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Abstract

This article reviews the rationale for using accumulative one-step-ahead prediction error (APE) as a data-driven method for model

selection. Theoretically, APE is closely related to Bayesian model selection and the method of minimum description length (MDL). The

sole requirement for using APE is that the models under consideration are capable of generating a prediction for the next, unseen data

point. This means that APE may be readily applied to selection problems involving very complex models. APE automatically takes the

functional form of parameters into account, and the ‘plug-in’ version of APE does not require the specification of priors. APE is

particularly easy to compute for data that have a natural ordering, such as time series. Here, we explore the possibility of using APE to

discriminate the short-range ARMA(1,1) model from the long-range ARFIMAð0; d ; 0Þ model. We also illustrate how APE may be used

for model meta-selection, allowing one to choose between different model selection methods.

r 2006 Elsevier Inc. All rights reserved.
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1One can posit alternative prediction criteria such as the smallest ten-

step-ahead prediction error, and these alternative criteria may yield

different results than the one-step-ahead APE discussed here (Bhansali,
The main purpose of this article is to review the
theoretical advantages and practical feasibility of accumu-
lative one-step-ahead prediction error (APE) as a criterion
for model selection. To briefly illustrate the motivation that
underlies the APE method, consider two time series
models, a simple model Ms and a complex model Mc.
Both models are fitted to the same data set xn ¼

ðx1; x2; . . . ; xnÞ of length n, and the aim is to select either
Ms or Mc for the purpose of statistical inference. It is likely
that the complex model Mc fits the data xn better than does
model Ms. This is not very informative, however, since the
better fit may merely reflect the capability of Mc to describe
noise. In model selection, what is important is model
generalizability, or the ability of a model to predict unseen
data from the same process (cf. Myung & Pitt, 1997; Pitt,
Myung, & Zhang, 2002). The APE method implements this
philosophy quite directly.

According to the APE method, the litmus test for models
is not how well they fit the current data xn, but how well
they are able to predict the next unseen data point, xnþ1. In
e front matter r 2006 Elsevier Inc. All rights reserved.

p.2006.01.004

ing author. Fax: +3120 639 0279.

ess: ewagenmakers@fmg.uva.nl (E.-J. Wagenmakers).
other words, according to the APE method the most useful
model is the model with the smallest out-of-sample one-
step-ahead prediction error.1 The problem is that the
prediction error cannot be calculated because xnþ1 has not
been observed. What can be calculated, however, are the
prediction errors for xiþ1 based on the previous xi, 0oion.
For a given model, the APE method estimates the
prediction error for the unavailable xnþ1 by the sum of
the previous prediction errors for data that are available.
Note that this technique is similar in spirit to that of leave-
one-out cross-validation (e.g., Browne, 2000; Stone, 1974):
both methods assess generalizability by computing the
predictive performance for a single data point, pretending
it had never been observed. The methods differ, however,
in that the size of the data set used for fitting the model
gradually increases for the APE method but is constant for
1999). As will be apparent later, one of the attractions of the one-step-

ahead APE is its close relation to Bayesian model selection and the

method of minimum description length.

www.elsevier.com/locate/jmp
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cross-validation. While leave-one-out cross-validation can
be statistically inconsistent for a variety of models (Shao,
1993; Stone, 1977a), the APE method is typically consis-
tent.

Indeed, the APE method is closely related to two
methods of model selection that are consistent and satisfy
certain optimality criteria:
2
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late
(1)
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r. T
Relation to Bayes: The APE method is related to
Bayesian model selection via the ‘prequential’ (i.e.,
sequential prediction) principle introduced by Da-
wid (1984, 1991). Two main instantiations of the
APE method can be distinguished, depending on
how the prediction of the next data points is carried
out. The first version is exactly equivalent to
Bayesian model selection. The second version may
be interpreted as an approximation to Bayesian
model selection. In contrast to standard Bayesian
methods, however, this second form of the APE
criterion can be calculated quite easily for a wide
range of different time series models.
(2)
 Relation to minimum description length (MDL): The
APE implements the principle of ‘predictive mini-
mum description length’ (Rissanen, 1986b), one of a
variety of MDL methods. Again, the advantage is
that, in contrast to other MDL methods, the APE/
predictive MDL method can be calculated relatively
easily, particularly for time series models.2
3This is somewhat surprising given the substantial interest in the

forecasting performance of short-range versus long-range models; see for
Thus, in terms of computational ease the APE method is
more similar to popular methods such as Akaike’s
information criterion (AIC; Akaike, 1974; Burnham &
Anderson, 2002) and the Bayesian information criterion
(BIC; Raftery, 1995; Schwarz, 1978) than it is to Bayesian
model selection and MDL. The advantage that APE has
over AIC and BIC is that APE is sensitive not only to the
number of free parameters, but also to their functional
form.

Despite its theoretical and practical advantages, the APE
method is not used on a regular basis—barring a few recent
exceptions in which the method has been applied with great
success (Kontkanen, Myllymäki, & Tirri, 2001; Modha &
Masry, 1998a, 1998b). The comparatively small amount of
recent applications may be the main reason why APE is
unfamiliar to most psychologists. Nevertheless, the list of
inference problems to which the APE criterion has been
applied does include ARMA model selection (Dawid, 1991;
Gerencsér, 1994; Rissanen, 1989), density estimation using
histograms (Dawid, 1991; Rissanen, Speed, & Yu, 1992),
linear least-squares regression (Rissanen, 1986a), and
generalized linear models (Qian, Gabor, & Gupta, 1996).
Here, we illustrate the APE method by applying it to the
problem of selecting between two popular non-nested time
lication of the APE criterion is more involved when the data are

ered sequentially in time. This issue is discussed in more detail

he focus of the present paper is on time series data.
series models: the long-range autoregressive fractionally
integrated moving average model (i.e., ARFIMAð0; d; 0Þ)
and the short-range autoregressive moving average model
(i.e., ARMA(1,1); cf. Basak, Chan, & Palma, 2001; Crato
& Ray, 1996; Hosking, 1984; Wagenmakers, Farrell, &
Ratcliff, 2004). To the best of our knowledge, no study yet
has used the APE criterion to address this model selection
problem.3

The outline of this paper is as follows. The next section
describes the APE criterion and its relation to leave-one-
out cross-validation, Bayesian model selection, and MDL.
After a discussion of the APE’s pros and cons we turn to a
time series application involving models with short-range
and long-range dependence. We briefly define the ARMA
and ARFIMA time series models, outline the setup of a
Monte Carlo simulation, and then report the results.
Finally, the APE criterion is applied to a real-world time
series that involves the estimation of one-second time
intervals.

1. Model selection through accumulative one-step-ahead

prediction error

Quantitative models seek to separate replicable structure
from noise. Underfitting occurs when a model captures too
little replicable structure, whereas overfitting occurs when a
model captures too much noise. In both cases, predictive
performance will suffer. A model that is able to optimally
separate replicable structure from noise will have optimal
predictive performance. Hence, the widely agreed upon
criterion for model selection is the maximization of
generalizability (Myung, 2000; Pitt et al., 2002), or
equivalently the minimization of prediction error for future
data coming from the same source. Several methods have
been developed to implement this general idea. In what
follows we will confine ourselves to the case of two
competing, possibly non-nested models M1 and M2, as
the extension to more than two competing models is
self-evident.4 The APE method advocated here is based
on the intuition that a good indicator for prediction error
to as yet unseen data is the sum (or equivalently, the
average) of the previous prediction errors. Consider a
time series of n observations, xn ¼ ðx1;x2; :::; xnÞ. The
APE method proceeds by calculating sequential one-step-
ahead forecasts based on a gradually increasing part of the
data set. That is, the APE for model Mj is calculated as
follows:
ins

(Ba
4
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(1)
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This

plic
Determine the smallest number s of observations
that make the model identifiable. Set i :¼ sþ 1 (so
that i � 1 ¼ s).
the 2002 special issue in the International Journal of Forecasting

Crato, & Ray, 2002).

holds as long as the list of candidate models is finite. Certain

ations arise in case the list is infinite (Grünwald, 2005).
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(2)
 Based on the first i � 1 observations, calculate a
prediction p̂i for the next observation i.
(3)
 Calculate the prediction error for observation i, for
instance, take the squared difference between the
predicted value p̂i and the observed value xi.
(4)
 Increase i by 1 and repeat steps 2 and 3 until i ¼ n.

