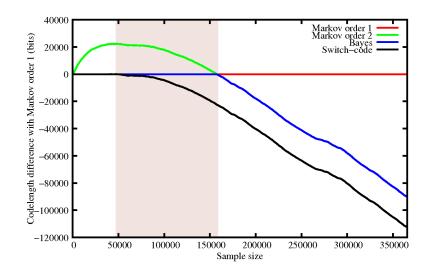
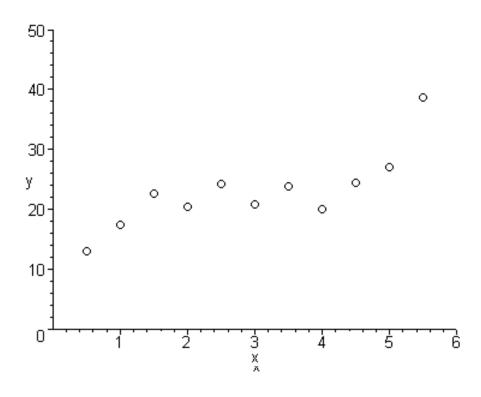
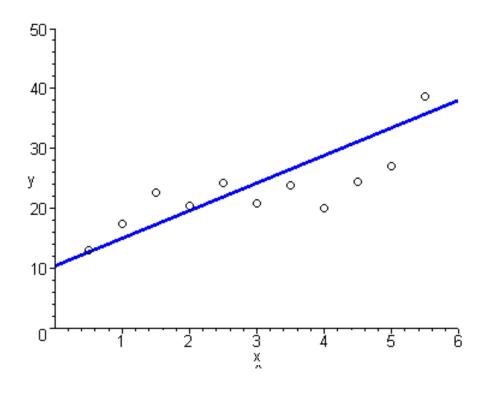
The Catch-Up Phenomenon

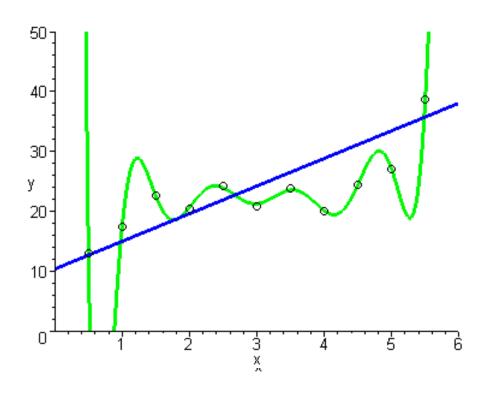
Peter Grünwald www.grunwald.nl

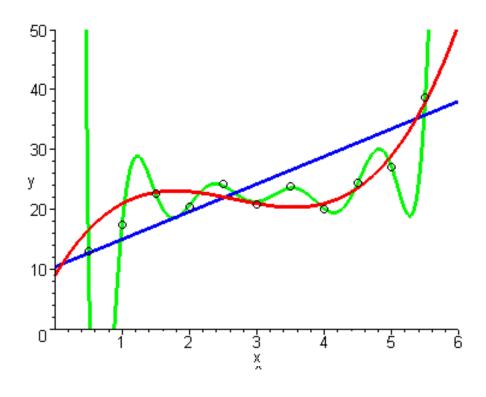
Joint work with Tim van Erven, Steven de Rooij, Wouter Koolen

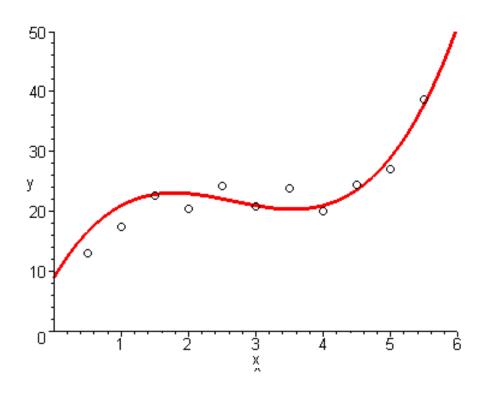












Model Selection Methods

- Suppose we observe data $y^n = y_1, \dots, y_n \in \mathcal{Y}^n$
- We want to know which model in our list of candidate models $\mathcal{M}_1, \mathcal{M}_2, \ldots$ best explains the data
- In this talk, $\mathcal{M}_k = \{p_\theta \mid \theta \in \Theta_k \subseteq \mathbb{R}^k\}$ is k-parameter set of probability distributions
 - polynomials with Gaussian noise (regression)
 - histograms with varying number of bins
 - Markov chains of increasing order

Model Selection Methods

- Suppose we observe data $y^n = y_1, \dots, y_n \in \mathcal{Y}^n$
- We want to know which model in our list of candidate models $\mathcal{M}_1, \mathcal{M}_2, \dots$ best explains the data

A model selection method

$$\hat{k}:\bigcup_{n\geq 1}\mathcal{Y}^n o\mathbb{N}$$

is a function mapping data sequences of arbitrary length to model indices

 $- \hat{k}(y^n)$ is model chosen for data y^n

Two main types of model selection methods:

1. AIC-type

Akaike Information Criterion (AIC, 1973)

$$\hat{k}(y^n)$$
 is k minimizing $-\log p_{\hat{\theta}_k}(x^n) + k$

2. BIC-type

Bayesian Information Criterion (BIC, 1978)

$$\hat{k}(y^n)$$
 is k minimizing $-\log p_{\hat{\theta}_k}(x^n) + \frac{k}{2}\log n$

Googling "AIC and BIC": 355000 hits

The AIC-BIC Dilemma

Two main types of model selection methods:

1. AIC-type

Akaike Information Criterion (AIC, 1973)

$$\hat{k}(y^n)$$
 is k minimizing $-\log p_{\hat{\theta}_k}(x^n) + k$

2. BIC-type

Bayesian Information Criterion (BIC, 1978)

$$\hat{k}(y^n)$$
 is k minimizing $-\log p_{\hat{\theta}_k}(x^n) + \frac{k}{2}\log n$

Two main types of model selection methods:

1. AIC-type

- Akaike Information Criterion (AIC, 1973)
- leave-one-out cross-validation
- DIC, C_D

2. BIC-type

- Bayesian Information Criterion (BIC, 1978)
- prequential validation
- Bayes factor model selection
- standard Minimum Description Length (MDL)

asymptotic overfitting

Two main types of model selection methods:

