible because the three algorithms with poor performance use a learning rate that
decreases as a function of t. As a concequence the used learning rate may remain too small
for the weights to concentrate. For the case of AdaHedge, this is an example of the “nasty
feedback loop” described in Section 3.

5.4 Experiment 4. Weights do Concentrate in AdaHedge

The fourth and last experiment uses `1 = (1, 0), and f4(t) = t0.6. The losses are comparable
to those of the third experiment, but the performance gap between the two experts is
somewhat larger. By t = T = 1000, the two experts have loss 532 and 468, respectively. It

1305



De Rooij, Van Erven, Grünwald and Koolen

is now so easy to determine which of the experts is better that the top graph in Figure 6 is
nonincreasing: the larger the learning rate, the better.

The algorithms that managed to keep their regret bounded in the previous experiment
obviously still perform very well, but it is clearly visible that AdaHedge now achieves the
same. As discussed below Theorem 6, this happens because the weight concentrates on
the second expert quickly enough that AdaHedge’s regret is bounded in this setting. The
crucial difference with the previous experiment is that now we have fξ(t) = tβ with β > 1/2.
Thus, while the previous experiment shows that AdaHedge can be tricked into reducing the
learning rate while it would be better not to do so, the present experiment shows that on
the other hand, sometimes AdaHedge does adapt really nicely to easy data, in contrast to
algorithms that are tuned in terms of a worst-case bound.

6. Discussion and Conclusion

The main contributions of this work are twofold. First, we develop a new hedging algorithm
called AdaHedge. The analysis simplifies existing results and we obtain improved bounds
(Theorems 6 and 8). Moreover, AdaHedge is “fundamental” in the sense that its weights
are invariant under translation and scaling of the losses (Section 4) and its bounds are
“timeless” in the sense that they do not degenerate when rounds are inserted in which all
experts incur the same loss. Second, we explain in detail why it is difficult to tune the
learning rate such that good performance is obtained both for easy and for hard data, and
we address the issue by developing the FlipFlop algorithm. FlipFlop never performs much
worse than the Follow-the-Leader strategy, which works very well on easy data (Lemma 10),
but it also retains a worst-case bound similar to the bound for AdaHedge (Theorem 15).
As such, this work may be seen as solving a special case of a more general question: can we
compete with Hedge for any fixed learning rate? We will now briefly discuss this question
and then place our work in a broader context, which provides an ambitious agenda for
future work.

6.1 General Question: Competing with Hedge for any Fixed Learning Rate

Up to multiplicative constants, FlipFlop is at least as good as FTL and as (the bound for)
AdaHedge. These two algorithms represent two extremes of choosing the learning rate ηt
in Hedge: FTL takes ηt = ∞ to exploit easy data, whereas AdaHedge decreases ηt with
t to protect against the worst case. It is now natural to ask whether we can design a
“Universal Hedge” algorithm that can compete with Hedge with any fixed learning rate
η ∈ (0,∞]. That is, for all T , the regret up to time T of Universal Hedge should be within
a constant factor C of the regret incurred by Hedge run with the fixed η̂ that minimizes
the Hedge loss H(η̂). This appears to be a difficult question, and maybe such an algorithm
does not even exist. Yet, even partial results (such as an algorithm that competes with
η ∈ [

√
ln(K)/(S2T ),∞] or with a factor C that increases slowly, say, logarithmically, in T )

would already be of significant interest.
In this regard, it is interesting to note that, in practice, the learning rates chosen by

sophisticated versions of Hedge do not always perform very well; higher learning rates often
do better. This is noted by Devaine et al. (2013), who resolve the issue by adapting the
learning rate sequentially in an ad-hoc fashion, which works well in their application, but
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for which they can provide no guarantees. A Universal Hedge algorithm would adapt to the
learning rate that is optimal with hindsight. FlipFlop is a first step in this direction. Indeed,
it already has some of the properties of such an ideal algorithm: under some conditions we
can show that if Hedge achieves bounded regret using any learning rate, then FTL, and
therefore FlipFlop, also achieves bounded regret:

Theorem 18 Fix any η > 0. For K = 2 experts with losses in {0, 1} we have

R(η) is bounded ⇒ Rftl is bounded ⇒ Rff is bounded.

