MDL exercises, fifth handout

Solutions

31 March 2020

[1 free point]

1. Let $\left\{p_{\theta} \mid \theta \in \Theta\right\} \Theta \subset \mathbb{R}$ be a smoothly parameterized i.i.d. 1-dimensional model (see page 65 in the book) and let $I(\theta)$ denote the Fisher information at θ. You may assume that, in the exercises below, the order of taking expectations and differentiating can be interchanged, i.e. the expected value of a derivative is the derivative of the expected value.
(a) [1 point] Show that, for θ, θ^{\prime} in the interior of Θ, the KL divergence (relative entropy) satisfies

$$
\begin{equation*}
D\left(\theta \| \theta^{\prime}\right)=\frac{1}{2} I(\theta)\left(\theta-\theta^{\prime}\right)^{2}+O\left(\left(\theta-\theta^{\prime}\right)^{3}\right) \tag{1}
\end{equation*}
$$

Solution:

We use the fact that $\log p_{\gamma}$ is infinitely differentiable on Θ, so that we can expand $p_{\theta^{\prime}}$ around θ :

$$
\begin{aligned}
D\left(\theta \| \theta^{\prime}\right)= & \mathbf{E}_{z \sim p_{\theta}}\left[-\log p_{\theta^{\prime}}(z)+\log p_{\theta}(z)\right] \\
= & \mathbf{E}_{z \sim p_{\theta}}\left[-\log p_{\theta}(z)+\left(\theta^{\prime}-\theta\right) \frac{d}{d \gamma}-\left.\log p_{\gamma}(z)\right|_{\gamma=\theta}\right. \\
& \left.+\frac{1}{2}\left(\theta^{\prime}-\theta\right)^{2} \frac{d^{2}}{d \gamma^{2}}-\left.\log p_{\gamma}(z)\right|_{\gamma=\theta}+\log p_{\theta}(z)\right]+O\left(\left(\theta^{\prime}-\theta\right)^{3}\right) \\
= & \mathbf{E}_{z \sim p_{\theta}}\left[\left(\theta^{\prime}-\theta\right) \frac{d}{d \theta}-\left.\log p_{\theta}(z)\right|_{\theta=\theta}+\frac{1}{2}\left(\theta^{\prime}-\theta\right)^{2} \frac{d^{2}}{d \theta^{2}}-\left.\log p_{\theta}(z)\right|_{\theta=\theta}\right] \\
& +O\left(\left(\theta^{\prime}-\theta\right)^{3}\right) \\
= & \left.\left(\theta^{\prime}-\theta\right) \frac{d}{d \gamma} \mathbf{E}_{z \sim p_{\theta}}\left[-\log p_{\gamma}(z)\right]\right|_{\gamma=\theta}+\mathbf{E}_{z \sim p_{\theta}}\left[\frac{1}{2}\left(\theta^{\prime}-\theta\right)^{2} \frac{d^{2}}{d \theta^{2}}-\left.\log p_{\theta}(z)\right|_{\theta=\theta}\right] \\
& +O\left(\left(\theta^{\prime}-\theta\right)^{3}\right) \\
= & :(*)
\end{aligned}
$$

By the information inequality, the p_{γ} that maximizes the expected likelihood $\mathbf{E}_{z \sim p_{\theta}}\left[\log p_{\gamma}(z)\right]$ is equal to the distribution that generates the data, i.e. p_{θ}. Therefore, $\left.\frac{d}{d \gamma} \mathbf{E}\left[\log p_{\gamma}(z)\right]\right|_{\gamma=\theta}=$ 0 , so we find:

$$
\begin{aligned}
(*) & =\frac{1}{2}\left(\theta^{\prime}-\theta\right) \mathbf{E}_{z \sim p_{\theta}}\left[\frac{d^{2}}{d \theta^{2}}-\left.\log p_{\theta}(z)\right|_{\theta=\theta}\right]+O\left(\left(\theta^{\prime}-\theta\right)^{3}\right) \\
& =\frac{1}{2}\left(\theta^{\prime}-\theta\right) I(\theta)+O\left(\left(\theta^{\prime}-\theta\right)^{3}\right)
\end{aligned}
$$