1. AIC-type

- Akaike Information Criterion
- leave-one-out cross-validation
- DIC, C_p

2. BIC-type

- Bayesian Information Criterion
- prequential validation
- Bayes factor model selection
- standard MDL

Two main types of model selection methods:

1. AIC-type

- Akaike Information Criterion
- leave-one-out cross-validation
- DIC, C_p

2. BIC-type

- Bayesian Information Criterion
- prequential validation
- Bayes factor model selection
- standard MDL

inconsistent

consistent

slower rate

asymptotic underfitting

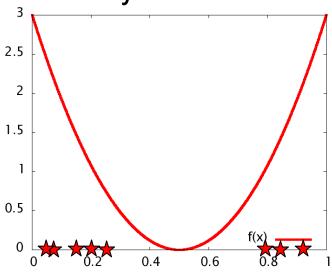
We present the first model selection criterion that is provably **both consistent** and **optimal** in terms of **prediction and estimation**

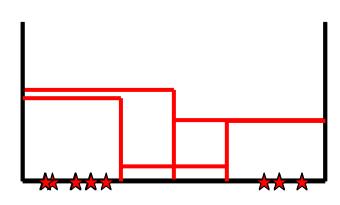
- Assume Y_1, Y_2, \ldots are identically and independently distributed according to some p^* on $\mathcal{Y} = [0, 1]$
- We model data using k-bin equal-width histograms, and try to determine k based on data y^n

- Assume Y_1, Y_2, \ldots are identically and independently distributed according to some p^* on $\mathcal{Y} = [0, 1]$
- We model data using k-bin equal-width histograms, and try to determine k based on data y^n

• Assume Y_1, Y_2, \ldots are identically and independently distributed according to some p^* on $\mathcal{Y} = [0, 1]$

• We model data using k-bin equal-width histograms, and try to determine k based on data y^n

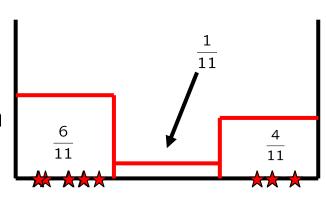




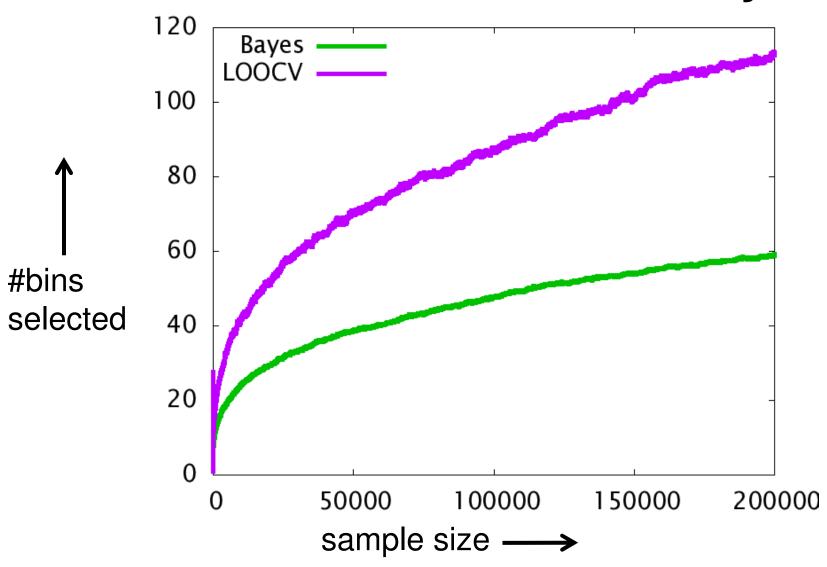
- \mathcal{M}_k is family of k-bin histograms with equal widths
- Given \mathcal{M}_k predict/estimate using Laplace estimator, for j=1..k,

$$\bar{p}_k\left(Y_{n+1} \text{ falls in bin } j \mid y^n\right) = \frac{\left(\# \text{ points in } y^n \text{ in bin } j\right) + 1}{n+k}$$

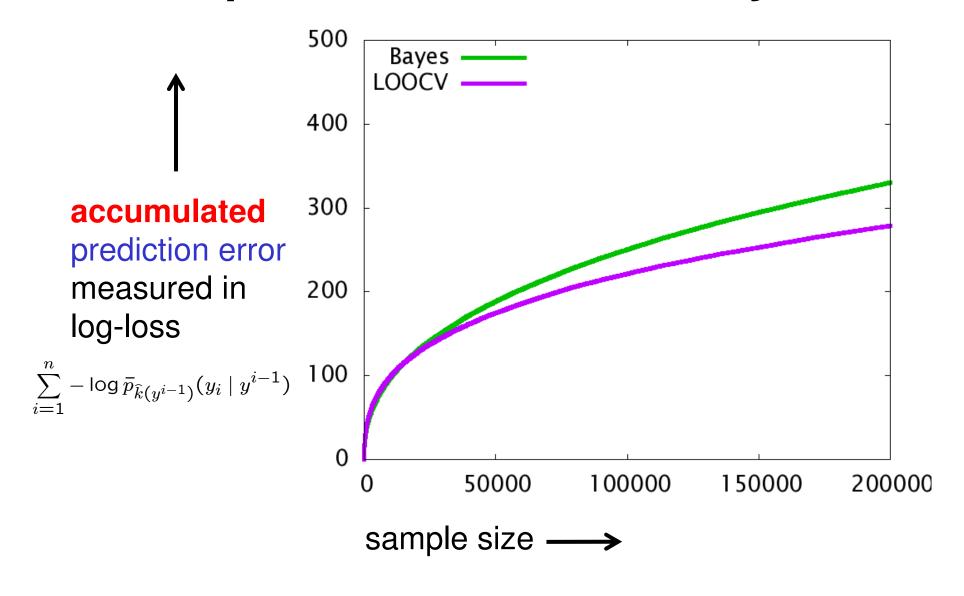
- As in Rissanen, Speed, Yu (1993)
- Equivalent to Bayes predictive distribution with uniform (Dirichlet(1, .., 1)) prior



CV selects more bins than Bayes



CV predicts better than Bayes



CV predicts better than Bayes

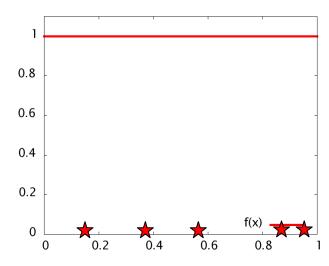
accumulated prediction error measured in log-loss

$$\sum_{i=1}^n -\log ar{p}_{\widehat{ heta}_{\widehat{k}}(y^{i-1})}(y_i)$$

- Data sampled from P^* that is not in set of models $\bigcup_{k\geq 1}\mathcal{M}_k$, but in their closure
- LOO-CV, AIC converge at optimal rate,
- Bayesian model selection/averaging is too slow (underfits!)

