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Abstract

As examples such as the Monty Hall puzzle
show, applying conditioning to update a proba-
bility distribution on a “naive space”, which does
not take into account the protocol used, can often
lead to counterintuitive results. Here we exam-
ine why. A criterion known as CAR (“coarsening
at random”) in the statistical literature character-
izes when “naive” conditioning in a naive space
works. We show that the CAR condition holds
rather infrequently. We then consider more gen-
eralized notions of update such as Jeffrey condi-
tioning and minimizing relative entropy (MRE).
We give a generalization of the CAR condi-
tion that characterizes when Jeffrey conditioning
leads to appropriate answers, but show that there
are no such conditions for MRE. This generalizes
and interconnects previous results obtained in the
literature on CAR and MRE.

1 INTRODUCTION

Suppose an agent represents her uncertainty about a do-
main using a probability distribution. At some point, she
receives some new information about the domain. How
should she update her distribution in the light of this infor-
mation? Conditioning is by far the most common method
in case the information comes in the form of an event.
However, there are numerous well-known examples show-
ing that naive conditioning can lead to problems. We give
just two of them here.

Example 1.1: The Monty Hall puzzle [Mosteller 1965; vos
Savant 1990]: Suppose that you’re on a game show and
given a choice of three doors. Behind one is a car; behind
the others are goats. You pick door 1. Before opening door
1, Monty Hall, the host (who knows what is behind each
door) opens door 3, which has a goat. He then asks you
if you still want to take what’s behind door 1, or to take

what’s behind door 2 instead. Should you switch? Assum-
ing that, initially, the car was equally likely to be behind
each of the doors, naive conditioning suggests that, given
that it is not behind door 3, it is equally likely to be be-
hind door 1 and door 2. Thus, there is no reason to switch.
However, another argument suggests you should switch: if
a goat is behind door 1 (which happens with probability
2/3), switching helps; if a car is behind door 1 (which hap-
pens with probability 1/3), switching hurts. Which argu-
ment is right?

Example 1.2: The three-prisoners puzzle [Bar-Hillel and
Falk 1982; Gardner 1961; Mosteller 1965]: Of three pris-
oners � ,

�
, and � , two are to be executed, but � does not

know which. Thus, � thinks that the probability that � will
be executed is ����� for �
	�� ��
 � 
 ��� . He says to the jailer,
“Since either

�
or � is certainly going to be executed, you

will give me no information about my own chances if you
give me the name of one man, either

�
or � , who is going to

be executed.” But then, no matter what the jailer says, naive
conditioning leads � to believe that his chance of execution
went down from ����� to ����� .

Why does naive conditioning give the wrong answer in
these examples? As argued in [Halpern and Tuttle 1993;
Shafer 1985], the real problem is that we are not condition-
ing in the right space. If we work in a larger “sophisticated”
space, where we take the protocol used by Monty (in Ex-
ample 1.1) and the jailer (in Example 1.2) into account,
conditioning does deliver the right answer. Roughly speak-
ing, the sophisticated space consists of all the possible se-
quences of events that could happen (for example, what
Monty would say in each circumstance, or what the jailer
would say in each circumstance), with their probability. �
However, working in the sophisticated space has problems
too. For one thing, it is not always clear what the relevant
probabilities in the sophisticated space are. For example,
what is the probability that the jailer says

�
if � is to be�

The notions of “naive space” and “sophisticated space” will
be formalized in Section 2. This introduction is meant only to
give an intuitive feel for the issues.



executed? Indeed, in some cases, it is not even clear what
the elements of the larger space are. Moreover, even when
the elements and the relevant probabilities are known, the
size of the sophisticated space may become an issue, as the
following example shows.

Example 1.3: Suppose that a world describes which of 100
people have a certain disease. A world can be character-
ized by a tuple of 100 0s and 1s, where the � th component
is 1 iff individual � has the disease. There are ������� possi-
ble worlds. Further suppose that the “agent” in question
is a computer system. Initially, the agent has no informa-
tion, and considers all ������� worlds equally likely. The agent
then receives information that is assumed to be true about
which world is the actual world. This information comes
in the form of statements like “individual � is sick or indi-
vidual � is healthy” or “at least 7 people have the disease”.
Each such statement can be identified with a set of possi-
ble worlds. For example, the statement “at least 7 people
have the disease” can be identified with the set of tuples
with at least 7 1s. For simplicity, assume that the agent
is given information saying “the actual world is in set � ”,
for various sets � . Suppose at some point the agent has
been told that the actual world is in � � 
 �!� �!
 �#" . Then, af-
ter doing conditioning, the agent has a uniform probability
on � �%$ �!� � $ � " .

But how does the agent keep track of the worlds it considers
possible? It certainly will not explicitly list them; there are
simply too many. One possibility is that it keeps track of
what it has been told; the possible worlds are then the ones
consistent with what it has been told. But this leads to two
obvious problems: checking for consistency with what it
has been told may be hard, and if it has been told & things
for large & , remembering them all may be infeasible. In
situations where these two problems arise, an agent may
not be able to condition appropriately.

Example 1.3 provides some motivation for working in the
smaller, more naive space. Examples 1.1 and 1.2 show that
this is not always appropriate. Thus, an obvious question
is when it is appropriate. It turns out that this question is
highly relevant in the statistical areas of selectively reported
data and missing data. Originally studied within these con-
texts [Rubin 1976; Dawid and Dickey 1977], it was later
found that it also plays a fundamental role in the statistical
work on survival analysis [Kleinbaum 1999]. Building on
previous approaches, Heitjan and Rubin [1991] presented a
necessary and sufficient condition for when conditioning in
the “naive space” is appropriate. Nowadays this so-called
CAR (Coarsening at Random) condition is an established
tool in survival analysis. (See [Gill, van der Laan, and
Robins 1997; Nielsen 1998] for overviews.) We examine
this criterion in our own, rather different context, and show
that it applies rather rarely.

We then show that the situation is even worse if the in-
formation does not come in the form of an event. For
that case, several generalizations of conditioning have been
proposed. Perhaps the best known are Jeffrey conditioning
[Jeffrey 1968] (also known as Jeffrey’s rule) and Minimum
Relative Entropy (MRE) Updating [Kullback 1959; Shore
and Johnson 1980] (also known as cross-entropy). Jeffrey
conditioning is a generalization of ordinary conditioning;
MRE updating is a generalization of Jeffrey conditioning.

