Catching Up Faster in Bayesian
Model Selection and Model Averaging

Tim van Erven Peter Grinwald Steven de Rooij
Centrum voor Wiskunde en Informatica (CWI)
Kruislaan 413, P.O. Box 94079
1090 GB Amsterdam, The Netherlands
{Ti m van. Erven, Pet er. G unwal d, St even. de. Rooi j }@wi . nl

This paper has been accepted for presentation at the twibritil®S (Neural Information Process-
ing) Conference, December 2007, Vancouver, Canada. ThievBnsion of the paper, to appear in
the conference proceedings in 2008, will be slightly déffefrom the present one.

Abstract

Bayesian model averaging, model selection and their ajgpaiions such as BIC
are generally statistically consistent, but sometimeseaehslower rates of con-
vergence than other methods such as AIC and leave-oneassg-galidation. On
the other hand, these other methods can be inconsistentdaitfy thecatch-up
phenomenoms a novel explanation for the slow convergence of Bayesigtii-m
ods. Based on this analysis we define the switch-distribuyéianodification of the
Bayesian marginal distribution. We prove that in many gitres model selection
and prediction based on the switch-distribution is bothsistent and achieves op-
timal convergence rates, thereby resolving the AIC/Bl@miina. The method is
practical; we give an efficient implementation.

1 Introduction

We consider inference based on a countable set of modedsofgaiobability distributions), focusing
on two tasks: model selection and model averaging. In maaetson tasks, the goal is to select
the model that best explains the given data. In model avagagihe goal is to find the weighted
combination of models that leads to the best prediction tfreudata from the same source.

An attractive property of some criteria for model selectisrthat they are consistent under weak
conditions, i.e. if the true distributio®* is in one of the models, then the*-probability that this
model is selected goes to one as the sample size increase$l4) Bayes factor model selection
[8], Minimum Description Length (MDL) model selection [3hd prequential model validation [5]
are examples of widely used model selection criteria thatumually consistent. However, other
model selection criteria such as AIC [1] and leave-one-oos&validation (LOO) [16], while of-
ten inconsistent, do typically yield better predictionshisTis especially the case in nonparametric
settings, wherdé®* can be arbitrarily well-approximated by a sequence of ithistions in the (para-
metric) models under consideration, but is not itself corgd in any of these. In many such cases,
the predictive distribution converges to the true disttitm at the optimal rate for AIC and LOO
[15, 9], whereas in general BIC, the Bayes factor method aaduential validation only achieve
the optimal rate to within a(log n) factor [13, 20, 6]. In this paper we reconcile these seerging|
conflicting approaches [19] by improving the rate of conegice achieved in Bayesian model se-
lection without losing its convergence properties. Firstpvovide an example to show why Bayes
sometimes converges too slowly.

Given priors on models and parameters therein, Bayesiarente is based on the posterior distribu-
tion that is obtained by conditioning on observed outcoriresodel selection the preferred model



is the one with maximum a posteriori probability. In pre@atthe marginal distributionsg; , po, . . .
(defined as in (1) below) are weighted according to the pioster process called Bayesian Model
Averaging (BMA). We denote the resulting distributipgha.

In a sequential setting, the probability of a data sequefice= x4, ..., x, under a distributiorp
typically decreases exponentially fastrin It is therefore common to considerlog p(z™), which

we call thecodelengttof 2™ achieved by. This name refers to the correspondence between code-
length functions and probability distributions based om raft inequality, but one may also think

of the codelength as the accumulated log loss that is indufr@e sequentially predict the; by
conditioning on the past, i.e. usipg: | '~1) [3, 6, 5, 11]. From here on all logarithms are taken to
base2, allowing us to measure codelengthhiits.