(5)
 Sum all of the one-step-ahead prediction errors as

calculated in step 3. The result is the APE.
This procedure is completed separately for model M1

and model M2. One then proceeds to select the model for
which the associated APE is smallest. Thus, for model Mj

the accumulative prediction error is given by

APEðMjÞ ¼
Xn

i¼sþ1

d½xi; ðp̂ijx
i�1Þ�, (1)

where d indicates the specific function that quantifies the
discrepancy between what is observed and what is
predicted.

The APE recipe outlined above leaves open three
important choices. We consider these in turn:

(1) Form of predictions: The first choice is what form the
predictions should take: whether to predict using a single
value (cf. Skouras & Dawid, 1998) or a probability
distribution (cf. Aitchison & Dunsmore, 1975). In the
latter case, p̂i is a distribution on the set of possible
outcomes xi. In the experiments in this paper, we choose
the first option: the predictions p̂i are predictions for the
mean value of ith outcome xi.

(2) Loss function: The second choice is how to quantify
the discrepancy between the predicted values and the
observed values. We can measure the quality of predictions
in a variety of different ways. Ideally, as explained in the
next section, this measure should reflect the specific
application we have in mind, but in practice this may be
unknown. In that case, one can use a standard well-
behaved loss function. For single-value predictions, one
typically uses the squared error ðyi � p̂iÞ

2; this is also the
approach we adopt in this paper. Another choice would be
to compute the absolute value loss, jyi � p̂ij, or, more
generally, an a-loss function, jyi � p̂ij

a, a 2 ½1; 2� (Rissanen,
2003). For probabilistic predictions, one typically uses the
logarithmic loss function—ln p̂iðyiÞ: thus, the loss depends
on the probability mass or density that p̂i assigns to the
actually observed outcome yi. The larger the probability,
the smaller the loss. There are several strong reasons for
choosing the logarithmic loss function. Perhaps the most
important one is the fact that, as we explain below, it
makes the APE method compatible with maximum like-
lihood (Example 1), Bayesian inference, and MDL
inference.

(3) Prediction algorithm: Based on the initial i � 1
outcomes and model Mj, we must output some prediction
p̂i for the ith outcome. The third choice is what prediction
algorithm to use for this task. Consider first the case that
we decided to predict using a distribution rather than a
single value (see item 1, ‘Form of Predictions’ above). In
that case, there exist two standard methods for determining
the distribution p̂i:
(i)
 Set p̂i equal to the distribution indexed by
ŷ ¼ ŷðxi�1Þ, the maximum likelihood distribution
within Mj for data xi�1 ¼ ðx1; . . . ;xi�1Þ. This is the
so-called maximum likelihood (ML) plug-in method

for determining the APE. It is also the approach we
adopt in this paper.
(ii)
 Compute the Bayes predictive distribution for xi

based on data xi�1 (Eq. (5)). This would be the
preferred prediction method according to a Bayesian
statistician. Note that the Bayes predictive distribu-
tion is a mixture of distributions in Mj , rather than a
single element of it. A potential difficulty with the
Bayesian method is that it requires the specification
of a prior distribution pðy jMjÞ over the parameters
y. An advantage is that the first step in the APE
algorithm outlined above can be omitted, because
one can use the parameter priors to make predic-
tions for the very first data point.
Now consider the case where we make predictions using a
single value rather than a distribution. The standard way to
determine a single value prediction p̂i is as follows: one first

infers a distribution q̂i based on data xi�1, using either the
ML plug-in or the Bayesian method that we just described.
One then predicts using the value p̂i that would be the
optimal prediction if data were distributed according to the
inferred distribution q̂i. If the squared error is used, this is
the mean of xi under q̂i.
The next sections outline the theoretical justification of

the APE procedure by discussing the relation between APE
and three sophisticated model selection procedures: cross-
validation, Bayesian model selection and model selection
via the principle of MDL.

1.1. APE and leave-one-out cross-validation

Obviously, the APE method is similar in spirit to cross-
validation, a model selection technique that has been
successfully applied in a wide variety of contexts, including
applications in psychology (Browne, 2000). The similarity
is particularly striking if we compare APE to leave-one-out

cross-validation. This frequently employed form of cross-
validation is identical to the APE method except for steps 1
and 2 from the APE recipe outlined in the previous section.
In cross-validation, all n� 1 observations
ðx1; . . . ; xi�1; xiþ1; . . . ;xnÞ are used to predict xi, typically
using the ML plug-in predictor with logarithmic or squared
loss (Stone, 1974). This difference between APE and
leave-one-out may seem small, but it has important
repercussions: when the list of models under consideration
is infinite, APE is statistically consistent whereas leave-
one-out cross-validation can be statistically inconsistent.
This means that the method of cross-validation is not
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guaranteed to select the ‘true’ underlying model as sample
size grows large (Stone, 1977a). Cross-validation is for
instance inconsistent for linear models (Shao, 1993).

On a related point, under regularity conditions on the
models and the data generating distribution, and under the
logarithmic loss function, leave-one-out cross-validation
asymptotically behaves like AIC (Stone, 1977b; Zhang,
1993), whereas the APE method asymptotically behaves
like BIC (Barron, Rissanen, & Yu, 1998), given appro-
priate constrains on the rate with which the information in
the data increases (Wei, 1992).

1.2. Bayesian model selection and the Bayes factor

Recall that one way to implement the APE is to make
subsequent predictions using the Bayesian predictive
distribution and measure error by the logarithmic loss. It
turns out that this procedure is equivalent (in the sense that
it always gives the same results) to standard Bayesian
model selection based on Bayes factors. To explain this, it
is best to first point out that every probability distribution
may be interpreted as a prediction strategy:

Example 1 (Distributions as prediction strategies). Let p be
an arbitrary probability density or mass function on
sequences xn ¼ ðx1; . . . ;xnÞ of some given length n. By the
‘chain rule’ of probability theory, p can be rewritten as a
product of conditional probabilities, so that for all
x1; . . . ;xn,

pðx1; . . . ; xnÞ ¼ pðxn j x
n�1Þpðxn�1 j x

n�2Þ . . . pðx2 j x1Þpðx1Þ.

(2)

To see this, simply note that by the definition of

conditional probability, pðxi j x
i�1Þ ¼ pðxiÞ=pðxi�1Þ. Using

this to rewrite all factors on the right-hand side of (2), we
see that every denominator cancels with the subsequent
numerator, and (2) follows. Now, suppose you have
evidence that x1; . . . ; xn are distributed according to p.
You observe the first i � 1 outcomes, and you are asked to
make a probabilistic prediction of the ith outcome. Then
you would of course predict according to the distribution

pðxi j x
i�1Þ. We may therefore think of the individual

probabilities pðxi j x
i�1Þ as probabilistic predictions of the

ith outcome conditioned on the first i � 1 outcomes.
Assuming prediction error is measured by logarithmic loss,
the total error incurred when sequentially predicting all
outcomes, based on all previous outcomes, isPn

i¼1½� ln pðxi j x
i�1Þ�. But now note that, sincePn

i¼1½� ln pðxi j x
i�1Þ� ¼ � ln

Qn
i¼1 pðxi j x

i�1Þ, by (2), we

have

Xn

i¼1

� ln pðxi j x
i�1Þ ¼ � ln pðx1; . . . ;xnÞ. (3)

Eq. (3) shows that every distribution on n outcomes may be

interpreted as a sequential prediction strategy. The accumu-

lated logarithmic loss incurred by this strategy on data xn is
equal to minus the log likelihood of data xn. This crucial
insight connects the APE method to maximum likelihood:
suppose we compare two degenerate models M1 and M2,
each model containing just one distribution (parameter
instantiation), say, pð� j y1Þ and pð� j y2Þ, respectively. Then,
for all i, the ML predictor according to model Mj is simply
the distribution pðxi j x

i�1; yjÞ, and the APE for model Mj

is minus the log likelihood � ln pðxnjyjÞ of xn. Thus,
selecting the model with minimum APE now amounts to
selecting the distribution maximizing the likelihood of the
data: if the models under consideration are degenerate,
then APE coincides with maximum likelihood. We shall
now see that if a model contains more than one
distribution, then APE mimics Bayesian rather than
maximum likelihood inference.

