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Abstract�The normalized maximum likelihood (NML) dis-
tribution plays a fundamental role in the MDL approach to
statistical inference. It is only de�ned for statistical families with
a �nite Shtarkov sum. Here we characterize, for 1-dimensional
exponential families, when the Shtarkov sum is �nite. This turns
out to be the case if and only if the minimax redundancy is �nite,
thus extending the reach of our results beyond the individual-
sequence setting. In practice, the NML/Shtarkov distribution is
often approximated by the Bayesian marginal distribution based
on Jeffreys' prior. One serious problem is that in many cases
Jeffreys' prior cannot be normalized. It has been conjectured that
Jeffreys' prior cannot be normalized in exactly the cases where
the Shtarkov sum is in�nite, i.e. when the minimax redundancy
and regret are in�nite. We show that the conjecture is true for a
large class of exponential families but that there exist examples
where the conjecture is violated.

I. PRELIMINARIES

A. Relevance of the problem
We consider a statistical model fP� j � 2 �g where P�

denotes a probability distribution on a set A that depends on
the parameter �: The set of parameters � is assumed to be
as subset of a k-dimensional Euclidean space. We consider
the information channel from � to A: The capacity of this
channel is given by the minimax (expected) redundancy that
equals the maximin redundancy. The capacity tells us how
much information the data in A can at most reveal about the
parameter �: The redundancy also tells us how many extra
bits we need on average to code data from A if the parameter
� is unknown and the average is calculated with respect to
P� compared with the situation where the parameter � is
known. If we are interested in the additional code length for
individual sequences rather than on average, then the relevant
notion becomes the (individual sequence) regret.
For an observation x 2 A we let �x denote the maximum

likelihood estimate of �, i.e. the parameter � that maximizes
dP�
dQ (x) : In general a maximum likelihood estimate may
not exist but for the kind of problems we have in mind
the existence of �x is no problem. The Shtarkov or NML
distribution is given by

dQShtarkov
dQ

(x) =

dP�x
dQ (x)R

A
dP�x
dQ (x) dQx

:

It is well-de�ned when S =
R
A
dP�x
dQ (x) dQx is �nite, and in

that case, it achieves the minimax regret. If Q is discrete the

integral reduces to a sum. For this reason, it is often called
the Shtarkov sum. In fact, the minimax individual sequence
regret is always equal to logS and hence �nite iff S is.
Henceforth, as is customary, �redundancy� refers to �expected
redundancy� and �regret� refers to individual sequence regret.
See, for example, [1] for precise de�nitions.
In statistics we often consider independent data all modelled

by the same parameter � so that P� is replaced by Pn� .
Exponential families have the nice property that if fP� j
� 2 �g is an exponential family then fPn� j � 2 �g is
also an exponential family. Further fPn� j � 2 �g has �nite
minimax redundancy if and only fP� j � 2 �g has �nite
minimax redundancy, and similarly for regret. If the sample
space is in�nite, the minimax regret is in�nite in many cases,
but hitherto it was unknown exactly what these cases are; only
some examples were known, such as the Gaussian, Poisson and
geometric families. Because, if it is �nite, then the Shtarkov
distribution is well-de�ned and can serve as the basis of MDL
model selection, it is of obvious interest to determine which
exponential families have �nite minimax regret and which
have �nite minimax redundancy. We address this question
in Section II. As we will see, for 1-dimensional exponential
families the minimax regret is �nite if and only if the minimax
redundancy is �nite, so that �niteness of the Shtarkov integral
is also relevant if one is interested in average-case rather than
individual sequence-coding.
As �rst established by [2], if the parameter space of an

exponential family is restricted to a compact subset of the
interior of the parameter space with non-empty interior (called
an ineccsi set in [1]), then the minimax regret is �nite and
equal to

k

2
log

n

2�
+ log J + o(1): (1)

where J denotes the Jeffreys integral

J =

Z
�

I
1=2
� d�

and I� denotes the Fisher information. More on Fisher infor-
mation can be found in [1]. It thus becomes quite relevant to
investigate whether the same thing still holds if the parameter
spaces are not restricted to an ineccsi set. Moreover, the same
asymptotic regret (1) is achieved by the Bayesian marginal
distribution equipped with Jeffreys prior with density w(�) =
I
1=2
� =J: Instead of the Shtarkov distribution (often hard to