Prediction usingyma has the advantage that the codelength it achieves®da close to the code-
length ofp;, wherel is the index of best of the marginals, p, . . . Namely, given a priotv on model
indices, the difference betweenlog ppma(z™) = —log(>_, pi(z™)w(i)) and— log pi(z™) must be

in the rangd0, — log w(i)], whatever data™ are observed. Thus, using BMA for prediction is sensi-
ble if we are satisfied with doing essentially as well as thet bedel under consideration. However,
it is often possible to combing, po, . . . into a distribution that achieves smaller codelength fiyan
This is possible if the indekof the best distributiomhanges with the sample size in a predictable
way. This is common in model selection, for example with nestedlets, sayM; C M. In this
casep; typically predicts better at small sample sizes (roughgcduseM, has more parameters
that need to be learned tha;), while p, predicts better eventually. Figure 1 illustrates this phe-
nomenon. It shows the accumulated codelength differenieg p2 (™) — (— log p1(z™)) on “The
Picture of Dorian Gray” by Oscar Wilde, whege andp, are the Bayesian marginal distributions
for the first-order and second-order Markov chains, respelgt and each character in the book is
an outcome. We used uniform priors on the model parametatdpbother common priors sim-
ilar behaviour can be expected. Cleaplyis better for about the first 100,000 outcomes, gaining
a head start of approximately 40,000 bits. Ideally we shguédlict the initial 200,000 outcomes
usingp; and the rest usings. However,ppma ONly starts to behave like, when itcatches uvith

p1 at a sample size of about 310,000, when the codelengph dfops below that op;. Thus, in
the shaded area,n, behaves liken; while p, gives higher probability to, and better predictions of,
those outcomes: sinceat= 100000, p, is 40000 bits behind, and at= 310000, it has caught up,

in between it must have outperformggdby 40000 bits!

The general pattern that first one mode|
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diately after po starts making better pre- Figure 1: The Catch-Up Phenomenon

dictions; it essentially does thi® matter

what sequence™ is actually observedps,, differs from ppma in that it is based on a prior distri-
bution onsequences of modelather than simply a prior distribution on models. This aous

to avoid the implicit assumption that there is one model Whgbest at all sample sizes. After
conditioning on past observations, the posterior we olijaies a better indication of which model
performs besht the current sample siz¢hereby achieving a faster rate of convergence. Indeed,
the switch-distribution is related to earlier algorithnas fracking the best expedeveloped in the
universal prediction literature [7, 18, 17, 10]; howevee tipplications we have in mind and the the-
orems we prove are completely different. In Sections 3 ané 4low that model selection based on
the switch-distribution is consistent (Theorem 1), butkenstandard Bayes factor model selection
achieves optimal rates of convergence (Theorem 2). Prdafeecheorems are in Appendix A. In



Section 5 we give a practical algorithm that computes thechadistribution fork (rather thar)
predictors in©(n - k) time. In the full paper, we will give further details of thegmf of Theorem 1
and a more detailed discussion of Theorem 2 and the impicatf both theorems.

2 The Switch-Distribution for Model Selection and Prediction

Preliminaries SupposeX* = (Xi, X», ...) is a sequence of random variables that take values
in sample spac&’ C R? for somed € Z* = {1,2,...}. Forn € N= {0,1,2,...}, letz” = (2,

.., ) denote the first outcomes ofX*>°, such that:™ takes values in the product spaté =
X1 x -+ x X,. (We letz® denote the empty sequence.) Lét = Uo—o X™. Form > n, we write
X for (Xog1, ... X)), Wwherem = oo is allowed and we sometimes omit the subscript when
n = 0.

Any distribution P(X°°) may be defined by a sequentjaediction strategyp that predicts the
next outcome at any time € N. To be precise: Given the previous outcomésat timen, this
prediction strategy should issue a conditional dengft¥,.1|z") with corresponding distribution
P(X,,+1|z™) for the next outcomé&,, ;1. Such sequential prediction strategies are sometimesscall
prequential forecasting systerfi§. An instance is given in Example 1 below. We will assumatth
the densityp(X,,+1|z™) is taken with respect to either the usual Lebesgue meadukgi§ contin-
uous) or the counting measure {f is countable). In the latter cag€X,,;1|z™) is a probability
mass function. It is natural to define the joint dengity™|2") = p(zp11|2™) - - p(zm|2z™ 1) and
let P(X < |2™) be the unique distribution such that, for all > n, p(X",;|2") is the density of
its marginal distribution forX ", ;. To ensure thaP’ (XS ,[2") is well-defined even ift is contin-
uous, we impose the natural requirement that for any Z* and any fixed eventi; 1 C X1
the probabilityP(Ay1|x*) is a measurable function of*, which is automatically the casedf is
countable.

