MDL exercises, ninth handout (due April 27th, 14:00)

Consider MDL model selection between

$$
\mathcal{M}_{0}=\left\{P_{0, \sigma}: \sigma>0\right\} \text { and } \mathcal{M}_{1}=\left\{P_{\delta, \sigma}: \sigma>0, \delta \in \mathbb{R}\right\}
$$

where $P_{\delta, \sigma}$ is the distribution under which $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d., each with density given by

$$
p_{\delta, \sigma}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x}{\sigma}-\delta\right)^{2}}
$$

1. [1 point] Show that \mathcal{M}_{1} is identical to the family of normal distributions with mean in \mathbb{R} and variance in $\sigma^{2}>0$. That is, if $Q_{\mu, \sigma}$ represents a normal distribution with mean μ and variance σ, show that (i) for every $\sigma>0, \delta \in \mathbb{R}$, there is a $\mu \in \mathbb{R}$ such that $P_{\delta, \sigma}=Q_{\mu, \sigma}$ and (ii), conversely, for every $\sigma>0, \mu \in \mathbb{R}$, there is a $\delta \in \mathbb{R}$ such that $P_{\delta, \sigma}=Q_{\mu, \sigma}$.

Solution: For every $\sigma>0, \delta \in \mathbb{R}$, the density of $P_{\delta, \sigma}$ is given by

$$
\begin{aligned}
p_{\delta, \sigma}(x) & =\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x}{\sigma}-\delta\right)^{2}} \\
& =\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-\delta \sigma}{\sigma}\right)^{2}} \\
=q_{\sigma \delta, \sigma} &
\end{aligned}
$$

where $q_{\sigma \delta, \sigma}$ is the density of the normal distribution $Q_{\sigma \delta, \sigma}$. Similarly we see that for every $\sigma>0, \mu \in \mathbb{R}: Q_{\mu, \sigma}=P_{\mu / \sigma, \sigma}$.
We associate Bayesian universal measures \bar{p}_{0} with \mathcal{M}_{0} and \bar{p}_{1} with \mathcal{M}_{1}. In both cases, we put the right Haar prior $\pi(\sigma)=1 / \sigma$ on the variance σ. For \bar{p}_{1}, we equip δ with some (arbitrary) proper prior density w. Thus, we measure the evidence against \mathcal{M}_{0} by

$$
\begin{equation*}
M\left(x^{n}\right):=\log \frac{\bar{p}_{1}\left(x^{n}\right)}{\bar{p}_{0}\left(x^{n}\right)} \tag{1}
\end{equation*}
$$

with $\bar{p}_{0}\left(x^{n}\right)=\int \sigma^{-1} p_{0, \sigma}\left(x^{n}\right) d \sigma$ and $\bar{p}_{1}\left(x^{n}\right)=\int_{\sigma>0, \delta \in \mathbb{R}} \sigma^{-1} w(\delta) p_{\delta, \sigma}\left(x^{n}\right) d \sigma d \delta$.
2. [1 point] Show that $\pi(\sigma)=1 / \sigma$ is improper.

Solution:

$$
\begin{aligned}
\int_{0}^{\infty} \pi(\sigma) d \sigma & =\int_{0}^{\infty} \frac{1}{\sigma} d \sigma \\
& =\lim _{\substack{a \rightarrow 0 \\
b \rightarrow \infty}} \int_{a}^{b} \frac{1}{\sigma} d \sigma \\
& =\lim _{\substack{a \rightarrow 0 \\
b \rightarrow \infty}}[\ln (\sigma)]_{a}^{b} \\
& =\lim _{\substack{a \rightarrow 0 \\
b \rightarrow \infty}}(\ln (b)-\ln (a))=\infty
\end{aligned}
$$

3. (i) [1 point] Show that $M\left(x^{n}\right)$ is scale-invariant. That is, show that for every sequence x_{1}, \ldots, x_{n}, every $c>0$,

$$
\begin{equation*}
M\left(x_{1}, \ldots, x_{n}\right)=M\left(x_{1} / c, \ldots, x_{n} / c\right) \tag{2}
\end{equation*}
$$

(HINT: re-express the integral over σ in \bar{p}_{0} and \bar{p}_{1} as an integral over $\sigma^{\prime}=c \sigma$).