We show that Jeffrey conditioning, when applicable, can
be justified under an appropriate generalization of the CAR
condition. Although it has been argued, using mostly ax-
iomatic characterizations, that MRE updating (and hence
also Jeffrey conditioning) is, when applicable, the only
reasonable way to update probability (see, e.g., [Csiszár
1991; Shore and Johnson 1980]), it is well known that
there are situations where applying MRE leads to paradox-
ical, highly counterintuitive results [Seidenfeld 1986; van
Fraassen 1981].

Example 1.4: Consider the Judy Benjamin problem [van
Fraassen 1981]: Judy is lost in a region that is divided into
two halves, Blue and Red territory, each of which is fur-
ther divided into Headquarters Company area and Second
Company area. A priori, Judy considers it equally likely
that she is in any of these four quadrants. She contacts
her own headquarters by radio, and is told “I can’t be sure
where you are. If you are in Red territory, the odds are
3:1 that you are in HQ Company area ...” At this point the
radio gives out. MRE updating on this information leads
to a distribution where the posterior probability of being in
Blue territory is greater than ����� . Indeed, if HQ had said
“If you are in Red territory, the odds are ')(*� that you are
in HQ company area . . . ”, then for all ',+- � , according to
MRE updating, the posterior probability of being in Blue
territory is always greater than ����� .

In [Grove and Halpern 1997], a “sophisticated space”
is provided where conditioning gives what is arguably
the more intuitive answer in the Judy Benjamin problem,
namely that if HQ sends a message of the form “if you are
in Red territory, then the odds are '.(�� that you are in HQ
company area” then Judy’s posterior probability of being
in each of the two quadrants in Blue remains at ����/ . Sei-
denfeld [1986], strengthening results of Friedman and Shi-
mony [1971], showed that there is no sophisticated space
in which conditioning will give the same answer as MRE
in this case. (See also [Dawid 2001] for similar results
along these lines.) We strengthen these results by show-
ing that, even in a class of much simpler situations (where
Jeffrey conditioning cannot be applied), using MRE in the
naive space corresponds to conditioning in the sophisti-
cated space in essentially only trivial cases. These results
taken together show that generally speaking, working with
the naive space, while an attractive approach, is likely to
give highly misleading answers. That is the main message



of this paper.

We remark that, although there are certain similarities, our
results are quite different in spirit from the well-known re-
sults of Diaconis and Zabell [1986]. They considered when
a posterior probability could be viewed as the result of con-
ditioning a prior probability on some larger space. By way
of contrast, we have a fixed larger space in mind (the “so-
phisticated space”), and are interested in when conditioning
in the naive space and the sophisticated space agree.

It is also worth stressing that the distinction between the
naive and the sophisticated space is entirely unrelated to
the philosophical view that one has of probability and how
one should do probabilistic inference. For example, the
probabilities in the Monty Hall puzzle can be viewed as the
participant’s subjective probabilities about the location of
the car and about what Monty will say under what circum-
stances; alternatively, they can be viewed as “frequentist”
probabilities, inferred from watching the Monty Hall show
on television for many weeks and then setting the proba-
bilities equal to observed frequencies. The problem we ad-
dress occurs both from a frequentist and from a subjective
stance.

The rest of this paper is organized as follows. In Section 2
we formalize the notion of naive and sophisticated spaces.
In Section 3, we consider the case where the information
comes in the form of an event. We describe the CAR con-
dition and show by example how rarely it applies. In Sec-
tion 4 we consider the case where the information is not in
the form of an event. We first consider situations where Jef-
frey conditioning can be applied. We show that Jeffrey con-
ditioning in the naive space gives the appropriate answer iff
a generalized CAR condition holds. We then show that, ex-
cept in trivial cases, applying MRE in the naive space does
not give the appropriate answer. We conclude with some
discussion of the implication of these results in Section 5.

2 NAIVE VS. SOPHISTICATED SPACES

Our formal model is a special case of the multi-agent sys-
tems framework [Halpern and Fagin 1989], which is es-
sentially the same as that used in [Friedman and Halpern
1997] to model belief revision. We assume that there is
some external world in a set 0 , and an agent who makes
observations or gets information about that world. We can
describe the situation by a pair 132 
�465 , where 27	80 is the
actual world, and 4 is the agent’s local state, which essen-
tially characterizes her information. 0 is what we called
the “naive space” in the introduction. For the purposes
of this paper, we assume that 4 has the form 96: � 
 �!� �!
 : "<; ,
where : = is the observation that the agent makes at time � ,� - � 
!� �!�>
 & . This representation implicitly assumes that
the agent remembers everything she has observed (since
her local state encodes all the previous observations). Thus,
we ignore memory issues here. We also ignore computa-

tional issues, just so as to be able to focus on when condi-
tioning is appropriate.

A pair 1?2 
 96: � 
!�!� �!
 : "<; 5 is called a global state. A run is a
function from time to global states. Thus, if @ is a run, then@�1?A 5B
 @�1C� 5B
 �!� � is a sequence of global states that, roughly
speaking, is a complete description of what happens over
time in one possible execution of the system. If @�13D 5 -132 
 9?: � 
 �!�!�!
 :�E ; 5 , then we let @�FG1?D 5 - 2 and @IHJ1?D 5 -9?: � 
!� �!�>
 :�E ; . For simplicity, in this paper, we assume that
the state of the world does not change over time, so that @�F
is a constant function. The “sophisticated space” is the set
of all possible runs.

In the Monty Hall puzzle, the naive space has three worlds,
representing the three possible locations of the car. The so-
phisticated space describes what Monty would have said in
all circumstances (i.e., Monty’s protocol) as well as where
the car is. The three-prisoners puzzle is treated in detail in
Example 2.1 below. While in these cases the sophisticated
space is still relatively simple, this is no longer the case for
the Judy Benjamin puzzle. Although the naive space has
only four elements, constructing the sophisticated space in-
volves considering all the things that HQ could have said,
which is far from clear, and the conditions under which HQ
says any particular thing.