Model Selection and Prediction Model selections about choosing an explanation for observed
datax™ from a potentially infinite list of candidate modelgt;, M., ... We consideiparametric
models which are setdpy : 6 € ©} of prediction strategiep, that are indexed by elements of
© C R?, for some smallest possibiec N, the number of degrees of freedom. Examples of model
selection are regression based on a set of basis functichsasupolynomialsdis the order of the
polynomial), the variable selection problem in regresgit 9, 20] ¢ is the number of variables),
and histogram density estimation [13] i6 the number of bins). Anodel selection criteriolis a
functiond : X* — Z* that, given any data sequencé € X*, selects the mode\,, with index
k=0(z").

We associate each mod#l,, with a single prediction strategy,. The bar emphasizes that is a
meta-strategy based on the prediction strategigsfin In many approaches to model selection, for
example AIC and LOOyp;, is defined using some estimaty for each modelM,,, which maps a
sequence™ of previous observations to an estimated parameter vahtedpresents a “best guess”
of the true/best distribution in the model. Prediction ierttbased on this estimatopy, (X, 41 |
") = pg, (n)(Xnt1 | ™), which also defines a joint density. (z") = pr(21) - (T |z,
The Bayesian approach to model selection or model averagiag the other way around. We start
out with a priorw on 0, and define the Bayesian marginal density

pr(z™) = /ee@ po(x™)w(0)d6. Q)

Whenpyg (z™) is non-zero this joint density induces a unique conditiateisitypy (X, 11 | ™) =

Pk (Xn+1, 2™)/Pr(2™), which is equal to the mixture ofy € M, according to the posterior,
w(B|z™) = po(z™)w(8)/ [ po(z™)w(#)dl, based onz™. Thus the Bayesian approach also de-
fines a prediction strategy. (X, +1/2"), whose corresponding distribution may be thought of as an
estimator. From now on we call the distributions inducedpbyp,, . . . “estimators”, even if they
are Bayesian. This unified view is known@&quentialor predictive MDL[11, 5].

Example 1. Suppose¥ = {0,1}. Then a prediction strategy may be based on the Bernoulli
modelM = {py | 6 € [0, 1]} that regards{ > as a sequence of independent, identically distributed
Bernoulli random variables witt# (X1 = 1) = . We may predictX,,.; using the maximum

likelihood (ML) estimator based on the past, i.e. us@rﬁg") =n! >, z;. The prediction for



1 is then undefined. If we use a smoothed ML estimator such asaplace estimatof’ (z") =
(n+2)"1(>1, z; + 1), then all predictions are well-defined. Perhaps surprigjrige predictor

P’ defined byp' (X,,41 | 2™) = pé,(zn)(XnH) equals the Bayesian predictive distribution based on
a uniform prior. Thus in this case a Bayesian predictor andstimation-based predictor coincide!

The Switch-Distribution  Supposes, ps, - .. is a list of prediction strategies fot >°. (Although
here the list is infinitely long, the developments below catfittle modification be adjusted to the
case where the list is finite.) We first define a family= {¢s : s € S} of combinator prediction
strategies that switch between the original predictioatstfies. Here the parameter sp&ces
defined as

S={(ti, k1), -, (tmr k) € (NXZH)™ | meZT,0=1; <...<tpy}. 2)

The parametes specifies the identities of constituent predictors and the sample sizes at which to
switch between them. Fer= ((¢},k}),...,(t,,,k.,)) € S, we definet;(s) = ¢, k;(s) = k. and

m(s) = m/; for brevity we omit the argument when the parametés clear from context, e.g. we
write t3 for t5(s).

Diy (Xng1]z™) ifn < to,
Pky (Xn+1|$n) if to < n <ts,

4s(Xn41]z"™) = : : (3)
pkmfl(X""rﬂxn) if £ < <tp,
Pk, (Xn+1|l'n) if £, <n.

