
MDL exam, 26 May 2015

You start off with one point, and can earn up to 10 points. Don’t spend too much time on questions
that you find very difficult! — it is wiser to look ahead and see if you can solve an easier question
first.

1. Normalized Maximum Likelihood

We will investigate two very different models for binary data of some fixed length n. The first model
M1 = {Pθ | θ ∈ {0, 12 , 1}} consists of just three Bernoulli distributions, extended to n outcomes
and parameterised by the mean as usual.

(a:1) Calculate the minimax regret, i.e. the smallest worst-case regret maxxn R(P,M1, x
n)

that can be achieved by some P̄ — do not give an asymptotic approximation, but
directly calculate the model complexity COMP(n)(P̄ ) = log

∑
xn∈{0,1}n Pθ̂(xn)(x

n) and

argue that it is equal to the minimax regret. What is P̄ (xn) for xn a sequence consisting
of n1 ones? (here n1 ∈ {0, 1, . . . , n}).

(b:1) We now impose the constraint that we will use a two-part code for M1, i.e. with
codelengths of the form L(xn) = − logPθ(x

n) + L′(θ) for some codelength function L′

on θ ∈ {0, 1/2, 1}. Describe the two-part code that minimises the worst-case regret.
How much larger is the worst-case regret compared to what you found in the previous
question?

The second model M2 = {Pα | 0 < α < ∞} is somewhat unusual: its distributions are defined as
Pα(xn) = 1 if the first n digits of the binary expansion (behind the ‘binary’ rather than ‘decimal’
point) of π−α coincide with xn, and 0 otherwise. Here π is the well-known constant, 3.14. . . . For
example, for sufficiently small α, we have Pα(1n) = 1 (because for any 0 < z < 1, in particular
for z = π−1, we have zα is decreasing in α and limα↓0 z

α = 1. For this second model, we will ask
roughly the same questions:

(c:1) First, calculate the maximum likelihood for data xn, i.e. ML(xn) := max0<α<∞ Pα(xn),
as a function of xn. Next, calculate the minimax regret, i.e. the smallest worst-case
regret maxxn R(P,M2, x

n) that can be achieved by some P (HINT: even though the
ML estimator α̂ is not uniquely defined, the model complexity COMP(n) is still well-
defined and you can use it to calculate minimax regret —see page 180 of the book).
What distribution P achieves this minimax regret? Would you call modelM2 “simple”
or “complex”?

(d:1) Now consider data xn where each xi ∈ X and X is the set of positive natural numbers.
Let M3 = {Pθ | θ ∈ Θ3} be any model with infinite minimax regret, so that the NML
distribution is undefined. For example, M3 could be the Poisson model. One way of
modifying NML so that it becomes well-defined is to include a prior distribution W on
the (countable) set of parameters

Θ̂n := {θ ∈ Θ3 : θ = θ̂ for some xn ∈ X n }.

The new definition becomes

Pnew-nml(x
n) :=

Pθ̂(xn)(x
n)W (θ̂(xn))∑

xn∈Xn Pθ̂(xn)(x
n)W (θ̂(xn))

.
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Show that
∑

xn∈Xn Pθ̂(xn)(x
n)W (θ̂(xn)) ≤ 1 and hence finite, so that Pnew-nml is al-

ways well-defined [HINT: first relate, for every fixed xn ∈ X n Pθ̂(xn)(x
n)W (θ̂(xn)) to

PBayes(x
n), where PBayes(x

n) is the Bayesian marginal distribution defined relative to

the same prior W on Θ̂n].

2. Is it Real?

Consider the Rational Bernoulli model BQ = {Pθ|θ ∈ [0, 1] ∩ Q} where Q stands for the set of
rational numbers (the set of numbers which can be written as p/q for integer p and q). As always,
Pθ(x

n) := θn1(1− θ)n0 .
In this question we compare the rational Bernoulli model to the ordinary Bernoulli model.

(a:12) Which model is larger?

(b:12) Compute the difference between the complexity terms (the log of the normalizing sum
in the NML distribution) for the Bernoulli and the rational Bernoulli model.

(c:1) Design a two-part code L such that for every P ∈ BQ, there exists a fixed constant
CP > 0 (dependent on P but not n) such that for all n and xn, we have:

L(xn) < − logP (xn) + CP . (1)

HINT: note that the constant CP does not depend on n. So this code must be different
from the standard two-part code based on discretization of the model parameters (which
asymptotically has a term that depends on n but not on P ). The code L is not based
on discretization — you really have to use that each P has a parameter in Q.

3. Pareto

The Pareto distribution with parameter α is the distribution on the natural numbers N = {1, 2, . . .}
with Pα(x) = x−α/C, where C =

∑
x∈N x

−α. The Pareto family is the set of all Pareto distributions
Pα with parameter α > 1.
(a:1) Let X = N and consider the set of distributions on X satisfying the constraint

EX∼P [lnX] = t, where ln denotes natural logarithm. Show that, if t is some value
for which a distribution satisfying the constraint exists, then the maximum entropy
distribution, given the constraint, is a member of the Pareto family.

(b:1) As t varies, the corresponding maximum entropy distributions form an exponential
family which is thus equal to the Pareto family. How is the parameter α for Pareto
distribution related to the parameter β for the corresponding exponential family? Does
the mean t decrease or increase with α?

(c:1) Now let the sample space X = Z also include the negative integers. Consider the set
P0 of distributions on X satisfying the constraint
EX∼P [X] = 0. Show that supP∈P0

H(P ) = ∞, i.e. the set P0 contains no maximum
entropy distribution.
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