In general, not only is it not clear what the sophisticated
space is, but the need for a sophisticated space and the form
it must take may become clear only after the fact. For ex-
ample, in the Judy Benjamin problem, before contacting
headquarters, Judy would almost certainly not have had a
sophisticated space in mind (even assuming she was an ex-
pert in probability), and could not have known the form
it would have to take until after hearing headquarter’s re-
sponse.

In any case, if the agent has a prior probability on the set K
of possible runs in the sophisticated space, after hearing or
observing 96: � 
!� �!�!
 :�L ; , she can condition, to get a posterior
on K . Formally, the agent is conditioning her prior on the
set KNMO9?: � 
!� �!� 
 :�L ;�P of runs where her local state at time Q
is 96: � 
 �!�!�!
 :�L ; .
Clearly the agent’s probability RTS on K induces a proba-
bility RTS F on 0 by marginalization. We are interested in
whether the agent can compute her posterior on 0 after
observing 9?: � 
 �!� �!
 : L�; in a relatively simple way, without
having to work in the sophisticated space.

Example 2.1: Consider the three-prisoners puzzle in more
detail. Here the naive space is 0 - �I2JU 
 2WV 
 2WX!� , where2ZY is the world where [ is not executed. We are only in-
terested in runs of length 1, so & - � . The set \ of obser-
vations (what agent can be told) is ��� 2JU 
 2WV>� 
 �I2ZU 
 2ZX!��� .
Here “ �I2WU 
 2WV>� ” corresponds to the observation that either2 U or 2 V will not be executed (i.e., the jailer saying “ � will
be executed”); similarly, � 2 U 
 2 X � corresponds to the jailer



saying “
�

will be executed”. The sophisticated space con-
sists of the four runs of the form 1?@�16A 5 - 132 Y 
 9 ; 5B] @�1�� 5 -132ZY 
 9�� 2ZY 
 2Z^�� ; 5 where [.+-`_ and � 2WY 
 2Z^a�b+- � 2WV 
 2WX!�
(since the jailer will not tell � that he will not be executed).
According to the story, the prior RTS F in the naive space
has RTS F 1?2 5 - ����� for 27	c0 . The full prior RTS on K is
not completely specified by the story, and will be discussed
further in Example 3.3.

3 THE CAR CONDITION

A particularly simple setting is where the agent observes or
learns that the external world is in some set �ed70 . For
simplicity, we assume that the agent makes only one ob-
servation, and makes it at the first step of the run. f Thus,
the set \ of possible observations consists of subsets of0 . However, \ is not necessarily � F . Some subsets may
never be observed. For example, in Example 2.1, � is never
told that he will be executed, so �I2JV 
 2WX>� is not observed.
We assume that the agent’s observations are accurate, in
that if the agent observes � in a run @ , then the actual
world in @ (i.e., @�FG1?A 5 ) is in � . In Example 2.1, accu-
racy is enforced by the requirement that @�1�� 5 has the form132 Y 
 9�� 2 Y 
 2 ^ � ; 5 .
The observation or information obtained does not have to
be exactly of the form “the actual world is in � ”. It suffices
that it is equivalent to such a statement. This is the case
in both the Monty Hall puzzle and the three-prisoners puz-
zle. For example, in the three-prisoners puzzle, being told
that

�
will be executed is essentially equivalent to observing� 2WU 
 2ZX!� (either � or � will not be executed).

In this setting, we can ask whether, after observing � , the
agent can compute her posterior on 0 by conditioning on� . Roughly speaking, this amounts to asking whether ob-
serving � is the same as discovering that � is true. This
may not be the case in general—observing or being told� may carry more information than just the fact that � is
true. For example, if for some reason � knows that the jailer
would never say � if he could help it (so that, in particular,
if

�
and � will be executed, then he will definitely say

�
),

then hearing � (i.e., observing � 2gU 
 2WV>� ) tells � much more
than the fact that the true world is one of 2gU or 2WV . It says
that the true world must be 2JV (for if the true world were2WU , the jailer would have said

�
).

For ease of exposition, in the remainder of this paper we as-
sume that 0 and K are finite, and that all nonempty subsets
of K are measurable. Moreoever, whenever we speak of a
distribution RTS over K , we implicitly assume that the prob-
ability of any set on which we condition is strictly greater
than 0. Let KNMh� P consist of all runs in K where the true
world is in � (i.e., @�FG1?A 5 	i� ). As before, let KNMj9k� ;kPl

We can easily extend the results to allow for multiple obser-
vations at many steps.

consist of all runs where the agent observes � at the first
step. Let R#S be a prior on K and let RTS�m - RTS 1�n�okKNMO9p� ;�P 5 be
the posterior after observing � . Thus, we are interested in
knowing whether R#S m F 16q 5 - R#S F 16q�o�� 5 ; that is, whether
the posterior on 0 induced by RTS m can be computed from
the prior on 0 by conditioning on the observation. (Ex-
ample 3.3 below gives a concrete case.) We stress that R#S
and R#S m are distributions on K , while RTSBF and R#S m F are
distributions on 0 (obtained by marginalization from R#S
and R#S m , respectively).

The following simple proposition says that this can be done
iff conditioning on � is equivalent to conditioning on ob-
serving � .

Proposition 3.1: Let R#S m - R#SI1�nIo�KNMj9k� ;kP 5 . Then RTS m F -R#S F 1�n�o�� 5 iff R#SI1rKNM q P okKNMh� P 5 - RTS 13KNM q P o�KNMj9k� ;kP 5 for
all qsdt0 .

Now the obvious question is when R#S 13KNM q P o�KNM � P 5 -R#SI1rKNM q P okKNMO9p� ;�P 5 . The CAR condition characterizes this.
It is best stated in terms of random variables. Let u F
and u H be two random variables on K , where u F is the
actual world and u H is the first event observed. Thus,u F 13@ 5 - @ F 1?A 5 and u H 13@ 5 - � if @ H 1C� 5 - 9k� ; . Note
that KNM � P is uvFw	N� (that is, KNMh� P - � @x(�uvFy13@ 5 	z�{� )
and KNMO9p� ;�P is u|H - � .

Theorem 3.2: [Gill, van der Laan, and Robins 1997] Fix a
probability R#S on K and a set �edi0 The following are
equivalent:

(a) If R#S 1?u|H - � 5~} A , then R#S 1?uvF - 2.o�u|H - � 5 -RTS 13uvF - 2)o�uvFe	N� 5 for all 2�	N� .