...but CV is inconsistent!

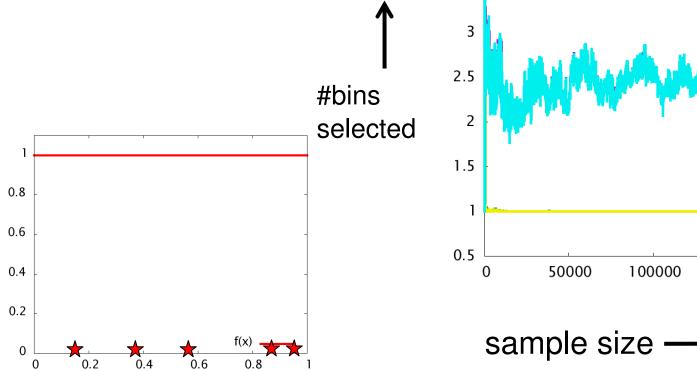
Now suppose data are sampled from the uniform distribution...

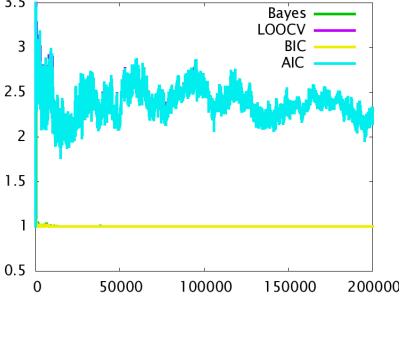


...but CV is inconsistent!

Now suppose data are sampled from the uniform

distribution...





 We give a novel analysis of the slower convergence rate of BIC-type methods: the catch-up phenomenon

- We give a novel analysis of the slower convergence rate of BIC-type methods: the catch-up phenomenon
- This allows us to define a model selection/averaging method that, in a wide variety of circumstances,
 - 1. is provably consistent
 - 2. provably achieves optimal convergence rates

- We give a novel analysis of the slower convergence rate of BIC-type methods: the catch-up phenomenon
- This allows us to define a model selection/averaging method that, in a wide variety of circumstances,
 - 1. is provably consistent
 - 2. provably achieves optimal convergence rates
- ...even though it had been suggested that this is impossible!
 Yang 2005, Forster 2001, Sober 2004
- For many model classes, method is computationally feasible

Menu

- 1. Bayes Factor Model Selection
 - Predictive interpretation
- 2. The Catch-Up Phenomenon as exhibited by the Bayes factor method
- 3. Solving the AIC-BIC Dilemma
 - Theorems

Bayes Factor Model Selection

$$\mathcal{M}_k = \{ p_\theta \mid \theta \in \Theta_k \} \qquad \Theta_k \subseteq \mathbb{R}^k \qquad k \in \mathcal{K} \subset \mathbb{N}$$

 $\hat{k}(y^n)$ is k maximizing a posteriori probability

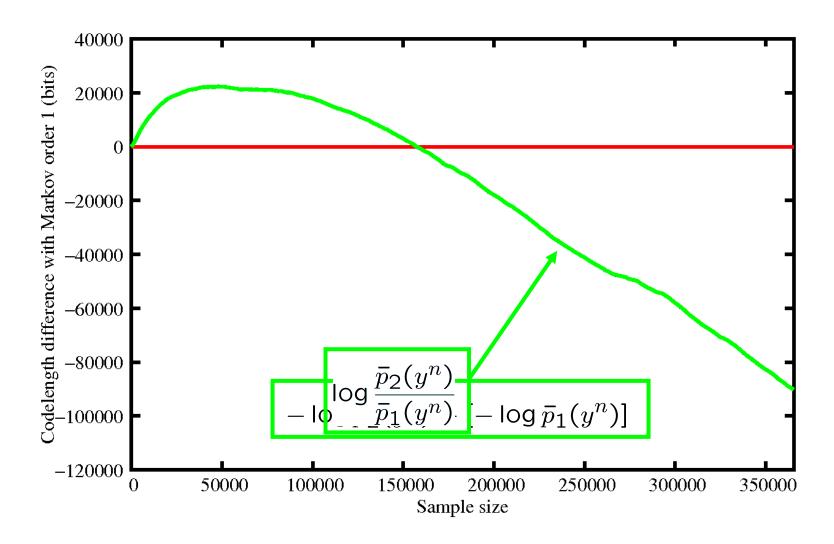
$$p(\mathcal{M}_k \mid y^n) = \frac{p(y^n \mid \mathcal{M}_k)\pi(k)}{\sum_{k \in \mathcal{K}} p(y_n \mid \mathcal{M}_k)\pi(k)}$$

$$\bar{p}_k := p(y^n \mid \mathcal{M}_k) = \int_{\theta \in \Theta_k} p_{\theta}(y^n) w_k(\theta) d\theta$$

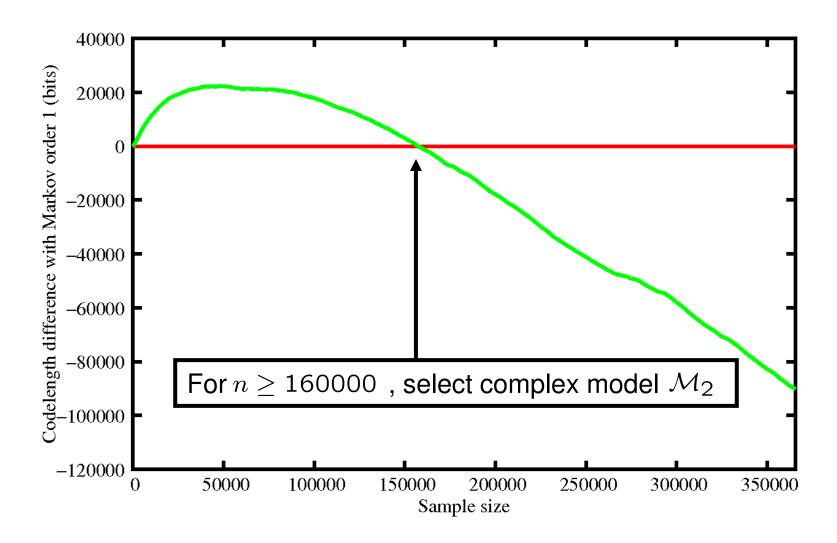
 $\pi(k)$ is prior

 w_1, w_2, \ldots are priors

 $\widehat{k}(y^n)$ is \mathcal{E} minimizing $-\log \overline{p}_k(y^n) - \log \pi(k) \approx -\log \overline{p}_k(y^n)$