Solution:

For arbitrary x, we see

$$
\begin{aligned}
p_{\delta, \sigma}(x / c) & =\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x}{c \sigma}-\delta\right)^{2}} \\
& =\frac{c}{\sqrt{2 \pi} c \sigma} e^{-\frac{1}{2}\left(\frac{x}{c \sigma}-\delta\right)^{2}} \\
& =c p_{\delta, c \sigma}(x)
\end{aligned}
$$

Then

$$
p_{\delta, \sigma}\left(x_{1} / c, \ldots, x_{n} / c\right)=\prod_{i=1}^{n} p_{\delta, \sigma}\left(x_{i} / c\right)=c^{n} \prod_{i=1}^{n} p_{\delta, c \sigma}\left(x_{i}\right)=c^{n} p_{\delta, c \sigma}\left(x^{n}\right)
$$

So we get

$$
\begin{aligned}
M\left(x^{n} / c\right) & =\log \frac{\bar{p}_{1}\left(x^{n} / c\right)}{\bar{p}_{0}\left(x^{n} / c\right)} \\
& =\log \frac{\int_{\sigma>0, \delta \in \mathbb{R}} \sigma^{-1} w(\delta) p_{\delta, \sigma}\left(x^{n} / c\right) d \sigma d \delta}{\int_{\sigma>0, \delta \in \mathbb{R}} \sigma^{-1} w(\delta) p_{0, \sigma}\left(x^{n} / c\right) d \sigma d \delta} \\
& =\log \frac{\int_{\sigma>0, \delta \in \mathbb{R}} \sigma^{-1} w(\delta) c^{n} p_{\delta, c \sigma}\left(x^{n}\right) d \sigma d \delta}{\int_{\sigma>0, \delta \in \mathbb{R}} \sigma^{-1} w(\delta) c^{n} p_{0, c \sigma}\left(x^{n}\right) d \sigma d \delta} \\
& =\log \frac{1 / c \int_{\sigma>0, \delta \in \mathbb{R}} \sigma^{-1} w(\delta) p_{\delta, c \sigma}\left(x^{n}\right) d \sigma d \delta}{1 / c \int_{\sigma>0, \delta \in \mathbb{R}} \sigma^{-1} w(\delta) p_{0, c \sigma}\left(x^{n}\right) d \sigma d \delta} \\
& =\log \frac{\int_{\sigma^{\prime}>0, \delta \in \mathbb{R}} \sigma^{\prime-1} w(\delta) p_{\delta, \sigma^{\prime}}\left(x^{n}\right) d \sigma^{\prime} d \delta}{\int_{\sigma^{\prime}>0, \delta \in \mathbb{R}} \sigma^{\prime-1} w(\delta) p_{0, \sigma^{\prime}}\left(x^{n}\right) d \sigma^{\prime} d \delta} \\
& =M\left(x^{n}\right)
\end{aligned}
$$

where we substituted $\sigma^{\prime}=c \sigma$.
(ii) [1 point] Define $Z^{n}=\left(X_{1} /\left|X_{1}\right|, X_{2} /\left|X_{1}\right|, \ldots, X_{n} /\left|X_{1}\right|\right)$. Use (2) to show that, for arbitrary $X_{1} \neq 0, X_{2}, \ldots, X_{n}$,

$$
M\left(X_{1}, \ldots, X_{n}\right)=M\left(Z_{1}, \ldots, Z_{n}\right)
$$

Solution:

For any realisation $\left(x_{1}, \ldots, x_{n}\right)$ of X^{n}, it follows from (i) that

$$
M\left(x_{1}, \ldots, x_{n}\right)=M\left(x_{1} /\left|x_{1}\right|, x_{2} /\left|x_{1}\right|, \ldots, x_{n} /\left|x_{1}\right|\right)
$$

From this, it immediately follows that $M\left(X_{1}, \ldots, X_{n}\right)=M\left(Z_{1}, \ldots, Z_{n}\right)$.
4. Fix $\sigma>0$. Let $X_{1}, X_{2}, \ldots, X_{n} \sim$ i.i.d. $P_{\delta, \sigma}$. Let $X_{i}^{\prime}=X_{i} / \sigma$. (i) Show that, for all $\delta \in \mathbb{R}$, the distribution of $X_{1}^{\prime}, \ldots, X_{n}^{\prime}$ is now i.i.d. $N(\delta, 1)$. (ii) Use (i) to show that, for each fixed δ, the distribution of Z^{n} is the same under $P_{\delta, \sigma}$, for all $\sigma>0$ [for question 5 . see back side!].