Bayesian model selection procedures prefer the model
Mi that has the highest probability pðMi j x

nÞ given the
observed data. Assuming uniform priors on the models M1

and M2, by Bayes’ rule, this is equal to the model
maximizing the marginal probability of the observed data,
pðxnjMiÞ. Even if the prior on M1 and M2 is not uniform,
its influence on pðMi j x

nÞ is typically so small that in
practice, one can safely assume that Bayesian model
selection picks the model maximizing pðxnjMiÞ. The ratio
of the marginal probabilities, B12 ¼ pðxnjM1Þ=pðxnjM2Þ, is
called the Bayes factor (e.g., Edwards, Lindman, & Savage,
1963; Jeffreys, 1961; Kass & Raftery, 1995), and the
logarithm of the Bayes factor, log B12, is the weight of
evidence provided by the data for model M1 versus model
M2 (e.g., Good, 1985). The marginal probability of the
data can be calculated by integrating out the model
parameters y:

pðxnjMjÞ ¼

Z
pðxnjy;MjÞpðy jMjÞ dy, (4)

where pðy jMjÞ denotes the prior distribution of the
parameter y within Mj . Thus, in Bayesian model selection
the marginal probability of the data is calculated by
integrating or summing the probabilities of the observed
data across the entire range of parameter values, weighted
by their prior plausibility. A complex model with many
parameters will generally have a low marginal probability
of the data, because for certain regions of the parameter
space the probability of the observed data is likely to be
quite small (Myung & Pitt, 1997).
Now let us compare this to the APE with logarithmic

loss and Bayesian predictions. The Bayesian predictive
distribution of xi based on model Mj and data xi�1 is just
the conditional probability of xi given xi�1, according to
pð� jMjÞ, which can be rewritten as follows:

pðxi j x
i�1;MjÞ ¼

Z
pðxi j x

i�1; y;MjÞpðy j xi�1;MjÞ dy,

(5)

where pðy j xi�1;MjÞ is the Bayesian posterior probability of
parameter y conditioned on data xi�1 and model Mj.
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Applying (3) to the Bayesian marginal (4) and conditional
(5), we see that the APE with logarithmic loss and Bayesian
predictions (5) satisfy

� ln pðxn jMjÞ ¼
Xn

i¼1

� ln pðxi j x
i�1;MjÞ. (6)

Since Bayesian model selection picks the model Mj

minimizing the left-hand side, whereas the APE method
picks the model minimizing the right-hand side, the two
procedures are equivalent.

Under mild regularity conditions on the model Mj, the
Bayesian posterior will resemble a Gaussian distribution
with width of order 1=

ffiffiffi
n
p

and mean equal to the maximum
likelihood distribution ŷðxi�1Þ within Mj (Bernardo &
Smith, 1994). Thus, with increasing n, it will become
very sharply concentrated around ŷðxi�1Þ, so that the
predictive distribution (5) will very closely resemble the ML
distribution pðxi j x

i�1; ŷðxi�1ÞÞ. This suggests that we
can approximate (6) by adding prediction errors made
with the ML distribution rather than the Bayesian poste-
rior, that is:

� ln pðxn jMjÞ �
Xn

i¼1

� ln pðxi j x
i�1; ŷðxi�1ÞÞ. (7)

The right-hand side is just the APE calculated using the
ML rather than the Bayesian predictions. One can show
theoretically that, under regularity conditions on Mj and
the data generating distribution, (7) is indeed the case, the
approximation holding to within a constant independent of
n, and depending on the prior distribution. This makes the
ML-based APE (which does not involve priors) an
approximation of the log Bayes marginal likelihood that
is often much easier to compute than the Bayes marginal
likelihood itself. Let us illustrate all this with a simple
example.

Example 2 (APE with ML plug-in versus Bayesian pre-

diction). Suppose xn is a sequence of n zeros and ones. Let
n½1� denote the number of ones in xn. The Bernoulli or
biased-coin model M0 is the set of all distributions pð� j yÞ
such that the xn are independent outcomes of a coin with
bias y, that is, pðxn j yÞ ¼ yn½1� ð1� yÞn�n½1� . The ML estima-
tor ŷðxnÞ is given by n½1�=n (Grünwald, 2005). Let us
calculate the APE based on a Bernoulli model. The ith
prediction is given by

pðX i ¼ 1 j ŷðxi�1ÞÞ ¼ ŷðxi�1Þ;

pðX i ¼ 0 j ŷðxi�1ÞÞ ¼ 1� ŷðxi�1Þ.

Note that if the sequence xi�1 contains only zeros, whereas
X i turns out be 1, then the logarithmic loss is � ln 0 ¼ 1,
leading to an infinite APE. This cannot be the intention.
Indeed, in practice, we cannot start accumulating the APE
at i ¼ 1, but have to start at i�, defined as the smallest i

such that both a 0 and 1 have been observed in xi�1. We
discuss this ‘startup problem’ in more detail later. To
compare the APE to the Bayesian marginal likelihood, let
us consider the modified ML estimator

ŷlðxnÞ :¼
n½1� þ l
nþ 2l

. (8)

If we take l ¼ 0, we get the ordinary ML estimator. If we
take l ¼ 1, then an exercise involving beta-integrals shows
that, for all i;xi,

pðxi j ŷ1ðxi�1ÞÞ ¼ pðxi j x
i�1;M0Þ,

where pðxi j x
i�1;M0Þ is the Bayesian predictive distribu-

tion (5) relative to the uniform prior pðy jM0Þ � 1. Thus,
ŷ1ðxi�1Þ corresponds to the Bayesian predictive distribution
for the uniform prior. This prediction rule was advocated
by the great probabilist P.S. de Laplace, co-originator of
Bayesian statistics. We see that the Bayesian predictions
are very closely related to the ML predictions, which
strongly suggests that, as long as we start counting at i ¼ i�

rather than i ¼ 1,

� ln pððxi� ; . . . ;xnÞ j x1; . . . ;xi��1;MjÞ

�
Xn

i¼i�

� ln pðxi j x
i�1; ŷðxi�1ÞÞ,

so that Bayesian model selection and APE based on ML
predictions will tend to select the same distributions for all
but the smallest n. This can also be shown formally
(Grünwald, 2005).
For more general models, such simple modifications of

the ML estimator usually do not correspond to a Bayesian
predictive distribution; for example, if a model Mj is not
convex5 then a point estimator (i.e., an element of Mj)
typically does not correspond to the Bayesian predictive
distribution, which is a mixture (weighted average) of
elements of Mj. Nevertheless, one can in many cases still
show that an appropriate version of (7) holds.

Predictive interpretation of Bayesian inference: An often-
voiced objection against the use of Bayes factors is that
they supposedly depend on one of the models being true in
the sense of being identical to the data generating process
(e.g., Gelman, Carlin, Stern, & Rubin, 2004, p. 180;
Spiegelhalter, Best, Carlin, & van der Linde, 2002). As
Eq. (6) shows, Bayes factors do have a predictive
interpretation, however, meaning that the model with the
highest marginal probability of the data is guaranteed to
also have the smallest accumulative sequential one-step-
ahead prediction error—even when none of the models is
true (Kass & Raftery, 1995, p. 777). The importance of
sequential prediction for statistical inference has been
stressed by Dawid and colleagues (Dawid, 1984, 1991,
1992; Dawid & Vovk, 1999; Skouras & Dawid, 1998), who
argued that ‘‘ð. . .Þ the purpose of statistical inference is to
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make sequential probability forecasts for future observa-
tions, rather than to express information about para-
meters.’’ (Dawid, 1984, p. 278). Dawid, who together with
Rissanen may be viewed as the originators of the APE
method, termed this method ‘prequential’, combining
‘sequential’ and ‘prediction’. The importance of prediction
has also attracted interest from researchers in the field of
mathematical psychology (cf. Busemeyer & Wang, 2000;
Forster, 2000, pp. 226–227).
1.3. Model selection and the principle of minimum

description length

The minimum description length principle originates
from algorithmic coding theory (cf. Gammerman & Vovk,
1999; Li & Vitányi, 1997) and was pioneered as a method
for model selection by Rissanen (1986b, 1987, 1996, 1999,
2001).6 The MDL principle is based on the premise that
any regularities in a data set allow it to be compressed (e.g.,
de Rooij & Grünwald, 2006; Grünwald, 2000, 2005;
Grünwald, Myung, & Pitt, 2005; Hansen & Yu, 2001; Pitt
et al., 2002). Hence, the best model is the model that
minimizes the number of bits required to unambiguously
encode both the data and the model itself. A very complex
model will take many bits to encode, and this will only be
worthwhile when that model is able to greatly reduce the
number of bits required to encode the data.