Bayes factor model selection between 1st-order and 2nd-order Markov model for "The Picture of Dorian Gray"



Bayes factor model selection between 1st-order and 2nd-order Markov model for "The Picture of Dorian Gray"

The Catch-Up Phenomenon

- Suppose we select between "simple" model \mathcal{M}_1 and "complex" model \mathcal{M}_2
- Common Phenomenon: for some $n_{\rm switch}$ simple model predicts better if $n < n_{\rm switch}$ complex model predicts better if $n \geq n_{\rm switch}$
 - this seems to be the very reason why it makes sense to prefer a simple model even if the complex one is true
- We would expect Bayes factor method to switch at about $n \approx n_{\rm SWitch}...$ but is this really where Bayes switches!?

Menu

- 1. Bayes Factor Model Selection
 - Predictive interpretation
- 2. The Catch-Up Phenomenon as exhibited by the Bayes factor method
- 3. Solving the AIC-BIC Dilemma
 - Theorems
 - Discussion

Bayesian prediction

- Given model \mathcal{M}_k , Bayesian marginal likelihood is $\bar{p}_k(y^n) = p(y^n \mid \mathcal{M}_k) := \int_{\Theta_k} p_{\theta}(y^n) w(\theta) d\theta$
- Given model \mathcal{M}_k , predict by predictive distribution

$$\bar{p}_k(y_{n+1} \mid y^n) = \frac{\bar{p}_k(y^{n+1})}{\bar{p}_k(y^n)} = \int_{\Theta_k} p_{\theta}(y_{n+1} \mid y^n) w(\theta \mid y^n) d\theta$$

Logarithmic Loss

If we measure prediction quality by 'log loss',

$$loss(y, p) := -\log p(y)$$

then accumulated loss satisfies

$$\sum_{i=1}^{n} \log(y_i, p(\cdot \mid y^{i-1})) = \sum_{i=1}^{n} \left[-\log p(y_i \mid y^{i-1}) \right]$$

$$= -\log \prod_{i=1}^{n} p(y_i \mid y_1, \dots, y_{i-1}) = -\log \prod_{i=1}^{n} \frac{p(y^i)}{p(y^{i-1})}$$

$$= -\log p(y_1, \dots, y_n)$$

so that accumulated log loss = minus log likelihood

The Most Important Slide

Bayes picks the k minimizing

$$-\log \bar{p}_k(y_1, \dots, y_n) = \sum_{i=1}^n \log(y_i, \bar{p}_k(\cdot \mid y^{i-1}))$$

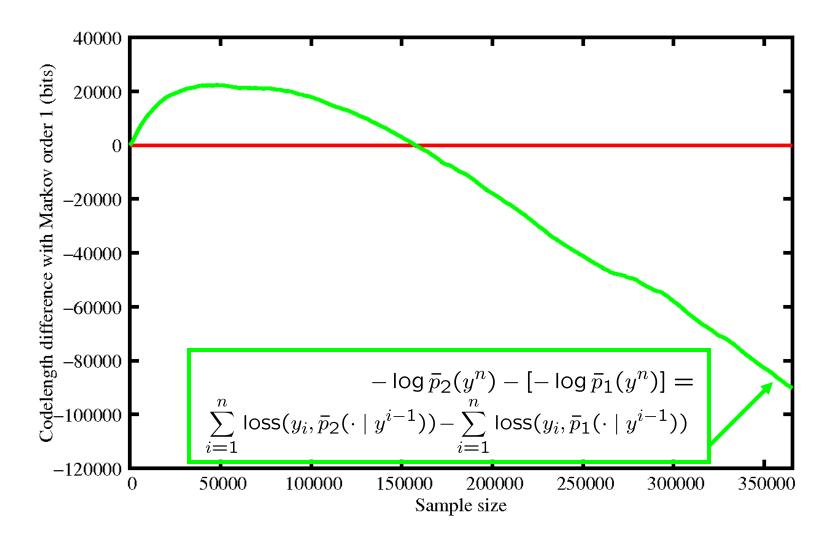
• Prequential interpretation of Bayes model selection: select the model \mathcal{M}_k such that, when used as a sequential prediction strategy, $\bar{p}_k = p(\cdot \mid \mathcal{M}_k)$ minimizes accumulated sequential prediction error Dawid '84, Rissanen '84

Menu

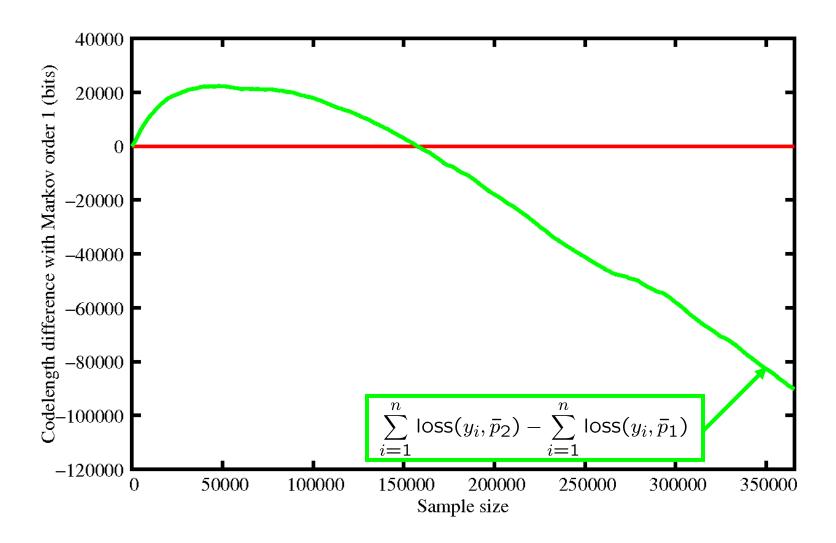
- 1. Bayes Factor Model Selection
 - Predictive interpretation
- 2. The Catch-Up Phenomenon

