
TODAY: Maximum Entropy

1. Note: No Homework Lecture Today! [new homework 

will be posted tomorrow]

2. Brandeis Dice

3. Maximum Entropy: general formulation

• Examples

4. Exponential Families

Next Week: Maximum Entropy & MDL ; Connection to

S-Values



Brandeis Dice (Jaynes 1957)

• 𝒳 = 1,2,… , 6

• We found a strange looking die. We throw it  10000 

times. We observe average nr of spots of 4.5 .

• Now we are asked to guess distribution of 𝑋. What 

should we do?

• (1) we should perhaps set probs equal to freqs, 

but… we have not recorded all the frequencies!

• (2) we pick the most uncertain one, which we take 

to be the one with Maximum Entropy, i.e. 



Brandeis Dice (Jaynes 1957)

• 𝒳 = 1,2,… , 6

• We throw 10000 times. We observe average nr of 

spots of 4.5 .

• Now we are asked to guess distribution of X. 

• We pick the most uncertain one, which we take to be 

the one with Maximum Entropy 

• Sounds like ‘the least unreasonable one can do’

• How does the MaxEnt distribution look like? 

(𝑝me(1),...,𝑝me(6)) = 

(0.05435,0.07877,0.11416,0.16545,0.23977,0.34749)



Brandeis Dice (Jaynes 1957)

• How does the MaxEnt distribution look like? 

(𝑝me(1),...,𝑝me(6)) = 

(0.05435,0.07877,0.11416,0.16545,0.23977,0.34749)

• Note that this doesn't have to be the true 

distribution!

• P(X=4) = P(X=5) = 1/2 could be 'true', for example

• …so this distribution can never be more than a first 

rather wild guess

• …still, adopting the MaxEnt distribution may

sometimes be reasonable



General Setting 

• Suppose we want to make a prediction about a RV X

• If we know distribution of X, we can use that to make 

optimal predictions

• But here we deal with situation that we only have 

partial knowledge of distribution of X

• knowledge of form: 𝑃 ∈ 𝒫 for convex 𝒫

• In lecture/book we only consider the special case

of linear constraints, i.e. 𝒫 of form  𝒫 =
𝑃: 𝐸𝑃 𝜙 𝑋 = 𝑡 for some function 𝜙:𝒳 → ℝ𝑘

(convex ⇒ linear , but not vice versa)



General Setting 

• We assume so many observations that we can safely 

set expectations to averages! 

• dice problem: 𝜙 is identity! but in general, can be 

more complicated.

• According to Jaynes' maxent principle, we should 

pick the distribution in 𝒫 maximizing entropy

• dice example: distribution I just showed

• More Realistic Examples: e.g. natural language 

processing, species modelling 



The Good and The Bad 

• Good Properties of MaxEnt procedure:

• Unique solution: entropy is strictly concave

• Uniformity: if consistent with constraint, will pick the uniform 

distribution [generalizes Laplace’s Principle of Insufficient 

Reason]

• If consistent with constraint, will pick distribution under 

which RVs are independent ( 𝜙 = indicator functions)

• For certain prediction problems, it gives minimax optimal 

predictions (next week!)

• Bad Properties:

• Guess might be wrong (Ex Nihilo Nihil!)

• …for other prediction problems, not at all ‘optimal in any 

sense’



How to Compute MaxEnt

Distributions

• Why do we get the answer we got?

• Let 𝒫 = 𝑃: 𝐸𝑃 𝜙 𝑋 = 𝑡 for some function 𝜙:𝒳 → ℝ𝑘

• Let  (T=transpose)

Theorem: suppose there exists ෨𝛽 s.t. 𝑃෩𝛽 ∈ 𝒫 , i.e. 

𝐸𝑋∼𝑃෩𝛽 𝜙(𝑋) = 𝑡 . Then: 



Computing MaxEnt Distributions

Theorem: suppose there exists ෨𝛽 s.t. 𝑝෩𝛽 ∈ 𝒫 i.e. 

𝐸𝑋∼𝑃෩𝛽 𝜙(𝑋) = 𝑡 . Then: 

• Proof:

• Strange (but correct) proof. We started by assuming the answer, 

and then showed that it must actually be the answer



Computing MaxEnt Distributions

Theorem: suppose there exists ෨𝛽 s.t. 𝑝෩𝛽 ∈ 𝒫 i.e. 