Rissanen (1996, 2001) derived an elegant and very
general formulation of MDL as a normalized maximum
likelihood. According to this formulation, the MDL
criterion may be calculated by first obtaining the maximum
likelihood for the observed data, and then dividing this
quantity by an integral or sum of maximum likelihoods
over all possible other data sets that could have been
observed but were not. Hence, the normalized maximum
likelihood interpretation of MDL leads to the selection of
models that minimize

� ln
pðxn j ŷðxnÞÞP

yn2Xn pðyn j ŷðynÞÞ
, (9)

where X is the set of possible values for xi, and the sum is
to be replaced by an integral if the xi are real-valued. It
turns out that, under conditions on the models M1 and M2,
for large samples, MDL model selection between M1 and
M2 precisely coincides with Bayesian model selection based
on the Bayesian marginal likelihood (4) equipped with
Jeffreys’ prior (Grünwald, 2005). Thus, MDL is closely
related to so-called ‘objective Bayesian’ procedures (Kass
& Raftery, 1995). Not surprisingly then—and this is crucial
for the present discussion—MDL may also be given a
predictive interpretation (Rissanen, 1986a) comparable to
the predictive interpretation of Bayesian model selection.
This leads to the ‘predictive MDL’ technique that
6The similar method of minimum message length was proposed earlier by

Wallace and Boulton (1968), see also Wallace and Freeman (1987).
calculates the accumulative one-step-ahead prediction
error using the recipe outlined earlier, and measures error
using the logarithmic loss function. Predictions for the next
observation are based on plug-in maximum likelihood
point estimates for the parameters. The predictive MDL
technique may be viewed as a close approximation to the
‘ideal’ (but hard to compute) version of MDL based on
normalized maximum likelihood. This is explained at
length in Grünwald (2005). Here, we merely give a
suggestive example:

Example 3. Consider once again the modified ML
estimator (8) for the Bernoulli model. A similar calculation
as the one for l ¼ 1, again using beta-integrals, shows that
if we take l ¼ 1

2
, the resulting estimator is equal to the

predictive distribution (5) defined relative to Jeffreys’ prior

rather than the uniform prior. For the Bernoulli model,
Jeffreys’ prior is given by pðyjM0Þ ¼ 1=ðp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1� yÞ

p
Þ. It

follows that the APE calculated with logarithmic loss and a
slightly modified ML estimator (using ðn½1� þ 0:5Þ=ðnþ 1Þ)
is equal to the minus log Bayesian marginal likelihood with
Jeffreys’ prior, which is asymptotically indistinguishable
from the minus log normalized maximum likelihood(9).

In sum, both MDL and Bayesian model selection can be
viewed as procedures that aim to minimize one-step-ahead
prediction error by making sequential forecasts and
accumulating the resulting prediction errors.

1.4. Pros and cons of accumulating prediction errors

The previous sections have shown that the APE
procedure is a data-driven method with a strong theoretical
foundation. By measuring predictive performance for
unseen data, the APE method automatically adjusts for
model complexity in a conceptually straightforward
manner. If desired, the specification of priors can be
avoided by using the plug-in ML estimate for prediction.
For larger sample sizes, the plug-in APE method approx-
imates a full Bayesian solution that would have required
the specification of priors. Further, the APE method is
generally consistent, that is, as n!1 it will select the
data-generating model, if such a model exists, with
probability one (cf. Dawid, 1992; De Luna & Skouras,
2003; Hemerly & Davis, 1989).
The APE method also has great practical advantages. In

particular, it is easy to apply, as the only requirement is
that the model can generate predictions. Hence, the APE
method can give informative results almost effortlessly,
even for very complicated models. In contrast to the APE
method, both Bayesian model selection and MDL require
the evaluation of integrals. In Bayesian model selection
such integrals refer to the parameter space whereas in the
NML interpretation of MDL they refer to the sample
space. Even for relatively simple hypothesis testing
problems, these integrals can be difficult to evaluate
analytically (see also de Rooij & Grünwald, 2006). In
these cases, one of the standard solutions is to evaluate the



ARTICLE IN PRESS
E.-J. Wagenmakers et al. / Journal of Mathematical Psychology 50 (2006) 149–166 155
integrals numerically, using Markov chain Monte Carlo
(MCMC) techniques (e.g., Gilks, Richardson, & Spiegel-
halter, 1996; in particular, see Raftery, 1996).7 The effort
needed to understand, construct, program, and check an
MCMC simulation is considerable. For certain inference
problems, the APE method provides a practical and easy-
to-understand alternative to these more involved proce-
dures.

Unfortunately, the APE method also has some draw-
backs. Some of these drawbacks, however, are more
apparent than real. We will discuss four APE features that
may limit its scope of application:

1. Computational effort (Hansen & Yu, 2001; Wei, 1992).
As a rule, data-driven methods are computationally
expensive, and APE is no exception. A model selection
problem that involves k competing models and n observa-
tions will require at the most kðn� 1Þ model fits, and
kðn� 1Þ calculations of prediction error. For most
inference problems in the field of psychology, however,
the computation burden is anything but prohibitive.

2. Startup problems (Qian et al., 1996; Rissanen, 1992;
Wei, 1992). For accurate parameter estimation, complex
models require a relatively large number of observations.
Hence, in the early stages of the APE method a complex
model may be heavily punished for making inferior
predictions. In fact, predictions may be even undefined or
of disastrous quality, as we indicated in Example 2. At the
later stages of the APE method, however, the number of
observations may be large enough to allow relatively
accurate parameter estimation, and as a result the complex
model may begin to make superior predictions.8 With
respect to this concern, we agree with Dawid (1992), who
states ‘‘It seems to me perfectly reasonable that a complex
model should be heavily penalized in the initial stages, since
the slow rate at which its parameters can be learned means
that it may for a long time predict more poorly than a
simpler ‘‘incorrect’’ model. In this case I would rather use
the simple model until the data are sufficiently extensive as
to demand more detailed description’’ (pp. 124–125).