.... as exhibited by the Bayes factor method

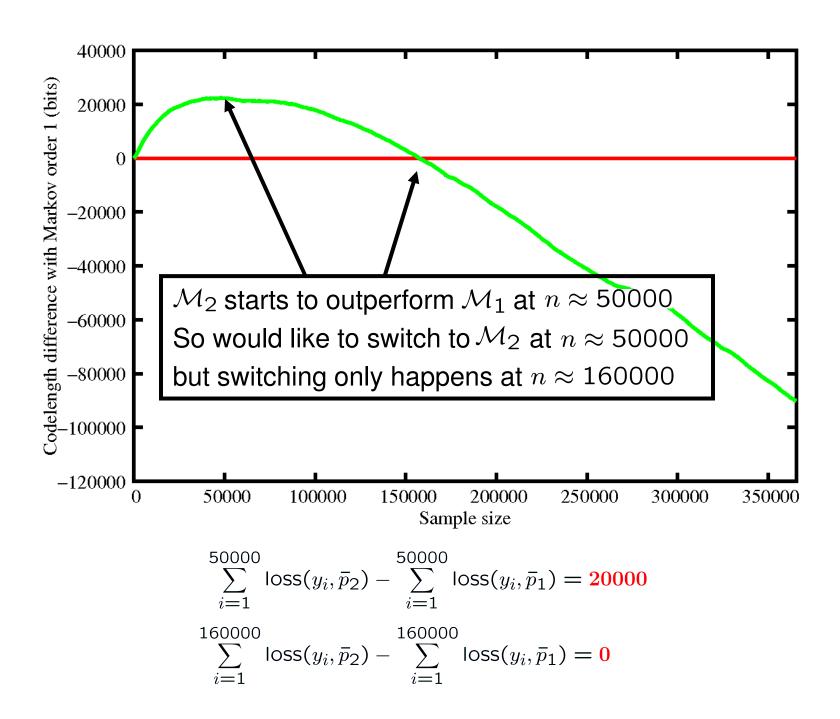
- 3. Solving the AIC-BIC Dilemma
 - Theorems
 - Discussion
 - Initial Experiments



Green curve depicts difference in accumulated prediction error between predicting with \mathcal{M}_2 and predicting with \mathcal{M}_1

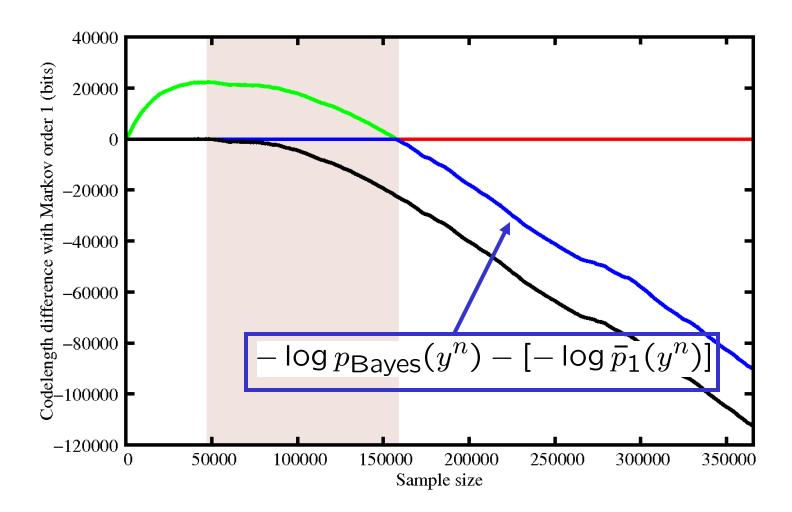


Green curve depicts difference in accumulated prediction error between predicting with \mathcal{M}_2 and predicting with \mathcal{M}_1



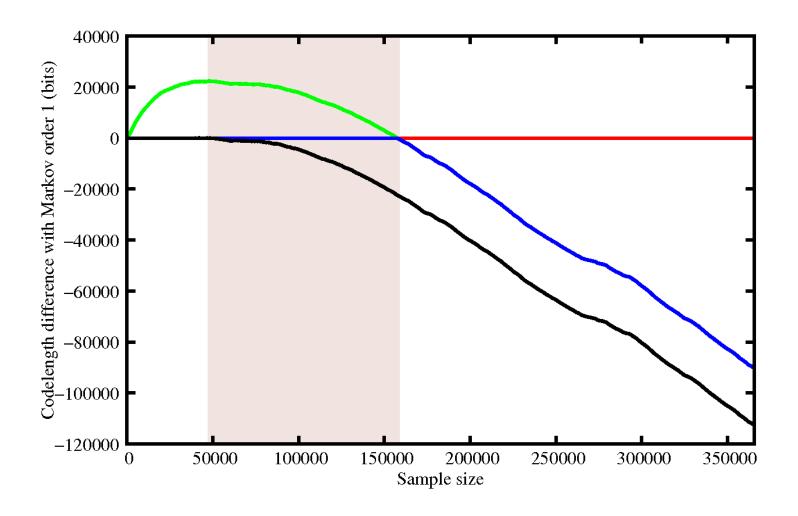
The Catch-Up Phenomenon

- Suppose we select between "simple" model \mathcal{M}_1 and "complex" model \mathcal{M}_2
- Common Phenomenon: for some $n_{\rm Switch}$ simple model predicts better if $n < n_{\rm Switch}$ complex model predicts better if $n \geq n_{\rm Switch}$
- Bayes exhibits inertia: complex model has to "catch up", so we prefer simpler model for a while even after $n \ge n_{\rm SWitch}$



Model averaging does not help!

$$p_{\text{Bayes}}(y^n) = \frac{1}{2}\bar{p}_1(y^n) + \frac{1}{2}\bar{p}_2(y^n)$$



Can we modify Bayes so as to do as well as the black curve? Almost!