(b) The event uvF - 2 is independent of the event u�H -� given uvFw	N� , for all 2�	z� ;

(c) R#SI13u|H - �)o�uvF - 2 5 - R#SI13u|H - �to�uvF�	G� 5
for all 2�	z� such that R#SI13u�F - 2 5�} A ;

(d) R#SI13u|H - �to�uvF - 2 5 - RTS 1?u�H - �to�uvF - 2 m 5
for all 2 
 2 m 	,� such that R#S 1?uvF - 2 5�} A andRTS 13uvF - 2 m 5Z} A .

The proof of this and all other results can be found in the
full paper (available at www.cwi.nl/˜pdg).

The first condition in Theorem 3.2 just says thatR#SI1rKNM�� 2
� P o�KNMj9k� ;kP 5 - R#SI1rKNM�� 2
� P o�KNM � P 5 for all 2�	0 . Given that 0 is finite, this is clearly equivalent to the
desired condition RTS 13KNM q P okKNMO9p� ;kP 5 - R#SI1rKNM q P okKNMh� P 5 .
The third and fourth conditions justify the name “coarsen-
ing at random”. Intuitively, first some world 2�	�0 is
realized, and then some “coarsening mechanism” decides
which event ��d�0 such that 2�	�� is revealed to the
agent. The event � is called a “coarsening” of 2 . The



third and fourth conditions effectively say that the proba-
bility that 2 is coarsened to � is the same for all 2�	t� .
This means that the “coarsening mechanism” is such that
the probability of observing � is not affected by the spe-
cific value of 2�	8� that was realized.

The CAR condition explains why conditioning in the naive
space is not appropriate in the Monty Hall puzzle or the
three-prisoners puzzle. We consider the three-prisoners
puzzle in detail; a similar analysis applies to Monty Hall.

Example 3.3: In the three-prisoners puzzle, what is � ’s
prior distribution RTS on K ? In Example 2.1 we assumed
that the marginal distribution R#S>F over 0 is uniform.
Apart from this, R#S is unspecified. Now suppose that � ob-
serves �I2WU 
 2WX � (“the jailer says

�
”). Naive conditioning

would lead � to adopt the distribution RTS F 1�nIoB� 2WU 
 2WX!� 5 .
This distribution satisfies R#S F 132WU�o��I2WU 
 2WX � 5 - ����� .
Sophisticated conditioning leads � to adopt the distribu-
tion RTS m - R#S 1CnIo�KNMj9�� 2WU 
 2WX!� ;�P 5 . By part (d) of Theo-
rem 3.2, naive conditioning is appropriate (i.e., RTS m F -R#SBFG1�n�o��I2 U 
 2 X � 5 only if the jailer is equally likely to
say

�
in both worlds 2 U and 2 X . Since the jailer must

say that
�

will be executed in world 2 X , it follows thatR#SI13u|H - �I2 U 
 2 X �~o�uvF - 2 X 5 - � . Thus, condition-
ing is appropriate only if the jailer’s protocol is such that
he definitely says

�
in 2 U , i.e., even if both

�
and � are exe-

cuted. But if this is the case, when the jailer says � , condi-
tioning R#S F on � 2WU 
 2WV>� is not appropriate, since then �
knows that he will be executed. The world cannot be 2�U ,
for then the jailer would have said

�
.

So when does the CAR condition hold? There is only one
simple situation where it is guaranteed to hold. Roughly
speaking, this is when the observations are pairwise dis-
joint. Given a system K , let \ - ��� � 
!� �!� 
 ��"*� be the
set of observations made in K . Let q�� be the set of worlds
where �#� is observed; that is q*� - �IuvFy13@ 5 (�u|HW13@ 5 -��� 
 @�	zK8� , for � - � 
!� �!�>
 & . Since we have assumed that
observations are accurate, we must have that q � d`� � . Let\�� - ��q � 
!� �!� 
 q " � . If the sets in \�� are pairwise dis-
joint, then for each probability distribution RTS on K and
each world 2�	tq�= such that RTS 13u F - 2 5�} A , it must
be the case that RTS 1?u H - ��=To�u F - 2 5 - � . Thus,
part (d) of Theorem 3.2 applies. Note that, if the sets in\ are pairwise disjoint, then the sets in \
� must also be
pairwise disjoint. Whenever the set \�� does not consist of
pairwise disjoint subsets of 0 , one can construct distribu-
tions R#S over K such that the CAR condition does not hold.
Summarizing:

Proposition 3.4: The CAR condition holds for all distri-
butions R#S over K if and only if \
� consists of pairwise
disjoint subsets of 0 .

Note that the sets in \�� are pairwise disjoint iff u�H can
be viewed as a function on 0 (i.e., its value in a run @ is

completely determined by @�FG16A 5 ).
Are there other cases (combinations of 0 , \ and distribu-
tions over K ) when CAR holds? There are, but they are
somewhat special. Although we have not bothered to try
to get a complete characterization of when CAR holds—
this involves stating a number of linear equalities that must
hold, and does not give much insight—the following exam-
ples show that, in general, it can be very difficult to satisfy
CAR.

Example 3.5: Suppose that \ - ��� � 
 � f � , and both � �
and � f are observed with positive probability. (This is the
case for both Monty Hall and the three-prisoners puzzle.)
Then the CAR condition (Theorem 3.2(c)) cannot hold for
both � � and � f unless R#SI13u F 	�� ��$ � f 5 is either 0
or 1. For suppose that R#S 1?u H - � � 5G} A , R#S�13u H -� f 58} A , and A��eRTS 13u F 	i� �W$ � f 5 ��� . Without
loss of generality, there is some 2 � 	)� �W� � f and 2 f 	� � $ � f such that RTS 1?uvF - 2 � 5c} A and RTS 1?uvF -2 f 5�} A . Since observations are accurate, we must haveR#SI13u|H - � � o�uvF - 2 � 5 - � . If CAR holds for � � ,
then we must have RTS 1?u|H - � � o�uvF - 2 f 5 - � . But
then R#SI13u|H - � f o�uvF - 2 f 5 - A . But since R#SI13u|H -� f 5{} A , it follows that there is some 2W��	�� f such thatR#SI13uvF - 2Z� 5�} A and RTS 13u|H - � f o�uvF - 2Z� 5�} A .
This contradicts the CAR condition.