calculate) we can also essentially achieve minimax regret by
using the more convenient Bayesian marginal distribution. It
thus becomes, again, quite relevant to investigate whether the
same thing still holds if the parameter spaces are not restricted
to an ineccsi set. To answer this question, one �rst needs to
know when the Jeffreys integral is �nite. This is the second
question we address. Hitherto, very little was known about
this situation for in�nite sample spaces. For all the examples
previously considered in the literature, either Jeffreys' integral
and the minimax redundancy and the Shtarkov integral are all
�nite or all in�nite. This leads one to conjecture that this holds
in general. Whether or not this is so is discussed at length and
posed as an open problem in [1, Chapter 11, Section 11.1].
Here we resolve the issue for one-dimensional exponential
families. As we will see, the conjecture is �almost�, but not
quite, true: there are intriguing counterexamples.

B. De�nitions for exponential families

We let fP� j � 2 �cang be a 1-dimensional exponential
family given in a canonical parameterization,

dP�
dQ

=
exp (�x)

Z(�)
; (2)

where Z is the partition function Z(�) =
R
exp(�x) dQx, and

�can := f� j Z(�) < 1g is the canonical parameter space.
Note that we allow the measure Q to have both discrete and
continuous components. We let �sup = supf� j � 2 �cang,
and �inf likewise. The trivial case where �can has no interior
points is excluded from the analysis. See [3] for more details
on exponential families.
The elements of the exponential family are also parame-

trized by their mean value �. We write �� for the mean value
corresponding to the canonical parameter � and �� for the
canonical parameter corresponding to the mean value �: Note
that we allow in�nite values of the mean. The element in the
exponential family with mean � is denoted P�: The range
of � ! �� is denoted M: We write �sup = supM , and
�inf = infM . If Q has a point mass at �inf > �1 and the
support of Q is a subset of [�inf ;1[ ; then the exponential
family is extended by the element P�1 = P�inf = ��inf ,
and likewise the exponential family is extended if Q has a
point mass in �sup < 1 and the support of Q is a subset of
]�1; �sup] : For any x the maximum likelihood distribution
P�x has its parameter �x determined by the equation x = ��x :
The Shtarkov integral is then

S =

Z
exp (�xx)

Z(�x)
dQx: (3)

The variance function V is the function that maps � 2 M
into the variance of P�: If M has interior points then the
exponential family is uniquely determined by its variance
function. The Fisher information of an exponential family
in its canonical parametrization is I� = V (��) and the
Fisher information of the exponential family in its mean value
parametrization is I� = (V (�))�1 : For exponential families

the Jeffreys integral satis�es

J =

Z
�can
I
1=2
� d� =

Z
M

(I�)
1=2

d�: (4)

In general, the �niteness of the Shtarkov integral and of the
Jeffreys integral relative to the full exponential family de�ned
by �can is determined by local behavior both at �sup and at
�inf , either of which may or may not be (minus) in�nity. Thus,
there are two relevant limit points. For ease of exposition
we will restrict ourselves to families where only one limit
point is relevant, by picking an arbitrary �� > �inf in the
interior of �can and considering the subfamily with parameters
f� 2 �can : �� � � � �supg. We call an exponential family
of this form left-truncated. This ensures that the contribution
to the Jeffreys and Shtarkov integrals on the left part of
the interval is �nite. For such families, the Shtarkov integral
becomes S =

R
Z�1(�̂(x)) exp(�̂(x)) dQx, with �̂ the ML

estimator, �̂(x) = �x if x � ��� , �̂(x) = �� if x < ��� .
For our problem it is natural to work with extended expo-

nential families as de�ned in [4]. For a probability distribution
Q on Rd the convex support cs (Q) is the intersection of all
convex closed sets that have Q-probability 1. The convex core
cc (Q) is the intersection of all convex measurable sets with
Q-probability 1, [5]. We have cc (Q) � cs (Q) : An extreme
point x in cs (Q) belongs to cs (Q) if and only if Q (x) > 0:
In its mean value parametrization the exponential family based
on a measure with bounded support has a natural extension to
cc (Q) : In particular �x belongs to the extended exponential
family if Q has a point mass in x and x is an extreme point
of cs (Q) :

II. WHEN IS SHTARKOV FINITE?
Theorem 1: For a 1-dimensional left-truncated exponential

family, the following statements are all equivalent:
1) The Shtarkov integral is �nite.
2) The minimax individual-sequence regret is �nite.
3) The minimax expected redundancy is �nite.
4) The exponential family has a dominating distribution
Qdom in terms of information divergence, i.e.,

sup
�2�can

D(P�kQdom) <1:

5) There is distribution P� with � 2 �can that dominates the
exponential family in terms of information divergence.