- Suppose we switch from \mathcal{M}_1 to \mathcal{M}_2 at sample size \boldsymbol{s}
- Our total prediction error is then

$$\sum_{i=1}^{s} \log(y_i, \bar{p}_1) + \sum_{s+1}^{n} \log(y_i, \bar{p}_2)) = -\log \bar{p}_1(y^s) - \log \bar{p}_2(y_{s+1}, \dots, y_n \mid y^s)$$

- Suppose we switch from \mathcal{M}_1 to \mathcal{M}_2 at sample size \boldsymbol{s}
- Our total prediction error is then

$$\sum_{i=1}^{s} \log(y_i, \bar{p}_1) + \sum_{s+1}^{n} \log(y_i, \bar{p}_2)) = -\log \bar{p}_1(y^s) - \log \bar{p}_2(y_{s+1}, \dots, y_n \mid y^s)$$

If we define

$$\bar{p}_{\text{switch}}(y^n \mid s) = \bar{p}_1(y^s) \cdot \bar{p}_2(y_{s+1}, \dots, y_n \mid y^s)$$

then total prediction error is $-\log \bar{p}_{\text{switch}}(y^n \mid s)$

- $\bar{p}_{\rm switch}$ may be viewed both as a prediction strategy and as a distribution over infinite sequences

• We want to predict y_1, y_2, \ldots using some distribution \bar{p} such that no matter what data are observed, i.e. for all $y^n \in \mathcal{Y}^n$,

$$-\log \bar{p}(y^n) \approx -\log \bar{p}_{\text{Switch}}(y^n \mid \hat{s}(y^n))$$

where $\hat{s}(y^n)$ maximizes $\bar{p}_{\text{switch}}(y^n \mid s)$

We achieve this by treating s as a parameter, putting a prior on it, and then integrating s out
 (adopt a Bayesian solution to a Bayesian problem...)

Put "flat" prior on switch-point:

$$\pi(s) = \frac{1}{s(s+1)} \qquad -\log \pi(s) \le 2\log s + 1$$

Define

$$\bar{p}_{\text{switch}}(y^n) = \sum_{s \in \mathbb{N}} \pi(s) \bar{p}_{\text{switch}}(y^n \mid s)$$

Then

$$\begin{split} -\log \bar{p}_{\mathsf{switch}}(y^n) &= -\log \sum_{s \in \mathbb{N}} \pi(s) \bar{p}_{\mathsf{switch}}(y^n \mid s) \leq \\ &-\log \bar{p}_{\mathsf{switch}}(y^n \mid \widehat{s}(y^n)) - \log \pi(\widehat{s}(y^n)) \leq \\ &-\log \bar{p}_{\mathsf{switch}}(y^n \mid \widehat{s}(y^n)) + 2\log \widehat{s}(y^n) + 1 \end{split}$$

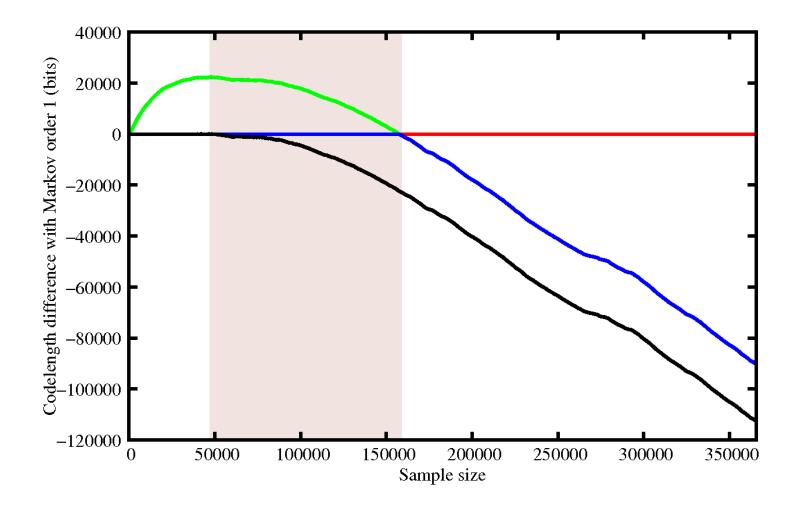
The switch distribution gains substantially over Bayes factor at a negligible price!

$$-\log \bar{p}_{\text{switch}}(y^n) \leq$$

$$-\log \bar{p}_{\text{SWitch}}(y^n \mid \hat{s}(y^n)) + 2\log(\hat{s}(y^n) + 1)$$

Markov: gain 20000 bits over p_{Bayes}

lose 2 log 50001 < 32



Menu

- 1. Bayes Factor Model Selection
- 2. The Catch-Up Phenomenon
- 3. Solving the AIC-BIC Dilemma
 - Multi-Switch Distribution
 - Switching is consistent (Theorem 1)
 - Switching converges fast (Theorem 2)
 - Discussion

More than 2 Models

- Switch-distribution for 2 models:
 - Even in worst-case, we never lose more than 1 bit compared to standard Bayesian model averaging
 - In favourable case, we win substantially, but gain remains bounded as n increases

More than 2 Models

- Switch-distribution for 2 models:
 - Even in worst-case, we never lose more than 1 bit compared to standard Bayesian model averaging
 - In favourable case, we win substantially, but gain remains bounded as n increases
- Switch-distribution for infinite number of models:
 - Gain over Bayes increases every time we switch
 - If we keep selecting more complex models as n increases,
 we win infinitely many bits compared to Bayes!
 - i.e. in the case where AIC outperforms Bayes, we also outperform Bayes when doing prediction;
 and also when doing estimation

- m: number of times you switch
- $\mathbf{t} = (1, t_1, \dots, t_m)$: "switch points" (sample sizes at which you switch)
- $\mathbf{k} = (k_0, k_1, \dots, k_m)$: models you switch to
- Define $\bar{p}_{\mathbf{t},\mathbf{k}}$ as:

- m: number of times you switch
- $\mathbf{t} = (1, t_1, \dots, t_m)$: "switch points" (sample sizes at which you switch)
- $\mathbf{k} = (k_0, k_1, \dots, k_m)$: models you switch to
- Define $\bar{p}_{\mathbf{t},\mathbf{k}}$ as:

for
$$1 \le n < t_1$$
 : $\bar{p}_{t,k}(y_n \mid y^{n-1}) = \bar{p}_{k_0}(y_n \mid y^{n-1})$