Example 3.6: Suppose that \ - ��� � 
 � f 
 �#��� , and all
three observations can be made with positive probability. It
turns out that in this situation the CAR condition can hold,
but only if (a) R#SI13u�F�	,� � $ � f $ �#� 5 - � (i.e., all of� � , � f , and ��� must hold), (b) RTSI1?uvF�	�1p� � $ � f 5 ���� 5�  1�1p� f $ �#� 5 � � � 5�  1C1p� � $ �#� 5 � � f 5�5 - � (i.e.,
exactly two of � � , � f , and �#� must hold), (c) RTS 13u�F¡	1p� �a� 1p� f   ��� 5�5>  1p� f<� 1p� �   �#� 5�5>  1p��� � 1p� f   � � 5�5C5 - �
(i.e., exactly one of � � , � f , or � � must hold), or (d) one of1p� � � 1k� f   � � 5�5�  1k� f<$ � � 5 , 1p� f � 1k� �   � � 5�5�  1k� ��$ � � 5
or 1p� � � 1p� �   � f 5�5¢  1p� �#$ � f 5 has probability 1 (either
exactly one of � � , � f , or � � holds, or the remaining two
both hold).

We first check that CAR can hold in all these cases. It
should be clear that CAR can hold in case (a). More-
over, there are no constraints on R#SI13uvH - ���£o�u�F - 2 5
for 2�	�� � $ � f $ ��� (except, by the CAR condition,
for each fixed � , the probability must be the same for all2�	z� � $ � f $ �#� , and the three probabilities must sum to
1). Case (b) is the most interesting. Let q�� be the set where
exactly two of � � , � f , and �#� hold, and �#� does not hold,
for � - � 
 � 
 � . Suppose that R#S 1?u F 	zq �   q f   q � 5 - � .
Note that, since all three observations can be made with
positive probability, at least two of q � , q f , and q � must
have positive probability. If only two of them have posi-
tive probability, say q � and q f , then it immediately follows
from the CAR condition that there must be some ' withA`��'¤�¥� such that R#SI13u|H - �#�#o�uvF - 2 5 - ' ,



for all 2¤	�q �   q f such that R#S 1?uvF - 2 5�} A . Thus,R#SI13u|H - � � o�uvF - 2 5 - � � ' for all 2�	zq f such thatR#SI13u F - 2 5Z} A , and R#SI13u H - � f o�u F - 2 5 - � � '
for all 2�	�q � such that R#SI13u F - 2 5¦} A . If all ofq � , q f , and q � have positive probability, similar arguments
show that the probability of each possible observation must
be ����� . For example, RTS 13u H - � � o�u F - 2 5 - �����
for all 2�	§q f   q*� such that RTS 13u�F - 2 5G} A . In
case (c), it should also be clear that CAR can hold. More-
over, RTS 13u � - ���*o�uvF - 2 5 is either 0 or 1, depending
on whether 2�	��#� . Finally, for case (d), suppose thatR#SI13uvF¨	§� �   1k� f $ ��� 5C5 - � . CAR holds iff there
exists ' such that R#SI13u�H - � f o�uvF - 2 5 - ' andR#SI13u|H - �#�To�uvF - 2 5 - � � ' for all 2�	N� f $ �#� such
that R#SI13uvF - 2 5Z} A . (Of course, RTS 13u�H - � � o�uvF -2 5 - � for all 2�	z� � such that RTS 1?u F - 2 5Z} A .)

Now we show that CAR cannot hold in any other cases.
First suppose that A��wR#SI13u F 	i� �J$ � fg$ � � 5 ��� .
Choose 2�	)� �T$ � f�$ � � such that RTS 1?u F - 2 5x} A ,
and let R#SI13u H - � � o�u F - 2 5 - ' � , for � - � 
 � 
 � .
Note that ' ��© ' fT© 'ª� - � . Suppose 2 m �	8� � $ � f $ �#�
and R#SI13uvF - 2 m 5�} A . By the CAR condition, R#SI13u�H -���*o�uvF - 2 m 5 is either '�� or 0, depending on whether2 m 	���� or not. Since R#SI13u|H - � � o�uvF - 2 m 5 ©R#SI13u|H - � f o�uvF - 2 m 5 © RTS 1?u�H - �#�#o�uvF - 2 m 5 -� , and at least one of these terms is 0, we get the desired
contradiction. Similar arguments give a contradiction in all
the other cases; we leave details to the reader.

Gill, van der Laan, and Robins [1997] show that for every
finite set 0 of worlds, every set \ of observations, and
every distribution RTS�H over \ , there is a distribution RTSB«
over K such that the marginal of R#S « over \ is RTS « and
CAR holds. The authors summarize this as “CAR is every-
thing”. Our examples show that the CAR condition puts
quite severe restrictions on the distribution R#S!« for which
CAR holds.

Given that CAR is so difficult to satisfy, the reader may
wonder why there is so much study of the CAR condition
in the statistics literature. The reason is that some of the
special situations in which CAR holds often arise in miss-
ing data and survival analysis problems. Here is an exam-
ple. Suppose that the set of observations can be written as\ -   L�O¬ � \J� , where each \�� is a partition of 0 . Further
suppose that observations are generated by the following
process. Some � between 1 and Q is chosen according to
some arbitrary distribution RTS�­ ; independently, 2�	G0 is
chosen according to R#S>F . Then the agent is shown �7	8\g�
for the unique ��	�\ � such that 2w	`� . Intuitively, the
partitions \ � represent the observations that can be made
with a particular sensor. Thus, R#S ­ determines the prob-
ability that a particular sensor is chosen; RTS F determines
the probability that a particular world is chosen. It is easy
to see that this mechanism induces a distribution on K for
which CAR holds.

The important special case with \ - \ �   \ f , \ � - ��0i� ,
and \ f - ��� 2��~o�2§	t0i� corresponds to a simple miss-
ing data problem. Intuitively, either complete information
is given, or there is no data at all. In this context, CAR
is often called MAR: missing at random. In more realis-
tic MAR problems, we may observe a vector with some
of its components missing. In such cases the CAR condi-
tion often still holds. More generally, Gill, van der Laan,
and Robins [1997] show that in several problems of sur-
vival analysis, observations are generated according to a
randomized monotone coarsening scheme under which the
CAR condition holds.