6) The information channel � ! P� has �nite capacity.
7) There exists �0 2 �can such that

lim
�"�sup

D(�0k�) <1 or lim
�"�sup

D(�k�0) <1:
Example 2: The family of Poisson distributions restricted to

have mean � � �� for some �� > 0; the family of geometric
distributions, the family of exponential distributions and the
normal location family under the same restriction all have
in�nite Shtarkov integral. Indeed, an easy calculation shows
that for all these families, both information divergences in
item (7) tend to in�nity for all �0 2 �can: The Bernoulli
family has �nite Shtarkov integral, and indeed, taking �0
such that P�0(X = 1) = P�0(X = 0) = 1=2 shows that



the second condition in (7) holds. More surprisingly, (6) also
holds for some practically meaningful exponential families
with unbounded support, such as the inverse Gaussian family.

Most of the equivalences between (1)�(6) are quite straight-
forward, although it may be mildly surprising that, if a
dominating distribution Qdom exists at all, then it must reside
in the exponential family (�can; Q). The surprising part is the
fact that statements (1)�(6) are also equivalent to (7). We will
now give a more concrete characterization of the two cases
mentioned in (7), that allows us to check, for each given
exponential family, whether or not it satis�es (7). We call the
�rst case the �-case and the second the �-case, because, to
some extent, the �- and �-parameters play a dual role in them.

A. �-Case
The family (�can; Q) is of �-type if there exists �0 2 �can

such that lim�"�sup D(�0k�) <1:
Theorem 3 (�-case): 1) Suppose (�can; Q) is of �-type.
Then �sup < 1; �sup 2 �can; and P�sup dominates
(�can; Q):

2) Conversely, suppose that �sup < 1 and �sup 2 �can.
Then (�can; Q) is of �-type.

Part (1) of the theorem implies that P�sup actually dominates
the family in the sense of Theorem 1. Concerning part (2), note
that, assuming �sup <1, we may change the parametrization
(�can; Q) by rede�ning Q as Q0 = P�sup : Denoting parameters
of the new parameterization as �0, we have �0sup = 0 and the
underlying measure Q0 is now a probability measure.
If the family (�can; Q) is such that Q is a probability

measure with unbounded support from above (i.e. supfx :
x 2 supp(Q)g = 1, and Q has a suf�ciently fat tail, then
Z(0) = 1 and Z(�) =1 for all � > 0. For example, if Q has
density q relative to Lebesgue measure, this is the case if for all
� > 0, exp(�x)q(x)!1, so for example, if q(x) decreases
polynomially or as exp(�x1=2): Part (2) thus implies:
Corollary 4: If the family (�can; Q) can be represented by

a Q0 that is a probability measure with unbounded support
from above and fat tails in the sense above, then the family is
of �-type and the Shtarkov integral is �nite.
Example 5 (The inverse Gaussian distribution): If X is a

standard Gaussian random variable then the distribution of
1=X2 has density (relative to Lebesgue measure)

exp
�
� 1
2x

�
(2�x3)

1=2

for x 2 [0;1[ : The elements in the corresponding exponential
family have densities

exp

�
� 1
2x

�
x
� � 1

�2�
(2�x3)

1=2

where � 2 ]0;1[ is the mean value. We shall restrict our
attention to the subfamily with � 2 ]1;1[ : By setting
� = ���2=2, we see that this is a left-truncated exponen-
tial family with underlying measure with density q(x) =

e�1=2x(2�x3)�1=2. Since q has a polynomial tail, we can
apply Corollary 4 to conclude that the Shtarkov integral is
�nite. Indeed, in this case we can also calculate the integral
directly, which givesZ 1