The proof is in Appendix B. While the second implication remains valid for more experts
and other losses, we currently do not know if the first implication continues to hold as well.

6.2 The Big Picture

Broadly speaking, a “learning rate” is any single scalar parameter controlling the rela-
tive weight of the data and a prior regularization term in a learning task. Such learning
rates pop up in batch settings as diverse as L1/L2-regularized regression such as Lasso
and Ridge, standard Bayesian nonparametric and PAC-Bayesian inference (Zhang, 2006;
Audibert, 2004; Catoni, 2007), and—as in this paper—in sequential prediction. All the ap-
plications just mentioned can formally be seen as variants of Bayesian inference: Bayesian
MAP in Lasso and Ridge, randomized drawing from the posterior (“Gibbs sampling”) in
the PAC-Bayesian setting and in the Hedge setting. Moreover, in each of these applications,
selecting the appropriate learning rate is nontrivial: simply adding the learning rate as an-
other parameter and putting a Bayesian prior on it can lead to very bad results (Grünwald
and Langford, 2007). An ideal method for adapting the learning rate would work in all
such applications. In addition to the FlipFlop algorithm described here, we currently have
methods that are guaranteed to work for several PAC-Bayesian style stochastic settings
(Grünwald, 2011, 2012). It is encouraging that all these methods are based on the same,
apparently fundamental, quantity, the mixability gap as defined before Lemma 1: they all
employ different techniques to ensure a learning rate under which the posterior is concen-
trated and hence the mixability gap is small. This gives some hope that the approach can
be taken even further. To give but one example, the “Safe Bayesian” method of Grün-
wald (2012) uses essentially the same technique as Devaine et al. (2013), with an additional
online-to-batch conversion step. Grünwald (2012) proves that this approach adapts to the
optimal learning rate in an i.i.d. stochastic setting with arbitrary (countably or uncount-
ably infinite) sets of “experts” (predictors); in contrast, AdaHedge and FlipFlop in the form
presented in this paper are suitable for a worst-case setting with a finite set of experts. This
raises, of course, the question of whether either the Safe Bayesian method can be extended
to the worst-case setting (which would imply formal guarantees for the method of Devaine
et al. 2013), or the FlipFlop algorithm can be extended to the setting with infinitely many
experts.

Thus, we have two major, interrelated questions for future work: first, as explained in
Section 6.1, we would like to be able to compete with all η in some set that contains a whole
range rather than just two values. Second, we would like to compete with the best η in a
setting with a countably infinite or even uncountable number of experts equipped with an
arbitrary prior distribution.
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A third question for future work is whether our methods can be extended beyond the
standard worst-case Hedge setting and the stochastic i.i.d. setting. A particularly intriguing
(and, as initial research suggests, nontrivial) question is whether AdaHedge and FlipFlop
can be adapted to settings with limited feedback such as the adversarial bandit setting
(Cesa-Bianchi and Lugosi, 2006). We would also like to extend our approach to the Hedge-
based strategies for combinatorial decision domains like Component Hedge by Koolen et al.
(2010), and for matrix-valued predictions like those by Tsuda et al. (2005).
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Appendix A. Proof of Lemma 1

The result for η =∞ follows from η <∞ as a limiting case, so we may assume without loss
of generality that η < ∞. Then mt ≤ ht is obtained by using Jensen’s inequality to move
the logarithm inside the expectation, and mt ≥ `−t and ht ≤ `+

t follow by bounding all losses
by their minimal and maximal values, respectively. The next two items are analogues of
similar basic results in Bayesian probability. Item 2 generalizes the chain rule of probability
Pr(x1, . . . , xT ) =

∏T
t=1 Pr(xt | x1, . . . , xt−1):

M = −1
η

ln
T∏
t=1

w1 · e−ηLt

w1 · e−ηLt−1
= −1

η
ln(w1 · e−ηL).

For the third item, use item 2 to write

M = −1
η

ln
(∑

k

w1,ke
−ηLT,k

)
.

The lower bound is obtained by bounding all LT,k from below by L∗; for the upper bound
we drop all terms in the sum except for the term corresponding to the best expert and use
w1,k = 1/K.

For the last item, let 0 < η < γ be any two learning rates. Then Jensen’s inequality
gives

−1
η

lnw1 · e−ηL = −1
η

lnw1 ·
(
e−γL

)η/γ
≥ −1

η
ln
(
w1 · e−γL

)η/γ
= −1

γ
lnw1 · e−γL.

