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Model Selection Methods

• Suppose we observe data

• We want to know which model in our list of candidate  

models                      best explains the data

• In this talk, 
is k-parameter set of probability distributions

– polynomials with Gaussian noise (regression)

– histograms with varying number of bins

– Markov chains of increasing order



Model Selection Methods

• Suppose we observe data

• We want to know which model in our list of candidate  

models                      best explains the data

• A model selection method

is a function mapping data sequences of arbitrary 

length to model indices

– is model chosen for data 



The AIC-BIC Dilemma

• Two main types of model selection methods:

1. AIC-type

– Akaike Information Criterion (AIC, 1973)

2. BIC-type 

– Bayesian Information Criterion (BIC, 1978)

k̂(yn) is k minimizing− log pθ̂k
(xn) + k
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Googling “AIC and BIC”: 355000 hits
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The AIC-BIC Dilemma

• Two main types of model selection methods:

1. AIC-type

– Akaike Information Criterion

– leave-one-out cross-validation

– DIC, Cp

2. BIC-type

– Bayesian Information Criterion 

– prequential validation

– Bayes factor model selection

– standard MDL

inconsistent

consistent

optimal rate

slower rate

asymptotic underfitting



The Best of Both Worlds

We present the first model selection criterion 

that is provably both consistent and optimal

in terms of prediction and estimation
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Example: Histograms

• is family of k-bin histograms with equal widths

• Given         predict/estimate using Laplace estimator, 

for                 , 

• As in Rissanen, Speed, Yu (1993)

• Equivalent to Bayes predictive distribution   
with uniform (Dirichlet(1, .., 1)) prior



CV selects more bins than Bayes

#bins 

selected

sample size



CV predicts better than Bayes

sample size

accumulated
prediction error
measured in 

log-loss
n∑

i=1

− log p̄k̂(yi−1)(yi | y
i−1)



CV predicts better than Bayes

sample size

accumulated
prediction error
measured in 

log-loss
n∑

i=1

− log p̄
θ̂k̂(y

i−1)(yi)

• Data sampled from       that is not in set 

of models          , but in their closure 

• LOO-CV, AIC converge at optimal rate,

• Bayesian model selection/averaging is  

too slow (underfits!)

P ∗
⋃

k≥1

Mk



...but CV is inconsistent!

• Now suppose data are sampled from the uniform 
distribution...
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• Now suppose data are sampled from the uniform 
distribution...

sample size

#bins 

selected
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The Best of Both Worlds

• We give a novel analysis of the slower convergence 
rate of BIC-type methods: the catch-up phenomenon

• This allows us to define a model selection/averaging  
method that, in a wide variety of circumstances, 

1. is provably consistent

2. provably achieves optimal convergence rates

• …even though it had been suggested that this is 

impossible!

• For many model classes, method is computationally 

feasible

Yang 2005,  Forster 2001, Sober 2004



Menu

1. Bayes Factor Model Selection

• Predictive interpretation

2. The Catch-Up Phenomenon

…. as exhibited by the Bayes factor method

3. Solving the AIC-BIC Dilemma

• Theorems



Bayes Factor Model Selection

is k maximizing a posteriori probability

is prior

are priors

is � minimizing



Bayes factor model selection between 1st-order and     

2nd-order Markov model for “The Picture of Dorian Gray”



Bayes factor model selection between 1st-order and     

2nd-order Markov model for “The Picture of Dorian Gray”

For                      , select complex model     



The Catch-Up Phenomenon

• Suppose we select between “simple” model         and 
“complex” model    

• Common Phenomenon: for some 

simple model predicts better if 

complex model predicts better if

– this seems to be the very reason why it makes sense to 
prefer a simple model even if the complex one is true

• We would expect Bayes factor method to switch at 

about                      …. 
but is this really where Bayes switches!? 
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Bayesian prediction