3. Choice of loss function (Dawid, 1992). What loss
function should be used to quantify prediction error? For
certain problems, the choice of loss function may be guided
by substantive knowledge of the problem at hand. Dawid
(1992) discusses a case in which the prognosis of a patient
can be either ‘full recovery’, ‘partial recovery’, or ‘death’.
When assessing the predictive adequacy of a specific
medical examination, one could devise a loss function that
formally takes into account the intuitive notion that
‘partial recovery’ is closer to ‘full recovery’ than it is to
‘death’. In practice, however, a model is selected mainly to
7Another solution is to reply on asymptotic approximations such as

those provided by the Laplace method (Raftery, 1996).
8In the method of forward validation proposed by Hjorth (1982),

sequential predictions are weighted by the number of observations upon

which they are based. This reduces the concern that complex models may

be overly penalized in the initial stages of the sequential prediction

procedure.
obtain insight, or to guide the search for further experi-
ments. In other cases, at the time of model selection, it may
be simply be unknown what type of predictions one will
want to use the model for. In such cases, one should adopt
a generic loss function such as the logarithmic loss (making
APE coincide with Bayes/MDL) or the squared loss for
point predictions, which, in case the errors are Gaussian, is
equivalent to the logarithmic loss (cf. Gelman et al., 2004,
p. 180; Rissanen, 1986a). An advantage of the squared loss
is computational simplicity, especially when the point
prediction is based on the maximum likelihood estimate.
4. Ordering of data (Hansen & Yu, 2001). Suppose the

data are i.i.d. (independently and identically distributed)
according the models Mj under consideration. Then the
data is best viewed as unordered, and it seems that in such
a case, a reasonable model selection method does not
depend on the arbitrary order in which the data are
entered. Indeed, in a full Bayesian analysis the order in
which the data xn enter the APE method is inconsequential.
This can be easily seen from the factorization of the
marginal probability of the data, ln pðxnjMiÞ ¼

PN
n¼1

ln pðxnjx
n�1;MiÞ. For non-Bayesian methods such as those

using ML point prediction or those using a squared error loss
function, however, the sequential ordering of the data does
influence the results, particularly for small samples. The
dependence of the APE on the ordering of the data is of
course undesirable, and several methods have been proposed
to remedy the situation. An obvious solution is to calculate
the final APE as an average of APEs for many random
orderings of the same data set (Kontkanen et al., 2001;
Rissanen, 1986a). The drawback of this procedure is that it
greatly increases the computational burden. Another solution
to the ordering dependence is to derive analytic approxima-
tions to APE that are invariant with respect to the ordering of
the data (e.g., the Fisher Information Criterion; Wei, 1992).
The issue of ordering dependence does not play a role for
time series data, since the definition of a time series implies a
single natural ordering of the data. The current work applies
the APE method to the discrimination of long-range
dependence from short-range dependence in time series (for
an introduction in time series analysis see Priestley, 1981).
These concepts are explained in the next section.
2. Long-range dependence versus short-range dependence

The difference between long-range dependence and
short-range dependence is in the rate with which the
autocorrelation decays. For long-range dependence, the
decay with increasing lag k is so slow that the autocorrela-
tion CðkÞ sums to infinity, that is,

X1
k¼�1

CðkÞ ¼ 1. (10)

This means that in the frequency domain, long-range
dependence is associated with a log–log power spectrum
that keeps increasing at the low frequencies.
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In the case of short-range dependence, the rate with
which the autocorrelations decay is relatively fast, so
that the autocorrelation function sums to a finite number,
that is,

X1
k¼�1

CðkÞ ¼ constanto1. (11)

This means that in the frequency domain, short-range
dependence is associated with a log–log power spectrum
that flattens off at the low frequencies. The difference
between long-range dependence and short-range depen-
dence is quite fundamental. Long-range dependence has
special features such as scale-invariance and self-similarity
(cf. Baillie, 1996; Beran, 1994; Doukhan, Oppenheim, &
Taqqu, 2003; Gisiger, 2001; Mandelbrot, 1977; Rangarajan
& Ding, 2003). Short-range dependence, in contrast, is not
associated with these special properties.

Long-range dependence is also of scientific interest
because it has been reported in a remarkably wide variety
of different systems, suggesting the presence of a common
underlying principle (cf. Bak, 1996; Bak, Tang, &
Wiesenfeld, 1987; Sornette, 2000; Van Orden, Holden, &
Turvey, 2003; but see Wagenmakers, Farrell, & Ratcliff,
2005). Examples of long-range dependence include the
electric current in transistors, water levels in the river Nile,
the size of tree rings, brain activity as recorded by
magnetoencephalogram, the stock market, music, and
speech (e.g., Handel & Chung, 1993; Hosking, 1984; Hurst,
1951; Novikov, Novikov, Shannahoff-Khalsa, Schwartz, &
Wright, 1997; Voss & Clarke, 1975; Wolf, 1978).9

In cognitive psychology, evidence for long-range depen-
dence was recently found in a range of tasks such as mental
rotation, lexical decision, speeded visual search, estimation
of distance, estimation of rotation, estimation of force,
estimation of time, simple reaction time, and word naming
(Gilden, 1997, 2001; Gilden, Thornton, & Mallon, 1995;
Van Orden et al., 2003; but see Wagenmakers, Farrell et
al., 2004). Long-range dependence has also been reported
in human motor tasks (Chen, Ding, & Kelso, 1997, 2001;
Ding, Chen, & Kelso, 2002; Yoshinaga, Miyazima, &
Mitake, 2000; Yulmetyev, Emelyanova, Hänggi, Gafarov,
& Prokhorov, 2002; but see Pressing & Jolley-Rogers,
1997), in day-to-day fluctuations in self-esteem (De-
lignières, Fortes, & Ninot, 2004), in the temporal dynamics
of tics in Gilles de la Tourette syndrome (Peterson &
Leckman, 1998), and in day-to-day fluctuations in self-
mood of bipolar patients (Gottschalk, Bauer, & Whybrow,
1995).

Obviously, in order to conclude that a times series is
long-range dependent it is crucial that the alternative
explanation in terms of a short-range process can safely be
excluded. In practical applications, however, the special
properties associated with long-range processes can be
approximated quite well by certain short-range processes
9A comprehensive bibliography of 1=f noise is maintained by Wentian

Li at http://www.nslij-genetics.org/wli/1fnoise/.
(e.g., Beran, 1994, p. 144; Crato & Ray, 1996; Hosking,
1984; Lawrance & Kottegoda, 1977). These short-range
models generally provide competitive fits by mimicking the
behavior of long-range models through carefully tuning
parameter values. This problem of mimicry is compounded
for short series and overall weak serial dependence.
Fig. 1 shows two example time series of length n ¼ 400.

The time series in panel A originates from a long-range
process. In panel B, the autocorrelation of this series
decays as a power function. Panel C shows the linear
log–log power spectrum that characterizes long-range
processes. The thick dotted line indicates a slope of �0:8.
The time series in panel D was generated by a short-range
process tuned to the time series from panel A. The
autocorrelation function of this process decays exponen-
tially, and its log–log spectrum is curved rather than linear.
Despite the theoretical differences between long-range
dependence and short-range dependence, panels E and F
show that in actual practice these types of dependence can
be hard to distinguish due to the stochastic nature of the
processes involved.
The foregoing illustrates that the problem of deciding

whether or not a time series is long-range dependent is
ultimately a problem of model selection. This requires the
definition of a short-range time series model and a long-
range time series model. These models should then be fitted
to the same data set and the model that has the highest
generalizability should be preferred. A framework that is
excellently suited for this particular job is autoregressive
fractionally integrated moving average (ARFIMA) time
series modeling. The reader not interested in the details
may skip to the final paragraph of the next section.
3. The ARMA(1,1) model versus the ARFIMAð0; d; 0Þ
model

Standard Box–Jenkins ARIMA time series models (Box
& Jenkins, 1970) exclusively generate short-range depen-
dence. These models consist of three components: the
autoregressive ‘AR’ component, the moving-average ‘MA’
component, and the integration ‘I’ component that
determines how many times the ARMA series should be
integrated. For example, a first-order AR process can be
written as AR(1), or ARIMA(1,0,0), or xt ¼ fxt�1 þ �t. In
an AR(1) model, the value of a series at time t is a
proportion of its value at time t� 1, plus noise. A second-
order AR process would be denoted AR(2), ARI-
MA(2,0,0), or xt ¼ f1xt�1 þ f2xt�2 þ �t, from which it is
evident that the value at time t� 2 now has an independent
effect on the value at time t. Similarly, a first-order MA
process is given by MA(1), or ARIMA(0,0,1), or
xt ¼ y�t�1 þ �t. In an MA(1) model, the current value of
a series at time t is determined in part by the value of the
noise at time t� 1. Finally, a white noise series is given by
ARIMA(0,0,0), and a random walk series is denoted by
ARIMA(0,1,0). Thus, the ARIMAðp; d; qÞ model consists

http://www.nslij-genetics.org/wli/1fnoise/
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Fig. 1. Long-range or short-range dependence? Panel A: example of a long-range time series (i.e., ARFIMAð0; d ¼ 0:4; 0Þ); panel B, autocorrelation
function for the time series in panel A; panel C, log–log power spectrum for the time series in panel A; panel D, example of a short-range time series (i.e.,

ARMAðf ¼ 0:887; y ¼ �0:536Þ; parameter values determined by fitting the panel A long-range time series); panel E, autocorrelation function for the time

series in panel D; panel F, log–log power spectrum for the time series in panel D.
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of a pth order AR process, d times integration, and qth
order MA process.

