
That Simple Device Already Used by Gauss

Peter Grünwald
CWI Amsterdam
the Netherlands
www.cwi.nl/~pdg

Abstract

From November 1998 until September 1999, Jorma Rissanen and I met on a
regular basis. Here I recall some of our stimulating conversations and some of the
work that we did together. This work, based almost exclusively on a single page of
[12], was left unfinished and has never been published, but it has indirectly had a
profound impact on my career.

1 Meet Jorma Rissanen

I first met Jorma in November 1998. I had just obtained my Ph.D. in Amsterdam
and started a postdoc at Stanford University. These were exciting times: it was at
the height of the dot-com boom, and Stanford was right in the middle of it. Since
my thesis was all about the MDL Principle, I had suggested that Jorma and I could
meet in person during my stay in California. Jorma replied that he would like to.
I was delighted, honored but also a bit worried, since I had been forewarned that
Jorma was not your “usual” kind of scientist...

San Francisco, Category Theory and Statistics I found that, while
Jorma was not one for polite small talk, he did like having lots of beer with a
small circle of academic friends (for most scientists it seems to be the other way
around). He didn’t talk much, but what he said was invariably to the point, direct
and frank. During our first meeting, when I told him that I lived in San Francisco
since it seemed to me so much nicer than Palo Alto, his immediate reply was “I
don’t like San Francisco”. Later that day, we talked about science in general, and
I was quite surprised to learn that, in his first years at IBM, Jorma had been a
serious student of category theory – he even published on it while he was professor
in Sweden [15]. He went on to say that he found category theory to be much easier
than statistics, the field to which he had made such major contributions. When I
asked him why, he said “because much of statistics is nonsense. It is exceedingly
hard to teach yourself nonsense!”. Vintage Jorma: blunt and sharp at the same
time. Some fear him for this, others, like me, find Jorma’s conversation delightfully
refreshing.



Jorma is, in fact, notorious for his strong opinions about sub-fields of
mathematics – when a Ph.D. student once told him that he had spent
a lot of time studying complex function theory, Jorma exclaimed (not
entirely seriously, I believe) “you’ve wasted your youth!”

Jorma could be as harsh about his own work as he could be about others work – I
vividly recall him saying “how could I have been so stupid” when I suggested that
the central proof in [13] was much more difficult than was needed. When I told him
that I did not quite understand another proof of his, in [11], he told me that he
himself only understands it some of the time, “when I have one of my better days”.
I am referring to the proof of what is perhaps his most well-known theorem: the
central result of [11], which is an extension of the information inequality, but, from
a statistical point of view, can also be interpreted as — as Jorma put it, now less
modestly but entirely correctly — “a grand Cramér-Rao theorem.”

Soccer and Impounded Cars Our first meeting went quite well, and I was
honored that Jorma asked me to visit him again. In the end, I visited him every 3-4
weeks during my year at Stanford - at the time, Jorma was still at IBM Almaden,
in San Jose, just 40 minutes further down the highway. I usually arrived at 10
in the morning and stayed for the whole day. Between 12 and 2 however, Jorma
would often leave to play soccer with a group of friends, something he did three
times a week. At the time he was 67, but still very good at it: in his youth Jorma
had seriously considered becoming a professional soccer player. In the end, he had
decided to pursue his Ph.D. instead – as Jorma told me during one of my visits,
he still doesn’t know whether he has made the right choice. When Jorma went out
for soccer, I used to have lunch at IBM’s luxurious cafeteria, paid for by Jorma’s
card. On one occasion, my car had broken down, and Jorma told me that Nemo,
one of his soccer friends, could probably arrange a good new car for me for as little
as $ 150: Nemo was a car dealer who took over impounded cars from the police
if they hadn’t been picked up for more than a year. I was fascinated: a brilliant
scientist who always speaks his mind, played soccer at world-class level and counts
impounded car dealers among his friends.

During my visits, Jorma and I also did some work together. Rather than actually
working on a joint publication, we were both pursuing related but distinct ideas,
always discussing our latest progress during our meetings. So what did we work on?