Switching to the same predictor multiple times is allowedheextra parameter; is included for
convenience, but we always take = 0. Now the switch-distribution is defined as a Bayesian
mixture of the elements af according to a priorr onS:

Definition 1 (Switch-Distribution) Let 7w be a probability mass function di Then the switch-
distribution Py, with prior  is the distribution forX > such that, for any, € Z*, the density of its
marginal distribution forX™ is given by

psw(z™) = gs(z") - 7(s). (4)

seS

Although the switch-distribution provides a general wayctombine prediction strategies, in this
paper it will only be applied to combine prediction stragji,, po, . .. that correspond to models.
In this case we may define a corresponding model selectiterion Js,. To this end, letk,,; :
S — Z™* be a random variable that denotes the strategy/model theseid to predictX,, 1 given
past observations™. Formally, K,,1(s) = k;(s) iff ¢;(s) < nandi = m(s) Vn < t;41(s).
Algorithm 1, given in Section 5, efficiently computes the fgo®r distribution onk,, ;1 givenz™:
D (siKmia(s)=k} T (8)as(@™)
K — ny _ n+1
T(Kpp1 =k | 2") Pew(z™) J (5)

which is defined wheneveys,(z™) is non-zero. We turn this into a model selection criterion
dsw(z™) = argmaxy m(K,1+1 = k|z") that selects the model with maximum posterior probability.

3 Consistency

If one of the models, say with indei", is actually true, then it is natural to ask whetldgy; is
consistentin the sense that it asymptotically selektswith probability 1. Theorem 1 below states
that this is the case under certain conditions which are sligitly stronger than those required for
standard Bayes factor model selection consistency.

Bayes factor model selection is consistent if forialk’ # k, P,(X°°) and P, (X°°) are mutually
singular, that is, if there exist disjoint measurable sét8 C X such thatP,(4) = 1 and
Py/(B) = 1[3]. For example, this can usually be shown to hold if the ni®dee nested and for
eachk, © is a subset 0B 1 of wy,1-measurd [6]. For consistency ofs,, we need to strengthen



this to the requirement that, for af # k and allz™ € x*, the distributionsP, (X255, | ") and
P (X5 | ™) are mutually singular. For example if;, X, ... are i.i.d. according to each in
all models, but also ift’ is countable angy,(z,, 1 | ,,) > 0 for all &, all z"*1 € X" *+!, then this

conditional mutual singularity is automatically impliegt brdinary mutual singularity of?, (X°>°)
and Py (X ).

Let s = {s' € S| m(s') > m(s), (t:i(s'), ki(s)) = (ti(s), ki(s)) fori =1,...,m(s)} denote
the set of all possible extensionssofo more switch-points. Let;, p», ... be Bayesian prediction
strategies with respective parameter spaesd-, ... and priorsw;, ws, . . ., and letr be the prior
of the corresponding switch-distribution.

Theorem 1 (Consistency of the Switch-DistributionSupposer is positive everywhere ofs €

S | m(s) = 1} and is such that there exists a positive constaisuch that, for everg < S,
c-7m(s) > m(kEs). Suppose further tha, (X5, | ™) and P/ (X5, | ™) are mutually singular
forall k, k' € Z*, k # k', 2™ € X*. Then, for allk* € Z™, for all * € ©- except for a subset of
O+ of wi«-measurd), the posterior distribution ork,,; satisfies

T(Kp1 =k | X™") -1 with Py« -probability 1. (6)

The requirement that- 7(s) > 7 (Es) is automatically satisfied if is of the form:

m(s) = mu(m)me(ky) [ [ e (tilts > tio1)me(Ra), )
=2

wherer,, m, andn, are priors orZ* with full support, andr,, is geometricir, (m) = 6™~1(1—0)
for some0 < 6 < 1. In this case: = 6/(1 — ).