• Given model        , Bayesian marginal likelihood is 

• Given model        , predict by predictive distribution



Logarithmic Loss

• If we measure prediction quality by ‘log loss’,

then accumulated loss satisfies

so that accumulated log loss = minus log likelihood



The Most Important Slide

• Bayes picks the k minimizing

• Prequential interpretation of Bayes model selection:

select the model       such that, when used as a 
sequential prediction strategy,                        

minimizes accumulated sequential prediction error

Dawid ’84, Rissanen ’84



Menu

1. Bayes Factor Model Selection

• Predictive interpretation

2. The Catch-Up Phenomenon

…. as exhibited by the Bayes factor method

3. Solving the AIC-BIC Dilemma

• Theorems

• Discussion

• Initial Experiments



Green curve depicts difference in accumulated prediction 

error between predicting with       and predicting with



Green curve depicts difference in accumulated prediction 
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starts to outperform        at  

So would like to switch to        at                      

but switching only happens at



The Catch-Up Phenomenon

• Suppose we select between “simple” model         and 
“complex” model    

• Common Phenomenon: for some 

simple model predicts better if 

complex model predicts better if

• Bayes exhibits inertia: complex model has to   
“catch up”, so we prefer simpler model for a while 

even after



Model averaging does not help!



Can we modify Bayes so as to do as 

well as the black curve? Almost!
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• Our total prediction error is then



The Switch Distribution

• Suppose we switch from        to         at sample size s

• Our total prediction error is then

• If we define

then total prediction error is

– may be viewed both as a prediction strategy and as 
a distribution over infinite sequences 



The Switch Distribution

• We want to predict                   using some distribution    
.   such that no matter what data are observed, i.e.   
for all , 

where           maximizes

• We achieve this by treating s as a parameter, putting a 
prior on it, and then integrating s out 

(adopt a Bayesian solution to a Bayesian problem…)



The Switch Distribution

• Put “flat” prior on switch-point:

• Define

• Then 



The Switch Distribution

Markov: gain 20000 bits over lose  

The switch distribution gains substantially

over Bayes factor at a negligible price!





Menu

1. Bayes Factor Model Selection

2. The Catch-Up Phenomenon

3. Solving the AIC-BIC Dilemma

• Multi-Switch Distribution

• Switching is consistent (Theorem 1)

• Switching converges fast (Theorem 2)

• Discussion



More than 2 Models

• Switch-distribution for 2 models:

– Even in worst-case, we never lose more than 1 bit compared 
to standard Bayesian model averaging

– In favourable case, we win substantially, but gain 
remains bounded as n increases  



More than 2 Models

• Switch-distribution for 2 models:

– Even in worst-case, we never lose more than 1 bit compared 
to standard Bayesian model averaging

– In favourable case, we win substantially, but gain 
remains bounded as n increases  

• Switch-distribution for infinite number of models:

– Gain over Bayes increases every time we switch

– If we keep selecting more complex models as n increases, 

we win infinitely many bits compared to Bayes!

– i.e. in the case where AIC outperforms Bayes, we also 
outperform Bayes when doing prediction; 
and also when doing estimation
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• : “switch points”

(sample sizes at which you switch)

• : models you switch to

• Define         as: 
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Multi-Switch Distribution

• m : number of times you switch

• : “switch points”

(sample sizes at which you switch)

• : models you switch to

• Define         as: 

for                   :

for :

for :

…and so on



Multi-Switch Distribution

may be thought of both as a sequential prediction 

strategy and as defining a likelihood under
“meta-model” with “parameters” 

is the accumulated prediction error you make when 

you switch to     at             , to      at             , etc.



Multi-Switch Distribution

• Put prior v on all         of each dimension as follows:

• For                    , set 

where

• Set , 

• Define    



Model Selection by Switching

• Use Bayes’ theorem to define “posterior” 

• Define 

• Define the switch method for model selection as:
is the     maximizing 



Switching is Consistent

• “Theorem”: Bayes consistent      Switching consistent

Let                      be a sequence of models as before. 

Let             be Bayesian model selection, defined for 
priors                       with, for all k, and  for 

all             , and           continuous.   

Let                  for some            .                      .  

