
MDL exercises, fifth handout
(due March 30th) (note: see also back side of paper; there are 4 exercises!)

1. Let {pθ | θ ∈ Θ}, Θ ⊂ R be a smoothly parameterized i.i.d. 1-dimensional model (see page
65 in the book) and let I(θ) denote the Fisher information at θ. You may assume that, in
the exercises below, the order of taking expectations and differentiating can be interchanged,
i.e. the expected value of a derivative is the derivative of the expected value.

a) Show that, for θ, θ′ in the interior of Θ, the KL divergence (relative entropy) satisfies

D(θ‖θ′) =
1

2
I(θ)(θ − θ′)2 +O

(
(θ − θ′)3

)
. (1)

b) For a variety of models in their standard parameterizations, including the Poisson, geo-
metric, normal and Bernoulli families, the following facts hold: (1) I(θ) is a continuous
function of θ; (2) for every parameter θ and every sequence xn = x1, . . . , x

n such that
both θ and the ML estimator θ̂ fall in the interior of Θ, we have:

1

n

(
− log

pθ(x
n)

pθ̂(x
n)

)
= D(θ̂‖θ). (2)

Now suppose that we restrict the model to a subset Θ′ of the interior of Θ where Θ′ is
some finite interval of length A. We discretize Θ′ to a finite set Θ̈ = {θ1, θ2, . . . , θm} of
m parameter values at distance A/

√
n, where m =

√
n+ 1.

Now consider the two-part code that works as follows: the data xn are encoded in two
stages: we first code the θ ∈ Θ̈ that maximizes the probability of the data. Here we use
a uniform code on Θ̈. We then code the data using the Shannon-Fano code based on the
θ we encoded in the first stage.

Assume that we get data such that, for all large n, θ̂ ∈ Θ′. Show, using (1) and (2) that
the number of bits L(xn) we need to encode the data in this way satisfies

− log pθ̂(x
n) < L(xn) ≤ − log pθ̂(x

n) +
1

2
log n+ C

for some constant C independent of n.

2. Consider the Bernoulli model. Compute the probability that the first two outcomes are
different on the basis of four different universal models/codes:

• The Bayesian model with uniform prior

• The Bayesian model with Jeffreys’ prior (Hint: use that for this universal model the
following variation of Laplace’s rule of succession holds: P̄ (Xn+1 = 1 | Xn = xn) =
(n1 + (1/2))/(n+ 1), where n1 is the number of 1s in Xn).

• The NML model for sample size 2

• The NML model for sample size 3

3. Recall that the NML code is defined such that it has a constant regret of log
∑

xn P (xn |
θ̂(xn)). With n0 and n1 defined as usual, show that in the case of the Bernoulli model this
is equal to:

log
∑

xn∈Xn

(n1
n

)n1
(n0
n

)n0

(3)



4. Suppose that we model data with a uniform distribution on the real numbers between 0 and
θ > 0.

a) Given outcomes x1, . . . , xn, what is the maximum likelihood value for θ? (yes, you had
this question before, but it serves as a warm-up for the following question!)

b) Explain why a formula like (1) cannot be proven for the uniform distributions on [0, θ]. In
what way then is the model of uniform distributions crucially different from the Bernoulli
and the normal family?

c) Show that (2) does hold for the uniform model.
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