4 Optimal Risk Convergence Rates

SupposeX, X», ... are distributed according t8*. We define theisk at sample size > 1 of the
estimatorP relative toP* as

Ra(P*, P) = Exurope [D(P*(X, = - | X" D) P(X, = - | X)),

where D(-||-) is the Kullback-Leibler (KL) divergence [4]. This is the stiard definition of risk
relative to KL divergence. The risk is always well-definedd @qual tad iff P(X,,+1 | X™)is equal
to P*(X,+1 | X™). The following identity connects information-theoretixpected redundancy
and accumulated statistical risk (see [4] or [6, Chapte): 15]P* admits a density*, then for all
prediction strategies,

Exorpe [~ log B(X") + logp*(X")] = S R,(P", P). (8)
=1

For a union of parametric model$t = |J,., M, we define thenformation closure{M) =
{P* | infpesp D(P*||P) = 0}, i.e. the set of distributions foK °> that can be arbitrarily well
approximated by elements 8fl. Theorem 2 below shows that, for a very large clas®bic (M),

the switch-distribution defined relative to estimatdts P, . . . achieves the same risk as any other
model selection criterion defined with respect to the santienators, up to lower order terms; in
other words, model averaging based on the switch-distdbuchieves at least the same rate of
convergence as model selection based on any model selettierion whatsoever (the issue of
averaging vs selection will be discussed at length in thiepfaher). The theorem requires that the
prior 7 in (4) is of the form (7), and satisfies

—logmy(m) =0(m) ; —logm(k)=O(logk) ; —logm(t) = O(logt). 9)

Thus,m,, the prior on the total number of switch points, is allowedléxrease either polynomially
or exponentially (as required for Theorem };andw, must decrease polynomially. For example,
we could setr(t) = m(t) = 1/(t(t + 1)), or we could take the universal prior on the integers [12].

Let M* C (M) be some subset of interest of the information closure of hdde M* may consist
of just a single, arbitrary distributioR* in (M) \ M —in that case Theorem 2 shows that the switch-
distribution converges as fast as any other model selectiterion on any distribution ifAM) that



cannot be expressed parametrically relativéMio— or it may be a large, nonparametric family. In
that case, Theorem 2 shows that the switch-distributiofesek the minimax convergence rate. For
example, if the models\;, are k-bin histograms [13], thefM) contains every distribution on
[0, 1] with bounded continuous densities, and we may, for exantales M* to be the set of all
distributions on[0, 1] which have a differentiable densip/ such thaip*(x) and(d/dz)p*(x) are
bounded from below and above by some positive constants.

We restrict ourselves to model selection criteria whictsatple size:, never select a mode¥1,,
with k£ > n” for some arbitrarily large but fixed > 1; note that this condition will be met for most
practical model selection criteria. Let: Z — R* denote the minimax optimal achievable risk as
a function of the sample size, i.e.

h(n) = inf sup sup R, (P*,Ps), 10
() 5:X"_’{1721-~~7“’/T-‘}P*E}\)/l*n’zgz ( 5) (10)

where the infimum is over all model selection criteria resétd to sample size, and[-] denotes
rounding up to the nearest integeps is the prediction strategy satisfying, for all > n, all
2 € X", ps(Xpr | 2) = Pogeny(Xnrg1 | ), i.e. at sample size it predictsz,, ., using
pr for thek = §(X™) chosen by, and it keeps predicting future,,, ., by thisk. We callh(n)
the minimax optimal rate of convergence for model selectaative to data fromM*, model list
My, Mo, ..., and estimator$, P», ... The definition is slightly nonstandard, in that we require a
second supremum ovef > n. This is needed because, as will be discussed in the fullrpiean
sometimes happen that, for soé, somek, somen’ > n, R,/ (P*, P;) > R,(P*, Py) (see also
[4, Section 7.1]). In cases where this cannot happen, sudyeession with standard ML estimators,
and in cases where, uniformly for &l sup,, -, R,/ (P*, Py) — R, (P*, Py) = o(3>_7_, h(3)), (in
the full paper we show that this holds for, for example, hiséon density estimation), our Theorem 2
also implies minimax convergence in terms of the standafshilen, without thesup,,~.,,. We
expect that theup,,,~.,, can be safely ignored for most “reasonable” models and astirs.