2 Prediction is Coding

I learned about the MDL Principle from the monograph “Stochastic Complexity in
Statistical Inquiry” [12], the “little green book,” in which Jorma so eloquently puts
forward the main ideas underlying the MDL Principle. In Chapter 2, Jorma notes
that different research communities have a different understanding of the concept of
a “model”. In statistics, a model is usually a family of probability distributions, for
example, the Gaussian or normal family. In other fields such as pattern recognition
and machine learning, a model is usually a family of deterministic hypotheses or
predictors. For example, we may try to find a relationship between a variable X,
taking values in some set X , and a variable Y , taking values in Y, by considering a
“model” F , which is really a family of deterministic functions f : X → Y. f is then



fit to the data (x1, y1), . . . , (xn, yn), using, for example, the least squares criterion;
concrete examples are given below. Jorma claims that, from an MDL perspective,
there is no real distinction between the probabilistic and the deterministic type
of model: they may both be viewed as defining codes or equivalently, description
methods for the data. Statistical inference should then proceed by selecting the
model (set of description methods) that leads to the shortest codelength of the
data.

A Simple Device Already Used by Gauss How, then, should we associate
models with codes? For probabilistic models this is obvious: the Kraft inequality
tells us that for every probability distribution P , there exists a uniquely decodable
code such that, for all outcomes x, the codelength of x is (essentially) equal to
− log p(x), p being the mass function of P . The information inequality indicates
that this particular code is the only reasonable code that one may want to associate
with P [3, Chapter 3]. But what about deterministic predictors f?

According to Jorma, we should map them to codes as follows. We first map
each f to a conditional distribution pf , defined in such a way that − log pf (y | x) is
an affine (linear with constant offset) function of the loss L(y, f(x)) that f makes
when predicting y given x. We should then use the code with lengths − log pf .
His remarks are worth quoting in full [[12], page 18; mathematical notation slightly
adjusted, material between square brackets and emphasis added by myself]:

...The two views however can be reconciled by the simple device used
already by Gauss for the distributions bearing his name. In fact, for any
desired distance measure L(yi, ŷi), [and any predictor f under consider-
ation] define a density function

pf (yi | xi) = Ke−L(yi,f(xi)), (1)

where K is so chosen that pf becomes a proper density function over the
range of yi. Taking the product of these, pf (yn | xn) =

∏n
i=1 pf (yi | xi),

over the observed data set, gives the desired conditional density function
for sequences [...]
[For example] let the data consist of a binary sequence yn = y1, . . . , yn.
With some predictor ŷi as a function of the past observations, let L(yi, ŷi) =
0 if the prediction is correct, i.e., if yi = ŷi, else let L(yi, ŷi) = 1. The
desired criterion for the goodness of the predictors is the number of mis-
predictions in the observed sequence. Picking in (1) the base of the
exponential as 2, we get P (1 | ŷi) = K or K/2, depending on what the
predicted symbol is. In either case, P (0 | ŷi) = 1 − P (1 | ŷi), which
makes K = 2/3. With this the number of mistaken predictions made
differs only by a constant from the quantity −

∑
i log p(yi | ŷi), which

is seen to be an expression in terms of probabilistic model [and corre-
sponds to the codelength of the data according to a particular uniquely
decodable code]
...As another example, with L(yi, ŷi) = (yi − ŷi)2, (1) defines a normal
density function with mean ŷi and variance 1/2. The induced normal
density function for the data pf (yn | xn), as defined by its negative



logarithm, is

− log pf (yn | xn) =
n∑

i=1

(yi − ŷi)2 +
n

2
lnπ.

Again we see that the sum of the squared errors differs from the negative
logarithm of a density function only by a constant.

This single page constitutes all Jorma writes about the unification of different types
of models. When I first read it (in 1995) I was highly intrigued: one is promised here
a new, fully general notion of “model”, encapsulating all previous ones, in which a
model really becomes a language that allows one to express particular properties of
the data [3]. This claim is bold, exciting, but only treated in the most sketchy of
fashions. The examples that Jorma gave raise all kinds of questions. As will become
clear, trying to answer these, and validating Jorma’s claim, has, to a large extent,
shaped my own career.

An immediate question that comes to mind is: why use logarithm to the base 2 in
the 0/1-loss example? And, relatedly, why use variance 1/2 in the Gaussian (squared
error) example? These seem to be arbitrary choices. They may be justifiable if we
do have some additional probabilistic knowledge about the situation we are trying
to model, e.g. that the errors are Gaussian with known variance 1/2. But we
often want to use predictors with squared error in cases where we hardly have
any probabilistic knowledge; in particular, we usually do not even want to assume
normality. Does the approach still work in such cases?