Solution:

(i) Consider the cumulative distribution of X_{i}^{\prime} for arbitrary $a \in \mathbb{R}$:

$$
\begin{aligned}
F_{i}^{\prime}(a)=\mathbb{P}\left[X_{i}^{\prime} \leq a\right] & =\mathbb{P}\left[X_{i} / \sigma \leq a\right] \\
& =\mathbb{P}\left[X_{i} \leq \sigma a\right]
\end{aligned}
$$

Now, let us denote p_{i}^{\prime} for the density of X_{i}^{\prime} :

$$
\begin{aligned}
p_{i}^{\prime}(x) & =\frac{d F_{i}^{\prime}(x)}{d x} \\
& =\frac{d}{d x} \mathbb{P}\left[X_{i} \leq \sigma x\right] \\
& =\frac{d}{d(\sigma x)} \mathbb{P}\left[X_{i} \leq \sigma x\right] \frac{d}{d x} \sigma x \\
& =p_{\delta, \sigma}(\sigma x) \sigma \\
& =\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{\sigma x}{\sigma}-\delta\right)^{2}} \sigma \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}(x-\delta)^{2}}
\end{aligned}
$$

which is indeed the density of $N(\delta, 1)$.
(ii) By (i), the distribution of $\left(X^{\prime}\right)^{n}$ is independent of σ. Then the distribution of $\left(Z^{\prime}\right)^{n}=\left(X_{1}^{\prime} /\left|X_{1}^{\prime}\right|, X_{2}^{\prime} /\left|X_{1}^{\prime}\right|, \ldots, X_{n}^{\prime} /\left|X_{n}^{\prime}\right|\right)$ is also independent of σ. Note that since $\sigma>0$,

$$
Z_{i}^{\prime}=\frac{X_{i}^{\prime}}{\left|X_{i}^{\prime}\right|}=\frac{X_{i} / \sigma}{\left|X_{i}\right| / \sigma}=\frac{X_{i}}{\left|X_{i}\right|}=Z_{i}
$$

So we conclude that the distribution of Z^{n} is independent of σ.

As a consequence of (4)(ii), we can refer to the distribution P_{δ}^{\prime} on Z^{n} without specifying the variance (the distribution does not depend on the variance of the X^{n}). Let p_{δ}^{\prime} be the density of P_{δ}^{\prime}. We can now write

$$
M\left(X_{1}, \ldots, X_{n}\right)=\frac{\int_{\delta} w(\delta) p_{\delta}^{\prime}\left(Z_{1}, \ldots, Z_{n}\right) d \delta}{p_{0}^{\prime}\left(Z_{1}, \ldots, Z_{n}\right)}
$$

where Z^{n} corresponds to X^{n} as above.
5. [1 point] Explain the following statement: even though the Bayesian universal measures in (1) are based on improper priors, and therefore do not really define probability distributions, $-\log \bar{p}_{0}\left(X^{n}\right)-\left[-\log \bar{p}_{1}\left(X^{n}\right)\right]$ can be interpreted as a real codelength difference between two codes.

Solution:

As stated,

$$
M\left(X_{1}, \ldots, X_{n}\right)=-\log \bar{p}_{0}\left(X^{n}\right)-\left[-\log \bar{p}_{1}\left(X^{n}\right)\right]
$$

is equal to

$$
M\left(Z_{1}, \ldots, Z_{n}\right)=-\log p_{0}^{\prime}\left(Z_{1}, \ldots, Z_{n}\right)-\left[-\log p_{1}^{\prime}\left(Z_{1}, \ldots, Z_{n}\right)\right]
$$

where $p_{1}^{\prime}\left(Z_{1}, \ldots, Z_{n}\right)=\int_{\delta} w(\delta) p_{\delta}^{\prime}\left(Z_{1}, \ldots, Z_{n}\right) d \delta$. Here p_{0}^{\prime} and p_{δ}^{\prime} are probability distributions and $w(\delta)$ is a proper prior, so $M\left(Z_{1}, \ldots Z_{n}\right)$ is the actual codelength difference between p_{1}^{\prime} and p_{0}^{\prime}. Note that these are codelengths for coding Z_{1}, \ldots, Z_{n} (independent of σ), while the original problem was stated for X_{1}, \ldots, X_{n}.