Granger and Joyeux (1980) and Hosking (1981) general-
ized the ARIMA model to account for long-range
correlations. This was accomplished by letting the integra-
tion component take on fractional values, resulting in an
ARFIMAðp; d; qÞ model:

FðBÞð1� BÞdðX t � mÞ ¼ YðBÞ�t, (12)
where B is the backward shift or lag operator defined as
BX t ¼ X t�1, FðBÞ ¼ 1� f1B� � � � � fpBp is the AR
polynomial, and YðBÞ ¼ 1� y1B� � � � � yqBq is the MA
polynomial (Beran, 1994; Hosking, 1984). For stationarity
of the ARMA part of the model, it is required that the
roots of FðzÞ ¼ 0 and YðzÞ ¼ 0 lie outside the unit circle
(e.g., Priestley, 1981, pp. 132–135). In (12), the mean of the
process is given by m, and �t is a purely random process
with Eð�tÞ ¼ 0, Eð�t�tþhÞ ¼ 0 8ha0, and variance s2� .
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In a short-range dependent ARIMA model, d in (12) can
take on integer values only. However, if d is allowed to take
on real values, the fractional differencing operator rd is
given by

rd ¼ ð1� BÞd ¼
X1
k¼0

d

k

� �
ð�BÞk,

with binomial coefficients

d

k

� �
¼

d!

k!ðd � kÞ!
¼

Gðd þ 1Þ

Gðk þ 1ÞGðd � k þ 1Þ
,

where Gð�Þ is the gamma function. Hence, fractional
differentiation of a time series X t can be described as

rdX t ¼ ð1� BÞdX t

¼
X1
k¼0

d

k

� �
ð�BÞkX t

¼ X t � dX t�1 �
1

2
dð1� dÞX t�2

�
1

6
dð1� dÞð2� dÞX t�3 � � � � .

(Hosking, 1984). If rdX t is a white noise process, then X t is
an ARFIMAð0; d; 0Þ process or fractional white noise. X t is
stationary when d 2 ð�1

2
; 1
2
Þ, and X t is said to be persistent

or long-range dependent when d 2 ð0; 1
2
Þ. When the data

generating process is pure fractional white noise, the
log–log power spectrum is described by 1=f a, and d ¼ 1

2 a.
The ARFIMAðp; d; qÞ model can be thought of as

fractional white noise passed through an ARMAðp; qÞ
filter. The low-frequency behavior of the ARFIMAðp; d; qÞ
model is determined by d, as the ARMAðp; qÞ process is
only short-range. One of the advantages of the ARFIMA
framework is that it allows simultaneous estimation of a
long-range d component and a short-range ARMAðp; qÞ
component. Thus, to determine the presence of long-range
dependence one could test whether or not d̂ ¼ 0. This
procedure, however, is spuriously affected by short-range
processes. For instance, if the data generating process is a
short-range ARMA(1,1) with the AR component slightly
higher than the MA component, d̂ as estimated from the
ARFIMAð0; d; 0Þ model will usually exceed 0.

To avoid this problem, a model selection approach is
advisable. The family of ARFIMA models encompasses
both short-range and long-range models, and their relative
merits may be compared using model selection techniques
such as AIC and BIC (e.g., Crato & Ray, 1996; Hosking,
1984; Wagenmakers et al., 2005). In this article we focus on
the comparison between one short-range model and one
long-range model (cf. Thornton & Gilden, 2005; Wagen-
makers, Farrell et al., 2004). The generalization to more
than two models is self-evident. The short-range model is
the ARFIMAð1; d ¼ 0; 1Þ or ARMA(1,1) model. The
ARMA(1,1) model is known to mimic long-range depen-
dence for specific combinations of its AR and MA
parameters (Basak et al., 2001; Beran, 1994; Crato &
Ray, 1996; Thornton & Gilden, 2005), and it may be
conceptualized as an AR(1) process plus independent white
noise (Granger & Morris, 1976; Pagano, 1974).
The long-range model that competes with the short-range

ARMA(1,1) model is the long-range ARFIMAð0; d; 0Þ
fractional white noise model. An appealing argument that
is often advanced in support of the ARFIMAð0; d; 0Þ model
is based on the principle of parsimony (Beran, 1994;
Thornton & Gilden, 2005). It is argued that although the
ARMA(1,1) process may be able to mimic the ARFIMA
ð0; d; 0Þ process, this mimicry only occurs after the ARMA
parameters have been carefully tuned to the data under
consideration. Formal model selection methods that focus
on generalizability (i.e., predictive performance to unseen
data) can be used to assess whether and to what extent this
assertion holds.
In sum, the ARFIMA framework allows the comparison

between a short-range ARMA(1,1) and a long-range
ARFIMAð0; d; 0Þ model. When testing for long-range
dependence, self-similarity, or power-law scaling in psy-
chological time series, it is important that the conceptually
simply short-range ARMA(1,1) model can be excluded
from consideration. This is not always feasible, because for
medium size times series the ARMA(1,1) model can mimic
the features of the ARFIMAð0; d; 0Þ model quite well. In
the remainder of this article, we assess the discriminability
and generalizability of the short-range and long-range
models using AIC, BIC, and APE.

4. Outline of the Monte Carlo simulations

The primary aim of the Monte Carlo simulations is to
illustrate the use of the APE procedure and compare it to
other model selection methods such as AIC and BIC. The
philosophy behind the simulations is similar to the one
advocated by Wagenmakers, Ratcliff, Gomez, and Iverson
(2004): representative time series are generated from both
the ARMA(1,1) and the ARFIMAð0; d; 0Þ model. These
simulated time series are then being fit by both the
ARMA(1,1) and ARFIMAð0; d; 0Þ models. As will be
apparent later, the result of this exercise is informative with
respect to the overall discriminability of the models, and is
also informative with respect to the extent to which model
complexity should be penalized.
In order to generate representative samples from the

ARMA(1,1) model, xt ¼ fxt�1 þ y�t�1 þ �t, values for the
AR and MA parameters were systematically sampled from
a uniform prior distribution. To obtain stationary series,
both the AR parameter f and the MA parameter y were
constrained to lie in the interval ð�1; 1Þ. Further, to obtain
series whose autocorrelations and power spectra are in
accord with those observed in psychological time series,
f 2 ð0; 1Þ, y 2 ð�1; 0Þ and jyjof. These constraints yield
stationary series with spectra that decrease in power as
frequency increases (Thornton & Gilden, 2005; cf. Fig. 1,
panel F). From this joint prior distribution on f and y,
1225 draws were obtained using systematic sampling (i.e.,
non-random sampling using equispaced intervals). Each
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Fig. 2. Model discriminability after 400 simulated observations. Panel A,

difference in log likelihood; panel B, difference in APE. Each tick mark

inside the figure frame corresponds to a single time series.

Table 1

Probability of correct model recovery using AICc, BIC, and APE for time

series generated by ARMA(1,1) and ARFIMAð0; d; 0Þ models

Index Model recovery

ARMA ARFIMA Average

AICc 0.82 0.63 0.73

BIC 0.58 0.92 0.75

APE 0.60 0.89 0.75

E.-J. Wagenmakers et al. / Journal of Mathematical Psychology 50 (2006) 149–166 159
draw of parameter values then served to generate a single
time series of length 500. For the ARFIMAð0; d; 0Þ model,
representative time series were generated by taking 1225
systematic draws from a uniform prior distribution for
d 2 ð0; 1

2
Þ. Each value of d served to generate a single time

series of length 500. For each of the 2450 time series, the
first 100 values were treated as startup values and
discarded, leaving n ¼ 400 simulated observations. For
both the ARMA(1,1) and the ARFIMAð0; d; 0Þ model, the
Gaussian innovations are given by �t�Nð0;s2� ¼ 1Þ. Thus,
when generating the data the error variance is fixed at 1.