Optimality To phrase this question more precisely, for a fixed class of predictors
F , a fixed loss function of interest L : Y×Y → R and a fixed β > 0, for each f ∈ F ,
define an associated conditional probability distribution Pf,β identified by its mass
function pf,β(Y |X), as follows:

pf,β(y | x) ≡ 1
Z(β)

e−βL(y;f(x)) (2)

where Z(β) ≡
∑

y∈Y e−βL(y;f(x)) is a normalization factor. (2) is extended to several
outcomes by taking product distributions. For the 0/1-loss, Z(β) = 1 + e−β; for
other loss functions Z(β) may depend on f and x; if Y is not countable, pf,β becomes
a density with respect to some fixed underlying measure and the summation in the
definition of Z(β) becomes integration. For example, for the squared loss, with the
variable substitution σ2 = 1/(2β), (2) becomes a conditional normal density and
Z(β) = 1/

√
2πσ2 =

√
β/2π. We see that for every choice of β > 0, the codelength

obtained by coding with pf is an increasing affine function of the loss induced by f :
for all xn ∈ X n, all yn ∈ Yn, we have

− log pf,β(yn | xn) = β

n∑
i=1

L(yi, f(xi)) + n lnZ(β). (3)

Thus, for each given sequence of data, and any two predictors f1 and f2, f1 better
fits the data in terms of L if and only if pf1,β better fits the data than pf2,β in terms
of likelihood. For fixed β, the likelihood will be maximized for pf̂ ,β, where f̂ is the f



that minimizes, among all f ∈ F , the empirical risk
∑n

i=1 L(yi, f(xi)). In my thesis
I called this the optimality property of the mapping (2): the optimal (best-fitting
in terms of L) f̂ gets mapped to the optimal (best-fitting in terms of likelihood) p̂.
This is one of the main reasons why the property (3) is desirable for our mapping
from deterministic f to probabilistic p.

Reliability The question that was asked above can now be rephrased as: is there
a natural choice for β? After two years, in 1997, I discovered that such a natural
choice exists: we should simply learn β from the data, using some likelihood-based
method such as maximum likelihood, MDL or Bayesian inference. The resulting β
has a particularly useful property which may be called reliability. To explain this
further, assume, for example, that we use two-part code MDL [3]. If one has only
vague or no prior knowledge about what β should be, the straightforward thing is
to first encode some f ∈ F , then encode some β ≥ 0, and then encode the data
with the encoded pf,β, using the combination (f, β) which minimizes the total two-
part code-length. In this way, we can usually gain some additional compression of
the data, which indicates that β captures some interesting property of the data.
This is indeed the case, as is now shown. Note first that under any reasonable
method for coding β, for large n, the encoded β will be close to the ML estimator
β̂f achieving maxβ pf,β(yn | xn), where f is the previously encoded predictor f .
This ML estimator has a very special property, and this property is what makes
learning β the natural thing to do. Namely, letting Ef,β[·] denote expectation under
pf,β, we find that, no matter what data (xn, yn) is observed, for any fixed f , we
have

Ef,β̂f
[L(Y, X)] =

1
n

n∑
i=1

L(yi, f(xi)). (4)

To see this, simply differentiate the minus log-likelihood (3) with respect to β. The
minimum is achieved if we set the derivative to 0, and this gives, for arbitrary y′,

n∑
i=1

L(yi, f(xi)) + n
−

∑
y L(y, y′)e−βL(y,y′)

Z(β)
= 0, (5)

from which (4) follows. Note that the pf,β are really conditional distributions for Y n

given Xn, so they only induce a conditional expectation of L(Y, X), i.e. a function
which maps each value for X to a corresponding expectation. However, this function
is a constant: the expectation does not depend on X, and we may treat it like a
single number, as in (4). In my thesis, I called (4) the reliability property of the
mapping (2), since, for each f ∈ F , the best-fitting β̂f gives a “reliable” (unbiased
in a very strong sense) indication of the performance of f on future data.