- m: number of times you switch
- $\mathbf{t} = (1, t_1, \dots, t_m)$: "switch points" (sample sizes at which you switch)
- $\mathbf{k} = (k_0, k_1, \dots, k_m)$: models you switch to
- Define $\bar{p}_{\mathbf{t},\mathbf{k}}$ as:

for
$$1 \le n < t_1$$
 : $\bar{p}_{t,k}(y_n \mid y^{n-1}) = \bar{p}_{k_0}(y_n \mid y^{n-1})$

for
$$t_1 \le n < t_2$$
 : $\bar{p}_{t,k}(y_n \mid y^{n-1}) = \bar{p}_{k_1}(y_n \mid y^{n-1})$

- m: number of times you switch
- $\mathbf{t} = (1, t_1, \dots, t_m)$: "switch points" (sample sizes at which you switch)
- $\mathbf{k} = (k_0, k_1, \dots, k_m)$: models you switch to
- Define $\bar{p}_{\mathbf{t},\mathbf{k}}$ as:

for
$$1 \le n < t_1$$
 : $\bar{p}_{\mathbf{t},\mathbf{k}}(y_n \mid y^{n-1}) = \bar{p}_{k_0}(y_n \mid y^{n-1})$ for $t_1 \le n < t_2$: $\bar{p}_{\mathbf{t},\mathbf{k}}(y_n \mid y^{n-1}) = \bar{p}_{k_1}(y_n \mid y^{n-1})$ for $t_2 \le n < t_3$: $\bar{p}_{\mathbf{t},\mathbf{k}}(y_n \mid y^{n-1}) = \bar{p}_{k_2}(y_n \mid y^{n-1})$...and so on $\bar{p}_{\mathbf{t},\mathbf{k}}(y^n) := \prod_{i=1}^n \bar{p}_{\mathbf{t},\mathbf{k}}(y_i \mid y^{i-1})$

$$\bar{p}_{t,k}(y^n) := \prod_{i=1}^n \bar{p}_{t,k}(y_i \mid y^{i-1})$$

may be thought of both as a sequential prediction strategy and as defining a likelihood under "meta-model" with "parameters" (\mathbf{t}, \mathbf{k})

$$-\log \bar{p}_{\mathbf{t},\mathbf{k}}(y^n)$$

is the accumulated prediction error you make when you switch to k_1 at $n=t_1$, to k_2 at $n=t_2$, etc.

- Put prior v on all(t, k) of each dimension as follows:
- For $\mathbf{t}, \mathbf{k} \in \mathbb{N}^{m+1}$, set

$$v(\mathbf{t}, \mathbf{k} \mid m) = w(k_0) \cdot \prod_{j=1}^{m} w(k_j) w(t_j \mid t_j > t_{j-1})$$

where $w(n) = \frac{1}{n(n+1)}$

- Set $v(m) = 2^{-m-1}$, $v(t, k) = v(t, k \mid m)v(m)$
- Define $\bar{p}_{\text{SWitch}}(y^n) = \sum_{\mathbf{t},\mathbf{k}} v(\mathbf{t},\mathbf{k}) p_{\mathbf{t},\mathbf{k}}(y^n)$

Model Selection by Switching

Use Bayes' theorem to define "posterior"

$$\bar{p}_{\mathsf{SWitch}}(\mathbf{t}, \mathbf{k} \mid y^n) := \frac{v(\mathbf{t}, \mathbf{k}) p_{\mathbf{t}, \mathbf{k}}(y^n)}{\sum_{\mathbf{t}', \mathbf{k}'} v(\mathbf{t}', \mathbf{k}') p_{\mathbf{t}', \mathbf{k}'}(y^n)}$$

Define

$$\bar{p}_{\mathsf{SWitch}}(k^* \mid y^n) = \sum_{m>0, \mathbf{t}, \mathbf{k} \in \mathbb{N}^{n+1}, k_m = k^*} \bar{p}_{\mathsf{SWitch}}(\mathbf{t}, \mathbf{k} \mid y^n)$$

Define the switch method for model selection as:

$$\hat{k}_{\text{SWitch}}(y^n)$$
 is the k^* maximizing $\bar{p}_{\text{Switch}}(k^* \mid y^n)$

Switching is Consistent

• "Theorem": Bayes consistent \longrightarrow Switching consistent Let $\mathcal{M}_1, \mathcal{M}_2, \ldots$ be a sequence of models as before. Let $\widehat{k}_{\mathsf{Bayes}}$ be Bayesian model selection, defined for priors π, w_1, w_2, \ldots with, for all $k, \pi(k) > 0$ and for all $\theta \in \Theta_k, w_k(\theta) > 0$ and $w_k(\theta)$ continuous. Let $p^* \in \mathcal{M}_{k^*}$ for some $k^* \in \mathbb{N}$.

If, with p^* -probability 1, $\lim_{n\to\infty} \hat{k}_{\mathsf{Bayes}}(Y^n) = k^*$ then, with p^* -probability 1, $\lim_{n\to\infty} \hat{k}_{\mathsf{switch}}(Y^n) = k^*$

- A model selection/averaging method together with an estimation method within each model induces a combined estimator/predictor $\bar{p}_{|y^n}$
 - 1. e.g. first use AIC to choose model k, then use maximum likelihood estimator $\widehat{\theta}_k^{\text{ml}}$ within model:

$$\bar{p}_{|y^n} := p_{\widehat{\theta}_{\widehat{k}_{AIC}(y^n)}^{\mathbf{ml}}(y^n)}$$

- A model selection/averaging method together with an estimation method within each model induces a combined estimator/predictor $\bar{p}_{|y^n}$
 - 1. e.g. first use AIC to choose model k, then use maximum likelihood estimator $\widehat{\theta}_k^{\text{ml}}$ within model:

$$\bar{p}_{|y^n} := p_{\widehat{\theta}_{\widehat{k}_{AIC}(y^n)}^{\mathbf{ml}}(y^n)}$$

2. ...or use Bayesian model averaging:

$$\bar{p}_{|y^n} := \sum_k p(\cdot \mid y^n, \mathcal{M}_k) p(\mathcal{M}_k | y^n)$$

- A model selection/averaging method together with an estimation method within each model induces a combined estimator/predictor $\bar{p}_{|y^n}$
 - 1. e.g. first use AIC to choose model k, then use maximum likelihood estimator $\widehat{\theta}_k^{\text{ml}}$ within model:

$$\bar{p}_{|y^n} := p_{\widehat{\theta}_{\widehat{k}_{\Delta IC}(y^n)}^{\mathbf{ml}}(y^n)}$$