Theorem 2. Define Py, for some model clas8t = U;>1 M, as in(4), where the priorr sat-
isfies (9). LetM* be a subset of M) with minimax rateh such thatnh(n) is increasing, and
nh(n)/(logn)? — co. Then

5 cerge S R (P*, P,
lim sup SUPp EMZX”:Z_;L(Z')Z(  Psw) <1. (11)
n—oo i=1

The requirement thath(n)/(logn)? — oo will typically be satisfied wheneveM* \ M is
nonempty. Theo\* containsP* that are “nonparametric” relative to the chosen sequenoedkls
My, M, ... Thus, the problem should not be “too simple”: we do not knovethler the theorem
holds in the parametric setting wheRs € M, for somek on the list. Theorem 2 expresses that
the accumulated rislof the switch-distribution, as increases, is not significantly larger than the
accumulated rislof any other procedure. This “convergence in sum” has beasidered before by,
for example, [13, 4], and is compared to ordinary convergandhe full paper, where we will also
give example applications of the theorem and further dis¢L8). The proof works by bounding the
expected redundancy of the switch-distribution, which(8) is identical to the accumulated risk.
It is not clear whether similar techniques can be used to tdle individual risk.

5 Computing the Switch-Distribution

For priors7 as in (7), the posterior probability on predictgrs po, . . . can be efficiently computed
sequentially, provided that, is geometric, as is also required for Theorem 1 and permitied
Theorem 2. The algorithm resembles thex#D-SHARE algorithm described in [7]. Whereas the
FIXED-SHARE algorithm implicitly imposes a geometric distribution foy, we allow general priors
by varying the shared weight with. We do require a bit more state to be able to cope with



Algorithm 1 SwiTcH(2)
> k(+) limits the number of considered prediction strategies asretion of the sample sizg
> @ is as in the definition of,,.
for k=1,...,x(N) doinitialise w{ « m(k); w? « 0 od
Report priorr(K;) = wg, (ax(0)-sized array)
for n=1,..., N do

for k=1,...,k(n) dowd « wf - pp(w,|z"1); wl — w? - pr(z,]z"~1) od (loss upd.)
pool «—m(Z=n|Z2>n) >, w} (share update)
for k=1,...,k(n) do

wp —wp - (Z#n|Z>n) + 0 -pool - (k)

wh — wh + (1—6)-pool -m (k)
od

Report posterion (K, +1 | ") = (w§,  A+wh . )/ > (witwp) (ar(n)-sized array)
od

By choosingx(n) = n” the fast convergence of Theorem 2 can be obtained (it cantbaded to

cope with our restricte@). Theorem 1 can be extended to show consistency in this caselh as

long asm doesn't vary withn. Note that the running tim@(ZfL1 k(n)) is typically of the same

order as that of fast model selection criteria like AIC and€CBMWe will explain this algorithm in

more detail in a forthcoming publication.
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A Proofs

Proof of Theorem 1. LetU,, = {s € S | K,,+1(s) # k*} denote the set of ‘bad’ parameterthat
select an incorrect model. It is sufficient to show that

lim sup ZSEUTL i (S) (X")
n > ses W(S) qs(X™)

To see this, suppose the theorem is false. Then there existS ®- with wg-(®) > 0 such that
(6) does not hold for ang* € ®. But then by definition ofP,- we have a contradiction with (12).
Now letA = {s € S : k,,(s) # k*} denote the set of parameters that are bad for sufficientjgtar
We observe that for each € U, there exists at least one elemert A that uses the same sequence
of switch-points and predictors on the first+- 1 outcomes (this implies that’;(s) = K;(s’) for

it =1,...,n+ 1) and has no switch-points beyondi.e. t,,(s) < n). Consequently, eithe = s
ors’ € Es. Therefore

Y w()as (@) < Y (w(s) + w(Es))as(a") < (L+¢) ) mls)gs(@™).  (13)

s'eU, sEA sEA

=0 with P -probability 1. (12)