If, with    -probability 1,

then, with    -probability 1,   



Rate-of-Convergence

• A model selection/averaging method together with 
an estimation method within each model induces a 

combined estimator/predictor

1. e.g. first use AIC to choose model k, then use maximum 

likelihood estimator        within model:
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Rate-of-Convergence

• A model selection/averaging method together with 
an estimation method within each model induces a 

combined estimator/predictor

1. e.g. first use AIC to choose model k, then use maximum 

likelihood estimator        within model:

2. …or use Bayesian model averaging:

3. …or use our Switch Distribution as defined before: 



Rate-of-Convergence

• The risk is the expected distance between ‘true’    
and estimate       :       

• Here D is some fixed distance/divergence measure

– Here: KL divergence (Hellinger2 distance also works)



Switching achieves Minimax Rate 

• Let 

• “Theorem 2”: Under variety of conditions:

• Examples:

– histogram/spline density estimation,        is class of smooth 
densities with r bounded derivatives 

– nonparametric linear regression

• Typically convergence rate is                                     

for some
sup
p∗∈M∗

Rn(p
∗, p̄switch) � n

−γ

supp∗∈M∗Rn(p∗, p̄switch)

inf p̄ supp∗∈M∗Rn(p∗, p̄)
→ something finite



Switching achieves Minimax Rate 

• Let 

• “Theorem 2”: Under variety of conditions:

• Examples:

– histogram/spline density estimation,        is class of smooth 
densities with r bounded derivatives 

– nonparametric linear regression

• Typically convergence rate is                                     

for some

supp∗∈M∗
∑n
i=1Ri(p

∗, p̄switch)

inf p̄ supp∗∈M∗
∑n
i=1Ri(p

∗, p̄)
→ something finite

sup
p∗∈M∗

n∑

i=1

Ri(p
∗, p̄switch) � n

1−γ



Switch-distribution converges fast

• The Upshot:

The Switch-distribution essentially converges 

at least as fast as any other method at all, in 

particular, as fast as AIC/leave-one-out CV



The AIC-BIC Dilemma

• AIC-group converges faster when                but can 
be arbitrarily well-approximated by

• BIC-group performs better (is consistent) when

• In “typical” situations switch-distribution 
achieves both!

...both in theory and in practice



Computational Complexity

• Is switching computationally efficient?

• Answer is  YES … Time complexity

– (usually) comparable to AIC and BIC

– Algorithm similar to “fixed share” (Herbster & Warmuth 98), , 
developed in tracking the best expert literature

– optimal model for prediction at sample size n may be viewed 
as hidden state in a Hidden Markov Model

– use forward algorithm

De Rooij and Koolen, COLT 2008, tomorrow 5.15 PM



(Potential) Applications

• Nonparametric density estimation (work in progress)

– variable-width histograms, splines, kernel density estimation

• Time Series Prediction 

• Regression (challenge: subset selection)

• .......



“Bayesian”?

• Formally, our procedure is Bayesian

• But a real subjective Bayesian would probably not 

use the switch-distribution 

– It corresponds (…)  to a belief that data “follow”       until 
some critical s, and afterwards, they follow 

– But we certainly do not believe this! If anything, we believe 
that all follow the same …

– Nevertheless, because of the catch-up phenomenon, we get 
better predictions and estimations if we switch from        to  
at some point, under some conditions



Subjective Bayesian Objections 

• GIGO (Garbage In, Garbage Out)

–If model and priors are “correct”, predicting according to 
standard Bayesian predictive distribution must be optimal

–“…so instead of the switch distribution on a bad model, should 
use standard Bayes on good model” 
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Subjective Bayesian Objections 

• GIGO (Garbage In, Garbage Out)

–If model and priors are “correct”, predicting according to 
standard Bayesian predictive distribution must be optimal

–“…so instead of the switch distribution on a bad model, should 
use standard Bayes on good model” 

• A Better Bayesian Objection:

–if you think that data come from distribution that is not in any
of the         , but rather in their closure, you have a 
“nonparametric belief” and should use a nonparametric prior
rather than the hierarchical parametric prior used here!

–True; but in fact we can think of our approach as using Bayes
with a very unusual type of nonparametric prior!

Mk

Wrong!



It’s MDL, Jim, but not as we know it!

• Bayesian interpretation of               is tenuous

• Yet               makes eminent sense from 

1. Dawid’s prequential…

2. Rissanen’s MDL…

3. Universal prediction… point of views

– We are trying to predict/estimate as well as the best 
sequence of models, rather than the best single model

• Nevertheless, apparently nobody in MDL field has 

ever thought of explicitly coding switch points before



Thank you for your attention!

Shameless plug:

For more on MDL and “prequential” ideas, see my book

The Minimum Description Length Principle

MIT Press 2007

Paper is on my webpage, www.grunwald.nl