Next, both the ARMA(1,1) model and the ARFIMA
ð0; d; 0Þ model were fitted to each simulated time series,
interest centering on values for maximum log likelihood,
AIC, BIC, and APE. Note that the short-range
ARMA(1,1) model and the long-range ARFIMAð0; d; 0Þ
model are not nested and differ in the number of free
parameters. That is, the ARMA(1,1) has three free
parameters (i.e., f, y, and the error variance s2� ), and the
ARFIMAð0; d; 0Þ model has two free parameters (i.e., d

and s2� ). The fit of both models to data was computed using
maximum likelihood (e.g., Beran, 1994; Doornik & Ooms,
2003; Sowell, 1992a, 1992b). Throughout this article, we
used the Ox arfima package (Doornik, 2001; Doornik &
Ooms, 2003) for generating simulated time series and for
the computation of exact Gaussian maximum likelihood.

Thus, the maximum log likelihood ‘ is immediately
obtained from the fitting procedure (Doornik & Ooms,
2003). The AIC (Akaike, 1974) is usually calculated as
AIC ¼ �2‘ þ 2k, where k is the number of free para-
meters. Here, we follow the advise of Burnham and
Anderson (2002), and calculate the small sample version
of AIC, AICc instead:

AICc ¼ �2‘ þ 2k
n

n� k � 1

(Hurvich & Tsai, 1989). Thus, the correction factor for
small samples is n

n�k�1
, which means that as n!1, AICc

! AIC. The BIC (Schwarz, 1978; Raftery, 1995) is
calculated as BIC ¼ �2‘ þ k ln n.

Calculation of APE is data-driven, but it is not completely
automatic, as several choices need to be made. The APE
method used here is very similar to predictive MDL
(Rissanen, 1986a), in that it uses the ‘plug-in’ maximum
likelihood parameter estimates for prediction of the next
observation (cf. Dawid, 1984, p. 287, and Skouras & Dawid,
1998). The advantages of the plug-in approach are computa-
tional ease and the fact that no prior distribution for the
parameters needs to be specified. To evaluate the prediction
error we used squared error loss (cf. Rissanen, 1986a).
Finally, for each time series we did not compute prediction
errors until the most complex model had become identifiable
(i.e., prediction errors are not calculated for the first four
observations). De Luna and Skouras (2003) recently made
the same choices for calculating APE.

To assess performance of the different model selection
methods, the most often-used measure is the probability of
correct model recovery in Monte Carlo simulations.
Although very useful, this method presupposes knowledge
of the data generating process. In real-world applications,
models are only approximately ‘‘true’’. To assess what
model selection method is most appropriate for a
particular real-world time series, we apply the model
meta-selection method introduced by Clarke (2001) and De
Luna and Skouras (2003). This method is similar to APE in
that it also assesses accumulative prediction errors. The
model meta-selection method, however, computes APE for
model selection methods instead of models. Thus, the
method quantifies the size of the prediction errors if, say,
AICc was used to select the model that predicts the next
data point.
5. Results of the Monte Carlo simulations

An important research question concerns the extent to
which ARMA(1,1) and ARFIMAð0; d; 0Þ time series can be
differentiated in practical applications (i.e., for series with
only a modest number of observations). Fig. 2, panel A,
shows two distributions of differences in log likelihoods,
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one for the 1225 series of length 400 generated by the
ARMA(1,1) model, and one for the 1225 series generated
by the ARFIMAð0; d; 0Þ model.10 On the x-axis, values
greater than zero indicate that the ARFIMAð0; d; 0Þ model
provided a better fit than did the ARMA(1,1) model. As
may be expected from the fact that the ARMA(1,1) model
has an additional parameter compared to the
ARFIMAð0; d; 0Þ model, the ARMA(1,1) provides a
superior fit not only for most of the ARMA time series,
but also for most of the ARFIMA time series. Thus, log
likelihood alone forms a poor basis for model selection, as
the majority of time series would be classified as ARMA,
even when the true generating process is ARFIMA.

In Fig. 2, panel A, vertical lines indicate the AICc and
BIC criteria. Both AICc and BIC ‘correct’ the log
likelihood by penalizing the ARMA(1,1) model. The BIC
criterion favors the ARFIMA model more than does the
AICc criterion, as the BIC punishment for an additional
parameter is relatively high (i.e., 5.99 for BIC versus 2.01
for AICc). Note that the total number of correct
classifications is maximized when the criterion is placed
at the point where the distributions intersect.

Fig. 2, panel B, shows two distributions of differences in
APE, one for the 1225 series generated by the ARMA(1,1)
model, and one for the 1225 series generated by the
ARFIMAð0; d; 0Þ model. Again, values on the x-axis
greater than zero indicate that the ARFIMAð0; d; 0Þ model
is to be preferred over the ARMA(1,1) model. Panel B
shows that model selection by APE is centered correctly,
that is, the nominal criterion DAPE ¼ 0 automatically
incorporates a correction for model complexity. Moreover,
for the present model selection problem the DAPE ¼ 0
criterion is approximately optimal, as it is located closely to
the point where the distributions intersect. In contrast to
APE, log likelihood is not centered correctly, and thus
requires a correction using explicit penalty terms.

Table 1 shows the probability that AICc, BIC, and APE
recover the model that generated the data. The probability
of correct model recovery can also be obtained from Fig. 2.
For instance, the probability of correctly identifying an
ARFIMA-generated time series using APE is equal to the
area under the black curve in panel B that lies to the right
of the DAPE ¼ 0 criterion. Although all three model
selection methods show comparable classification perfor-
mance overall, AICc recovers the ARMA(1,1) model better
than the ARFIMA(1,1) model, whereas both BIC and APE
show the opposite pattern.

Whereas Table 1 shows model recovery performance
after 400 observations, Fig. 3 plots performance as a
function of the entire sequence of simulated observations.
Thus, Fig. 3 shows, for instance, how the percentage of
ARMA(1,1) time series that were classified correctly
10These distributions are based on kernel density estimation using a

Gaussian kernel with window width h ¼ 0:9An�
1
5 (cf. Eq. (3.31) in Silverman,

1986), where A ¼ minðstandard deviation; interquartilerange=1:34Þ, and n is

the number of observations.
according to AICc after each of n 2 f5; 6; . . . ; 400g ob-
servations. Panel A confirms that model selection by
uncorrected log likelihood is biased toward selection of
the ARMA(1,1) model. Panel B shows that the AICc
penalty term to a certain extent corrects this bias. After
about 50 observations, recovery for both ARMA and
ARFIMA series is above chance. Nonetheless, recovery of
ARMA series is still consistently higher than that of
ARFIMA series. Panel C shows that the BIC penalty term
leads to a general preference for the ARFIMAð0; d; 0Þ
model. Model recovery using APE shows a qualitatively
similar pattern to model recovery using BIC, although the
extent of the ARFIMA preference is a little less for APE
than it is for BIC, particularly when no200.
Thus, substantial differences exist between AICc on the

one hand and BIC and APE on the other. In particular,
AICc tends to prefer the ARMA(1,1) model, whereas BIC
and APE tend to prefer the ARFIMAð0; d; 0Þ model.
Unfortunately, assessment of performance via model
recovery simulations does not provide much guidance on
n(C)

Fig. 5. Estimation of 400 one second time intervals. Panel A, observed

response latency; panel B, series of one-step-ahead predictions from the

ARMA(1,1) model; panel C, series of one-step-ahead predictions from the

ARFIMAð0; d ; 0Þ model.
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which selection method to use, as the overall probability of
correct recovery is almost equal (cf. Table 1). Besides, even
if the model recovery procedure had shown that BIC and
APE outperform AICc, AIC fans could rightly point out
that the model that generated the data for fitting is also
present among the candidate models. This is a circum-
stance that is unlikely to hold in scientific practice, where
almost all models are abstractions of reality and never
precisely ‘‘true’’ (cf. Burnham & Anderson, 2002).