(b) [1.5 points] For a variety of models in their standard parameterizations, including the Poisson, geometric, normal and Bernoulli families, the following facts hold: $(1) I(\theta)$ is a continuous function of θ; (2) for every parameter θ and every sequence $x^{n}=x_{1}, \ldots, x^{n}$ such that both θ and the ML estimator $\hat{\theta}$ fall in the interior of Θ, we have:

$$
\begin{equation*}
\frac{1}{n}\left(-\log \frac{p_{\theta}\left(x^{n}\right)}{p_{\hat{\theta}}\left(x^{n}\right)}\right)=D(\hat{\theta} \| \theta) \tag{2}
\end{equation*}
$$

Now suppose that we restrict the model to a subset Θ^{\prime} of the interior of Θ where Θ^{\prime} is some finite interval of length A. We discretize Θ^{\prime} to a finite set $\ddot{\Theta}=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{m}\right\}$ of m parameter values at distance A / \sqrt{n}, where $m=\sqrt{n}+1$.
Now consider the two-part code that works as follows: the data x^{n} are encoded in two stages: we first code the $\theta \in \ddot{\Theta}$ that maximizes the probability of the data. Here we use a uniform code on $\ddot{\Theta}$. We then code the data using the Shannon-Fano code based on the θ we encoded in the first stage.
Assume that we get data such that, for all large $n, \hat{\theta} \in \Theta^{\prime}$. Show, using (1) and (2) that the number of bits $L\left(x^{n}\right)$ we need to encode the data in this way satisfies

$$
-\log p_{\hat{\theta}}\left(x^{n}\right)<L\left(x^{n}\right) \leq-\log p_{\hat{\theta}}\left(x^{n}\right)+\frac{1}{2} \log n+C
$$

for some constant C independent of n.

Solution:

Firstly, we need $\log (m)$ bits to encode the $\theta \in \Theta ̈$ that maximizes the probability of the data. Then the Shanon-Fano code has codelength $-\log p_{\theta}\left(x^{n}\right)$, so that the total codelength is given by

$$
L\left(x^{n}\right)=\log (m)-\log p_{\theta}\left(x^{n}\right)
$$

From $m=\sqrt{n}+1$ it follows that $m>1$ and so $\log (m)>0$. Therefore

$$
L\left(x^{n}\right)=\log (m)-\log p_{\theta}\left(x^{n}\right)>-\log p_{\theta}\left(x^{n}\right) \geq-\log p_{\hat{\theta}}\left(x^{n}\right)
$$

since $\hat{\theta}$ maximizes the probability of the data overall. This concludes the lower bound. For the upper bound, we substitute (1) in (2) to see

$$
\frac{1}{n}\left(-\log \frac{p_{\theta}\left(x^{n}\right)}{p_{\hat{\theta}}\left(x^{n}\right)}\right)=\frac{1}{2} I(\hat{\theta})(\hat{\theta}-\theta)^{2}+O\left((\hat{\theta}-\theta)^{3}\right)
$$

Rewriting this gives us

$$
\begin{gathered}
\log p_{\hat{\theta}}\left(x^{n}\right)-\log p_{\theta}\left(x^{n}\right)=\frac{n}{2} I(\hat{\theta})(\hat{\theta}-\theta)^{2}+n O\left((\hat{\theta}-\theta)^{3}\right) \\
\Rightarrow-\log p_{\theta}\left(x^{n}\right)=-\log p_{\hat{\theta}}\left(x^{n}\right)+\frac{n}{2} I(\hat{\theta})(\hat{\theta}-\theta)^{2}+n O\left((\hat{\theta}-\theta)^{3}\right) .
\end{gathered}
$$

Now, since $\theta \in \ddot{\Theta}$ maximizes the data in the discretized set and $\hat{\theta} \in \Theta^{\prime}$ maximizes the data overall, we know $|\theta-\hat{\theta}| \leq \frac{A}{2 \sqrt{n}}$. Therefore $n(\hat{\theta}-\theta)^{2}$ is a constant independent of n. Similarly, $n O\left((\hat{\theta}-\theta)^{3}\right)$ goes to 0 as n goes to infinity. Therefore, for large values of n :

$$
-\log p_{\theta}\left(x^{n}\right) \leq-\log p_{\hat{\theta}}\left(x^{n}\right)+C
$$

from which it follows that

$$
L\left(x^{n}\right)=\log (\sqrt{n}+1)-\log p_{\theta}\left(x^{n}\right) \leq \frac{1}{2} \log n-\log p_{\hat{\theta}}\left(x^{n}\right)+C .
$$

This concludes the upper bound.
2. Consider the Bernoulli model. Compute the probability that the first two outcomes are different on the basis of four different universal models/codes:

- [0.5 points] The Bayesian model with uniform prior.