4 BEYOND OBSERVATIONS OF EVENTS

4.1 JEFFREY CONDITIONING

In the previous section, we assumed that the information
received is of the form “the actual world is in � ”. But
information does not always come in such nice packages.
Perhaps the simplest generalization of this is to assume that
there is a partition ��� � 
!� �!� 
 ��"�� of 0 and the agent ob-
serves ' � � � ]!�!� �!] 'ª"£�#" , where ' �
© n!n n © n!n n�'�" - � .
This is to be interpreted as an observation that leads the
agent to believe � = with probability ' = , for � - � 
!� �!�!
 & .
According to Jeffrey conditioning,R#SI16q,oC' � � � ]!�!� �!] 'ª"£�#" 5- ' � R#SI16q,o�� � 5 © n n!n © 'ª"�RTS 16q�o���" 5>�
Jeffrey conditioning is defined only if '%� } A implies thatR#SI1p�#� 5~} A ; if '�� - A and RTS 1k��� 5 - A , then '���R#SI16q,o���� 5
is taken to be 0. Clearly ordinary conditioning is the spe-
cial case of Jeffrey conditioning where '�� - � for some� so, as is standard, we deliberately use the same notation
for updating using Jeffrey conditioning and ordinary con-
ditioning.

We now want to determine when updating in the naive
space using Jeffrey conditioning is appropriate. Thus, we
assume that the agent’s observations now have the form of' � � � ]!� �!�!] 'ª"£�#" for some partition ��� � 
 �!�!�!
 ��"�� of 0 .
(Different observations may, in general, use different par-
titions.) Just as we did for the case that observations are
events (Section 3, first paragraph), we once again assume
that the agent’s observations are accurate. What does that
mean in the present context? We simply require that, con-
ditional on making the observation, the probability of �®�
really is ' � for � - � 
!�!� �>
 & . That is, for � - � 
 �!�!�!
 & , we
have R#S 1?u F 	z� � o�u H - ' � � � ]!� �!� ] ' " � " 5 - ' � � (1)

This clearly generalizes the requirement of accuracy given
in the case that the observations are events.

Not surprisingly, there is a generalization of the CAR con-
dition that is needed to guarantee that Jeffrey conditioning
can be applied to the naive space.



Theorem 4.1 : Fix a probability R#S on K , a partition��� � 
!� �!� 
 ��"�� of 0 , and probabilities ' � 
 �!� �>
 '�" such
that ' � © n!n n © ' " - � . Let ¯ be the observation' � � � ]!� �!�!
 ' " � " . Then the following are equivalent:

(a) If R#S 1?u|H - ¯ 5�} A , then R#S 1?uvF - 2.o�u|H - ¯ 5 -RTS�FG1?2°o�' � � � ]!� �!�>] 'ª"£�#" 5 .
(b) R#SI13u H - ¯to�u F - 2 5 - R#S 1?u H - ¯to�u F 	c� � 5

for all � - � 
!� �!�>
 & and 2�	G�#� such that RTS 13u�F -2 5Z} A .

Part (b) of Theorem 4.1 is analogous to part (c) of Theo-
rem 3.2. There are a number of conditions equivalent to (b)
that we could have stated, similar in spirit to the conditions
in Theorem 3.2. Note that these are even more stringent
conditions than are required for conditioning to be appro-
priate.

Examples 3.5 and 3.6 already suggest that there are not
too many nontrivial scenarios where applying Jeffrey con-
ditioning to the naive space is appropriate. However, just as
for the original CAR condition, there do exist special situ-
ations in which generalized CAR is a realistic assumption.
For ordinary CAR, we mentioned the situation where the
set of observations \ is a union of partitions, and a specific
partition is chosen independently of the process realizing
the “actual world” 2 (see the end of Section 3). For Jeffrey
conditioning, a similar mechanism may be a realistic model
in some situations where all observations refer to the same
partition ��� � 
!� �!�!
 ��"*� of 0 . We now describe a scenario
for such a situation. Suppose \ consists of Q } � ob-
servations ¯ � 
!� �!�>
 ¯~L with ¯~��( - 'ª� � � � ] �!� �!] '��O"£��" such
that all '�� = } A . Now, fix & (arbitrary) conditional dis-
tributions RTS = , � - � 
 �!�!�!
 & , on 0 . Intuitively, R#S = isR#SBFG1�n�o�� = 5 . Consider the following mechanism: first an
observation ¯~� is chosen (according to some distributionR#S H over \ ); then a set ��= is chosen with probability ' � =
(i.e., according to the distribution induced by ¯ � ); finally, a
world 2±	N��= is chosen according to R#SC= .
If the observation ¯ � and world 2 are generated this way,
then the generalized CAR condition holds, that is, condi-
tioning in the sophisticated space coincides with Jeffrey
conditioning.

Proposition 4.2: Consider a partition ��� � 
!�!� �>
 � " � of 0
and a set of Q observations \ as above. For every distribu-
tion R#S H over \ with RTS H 16¯ � 5Z} A for all �~	G��� 
 �!� �>
 Q�� ,
there exists a distribution R#S over K such that RTS�H is the
marginal of R#S on \ and R#S satisfies the generalized CAR
condition (part (b) of Theorem 4.1).

Proposition 4.2 demonstrates that, even though the ana-
logue of the CAR condition expressed in Theorem 4.1 is
hard to satisfy in general, at least if the set ��� � 
 �!� �!
 �#"*� is
the same for all observations, then there exist some priors

R#S on K for which the CAR-analogue is satisfied for all
observations. Below we will see that, in the case of MRE
updating, this is not the case any more.