An alternative method to assess performance for model
selection methods is to quantify their predictive perfor-
mance through a procedure known as model meta-selection

(Clarke, 2001; De Luna & Skouras, 2003). The aim of this
procedure is to estimate the predictive value not of the
models (i.e., ARMA and ARFIMA), but of the model
selection methods (i.e., AICc, BIC, and APE). Just as in the
calculation of APE, the meta-selection procedure requires
one to fit the ARMA(1,1) and ARFIMAð0; d; 0Þ models for
each of an increasing number of observations. The
predictive value of, say, AICc can then be quantified by
the accumulative prediction error for the models chosen by
AICc. For instance, suppose that for a particular time
series, AICc prefers the ARMA model up until the data set
has increased to n ¼ 200, after which AICc starts to prefer
the ARFIMA model. The accumulative prediction error
for the AICc model selection procedure is then a sum of the
prediction errors made by the ARMA and ARFIMA
models (for the first and second half of the time series,
respectively). The advantage of using the model meta-
selection method is that it allows a concrete, data-driven
assessment of the relative value of model selection tools
such as AIC and BIC. Also, the model meta-selection
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Fig. 6. Difference between ARFIMAmodel indices and ARMAmodel indices

panel B, AICc index; panel C, BIC index; panel D, APE index.
method is consistent in the sense that it will eventually
prefer the model selection tool that provides the best
forecasts (cf. De Luna & Skouras, 2003, Theorem 1).
Finally, model meta-selection does not require the data
generating model to be in the set of candidate models. This
advantage will be exploited when we later consider
performance of model selection methods for a single real-
world time series.
Fig. 4 shows the results of the model meta-selection

method applied to the simulated time series, separately for
ARMA series and ARFIMA series. The panels of Fig. 4
generally show DAPE40, indicating the following order-
ing on APE: APEðAICcÞ4APEðBICÞ4APEðAPEÞ. That
is, the accumulative prediction errors are highest for
models selected according to AICc, and are lowest for
models selected according to APE. The only exception to
this rule concerns panel B, which shows that for ARMA
time series the AICc is predictively better than the BIC.
In sum, the above results demonstrate that for time series

of length n ¼ 400, the ARMA(1,1) model is generally
difficult to discriminate from the ARFIMAð0; d; 0Þ model.
AIC behaves very differently from BIC, and BIC is
qualitatively similar to APE. The model meta-selection
procedure shows that for the simulated time series, the use
of AICc leads to larger one-step-ahead prediction errors
than the use of BIC or APE.

6. Real-world example: estimation of one second time

intervals

In this section, we illustrate the use of both APE and the
model meta-selection procedure by application to a real-
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world time series. The series under consideration is shown
in Fig. 5, panel A, and concerns the repeated estimation of
a one second time interval. This particular task is very
popular in the research on long-range dependence in
psychology (cf. Gilden, 2001; Wagenmakers, Ratcliff
et al., 2004). The time estimation task is known to generate
relatively sizeable serial correlations, and this greatly
facilitates the process of discriminating between models
with long-range dependence and models with short-range
dependence (Thornton & Gilden, 2005).

A female student completed a practice block of 15 trials
with feedback followed by an experimental block of 400
successive trials without feedback. Each trial started with
the 1 s presentation of a fixation cross, followed by
the presentation of the picture of an orange carrot.11 The
participant was instructed to press a response button
one second after the appearance of the carrot stimulus.
The stimulus remained visible until the participant had
responded.

Prior to model fitting, two data purification techniques
were applied. First, RTs exceeding the mean by more than
three standard deviations were deemed outliers and were
discarded. In the time series under study, one such outlier
was identified and removed. Second, the models used here
assume stationarity. Quadratic trends such as those
resulting from practice effects and effects of fatigue may
result in a non-stationary time series. Such time series will
generally be described much better by the ARFIMAð0; d; 0Þ
model than by the ARMA(1,1) model (cf. Giraitis,
Kokoszka, & Leipus, 2001). Thus, in order to avoid
spurious detection of long-range dependence, the time
series under study was quadratically detrended (cf. Van
Orden et al., 2003; but see Thornton & Gilden, 2005).

Fig. 5, panel A, shows the detrended data.12 Just as for
the simulated data, both the ARMA(1,1) model and the
ARFIMAð0; d; 0Þ model were fit to a gradually increasing
part of the time series. Fig. 5, panels B and C, show the
one-step-ahead predictions from the ARMA(1,1) and
ARFIMAð0; d; 0Þ models, respectively (cf. Basak et al.,
2001).

Fig. 6 shows the difference between log likelihood, AICc,
BIC, and APE for the two models as a function of the
number of observations in the data set. Fig. 6 clearly
demonstrates that as the number of observations increases,
so does support for the ARFIMAð0; d; 0Þ model. This
support is particularly strong for BIC and APE, echoing
the results from the Monte Carlo simulations. Thus, from
Fig. 6 it can be concluded that the most useful model for
this time series is more likely to be ARFIMAð0; d; 0Þ than it
is to be ARMA(1,1).
11Our reasons for using a carrot were twofold. First, a companion two-

choice RT task involved classification of rabbits. Second, these two tasks

were also administered to children, for whom rabbits and carrots are

relatively interesting stimuli.
12The raw time series data are available on the first author’s internet

site, at http://users.fmg.uva.nl/ewagenmakers/2006/time.txt.
The three panels in Fig. 7 show the result of a model
meta-selection procedure. Panels A and B demonstrate
that, for this particular time series, use of AICc for model
selection results in relatively large one-step-ahead predic-
tion errors, whereas BIC and APE perform about the same.
Note that the horizontal stretches in Fig. 7 indicate that the
difference in prediction error between two model selection
methods does not change. This occurs when two model
selection methods prefer the same model. Since after about
180 observations all selection methods prefer the
ARFIMAð0; d; 0Þ model over the ARMA(1,1) model, the
x-axis of Fig. 7 only shows the results for the first 200
observations.
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0e+00
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Fig. 7. Model meta-selection as a function of the number of observations.

Each panel shows the difference in APE for various model selection

methods. Panel A, APEAICc �APEBIC ; panel B, APEAICc � APEAPE ;

panel C, APEBIC � APEAPE .
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7. Concluding remarks

This article reviewed the rationale for using accumulative
prediction error as a method of model selection. The APE
method was applied to the problem of deciding whether a
time series is long-range dependent or short-range depen-
dent, or, more specifically, whether a time series is better
described as ARFIMAð0; d; 0Þ or as ARMA(1,1). As
shown in Fig. 2 and Table 1, the APA is able to
discriminate these models in an almost optimal fashion
(i.e., the DAPE ¼ 0 point is located very near the
intersection of the two distributions, cf. Wagenmakers,
Ratcliff et al., 2004) and automatically incorporates a
penalty for model complexity.

The use of APE has several advantages. As was
discussed in some detail earlier, the APE inherits a firm
theoretical foundation from its relation to Bayesian model
selection and minimum description length (Dawid, 1984;
Rissanen, 1986b). Also, note that the APE interpretation of
BMS/MDL provides a new perspective on what is achieved
using BMS/MDL (i.e., minimization of accumulative one-
step-ahead prediction errors).

One of the most important advantages of the APE
method is surely the relative ease with which it is
implemented. Further, the APE method can be applied to
nested and non-nested models alike, and—in contrast to
AIC and BIC—it is sensitive to the functional form of the
model parameters (cf. Myung & Pitt, 1997), and not just to
their number. The APE method is conceptually straight-
forward, as it accumulates ‘honest’ one-step-ahead predic-
tion errors, that is, its predictions always concern unseen
data. This distinguishes APE from cross-validation, which
is otherwise very similar in spirit. Also, the APE is a data-
driven method that does not rely on the accuracy of
asymptotic approximations. In particular, use of the APE
does not require one of the candidate models to be ‘true’ in
the sense that it should correspond to the data generating
process. Finally, the APE method can be used not only for
the selection of models, but also for the selection of model
selection methods. This method allows model selection
methods to be compared for a single real-world time series,
and may hence be of considerable practical importance.
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