Solution:

To avoid confusion, we will denote $P_{M, U}$ for the Bayesian marginal probability with uniform prior. We have seen that $P_{M, U}\left(x^{n}\right)=\frac{1}{(n+1)\binom{n}{n_{1}}}$, where n_{1} is the number of ones in x^{n}. Therefore, the following holds:

$$
P_{M}((0,1))+P_{M}((1,0))=2 \cdot \frac{1}{(2+1)\binom{2}{1}}=2 \cdot \frac{1}{6}=\frac{1}{3} .
$$

- [0.5 points] The Bayesian model with Jeffrey's prior .

Solution:

Let us denote $P_{M, J}$ for the Bayesian marginal probability with Jeffrey's prior. Using the variation of Laplace's rule of succesion that holds for this universal model:

$$
P_{M, J}\left(X_{n+1}=1 \mid X^{n}=x^{n}\right)=\frac{n_{1}+\frac{1}{2}}{n+1},
$$

we see:

$$
\begin{aligned}
& P_{M, J}((0,1))+P_{M, J}((1,0)) \\
&=P_{M, J}\left(X_{1}=1 \mid X_{0}=0\right) P_{M, J}\left(X_{0}=0\right)+P_{M, J}\left(X_{1}=0 \mid X_{0}=1\right) P_{M, J}\left(X_{0}=1\right) \\
& \quad=\frac{1}{4} \frac{1}{2}+\left(1-\frac{3}{4}\right) \frac{1}{2} \\
& \quad=\frac{1}{4}
\end{aligned}
$$

- [0.5 points] The NML model for sample size 2 .

Solution:

We use that the maximum likelihood estimator for a given sequence of data is given by $\hat{\theta}\left(x^{n}\right)=\frac{n_{1}}{n}$ and that $p_{\theta}\left(x^{n}\right)=\theta^{n_{1}}(1-\theta)^{n-n_{1}}$, to see:

$$
\begin{aligned}
& \hat{\theta}((0,0))=0 \Rightarrow P_{\hat{\theta}((0,0))}((0,0))=1 \\
& \hat{\theta}((1,1))=1 \Rightarrow P_{\hat{\theta}((1,1))}((1,1))=1 \\
& \hat{\theta}((1,0))=\hat{\theta}((0,1))=\frac{1}{2} \Rightarrow P_{\hat{\theta}((0,1))}((0,1))=P_{\hat{\theta}((1,0))}((1,0))=\frac{1}{4} .
\end{aligned}
$$

Then the probability of the first two outcomes being different is:

$$
\begin{aligned}
& \left.P_{N M L}(1,0)\right)+P_{N M L}((0,1)) \\
& \quad=\frac{P_{\hat{\theta}((0,1))}((0,1))+P_{\hat{\theta}((1,0))}((1,0))}{P_{\hat{\theta}((0,1))}((0,1))=P_{\hat{\theta}((1,0))}((1,0))+P_{\hat{\theta}((0,0))}((0,0))+P_{\hat{\theta}((1,1))}((1,1))} \\
& \quad=\frac{\frac{1}{4}+\frac{1}{4}}{\frac{1}{4}+\frac{1}{4}+1+1}=\frac{1}{5} .
\end{aligned}
$$

- [0.5 points] Similarly as above, we have

$$
\begin{aligned}
& P_{\hat{\theta}((0,0,0))}((0,0,0))=1 \\
& P_{\hat{\theta}((1,1,1))}((1,1,1))=1 \\
& P_{\hat{\theta}((1,0,0))}((1,0,0))=P_{\hat{\theta}((0,1,0))}((0,1,0))=P_{\hat{\theta}((0,0,1))}((0,0,1))=\frac{1}{3}\left(\frac{2}{3}\right)^{2} \\
& P_{\hat{\theta}((1,1,0))}((1,1,0))=P_{\hat{\theta}((1,0,1))}((1,0,1))=P_{\hat{\theta}((0,1,1))}((0,1,1))=\frac{1}{3}\left(\frac{2}{3}\right)^{2} .
\end{aligned}
$$

Then the probability of the first two outcomes being different is:

$$
P_{N M L}((1,0,0))+P_{N M L}((0,1,0))+P_{N M L}((1,0,1))+P_{N M L}((0,1,1))=\frac{4 \cdot \frac{1}{3}\left(\frac{2}{3}\right)^{2}}{2+6 \cdot \frac{1}{3}\left(\frac{2}{3}\right)^{2}}=\frac{8}{39}
$$