1

exp
�
� 1
2x

�
x
x � 1

�2�
(2�x3)

1=2
dx =

Z 1

1

1

(2�x3)
1=2

dx <1:

B. �-Case
A left-truncated family (�can; Q) is of �-type if there exists

�0 2 �can such that lim�"�sup D(�k�0) < 1. It will be con-
venient to work with right-truncated instead of left-truncated
families, i.e. restricted to parameters f� 2 �can : �inf � � �
��g for some �� < �sup. This can always be achieved by con-
sidering the random variable �X rather than X . We say that
a right-truncated family (�can; Q) is of �-type if there exists
�0 2 �can such that lim�#�inf D(�k�0) <1, or equivalently,
there exists �0 2 M such that lim�#�inf D(�k�0) < 1. The
de�nition of �-type is adjusted accordingly.
Theorem 6 (�-case): 1) Assume that the right-truncated
family (�can; Q) is of �-type but not of �-type. Then
�inf > �1, Q(X = �inf > 0), the extension of family
(�can; Q) contains element �inf = �1 which puts all
its mass on X = �inf , and the support of Q is bounded
from below by �inf ; and every element in �can (but not
its extension) dominates (�can; Q).

2) Suppose that �inf > �1 and Q(X = �inf > 0). Then
(�can; Q) is of �-type.

Concerning part (1), note that in the �-case, there is a
single element P�sup 2 @(�can) which dominates (�can; Q); in
general, the other elements of �can do not dominate (�can; Q).
In the �-case, the situation is reversed: all elements of �can
dominate (�can; Q), but in general, the limiting distribution
P�inf does not.
Concerning part (2), note that it is a partial converse of part

(1). Together with part (1), it implies a useful corollary:
Corollary 7: Suppose that the underlying measure Q has

support bounded from below, and let xmin 2 R be the smallest
x in the support. Then the family is of �-type (and the
Shtarkov integral is �nite) if and only if Q(X = xmin) > 0.
Example 8 (The uniform distribution and a modi�cation):

Let Q denote the uniform distribution on [�1; 1]. Then the
partition function of the corresponding exponential family is

Z (�) =

Z 1

�1

1

2
exp (�x) dx =

sinh (�)

�
:

In the full paper we give a straightforward but extensive

calculation which shows that the Shtarkov integral is in�nite.
Now letQ be a 1=2�1=2mixture of the uniform distribution

on [�1; 1] and the distribution with point masses 1=2 in �1
and 1. Then, by Corollary 7, the Shtarkov integral is �nite.

III. WHEN IS JEFFREYS FINITE?
Theorem 9: Let (�can0 ; Q) represent a left-truncated expo-

nential family. If the Shtarkov integral is in�nite, then the
Jeffreys integral is in�nite.



We note that the condition of left-truncatedness is really
necessary in this theorem. We show in the full paper that if, for
example, we allow the parameter set to consist of a countably
in�nite number of disjoint intervals, we can construct a family
for which Jeffreys is �nite and Shtarkov is in�nite.
We might expect that, if we impose the left-truncatedness

condition, the converse of Theorem 9 would hold as well,
making �niteness of Jeffreys and Shtarkov equivalent. But
in fact, the converse does not hold in general. To study this
further, let us assume that the Shtarkov integral is �nite. Then,
by Theorem 1, we are either in the �-case or in the �-case.

A. �-case
Theorem 10: Let (�can0 ; Q) represent a left-truncated expo-

nential family such that �sup = 0 and Q admits a density q
either with respect to Lebesgue measure or counting measure.
If q(x) = O(1=x1+�) for some � > 0, then the Jeffreys
integrand satis�es I(�)1=2 = O((Z 00(�))1=2) = (��)�1+�=2,
so that the Jeffreys integral

R 0
�
I(
)1=2 d
 is �nite.

Example 11 (The inverse Gaussian, Cont.): The family of
inverse Gaussian distribution has variance function V (�) =
�3. Thus the Jeffrey integral is �nite, as expected:Z 1

1

�
1

�3

�1=2
d� =

Z 1

1

��3=2 d� = 2:

B. �-case
In most cases �nite Shtarkov implies �nite Jeffreys.
Theorem 12: Let Q be a measure on the real line with

support I . Assume that �inf is the left end point of I . If Q
has density f (x) = (x� �inf)
�1 g (x) in an interval just to
the right of a where g is an analytic function and g (�inf) > 0
then the left end of the interval I gives a �nite contribution
to Jeffrey's integral if and only if Q has a point mass in a.