Entropification The reliability property indicates that it may be useful not only
to learn f , but also to learn β from the data, and this suggests mapping F to the set
of distributions P = {Pf,β | f ∈ F , β ≥ 0}, where Pf,β is given by (2). In my thesis
and in [6], I called this mapping the entropification of F , a name which has hardly
caught on (but see [7]). As long as we restrict β to be nonnegative, the likelihood
will be jointly maximized for a distribution pf̂ ,β̂f̂

such that f̂ is optimal in terms

of empirical risk, and β̂f̂ is a reliable estimate of the performance of f̂ . There is a



slight problem in that for some loss functions, β̂ may become negative, and then
(3) indicates that the maximum likelihood will be achieved for some pf,β such that
f has the largest rather than the smallest empirical risk within the set F . The
problem can be avoided by restricting the model P to β ≥ 0. In fact, it is not clear
whether this is a “problem” at all, because negative β̂ has a clear interpretation.
In the classification case, if β̂f < 0, this means that one obtains smaller loss by
predicting a 0 whenever f predicts a 1 and vice versa. Thus, f makes a mistaken
prediction on more than half of the sample points, which means that it performs
worse than random guessing.

One may doubt the practical relevance of the optimality and reliability properties
(3) and (4), since, if F is large, the ML estimator pf̂ ,β̂f̂

may of course be prone to

terrible overfitting and one might prefer other estimators instead. However, (3) and
(4) immediately imply “expected” versions of the two properties, and these make
the notions relevant for any likelihood-based inference method, including Bayes and
MDL. Namely, fix any joint distribution P ∗ on X × Y. Let f̃ be the unique best
predictor relative to P ∗, i.e.

f̃ := arg min
f∈F

EX,Y∼P ∗ [L(Y, f(X))],

and let P̃ be the conditional distribution of the form (2) that minimizes conditional
KL-divergence to P ∗, i.e.

P̃ := arg min
P∈P

D(P ∗‖P ),

where D(P ∗‖P ) := EX∼P ∗ [D(P ∗
Y |X‖P )] is the conditional KL divergence [5]. For

simplicity we assume here that f̃ and P̃ exist and are unique; otherwise, we make
no assumptions about P ∗; in particular, we do not assume that P ∗ ∈ P. Then, as
shown in my thesis, we have

P̃ = Pf̃ ,β̃ (optimality),

for some β̃ ≥ 0, and, if β̃ > 0, then

EP̃ [L(Y, f̃(X))] = EP ∗ [L(Y, f̃(X))] (reliability) (6)

For discussion about the case β̃ = 0, see [6].
Now, as the sample size increases, if a likelihood-based estimation method for P

converges at all, it will converge to the P̃ minimizing KL divergence to P ∗ [3]. Thus,
the expectation-versions of the reliability and optimality-properties indicate that, if
predictors are mapped to distributions using the “entropification” method (2), then,
whenever estimation methods such as two-part or predictive MDL converge at all,
they will (a) converge to the P̃ that leads to the best predictions in terms of the user-
supplied loss function of interest; and (b) give a consistent (asymptotically unbiased)
estimate of how good the predictions of P̃ really are. This seems exactly what is
wanted from a mapping from deterministic predictors to description methods. I
also found that earlier, [9] had explored a one-part code for the 0/1-loss based
on essentially the same idea (averaging out β rather than encoding it). Finally,
a seemingly disturbing aspect of Rissanen’s approach (fixed β), when applied to
the 0/1-loss, was its apparent difference from an earlier approach by Quinlan and



Rivest [10], who also tried to apply MDL in a deterministic classification context. I
found that, if we allowed β to be determined by the data, then a simple application
of Stirling’s approximation showed that the Quinlan and Rivest approach in fact
became equivalent to Rissanen’s method after all. All this lead me to believe that
“entropification” (i.e. extending the Gauss-Rissanen idea by allowing β to be learned
from the data) was the right way to go.