3. [2 points] Recall that the NML code is defined such that it has a constant regret of $\log \sum_{x^{n}} P\left(x^{n} \mid \hat{\theta}\left(x^{n}\right)\right)$. With n_{0} and n_{1} defined as usual, show that in the case of the Bernoulli model this is equal to:

$$
\log \sum_{x^{n} \in \mathcal{X}^{n}}\left(\frac{n_{1}}{n}\right)^{n_{1}}\left(\frac{n_{0}}{n}\right)^{n_{0}}
$$

Solution:

We know that $\hat{\theta}\left(x^{n}\right)=\frac{n_{1}}{n}$ and $P_{\theta}\left(x^{n}\right)=\theta^{n_{1}}(1-\theta)^{n-n_{1}}$, so that

$$
P_{\hat{\theta}\left(x^{n}\right)}\left(x^{n}\right)=\left(\frac{n_{1}}{n}\right)^{n_{1}}\left(1-\frac{n_{1}}{n}\right)^{n-n_{1}}=\left(\frac{n_{1}}{n}\right)^{n_{1}}\left(\frac{n-n_{1}}{n}\right)^{n-n_{1}}
$$

using that, by definition, $n_{0}=n-n_{1}$, summing and taking the log, we see:

$$
\log \sum_{x^{n} \in \mathcal{X}^{n}} P_{\hat{\theta}\left(x^{n}\right)}\left(x^{n}\right)=\log \sum_{x^{n} \in \mathcal{X}^{n}}\left(\frac{n_{1}}{n}\right)^{n_{1}}\left(\frac{n_{0}}{n}\right)^{n_{0}}
$$

4. Suppose that we model data with a uniform distribution on the real numbers between 0 and $\theta>0$.
(a) $[\mathbf{1}$ point $]$ Given outcomes x_{1}, \ldots, x_{n}, what is the maximum likelihood value for θ ?

Solution:

The likelihood of the data is given by

$$
p\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} \frac{1}{\theta} \mathbb{1}\left[x_{i} \leq \theta\right]=\left(\frac{1}{\theta}\right)^{n} \mathbb{1}\left[\theta>\max _{i} x_{i}\right] .
$$

it is then clear that the maximum is somewhere in the interval $\left[\max _{i} x_{i}, \infty\right)$. On this interval, the log-likelihood of the data is

$$
\log p\left(x_{1}, \ldots, x_{n}\right)=n \log \left(\frac{1}{\theta}\right)
$$

Differentiating wrt θ, we see:

$$
\frac{d}{d \theta} \log p\left(x_{1}, \ldots, x_{n}\right)=-\frac{n}{\theta}
$$

Since the derivative is negative, the likelihood is a decreasing function for $\theta \geq \max _{i} x_{i}$. Therefore, the maximum likelihood estimator is given by

$$
\hat{\theta}=\max _{i} x_{i} .
$$

(b) [0.5 points] Explain why a formula like (1) cannot be proven for the uniform distributions on $[0, \theta]$. In what way then is the model of uniform distributions crucially different from the Bernoulli and the normal family?

Solution:

As we saw above, the model of uniform distributions is not smoothly parameterized.
(c) [1 point] Show that (2) does hold for the uniform model.

Solution:

Let θ and $x^{n}=x_{1}, \ldots, x^{n}$, such that $\theta \geq \max _{i} x$ (so that $p_{\theta}\left(x^{n}\right)>0$). Then:

$$
\begin{aligned}
D(\hat{\theta} \| \theta) & =\mathbf{E}_{z \sim p_{\hat{\theta}}}\left[-\log p_{\theta}(z)+\log p_{\hat{\theta}}(z)\right] \\
& =\mathbf{E}_{z \sim p_{\hat{\theta}}}\left[-\log \frac{1}{\theta}+\log \frac{1}{\hat{\theta}}\right] \\
& =-\log \left(\frac{\left(\frac{1}{\theta}\right)}{\left(\frac{1}{\hat{\theta}}\right)}\right) \\
& =-\frac{1}{n} \log \left(\frac{\left(\frac{1}{\theta}\right)^{n}}{\left(\frac{1}{\hat{\theta}}\right)^{n}}\right) \\
& =-\frac{1}{n} \log \left(\frac{p_{\theta}\left(x^{n}\right)}{p_{\hat{\theta}}\left(x^{n}\right)}\right) .
\end{aligned}
$$