4.2 MRE UPDATING

What about cases where the constraints are not in the spe-
cial form where Jeffrey’s conditioning can be applied? Per-
haps the most common approach in this case is to use MRE.
Given a constraint (where a constraint is simply a set of
probability distributions—intuitively, the distributions sat-
isfying the constraint) and a prior distribution RTS , the idea
is to pick, among all distributions satisfying the constraints,
the one that is “closest” to the prior distribution, where the
“closeness” of R#S m to R#S is measured using relative entropy.
The relative entropy between RTS m and RTS [Kullback and
Leibler 1951; Cover and Thomas 1991] is defined as²³�´ F R#S m 1?2 5�µO¶�·b¸ R#S�m61?2 5RTS!132 5�¹ �
(The logarithm here is taken to the base 2; if RTS�mp132 5 - A
then R#S m 1?2 5�µO¶�· 1?RTS m 132 5 �%R#S�132 5C5 is taken to be 0. This is
reasonable since µOºO» Y�¼ � [ µO¶�· 13[½��� 5 - A if � } A .) The rel-
ative entropy is finite provided that RTS m is absolutely con-
tinuous with respect to R#S , in that if R#SI132 5 - A , thenR#S m 1?2 5 - A , for all 2¾	�0 . Otherwise, it is defined to
be infinite.

The constraints we consider here are all closed and convex
sets of probability measures. In this case, it is known that
there is a unique distribution that satisfies the constraints
and minimizes the relative entropy. Given constraints ¯
and a prior R#S , denote the distribution that minimizes rela-
tive entropy with respect to R#S given ¯ as R#SI1�n�oC¯ 5 .
If the constraints have the form to which Jeffrey’s Rule is
applicable, that is, if they have the form ��R#S m (*RTS m 1p� � 5 -' � 
 � - � 
!�!� �>
 &%� for some partition ��� � 
!� �!� 
 � " � , then it
is well known that the distribution that minimizes entropy
relative to a prior RTS is RTS 1CnIo�' � � � ] �!�!�!
 ' " � " 5 (see, e.g.,
[Diaconis and Zabell 1986]). Thus, MRE updating gener-
alizes Jeffrey conditioning (and hence also standard condi-
tioning).

To study MRE updating in our framework, we assume
that the observations are now arbitrary closed convex con-
straints on the probability measure. Again, we assume that
the observations are accurate in that, conditional on making
the observation, the constraints hold. For now, we focus on
the simplest possible case that cannot be handled by Jeffrey
updating. In this case, constraints (observations) still have
the form ' � � � ] �!�!� ] ' " � " , but now the � � ’s do not have
to form a partition (they may overlap and/or not cover 0 )
and the ' � do not have to sum to 1. Such an observation is
accurate if it satisfies (1), just as before.

We now want an analogue to Theorems 3.2 and 4.1 show-



ing under what conditions applying MRE updating in the
naive space leads to the same results as conditioning in
the sophisticated space. Seidenfeld [1986] shows that, un-
der very weak conditions, no such analogue is possible if
the observations have the form “the conditional probability
of � given q is ' ” (as is the case in the Judy Benjamin
problem). Here we show that even for observations of the
much simpler form ' � � � ] �!� �!] '�"£��" , unless we can reduce
the problem to Jeffrey conditioning (in which case Theo-
rem 4.1 applies), no such analogue is possible in general:
if we cannot reduce the problem to Jeffrey conditioning,
then MRE updating essentially almost never coincides with
sophisticated conditioning.

To demonstrate this, we focus on the simplest possible
case. Let \ consist of two observations (constraints),¯ � - ' � � � � ] ' � f � f , � - � 
 � , where � � � � f , � �Z$ � f ,� f � � � and 0 � 1p� �   � f 5 are all nonempty. We further
assume that ' ��� 
 ' �Cf 
 ' fB� 
 ' f�f are all in 1?A 
 � 5 . Note that
both ¯ � and ¯ f refer to the same events � � and � f .
We say that observation ¯ - ' � � � ] ' f � f is Jeffrey-
like iff, when MRE updating on one of the constraints' � � � or ' f � f , the other constraint holds as well. That
is, ¯ is Jeffrey-like (with respect to R#S>F ) if eitherR#SBFG1p� f o�' � � � 5 - ' f or R#SBFy1p� � o�' f � f 5 - ' � . Sup-
pose that RTSBFy1p� f o�' � � � 5 - ' f ; then it is easy to show
that R#SBFG1�n�o�' � � � 5 - R#S�F¦1�nIoC' � � � ] ' f � f 5 .
Intuitively, if the “closest” distribution RTS to R#S>F that sat-
isfies R#S 1k� � 5 - ' � also satisfies R#SI1p� f 5 - ' f , then RTS is
the closest distribution to RTS F that satisfies the constraint¯ - ' � � � ] ' f � f . Note that MRE updating on '%� is
equivalent to Jeffrey conditioning on '%� ] 1�� � ' 5 1p0 � � 5 .
Thus, if ¯ is Jeffrey-like, then updating with ¯ is equiva-
lent to Jeffrey updating. The following theorem shows that,
in general, if ¯ is not Jeffrey-like, then there may be no dis-
tribution R#S over K such that MRE updating coincides with
conditioning in the sophisticated space; thus, there can be
no equivalent to the CAR condition.

Theorem 4.3: Let R#S be a distribution over K with \ -��¯ � 
 ¯ f � and RTS 13u H - ¯ � 5B
 RTS 1?u H - ¯ f 58} A . LetR#S � - R#SI1�nIo�KNMj9p¯ �k;�P 5 , and let R#S � F be the marginal of R#S �
on 0 . If either ¯ � or ¯ f is not Jeffrey-like, then R#S � F +-R#S F 1�n�oC¯ � 5 , for � - � 
 � .

We can think of each possible observation ' � � � ] ' f � f (for
fixed � � and � f ) as a vector in the set M A 
 � P f . Clearly the set
of all Jeffrey-like observations is a subset of A (Lebesgue)
measure of this set. Thus, the set of observations for which
MRE conditioning corresponds to conditioning in the so-
phisticated space is a (Lebesgue) measure 0 set in the space
of possible observations.