𝐸𝑋∼𝑃෩𝛽 𝜙(𝑋) = 𝑡 . Then: 

• Usually constraints 𝒫 are such that ෨𝛽 exists!

• Special case of "Boltzmann-Gibbs distribution" 

"maximum entropy distribution“ “exponential family” 

• arise frequently in physics 

• arise in statistics because they have finite-

dimensional sufficient statistics (next week)



Example 1: Dice

• Pick ෨𝛽 such that expectation is 4.5

• Note: as 𝛽 ranges from −∞ to ∞ , 𝐸𝑃𝛽[𝑋] ranges from 

1 to 6



Example 2: Bernoulli

• 𝑋 = 0,1 ; 𝒫 = {𝑃 ∶ 𝐸𝑃 [𝑋] = 𝑡 }

• 𝑃 𝑋 = 1 ⋅ 1 + 𝑃 𝑋 = 0 ⋅ 0 = 𝑡

• i.e.

• 𝑃(𝑋 = 1) = 𝑡

• Note: as 𝛽 ranges from −∞ to ∞ , 𝐸𝑃𝛽[𝑋] ranges from 

0 to 1 – the ‘MaxEnt’ model coincides with the 

Bernoulli model

• If you plug in 𝛽 = log (
𝑝

1− 𝑝
), you see that 𝑃𝛽 is just 

Bernoulli distribution with mean 𝑝



Example 3: Independence if 

Consistent with Constraints

• 𝒳 = 𝒳1 ×𝒳2, 𝒳𝑖 = {𝑎, 𝑏}

• Constraint:

• 𝑃(𝑋1 = 𝑎) = 𝑝 ; 𝑃(𝑋2 = 𝑎) = 𝑞

• …rewrite as 𝐸𝑃 1𝑋1=𝑎 = 𝑝 ; 𝐸𝑃 1𝑋2=𝑎 = 𝑞

• 1𝑋1=𝑎 = 1 if 𝑋1 = 𝑎 ; 0 otherwise.

• Solution must be of form

• 𝑝𝛽 𝑋1, 𝑋2 =
1

𝑍(𝛽)
⋅ 𝑒𝛽11𝑋1=𝑎+𝛽21𝑋2=𝑎

• can be written as a product of something only 

dependent of 𝑋1 and something only dependent of 𝑋2
-> 𝑋1and 𝑋2 must be independent under 𝑝𝛽



Example(s) 4, Continuous Data 

• no constraints, 𝒳 = 𝑎, 𝑏 ⇒ MaxEnt is uniform 

distribution on 𝒳

• 𝒳 = ℝ+ , constraint 𝐸 𝑋 = 𝑡 ⇒ MaxEnt is 

exponential distribution with parameter 
1

𝑡

• 𝒳 = ℝ , constraint 𝐸 𝑋 = 𝜇 , var 𝑋 = 𝜎2 ⇒ MaxEnt

is normal distribution with parameters 𝜇,𝜎2

• [Reinterpretation of Central Limit Theorem: if we 

add and renormalize i.i.d. random variables 

[perform an operation that keeps 𝜇, 𝜎2 the same]

then the resulting distribution tends to the one 

with maximum entropy with this 𝜇, 𝜎2] 



The Good and The Bad, Revisited

• Good Properties of MaxEnt procedure:

• Unique solution: entropy is strictly concave

• Uniformity: if consistent with constraint, will pick the uniform 

distribution [generalizes Laplace’s Principle of Insufficient 

Reason]

• If consistent with constraint, will pick distribution under 

which RVs are independent (phi = indicator functions)

• For certain prediction problems, it gives minimax optimal 

predictions [next week!]

• Bad Properties:

• Guess might be wrong (Ex Nihilo Nihil!)

• …for other prediction problems, not at all ‘optimal in any 

sense’



General Setting 

• Good Properties 

• Bad Properties

• …they also simply arise in many practical situations, for different 

reasons [next week we’ll see such a reason!]. So they are 

important to study even without the idea to use them as a ‘first 

guess’ of the underlying distribution 



Exponential Families

• if 𝑞(𝑥) = 1, then it is a 'maximum entropy' family

• Most models we have seen before are exponential

families: Bernoulli, multinomial, normal, exponential, 

Gamma, Poisson, Pareto, Zipf, Beta, Gamma…: all 

exp families

• … also: Markov (need to extend definition to cover 

this), 

• Gaussian (and other) Mixtures do not form an 

exponential family!



