MDL exercises, fifth handout

(due March 30th) (note: see also back side of paper; there are 4 exercises!)

1. Let {pyp | 0 € ©}, © C R be a smoothly parameterized i.i.d. 1-dimensional model (see page
65 in the book) and let I(0) denote the Fisher information at #. You may assume that, in
the exercises below, the order of taking expectations and differentiating can be interchanged,
i.e. the expected value of a derivative is the derivative of the expected value.

a) Show that, for 6,6 in the interior of ©, the KL divergence (relative entropy) satisfies
1
D(0]|6") = 51(0)(6 — )2 +0((0-6). (1)

b) For a variety of models in their standard parameterizations, including the Poisson, geo-
metric, normal and Bernoulli families, the following facts hold: (1) I(#) is a continuous
function of 6; (2) for every parameter 6 and every sequence z = x1,...,2" such that
both § and the ML estimator 6 fall in the interior of O, we have:

1 <_10g PG(”")> — D(d]9). (2)
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Now suppose that we restrict the model to a subset © of the interior of © where O is
some finite interval of length A. We discretize © to a finite set © = {61,602,...,0} of
m parameter values at distance A/y/n, where m = \/n + 1.

Now consider the two-part code that works as follows: the data x™ are encoded in two
stages: we first code the @ € © that maximizes the probability of the data. Here we use
a uniform code on ©. We then code the data using the Shannon-Fano code based on the
0 we encoded in the first stage.

Assume that we get data such that, for all large n, § € ©’. Show, using (1) and (2) that
the number of bits L(z™) we need to encode the data in this way satisfies

1
—logp;(a") < L(z") < —logpy(2") + 5 logn + C
for some constant C' independent of n.

2. Consider the Bernoulli model. Compute the probability that the first two outcomes are
different on the basis of four different universal models/codes:

e The Bayesian model with uniform prior

The Bayesian model with Jeffreys’ prior (Hint: use that for this universal model the
following variation of Laplace’s rule of succession holds: P(X,4; =1 | X" = z") =
(n1+ (1/2))/(n + 1), where n; is the number of 1s in X™).

e The NML model for sample size 2
e The NML model for sample size 3

3. Recall that the NML code is defined such that it has a constant regret of log ) . P(z" |
6(z™)). With ng and n; defined as usual, show that in the case of the Bernoulli model this
is equal to:
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4. Suppose that we model data with a uniform distribution on the real numbers between 0 and
6> 0.

a) Given outcomes x1,...,T,, what is the maximum likelihood value for 67 (yes, you had
this question before, but it serves as a warm-up for the following question!)

b) Explain why a formula like (1) cannot be proven for the uniform distributions on [0,6]. In
what way then is the model of uniform distributions crucially different from the Bernoulli
and the normal family?

c¢) Show that (2) does hold for the uniform model.