Simple vs. Nonsimple Loss Functions Yet all was not well: as discussed
in my Ph.D. thesis, entropification is surrounded by a myriad of slings and arrows.
Here I concentrate on the most important one: the whole idea only works if the loss
function is such that Z(β) does not depend on f and x. In my thesis, I called such
loss functions “simple”. Both the 0/1- and the square loss functions are “simple”,
but most other loss functions of practical interest are not “simple”. On our very first
meeting, while praising the entropification idea in general, Jorma expressed doubts
that it could be extended to such more general loss functions. For example, in a
classification context, we may deal with an asymmetric loss function, which applies
when predicting a 0 while the outcome should have been a 1 is much worse than
vice versa. For example, Las(0, 0) = Las(1, 1) = 0, Las(0, 1) = 1, Las(1, 0) = 106.
Loss functions such as this one are very important in practical applications such as
deciding whether or not a certain drug should be administered to a patient. Las

is not simple, since
∑

y e−βL(y,y′) depends on y′. In that case, the mapping (2)
leads to values of Z(β) depending on f and x, and the optimality property (3) is
destroyed. We could try to save it by defining Z ′(β) = supy′∈Y

∑
y∈Y e−βL(y,y′), and

using (2) with Z(β) replaced by Z ′(β). The distributions in P would then become
defective (summing to less than one). Note that we will interpret our distributions
as codes, and from such a coding perspective, there is nothing wrong with defective
distributions in principle: via Kraft’s inequality, they still correspond to codes.
However, the approach is still flawed, since when using defective distributions in
this way, the optimality property is restored but the reliability property is lost! How
can one generalize the idea so that both the optimality and the reliability property
continue to hold? Jorma was doubtful that this could be done, and that his own
bold claim “prediction is coding” could still be maintained for such nonsimple loss
functions (interestingly, Phil Dawid, during my thesis defense two months earlier,
had raised exactly the same doubts).

Feeling challenged by Rissanen and Dawid, I spent many an afternoon in the
Stanford or San Francisco sun, trying to figure out a way to make “entropification”
work for a larger class of loss functions. I felt that somehow it was possible. Each
time I drove over to Jorma, I discussed my newest ideas on the topic, and gradually,
I convinced him that my approach was feasible. Usually he would just listen, make
some encouraging but general remarks, and then one day later send me an email,
invariably starting with ”Peter:”, followed either by a counterexample to my latest
approach or some other profound issue.

The Importance of Being Brief Just as in conversation, Jorma’s
emails are invariably brief and to the point. Here is an example dated
February 1999: “Peter: The thing that’s missing in your lemma is only
to show the convergence θ̂ → θ∗, which permits you to replace the almost
sure convergence of the sum simply by the entropy. Incidentally, if you



have time next week we should meet. Jorma.”
My responses were always long. Similarly, Jorma’s MDL books are short,
mine is very long. Jorma sticks to his own principle. I would love to do
the same, but find that I lack the time: as Blaise Pascal has said “I have
only made this letter longer because I have not had the time to make it
shorter.”

In the end, with Jorma’s help, I found a partial and surprisingly simple solution to
the nonsimple loss problem, which I’ll now describe. For sake of generality, we drop
the restriction that the set of possible predictions coincides with the set of outcomes
Y. Thus, let A be the set of possible predictions (A stands for “acts” or “actions”,
as decision theorists would prefer to call them), and let Y be the set of possible
outcomes to be predicted. Then a predictor f is a function f : X → A, and a loss
function is a function L : Y ×A → R. With each loss function we can associate its
range

L := {l ∈ R : l = L(y, a) for some y ∈ Y and a ∈ A}.

For simplicity, we restrict ourselves to cases where L is finite. For example, with
L = Las, the asymmetric loss defined before, we have L = {0, 1, 106}.

Coding the Loss rather than the Data The central idea to make en-
tropification work again is to code the losses rather than the y-values. Thus, we
associate each f and β with a code for describing, for each i, the size of the loss
li := L(yi, f(xi)), obtained when predicting yi based on f(xi). Thus, rather than
coding yi given xi using a code not depending on f (as in the original entropification-
approach), we now code li using a code which does depend on f .

To this end, for each β ≥ 0, we define a mass function pβ on L, simply by setting

pβ(l) :=
1

Z(β)
e−βl (7)

where Z(β) is given by
Z(β) ≡

∑
l∈L

e−βl (8)

pβ is extended to sequences by independence, pβ(l1, . . . , ln) =
∏n

i=1 pβ(li).
For given data xn, yn, given f ∈ F and β ≥ 0, we now code the corresponding

losses l1, l2, . . . , ln using the code with lengths − log pβ. Thus, for each xn, yn, we
get codelength

− log pβ(ln) = β

n∑
i=1

L(yi, f(xi)) + n lnZ(β). (9)

(note again that pβ does not depend on f , but ln does). (9) corresponds to (3) and
shows that our mapping satisfies optimality. How about reliability? Let’s fix some
f and compute the derivative of (9) with respect to β, i.e. (d/dβ)(− log pβ(ln)).
A straightforward calculation analogous to (5) shows that if the derivative is 0 for
some β > 0, then the likelihood achieves a maximum (the minus log likelihood is
minimized) for this β, and for this β, we have

Eβ[L] =
1
n

n∑
i=1

L(yi, f(xi)).