Proof: The variance function can be approximated by
V (�) � c0 (�� �inf)p ; where p = 2 if there is no point
mass in � and p < 2 if there is a point mass in �inf [6, Thm.
4.4]. Therefore the integrand in the Jeffreys integral can be
approximated by c�p=20 (x� �inf)�1=2 near �inf so the left
endpoint gives a �nite contribution to the Jeffreys integral if
and only if p < 2.

C. Counter example
If Y is a Cauchy distributed random variable then X =

exp (Y ) has density
1

�

1

x
�
1 + log2 (x)

� :
A probability measure Q is de�ned as a 1=2 and 1=2

mixture of a point mass in 0 and an exponentiated Cauchy
distribution. We consider the exponential family based on Q.
The partition function is

Z (�) =
1

2
+
1

2�

Z 1

0

exp (�x)

x
�
1 + log2 (x)

� dx; � � 0:
We note that 1=2 � Z (�) � 1 for all � � 0: Then

D (Q�kQ) � D (Q�1kQ) = 1 bit.

0 2

x

1

1 3

Fig. 1. Density of the exponentiated Cauchy distribution.

Therefore the minimax redundancy is at most 1 bit.
The mean value � as a function of � is

� � 2Z 0 (�) = 1

�

Z 1

0

exp (�x)�
1 + log2 (x)

� dx � 1

3 j�j :

The variance as a function of � can be lower bounded as
follows:

I� =

1
2�

2 + 1
2�

R1
0
(x� �)2 exp(�x)

x(1+log2(x))
dx

Z (�)

� 1

2�

Z j�j�1

2
3 j�j

�1

�
x� 1

3 j�j

�2
exp (�x)

x
�
1 + log2 (x)

� dx
� 1

162�e

1

�2
�
1 + log2 j�j

� :
Therefore there exists a constant c > 0 such that I1=2� �
c � 1

j�j(1+log2j�j)1=2
so the Jeffreys integral is in�nite with an

in�nite contribution from both small and large values of j�j :
Hence, both the left- and the right-truncated exponential family
have �nite minimax regret but in�nite Jeffreys integral.

IV. BOUNDED SUPPORT IN MORE DIMENSIONS
A polytope is the convex hull of �nitely many points. A

point �x in the convex set F is exposed if there exists an af�ne
function f : F ! R such that f (�x) is maximal and such
that f (�x) = f (�y), �y 2 F implies �y = �x: All exposed points
are extreme points. For any exposed point �x of cs (Q) the
distribution ��x is in the weak closure of the exponential family
generated by Q: Here we consider exponential families with
suf�cient statistic �x 2 Rd and canonical parameter ��:
Lemma 13: If Pn ! ��x in the weak topology and n !

D (PnkQdom) is bounded then lim inf Pn (�x) > 0:
Theorem 14: If the minimax redundancy of the exponential

family based on Q is �nite then cs (Q) has �nitely many
extreme points each with a positive point probability.

Proof: Let �x be an exposed point in cs (Q). Let �n
denote a sequence such that P�n ! ��x in the weak topology.
If the redundancy is �nite there exists a distribution Qdom and
a constant K such that D (P�kQdom) � K for all P� in the
exponential family. Then P�n eventually has a point mass in
�x and therefore Q also has a point mass in �x: Thus, for any
exposed points �x0 in cs (Q) we have Q (�x0) > 0: Further
we have D (��x0kQdom) = � log (Qdom (�x0)) � K: Assume
that there exist an in�nite sequence �x1; �x2; : : : of exposed



TABLE I
FINITENESS RESULTS FOR 1-DIMENSIONAL EXPONENTIAL FAMILIES

Examples Support Feature �sup �sup cl.? Shtar. Jef. Case
uniform bounded no mass at xmax (NS) <1 1 no 1 1 -