Theorem 4.3 shows that, in the case where only two ob-
servations are possible, MRE cannot coincide with con-
ditioning in the sophisticated space unless both observa-

tions are Jeffrey-like. If we allow an arbitary number of
observations rather than just two, then there may be some
very special non-Jeffrey-like combinations of priors R#S and
observations such that MRE updating corresponds to con-
ditioning in the sophisticated space. However, in marked
contrast to the case for Jeffrey conditioning, these remain
isolated cases. More specifically, Proposition 4.2 shows
that, given an arbitrary set \ of observations to which Jef-
frey conditioning can apply, where all the observations in\ refer to the same events, and a distribution R#SBH on \ ,
we can always construct some distribution R#S over K such
that RTS 1?u|H - ¯ 5 - RTS�HW1p¯ 5 for all ¯§	¦\ and RTS satis-
fies the generalized CAR condition. Proposition 4.4 shows
that, if the �#� are allowed to overlap, this is not possible
in general. We first need some terminology. For given sets0 and \ - ��¯ � 
!�!� �!
 ¯ L � , we say 1p¿ � 
 �!�!� 
 ¿ L 5 is CAR-
compatible iff there exists a distribution R#S over K withR#SI13u H - ¯ � 5 - ¿ � such that the generalized CAR condi-
tion holds. We let À L stand for the unit simplex in Á L .

Proposition 4.4: Fix an (arbitrary) set ��� � 
!� �!�!
 ��"�� of
subsets of 0 such that 1p� � $ � f 5 �   �j¬¢�!ÂhÂ "<��� , 1p� �Ã� � f 5 �  �O¬¢�>ÂhÂ "���� and 1p� f�� � � 5 �   �O¬¢�!ÂhÂ "£��� are all nonempty.
Suppose that there are Q } � possible observations,¯ � 
 �!� �>
 ¯�L , with ¯~�|( - '�� � � � ]!� �!�!] 'ª�O"£��" , such that all'�� = } A . DefineÄ ( - �a1p¿ � 
!� �!�>
 ¿ L 5 	�À L (�¿ is CAR-compatible. � �
Then

Ä
is a subset of À L of Lebesgue measure A .

Proposition 4.4 says that for all sets of observations \ of a
certain kind, almost all (that is, a measure 1 subset of) pri-
ors over observations are such that CAR cannot hold. To
compare this with Theorem 4.3, note first that whether a
constraint ¯~� - '�� � � � ] '�� f � f is Jeffrey-like depends not
only on the '�� = but also on the marginal prior distributionR#SBF over 0 . Theorem 4.3 says that for all sets of observa-
tions of a certain kind, all priors over worlds are such that
for almost all observations, CAR cannot hold.

5 DISCUSSION

We have studied the circumstances under which ordinary
conditioning, Jeffrey conditioning, and MRE updating in a
naive space can be justified, where “justified” for us means
“agrees with conditioning in the sophisticated space”. The
main message of this paper is that, except for quite spe-
cial cases, the three methods cannot be justified. Figure 1
summarizes the main insights of this paper in more detail.

As we mentioned in the Introduction, the idea of compar-
ing an update rule in a “naive space” with conditioning in a
“sophisticated space” is not new; it appears in the CAR lit-
erature and the MRE literature (as well as in papers such as
[Halpern and Tuttle 1993] and [Dawid and Dickey 1977]).



observation
type

set of observa-
tions \ simplest applicable

update rule
when it coincides with so-
phisticated conditioning

event pairwise disjoint naive conditioning iff CAR holds
(Theorem 3.2)

event arbitrary set of
events

naive conditioning iff CAR holds
(Theorem 3.2)

probability
vector

probabilities of
partition

Jeffrey
conditioning

iff generalization of CAR
holds (Theorem 4.1)

probability
vector

probabilities of
overlapping sets

MRE no general characterization

Figure 1: Conditions under which updating in the naive space coincides with conditioning in the sophisticated space.

In addition to bringing these two strands of research to-
gether, our own contributions are the following: (a) we
show that the CAR framework can be used as a general
tool to demistify paradoxes of conditional probability; (b)
we show that the CAR condition has a natural extension
to cases where Jeffrey conditioning can be applied (Theo-
rem 4.1); (c) we show that no CAR-like condition can exist
in general for cases where only MRE (and not Jeffrey) up-
dating can be applied (Theorem 4.3).

Our results suggest that working in the naive space is rather
problematic. On the other hand, as we observed in the in-
troduction, working in the sophisticated space (even assum-
ing it can be constructed) is problematic too. So what are
the alternatives?

For one thing, it is worth observing that MRE updating is
not always so bad. In many successful practical applica-
tions, the “constraint” on which to update is of the form�"xÅ "�O¬ � u � -�Æ for some large & , where u � is the � th
outcome of a random variable u on 0 . That is, we ob-
serve an empirical average of outcomes of u . In such a
case, the MRE distribution is “close” (in the appropriate
distance measure) to the distribution we arrive at by sophis-
ticated conditioning. That is, if RTS m m - R#S F 1�n�o�Ç�1?u 5 -�Æ 5 ,R#S m - R#SI1�n�okKNMO9 �"xÅ "�j¬ � u�� -�Æ ;�P 5 , and È " denotes the & -
fold product of a probability distribution È , then for suf-
ficiently large & , we have that 16R#S m m 5 "§É 16R#S m F 5 " [van
Campenhout and Cover 1981; Grünwald 2001]. Thus, in
such cases MRE (almost) coincides with sophisticated con-
ditioning after all. (See [Dawid 2001] for a discussion of
how this result can be reconciled with the results of Sec-
tion 4.)

But when this special situation does not apply, it is worth
asking whether there exists an approach for updating in the
naive space that can be easily applied in practical situations,
yet leads to better, in some formally provable sense, up-
dated distributions than the methods we have considered?
A very interesting candidate, often informally applied by
human agents, is to simply ignore the available extra infor-
mation. It turns out that in many situations this update rule
behaves better, in a precise sense, than the three methods

we have considered. This will be explored in future work.

Our discussion here has focused completely on the prob-
abilistic case. However, these questions also make sense
for other representations of uncertainty. Interestingly, in
[Friedman and Halpern 1999], it is shown that AGM-style
belief revision [Alchourrón, Gärdenfors, and Makinson
1985] can be represented in terms of conditioning using a
qualitative representation of uncertainty called a plausibil-
ity measure; to do this, the plausibility measure must sat-
isfy the analogue of Theorem 3.2(a), so that observations
carry no more information than the fact that they are true.
No CAR-like condition is given to guarantee that this con-
dition holds for plausibility measures though. It would be
interesting to know if there are analogues to CAR for other
representations of uncertainty, such as possibility measures
[Dubois and Prade 1990] or belief functions [Shafer 1976].
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