MDL exam, 26 May 2015 You start off with one point, and can earn up to 10 points. Don't spend too much time on questions that you find very difficult! — it is wiser to look ahead and see if you can solve an easier question first. ## 1. Normalized Maximum Likelihood We will investigate two very different models for binary data of some fixed length n. The first model $\mathcal{M}_1 = \{P_\theta \mid \theta \in \{0, \frac{1}{2}, 1\}\}$ consists of just three Bernoulli distributions, extended to n outcomes and parameterised by the mean as usual. - (a:1) Calculate the minimax regret, i.e. the smallest worst-case regret $\max_{x^n} \mathcal{R}(P, \mathcal{M}_1, x^n)$ that can be achieved by some \bar{P} do not give an asymptotic approximation, but directly calculate the model complexity $\mathrm{COMP}^{(n)}(\bar{P}) = \log \sum_{x^n \in \{0,1\}^n} P_{\hat{\theta}(x^n)}(x^n)$ and argue that it is equal to the minimax regret. What is $\bar{P}(x^n)$ for x^n a sequence consisting of n_1 ones? (here $n_1 \in \{0,1,\ldots,n\}$). - (b:1) We now impose the constraint that we will use a two-part code for \mathcal{M}_1 , i.e. with codelengths of the form $L(x^n) = -\log P_{\theta}(x^n) + L'(\theta)$ for some codelength function L' on $\theta \in \{0, 1/2, 1\}$. Describe the two-part code that minimises the worst-case regret. How much larger is the worst-case regret compared to what you found in the previous question? The second model $\mathcal{M}_2 = \{P_\alpha \mid 0 < \alpha < \infty\}$ is somewhat unusual: its distributions are defined as $P_\alpha(x^n) = 1$ if the first n digits of the binary expansion (behind the 'binary' rather than 'decimal' point) of $\pi^{-\alpha}$ coincide with x^n , and 0 otherwise. Here π is the well-known constant, 3.14.... For example, for sufficiently small α , we have $P_\alpha(1^n) = 1$ (because for any 0 < z < 1, in particular for $z = \pi^{-1}$, we have z^α is decreasing in α and $\lim_{\alpha \downarrow 0} z^\alpha = 1$. For this second model, we will ask roughly the same questions: - (c:1) First, calculate the maximum likelihood for data x^n , i.e. $ML(x^n) := \max_{0 < \alpha < \infty} P_{\alpha}(x^n)$, as a function of x^n . Next, calculate the minimax regret, i.e. the smallest worst-case regret $\max_{x^n} \mathcal{R}(P, \mathcal{M}_2, x^n)$ that can be achieved by some P (HINT: even though the ML estimator $\hat{\alpha}$ is not uniquely defined, the model complexity $COMP^{(n)}$ is still well-defined and you can use it to calculate minimax regret —see page 180 of the book). What distribution P achieves this minimax regret? Would you call model \mathcal{M}_2 "simple" or "complex"? - (d:1) Now consider data x^n where each $x_i \in \mathcal{X}$ and \mathcal{X} is the set of positive natural numbers. Let $\mathcal{M}_3 = \{P_\theta \mid \theta \in \Theta_3\}$ be any model with infinite minimax regret, so that the NML distribution is undefined. For example, \mathcal{M}_3 could be the Poisson model. One way of modifying NML so that it becomes well-defined is to include a prior distribution W on the (countable) set of parameters $$\hat{\Theta}_n := \{ \theta \in \Theta_3 : \theta = \hat{\theta} \text{ for some } x^n \in \mathcal{X}^n \}.$$ The new definition becomes $$P_{\text{new-nml}}(x^n) := \frac{P_{\hat{\theta}(x^n)}(x^n)W(\hat{\theta}(x^n))}{\sum_{x^n \in \mathcal{X}^n} P_{\hat{\theta}(x^n)}(x^n)W(\hat{\theta}(x^n))}.$$ Show that $\sum_{x^n \in \mathcal{X}^n} P_{\hat{\theta}(x^n)}(x^n) W(\hat{\theta}(x^n)) \leq 1$ and hence finite, so that $P_{\text{new-nml}}$ is always well-defined [HINT: first relate, for every fixed $x^n \in \mathcal{X}^n$ $P_{\hat{\theta}(x^n)}(x^n) W(\hat{\theta}(x^n))$ to $P_{\text{Bayes}}(x^n)$, where $P_{\text{Bayes}}(x^n)$ is the Bayesian marginal distribution defined relative to the same prior W on $\hat{\Theta}_n$]. ## 2. Is it Real? Consider the Rational Bernoulli model $\mathcal{B}_{\mathbb{Q}} = \{P_{\theta} | \theta \in [0,1] \cap \mathbb{Q}\}$ where \mathbb{Q} stands for the set of rational numbers (the set of numbers which can be written as p/q for integer p and q). As always, $P_{\theta}(x^n) := \theta^{n_1}(1-\theta)^{n_0}$. In this question we compare the rational Bernoulli model to the ordinary Bernoulli model. - $(a:\frac{1}{2})$ Which model is larger? - (b: $\frac{1}{2}$) Compute the difference between the complexity terms (the log of the normalizing sum in the NML distribution) for the Bernoulli and the rational Bernoulli model. - (c:1) Design a two-part code L such that for every $P \in \mathcal{B}_{\mathbb{Q}}$, there exists a fixed constant $C_P > 0$ (dependent on P but not n) such that for all n and x^n , we have: $$L(x^n) < -\log P(x^n) + C_P. \tag{1}$$ HINT: note that the constant C_P does *not* depend on n. So this code must be different from the standard two-part code based on discretization of the model parameters (which asymptotically has a term that depends on n but not on P). The code L is not based on discretization — you really have to use that each P has a parameter in \mathbb{Q} . ## 3. Pareto The Pareto distribution with parameter α is the distribution on the natural numbers $\mathbb{N} = \{1, 2, \ldots\}$ with $P_{\alpha}(x) = x^{-\alpha}/C$, where $C = \sum_{x \in \mathbb{N}} x^{-\alpha}$. The Pareto family is the set of all Pareto distributions P_{α} with parameter $\alpha > 1$. - (a:1) Let $\mathcal{X} = \mathbb{N}$ and consider the set of distributions on \mathcal{X} satisfying the constraint $E_{X \sim P}[\ln X] = t$, where \ln denotes natural logarithm. Show that, if t is some value for which a distribution satisfying the constraint exists, then the maximum entropy distribution, given the constraint, is a member of the Pareto family. - (b:1) As t varies, the corresponding maximum entropy distributions form an exponential family which is thus equal to the Pareto family. How is the parameter α for Pareto distribution related to the parameter β for the corresponding exponential family? Does the mean t decrease or increase with α ? - (c:1) Now let the sample space $\mathcal{X} = \mathbb{Z}$ also include the negative integers. Consider the set \mathcal{P}_0 of distributions on \mathcal{X} satisfying the constraint $E_{X\sim P}[X] = 0$. Show that $\sup_{P\in\mathcal{P}_0} H(P) = \infty$, i.e. the set \mathcal{P}_0 contains no maximum entropy distribution.