But this is just the reliability property (4) again. Further analysis reveals that
an analogue of the expectation-versions of reliability and optimality also holds.
Thus, by directly coding losses rather than outcomes we have recovered the essential
properties of entropification for simple loss functions!

This approach does the trick, but it also raises a lot of questions: (a) what
if the maximum likelihood is achieved at some β < 0? (b) can we still think of
inference based on coding of the losses rather than the data as a form of the MDL
principle? Philosophically, can there be some rationale for coding losses rather than
data? Or should we somehow further adjust the approach such that, from what
is encoded, the data y1, . . . , yn can always be recovered? More generally, the idea
to code losses rather than data, which implies that the objects one actually wants
to encode depend on the code one chooses to encode them, seems highly unusual!
(c) How does the approach extend to continuous loss functions and loss functions
with infinite domains? (d) does there exist a general formulation which subsumes
both the “simple” approach (2) and the nonsimple approach described above? (e)
How does the approach compare to the “aggregating algorithm” designed by Vovk
and others [16, 8, 17, 1]? The aggregating algorithm can also be re-interpreted as
mapping predictors/loss functions to probability distributions using (2), but rather
than being learned from the data, β is chosen as a function of the loss function,
and sometimes the sample size, in order to achieve good worst-case performance.
Intriguingly, it turns out that Vovk’s approach can only work for nonsimple loss
functions – when Vovk deals with the squared error loss function, he restricts the
range to [−1, 1], and then Z(β) becomes dependent on f(x).

3 An Unfinished Tale

I found the solution sketched above in the final weeks of my stay in Stanford. A few
months later I discovered how one can avoid the problems with β < 0, and I also
discovered a more general approach subsuming the original entropification method,
the method described above, and a third method which works for some continuous
asymmetric loss functions. Still, the important question (b) remained open, and I
thought that I should only publish this work after having given more thought to it.
Yet, until 2003, there were always more urgent things to work on, and I could not
find the time for these thoughts. Then, in 2003, John Langford and I discovered
that even with the simple 0/1-loss, applying MDL or Bayesian inference to an
“entropified” model class P can be inconsistent: there exist sets of 0/1-predictors
F such that two-part MDL or Bayesian inference based on the associated P never
converges [4, 5]. Note that the optimality and reliability properties indicate, as
written below (6), that if MDL estimation converges at all, it converges to the
“right” P̃ . The problem that Langford and I discovered is that in some cases, MDL
estimation does not converge at all! Even though the best classifier f̃ ∈ F has
a small description length, as the sample size increases, MDL keeps selecting ever
more complex classifiers, all of which are of much worse quality than the simple f̃ .
This seemed to be such a setback for the whole entropification idea, that I further
postponed sorting out the details. Thus, my paper “Prediction is Coding, ” about
entropification for general loss functions, has been left unfinished and has never
been published. I do hope to finish it someday soon! (but I’ve been saying that for



years). Of course, we could have made it into a joint project with Jorma, but his
interests shifted as well – soon he was all into the Kolmogorov minimum statistic.
He did publish, in 2003, a paper on normalized maximum likelihood for ‘simple’
nonlogarithmic loss functions, which was inspired by our many conversations at
Almaden [14].

The Impact of Entropification It should be clear, that, although, in the end,
we have not jointly published about it, Jorma’s thoughts about “the device already
used by Gauss”, while fitting on a single page, have had a tremendous influence on
my career. It was the basis for a large part of my Ph.D. thesis, of my first COLT
paper [6], of the Bayes/MDL-inconsistency papers [4, 2, 5] – the latter having caused
quite a stir among some Bayesian statisticians. In 2004, I was awarded a prestigious
VIDI-grant by NWO, the Dutch science foundation. This award has made it possible
to start what is rapidly becoming my own research group. The grant proposal was,
in fact, all about entropification. I should really like to thank Jorma for that single
page in his book!
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