This completes the proof.

Appendix B. Proof of Theorem 18

The second implication follows from Theorem 15, so we only need to prove the first impli-
cation. To this end, consider any infinite sequence of losses on which FTL has unbounded
regret. We will argue that Hedge with fixed η must have unbounded regret as well.
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Our argument is based on finding an infinite subsequence of the losses on which (a) the
regret for Hedge with fixed η is at most as large as on the original sequence of losses; and
(b) the regret for Hedge is infinite.

To construct this subsequence, first remove all trials t such that `t,1 = `t,2 (that is,
both experts suffer the same loss), as these trials do not change the regret of either FTL or
Hedge, nor their behaviour on any of the other rounds.

Next, we will selectively remove certain local extrema. We call a pair of two consecutive
trials (t, t + 1) a local extremum if the losses in these trials are opposite: either `t = (0, 1)
and `t+1 = (1, 0) or vice versa. Removing any local extremum will only decrease the regret
for Hedge, as may be seen as follows.

We observe that removing a local extremum will not change the cumulative losses of the
experts or the behaviour of Hedge on other rounds, so it suffices to consider only the regret
incurred on rounds t and t+ 1 themselves. By symmetry it is further sufficient to consider
the case that `t = (0, 1) and `t+1 = (1, 0). Then, over trials t and t + 1, the individual
experts both suffer loss 1, and for Hedge the loss is ht + ht+1 = wt · `t + wt+1 · `t+1 =
wt,2 + wt+1,1. Now, since the loss received by expert 1 in round t was less than that of
expert 2, some weight shifts to the first expert: we must have wt+1,1 > wt,1. Substitution
gives ht + ht+1 > wt,1 + wt,2 = 1. Thus, Hedge suffers more loss in these two rounds than
whichever expert turns out to be best in hindsight, and it follows that removing trials t and
t+ 1 will only decrease its regret (by an amount that depends only on η).

We proceed to select the local extrema to remove. To this end, let dt = Lt,2 − Lt,1
denote the difference in cumulative loss between the experts after t trials, and observe that
removal of a local extremum at (t, t+ 1) will simply remove the elements dt and dt+1 from
the sequence d1, d2, . . . while leaving the other elements of the sequence unchanged. We will
remove local extrema in a way that leads to an infinite subsequence of losses such that

d1, d2, d3, d4, d5, . . . = ±1, 0,±1, 0,±1, . . . (26)

In this subsequence, every two consecutive trials still constitute a local extremum, on which
Hedge incurs a certain fixed positive regret. Consequently, the Hedge regret Rt grows
linearly in t and is therefore unbounded.

If the losses already satisfy (26), we are done. If not, then observe that there can only be
a leader change at time t+ 1 in the sense of Lemma 10 when dt = 0. Since the FTL regret
is bounded by the number of leader changes (Lemma 10), and since FTL was assumed to
have infinite regret, there must therefore be an infinite number of trials t such that dt = 0.
We will remove local extrema in a way that preserves this property. In addition, we must
have |dt+1−dt| = 1 for all t, because dt+1 = dt would imply that `t+1,1 = `t+1,2 and we have
already removed such trials. This second property is automatically preserved regardless of
which trials we remove.

If the losses do not yet satisfy (26), there must be a first trial u with |du| ≥ 2. Since there
are infinitely many t with dt = 0, there must then also be a first trial w > u with dw = 0.
Now choose any v ∈ [u,w) so that |dv| = maxt∈[u,w] |dt| maximizes the discrepancy between
the cumulative losses of the experts. Since v attains the maximum and |dt+1 − dt| = 1
for all t as mentioned above, we have |dv+1| = |dv| − 1, so that (v, v + 1) must be a local
extremum, and this is the local extremum we remove. Since |dv| ≥ |du| ≥ 2, we also have
|dv+1| ≥ 1, so that this does not remove any of the trials in which dt = 0. Repetition of this
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process will eventually lead to v = u, so that trial u is removed. Given any T , the process
may therefore be repeated until |dt| ≤ 1 for all t ≤ T . As |dt+1 − dt| = 1 for all t, we then
match (26) for the first T trials. Hence by letting T go to infinity we obtain the desired
result.
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