Defining the mixture-(z") = > . 4 7(s)gs(x"), we will show that

r(X")
(s = (0,k%)) - pr= (X7)
Using (13) and the fact thagt__ s 7(s)gs(2") > 7(s = (0,k%)) - pr~(2™), this implies (12). For
alls € Aandz!=®) € Xt py definitionQs(X{° ,|z'™) equalspPy,, (X° . |zt), which is
mutually singular With}f’k*(XﬁiH\xtm) by assumption. IfY is a separable metric space, which

holds becaus&’ C R? for somed € Z*, it can be shown that this conditional mutual singularity
implies mutual singularity of)s(X >°) and Py (X *°). To see this for countabl&, let B,... be any
event such thaQs (B, ['™) = 1andPy- (Bgem |2'™) = 0. Then, forB = {y> € X | y° | €

lim sup =0 with Py, -probability 1. (14)



Byt }, we have that)s(B) = 1 and P (B) = 0. In the uncountable case, howevBrmay not
be measurable. We omit the full proof, which was shown to uB&ter Harremés. Any countable
mixture of distributions that are mutually singular with.-, in particular R, is mutually singular
with Pg~. This implies (14) by Lemma 3.1 of [2], which says that for amp mutually singular
distributionsR and P, the density ratio(X™)/p(X™) goes to zero as — oo with P-probability
1. O

Proof of Theorem 2. We will show that for everyx > 1,

sup ZR P*, Psy) <aZh +ea,nih(i)7 (15)
=1

PreM*
wheree, "% 0, and €a,1,€0,2, - - - are fixed constants that only depend @nbut not on the
chosen subseM* of (M). Theorem 2 is a consequence of (15), which we will proceedduep
Letd, : X™ — ZT be a model selection criterion, restricted to samples & sjzhat is minimax
optimal, i.e. it achieves the infimum in (10). If suchéa does not exist, we take @, that is
almost minimax optimal in the sense that it achieves the umfinto withini(n)/n. Forj > 1, let
t; = [a=1] — 1. Fix an arbitraryn > 0 and letm be the unique integer such that < n < t,,41.
We will first show that for arbitraryx™, psw achieves redundancy not much worse tlgrwith
s = (t1,0¢, (")), ..., (tm, ¢, (z'™)). Then we show that the redundancy of thiss small enough
for (15) to hold. Thus, to achieve this redundancy, it is sidfit to take only a logarithmic number
m — 1 of switch-points:m — 1 < log, (n + 1). Formally, we have, for some > 0, uniformly for
aln, 2" € X,

o pon(a™) = —log 3w ( < —log gs(a™) — log mu(m) — 3 log s (t)me(ky) <
s’eS j

—log gs(x™) 4 clog(n 4+ 1) + em(7 + 1) logn = —log gs(z") + O((logn)?). (16)
Here the second inequality follows because of (9), and thred fiquality follows because: <

log,,(n + 1) + 1. Now fix any P* € (M). SinceP* € (M), it must have some densip}. Thus,
applying (8), and then (16), and then (8) again, we find that

> Ri(P*, Psy) = Exnep+[—log psu(X") + log p*(X™)] <
=1

By [ logas(X™) + logp" (X")] + O((logn)?) = 3 Ru(P*, Q) + O(logn)?) =

1=1
> R;(P*, Py,) + O((logn)?). (17)

tj+1, we have R;(P*,Py,) <

For i appearing in the second sum, with < i <
Supilzthrl Ri' (P*,ij) = Supilzthrl Ri’ (P*) 5tj (wtﬂ)) < h(t + 1) so that

1
tj—|-1

—_

Cih(i) < L h(i) < ah(1),

R( k]) tj—|-1

(i +Dh(t;+1) <

t; + 1
where the middle inequality follows becausé(n) is increasing (condition (b) of the theorem).
Summing overi, we gety>", ZTT%“’”} Ri(P*,Py,) < ay_"  h(i). Combining this with

(17), it follows that)""" ;, R;(P*, Pow) < oY 1, h(i) + O((logn)?). Because this holds for arbi-

trary P* € M* (with the constant in th& notation not depending of*), (15) now follows by the
requirement of Theorem 2 that(n)/(logn)? — oo. O
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