2. ...or use Bayesian model averaging:

$$\bar{p}_{|y^n} := \sum_k p(\cdot \mid y^n, \mathcal{M}_k) p(\mathcal{M}_k | y^n)$$

3. ...or use our Switch Distribution as defined before:

$$\bar{p}_{|y^n} := p_{\mathsf{switch}}(Y_{n+1} = \cdot \mid y^n)$$

• The risk is the expected distance between 'true' p^* and estimate $\bar{p}_{|y^n}$:

$${\sf risk}_n(p^*,\bar{p}) = E_{Y^{n-1} \sim p^*}[D(p^*,\bar{p}_{|Y^{n-1}})]$$

- Here D is some fixed distance/divergence measure
 - Here: KL divergence (Hellinger² distance also works)

Switching achieves Minimax Rate

• Let
$$\mathcal{M}^* \subset \left\{ p^* : \inf_{q \in \bigcup_{k \geq 1} \mathcal{M}_k} D(p^*, q) = 0 \right\}$$

"Theorem 2": Under variety of conditions:

$$\frac{\sup_{p^* \in \mathcal{M}^*} R_n(p^*, \bar{p}_{\text{switch}})}{\inf_{\bar{p}} \sup_{p^* \in \mathcal{M}^*} R_n(p^*, \bar{p})} \to \text{something finite}$$

- Examples:
 - histogram/spline density estimation, \mathcal{M}^* is class of smooth densities with r bounded derivatives
 - nonparametric linear regression
- Typically convergence rate is $\sup_{p^* \in \mathcal{M}^*} R_n(p^*, \bar{p}_{\sf switch}) \asymp n^{-\gamma}$ for some $0 < \gamma < 1$

Switching achieves Minimax Rate

• Let
$$\mathcal{M}^* \subset \left\{ p^* : \inf_{q \in \bigcup_{k \geq 1} \mathcal{M}_k} D(p^*, q) = 0 \right\}$$

"Theorem 2": Under variety of conditions:

$$\frac{\sup_{p^* \in \mathcal{M}^*} \sum_{i=1}^n R_i(p^*, \bar{p}_{\text{switch}})}{\inf_{\bar{p}} \sup_{p^* \in \mathcal{M}^*} \sum_{i=1}^n R_i(p^*, \bar{p})} \rightarrow \text{something finite}$$

- Examples:
 - histogram/spline density estimation, \mathcal{M}^* is class of smooth densities with r bounded derivatives
 - nonparametric linear regression
- Typically convergence rate is for some $0<\gamma<1$ $\sup_{p^*\in\mathcal{M}^*}\sum_{i=1}^n R_i(p^*,\bar{p}_{\text{switch}})\asymp n^{1-\gamma}$

Switch-distribution converges fast

The Upshot:

The Switch-distribution essentially converges at least as fast as any other method at all, in particular, as fast as AIC/leave-one-out CV

The AIC-BIC Dilemma

- AIC-group converges faster when $p^* \notin \mathcal{M}$ but can be arbitrarily well-approximated by $p_1, p_2, \ldots \in \mathcal{M}$
- BIC-group performs better (is consistent) when $p^* \in \mathcal{M}$
- In "typical" situations switch-distribution achieves both!

...both in theory and in practice

Computational Complexity

- Is switching computationally efficient?
- Answer is YES ... Time complexity $O(n \cdot k_{\text{max}})$
 - (usually) comparable to AIC and BIC
 - Algorithm similar to "fixed share" (Herbster & Warmuth 98),,
 developed in *tracking the best expert* literature
 - optimal model for prediction at sample size n may be viewed as hidden state in a Hidden Markov Model
 - use forward algorithm

De Rooij and Koolen, COLT 2008, tomorrow 5.15 PM

(Potential) Applications

- Nonparametric density estimation (work in progress)
 - variable-width histograms, splines, kernel density estimation
- Time Series Prediction
- Regression (challenge: subset selection)

•

"Bayesian"?

- Formally, our procedure is Bayesian
- But a real subjective Bayesian would probably not use the switch-distribution
 - It corresponds (...) to a belief that data "follow" \mathcal{M}_1 until some critical s, and afterwards, they follow \mathcal{M}_2
 - But we certainly do not believe this! If anything, we believe that all y_1, y_2, \dots follow the same \mathcal{M}_k ...
 - Nevertheless, because of the catch-up phenomenon, we get better predictions and estimations if we switch from \mathcal{M}_1 to \mathcal{M}_2 at some point, under some conditions

Subjective Bayesian Objections

- GIGO (Garbage In, Garbage Out)
 - -If model and priors are "correct", predicting according to standard Bayesian predictive distribution must be optimal
 - -"...so instead of the switch distribution on a bad model, should use standard Bayes on good model"

Subjective Bayesian Objections

- GIGO (Garbage In, Garbage Out)
 - -If model and priors are "correct", predicting according to standard Bayesian predictive distribution must be optimal
 - -"...so instead of the switch distribution on a bad model, should use standard Bayes on good model"

 Wrong!

Subjective Bayesian Objections

GIGO (Garbage In, Garbage Out)

- -If model and priors are "correct", predicting according to standard Bayesian predictive distribution must be optimal
- -"...so instead of the switch distribution on a bad model, should use standard Bayes on good model"

 Wrong!

A Better Bayesian Objection:

- -if you think that data come from distribution that is not in any of the \mathcal{M}_k , but rather in their closure, you have a "nonparametric belief" and should use a nonparametric prior rather than the hierarchical parametric prior used here!
- -True; but in fact we can think of our approach as using Bayes with a very unusual type of nonparametric prior!

It's MDL, Jim, but not as we know it!

- Bayesian interpretation of $\bar{p}_{\rm SWitch}$ is tenuous
- Yet \bar{p}_{SWitch} makes eminent sense from
 - 1. Dawid's prequential...
 - 2. Rissanen's MDL...
 - 3. Universal prediction... point of views
 - We are trying to predict/estimate as well as the best sequence of models, rather than the best single model
- Nevertheless, apparently nobody in MDL field has ever thought of explicitly coding switch points before

Thank you for your attention!

Paper is on my webpage, www.grunwald.nl Shameless plug:

For more on MDL and "prequential" ideas, see my book

The Minimum Description Length Principle

MIT Press 2007