Sufficient Statistics!

• Why are exponential families easy to work with? 

Because they allow for finite dimensional sufficient 

statistics (not depending on sample size)

• …and (with caveats) they are the only models 

with this property (Pitman-Koopman-Darmois)

• “A sufficient statistic of a sample relative to a model 

summarizes all information in the sample that is 

important to make inferences relative to the model”



Sufficient Statistics!

• Sample size 𝑛: exponential families constructed by 

taking product distributions

• 𝑝𝛽 𝑥𝑛 =
1

𝑍 𝛽 𝑛 𝑒
𝛽𝑇 σ𝑖=1..𝑛 𝜙(𝑋𝑖)ς𝑞(𝑥𝑖)

max
𝛽

log 𝑝𝛽 𝑥𝑛 = max
𝛽

(𝛽σ𝜙 𝑥𝑖 − 𝑛 log 𝑍 𝛽 + σlog 𝑞 𝑥𝑖 )

• To determine this, you only need to know sum 

(equivalently, average) of 𝜙 !



Sufficient Statistics!

max
𝛽

log 𝑝𝛽 𝑥𝑛 = max
𝛽

(𝛽σ𝜙 𝑥𝑖 − 𝑛 log 𝑍 𝛽 + σlog 𝑞 𝑥𝑖 )

• To determine this, you only need to know sum 

(equivalently, average) of 𝜙 !

• Bernoulli/binomial: need nr of 1s. <no other details>.

• Normal distribution: need mean and variance <no other 

details

• Poisson: only need mean

VERY easy to do statistics with: underlying reason why 

they are used so often. Not necessarily that they are good 

models of reality!

E.g mixture models do not have finite-dim suff stats. 



Mean-Value Parameterization

• Theorem: 

for every exponential family ℳ = 𝑃𝛽: 𝛽 ∈ Θ𝛽 , 

𝐸𝑃𝛽 𝜙 𝑋 is strictly monotonically increasing as a 

function of 𝛽
• [in the book this is also made precise for k-dim families with 

k > 1, i.e. 𝜙:𝒳 → ℝ𝑘 , where it is not directly clear what 

‘monotonic’ means]

• Intuition for proof: if 𝛽 increases, then 𝑥 with high 

𝜙 𝑥 get exponentially more weight

• Therefore, we can identify a distribution in ℳby its 

mean of 𝜙 rather than the value of 𝛽



Mean-Value Parameterization

We can also identify a distribution in ℳby its mean of 𝜙
rather than the value of 𝛽. Thus we can always: 

re-parameterize ℳ = 𝑃𝛽: 𝛽 ∈ 𝛩𝛽 as ℳ = 𝑃𝜇: 𝜇 ∈ 𝛩𝜇
where 𝜇𝛽: = 𝐸𝑃𝛽

𝜙 𝑋

• 𝜷: natural or canonical parameterization

• 𝝁: mean-value parameterization

• 𝛽𝜇 : inverse of 𝜇𝛽

• Bernoulli: 𝛽𝜇 = log
𝜇

1−𝜇
; Exponential: 𝛽𝜇 = 1/𝜇

• Normal with mean 0, varying 𝜎2 = 𝐸 𝑋2 mean (!)-

value parameter: 𝛽𝜎2 = 1/(2𝜎2)



Nice Properties (“duality”)

• We have:

• 𝜇𝛽 = (
𝑑

𝑑𝛽
)log 𝑍 𝛽 [multivariate: 𝜇𝛽 = ∇ log 𝑍 𝛽 ] 

• var𝑃𝛽 (𝜙) = 
𝑑2

𝑑𝛽2
log 𝑍 𝛽 = 𝐼(𝛽)

[multivariate: covariance matrix = Hessian= 𝐼(𝛽)]

• …analogous properties for 𝛽𝜇 = (
𝑑

𝑑𝜇
)log 𝐷 𝜇|| 𝜇0

• 𝐼 𝜇 =
𝑑2

𝑑𝜇2
log 𝐷 𝜇|| 𝜇0 =

1

𝐼 𝛽𝜇
=

1

var𝑃𝜇[𝜙]



TODAY: Maximum Entropy

1. Note: No Homework Lecture Today! [new homework 

will be posted tomorrow]

2. Brandeis Dice

3. Maximum Entropy: general formulation

• Examples

4. Exponential Families

Next Week: Maximum Entropy & MDL ; Connection to

S-Values