-(Exp. Cauchy + point mass) bounded mass at xmax (NS) <1 1 yes <1 1 �
Bernoulli; Ex. 8 bounded mass at xmax (NS) <1 1 yes <1 <1 �
Poisson, geometric unbounded 8� > 0 : exp(�x)q(x)! 0 (NS) 1 1 no 1 1 -

exponential distributions unbounded
R
q(x)dx �=� 1 (NS) 1 <1 no 1 1 -

Exponentiated Cauchy unbounded
R
q(x)dx �<� 1, 8� > 0 : q(x)=x1+� !1 (N) 1 <1 yes <1 1 �

inverse Gaussian unbounded
R
q(x)dx �<� 1, 9� > 0 : q(x)=x1+� ! 0 (S) 1 <1 yes <1 <1 �

nonsteep families unbounded
R
xq(x)dx �<� 1 (NS) <1 <1 yes <1 <1 �; �

Any left-truncated 1-dimensional exponential family belongs to exactly one row in the table. (Un)bounded means �un(bounded) from above�. �cl.� means
�closable�, i.e. that p�sup is a member of the (potentially extended) family. xmax is the supremum of the support of Q. The example in the third row is in
fact for the (essentially equivalent) right-truncated case, with all sup replaced by inf and v.v. The third column lists necessary and suf�cient conditions on Q
in the special case where Q has a density q with respect to the Lebesgue measure. �S� indicates that the condition is suf�cient, i.e. if it holds for a simple
family, then the family must be in the corresponding row. �N� indicates that the condition is necessary, i.e. it must hold for all simple families in the row.
The �=� and �<� indicates that the (in)equality holds if a parameterization is chosen for which �sup = 0.

points in cs (Q) : Then
P1

i=1Qdom (�xi) � 1 which implies that
Qdom (�xi)! 0 for i!1: Hence � log (Qdom (�xi))!1 for
i ! 1 and we have a contradiction. Therefore cs (Q) has
�nitely many exposed points and must be a polytop
By using convexity of the function �x ! exp(�̂��x)

Z(�̂)
we get

the following theorem.
Theorem 15: If an extended exponential family is restricted

to a subset of a polytope in the mean value parametrization,
then the Shtarkov integral and the minimax and maximin
redundancies are �nite.
By using that the regret is lower bounded by the mean

redundancy we now get the following theorem.
Theorem 16: Let Q denote a probability measure with

bounded support. Then the following conditions are equivalent.
1) The convex core cc (Q) is a polytope.
2) The minimax regret of the exponential family is �nite.
3) The minimax redundancy of the exponential family is
�nite.

4) The information channel � ! P� has �nite capacity.
If the support is not �nite the situation is very different for

instance the distribution in 3 dimensions with density

exp (�k�xk)
4�3=2 kxk5=2

has �nite redundancy and in�nite regret. We conjecture that
such an example can also be constructed in 2 dimensions.

V. DISCUSSION
An interesting class of distributions are the so-called

Tweedie distributions with parameters p; � and �2 where �
is the mean. For �xed p and �2 we get an exponential family
with variance function

V (�) = �2�p:

Some p have the property that if we restrict the exponential
family to a compact set then, Jeffreys and Shtarkov are, in
a sense, proportional to each other. Important examples are
the Gaussian location family (p = 0), the gamma distributions
including the exponential distribution (p = 2), and the inverse

Gaussian distribution (p = 3). As we have seen Jeffreys
and Shtarkov may in special cases be very different and the
reason why this fact has remained unnoticed until now may be
because Tweedie distributions are so dominant in applications.
In this short note we have entirely focused on the question

of whether the quantities in question are �nite or in�nite.
These results are summarized in Table I. We had to exclude
many proofs, examples and a more detailed discussion of how
restricting the parameter space will effect the results (only for
one-dimensional exponential families this question is trivial).
Here we shall just mention some further results on the as-
ymptotic behavior of one-dimensional left-truncated families.
If the minimax regret is �nite at all, then it is upper bounded by
log n+O(1). If moreover Jeffreys prior exists, then under some
further regularity conditions, we obtain the same asymptotics
(1=2) log n+O(1) as for parameters restricted to ineccsi sets.
However, if the Jeffreys integral is in�nite but the minimax
regret is �nite, then these asymptotics do not hold and the
minimax regret must behave as (1=2) log n + f(n) for a
function f(n)!1.
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