TODAY: Maximum Entropy & MDL,
S-Value Connection

Note: No More Homework
Test Kaltura for final examination
Maximum Entropy and Minimum Description Length

Wrap-Up, Feedback
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The Coding (or Log-Loss) Game

« Data-compression as a two-player zero-sum game
* Nature picks a distribution P

» Statistician only knows that P € P = {P: Ep[¢p(X)] = t}
but nothing else

 Statistician’s goal is to minimize expected code-length
In the worst-case, i.e. find Q achieving

Mmin mMaxkEyx _p|— 10 X
inmax By p[~ 109 ¢(X)]

I \

Nature’s choice

Statistician’s choice: over all (incl defective) distrs




The Coding (or Log-Loss) Game

« Statistician’s goal is to minimize expected code-length
In the worst-case, i.e. find Q achieving

Min maxEx._p|— 10 X
inmaxky pl—10og q(X)]

« Nature’s goal is to maximize expected code-length in
the worst-case, i.e. find P € P achieving

maxmin Ex._p|— O X
maxmin ki pl— 109 q(X)]

...it seems that Nature’s goal is rather ‘un-natural’.
However, we have:

i _ = maxminEx.p|[— 10 X
mJ”%“S%EXNP[ log q(X)] pax mn Bx pl gq(X)]

It does not matter who Is allowed to move second!



The Coding (or Log-Loss) Game

Ev._ | X axminExy. . p|l—109q(X
m(;nrlpea% x~pl—logq(X)] =maxminEx pl (X)]

 Instance of the celebrated minimax theorem of game-
theory/convex analysis. Originally due to Von Neumann
(1928), but only for finite sample spaces and functions

with bounded range

« This form holds for (quite) general convex constraints
and is due to Topsoe (1979)

« We will show it for linear constraints (proof is easy)



Relation to Maximum Entropy

minmaxEy.p[—logq¢(X)] = maxminEx  p[—logq(X)]

PeP rpepP 4

= max H(P)
PeP

e Both minimum on left and maximum on right achieved

for Ppe

« ...for the left-hand-side this is surprising: the solution satisfies
the constraint, even though we did not impose it!

« although the game is extremely asymmetric, the optimal move
for both players is the same
P can thus be thought of as the worst-case optimal
distribution to use for data-compression when data
comes from some distribution in P , but you have no
iIdea which — motivation for use of MaxEnt in practice!



Proof, Part 1

(this part we already saw last week)

L ey Z(B) = Y & 90
Z(8) x%;(

pg(z) =

Theorem, Part 1: suppose there exists f s.t. Prpe® .e.
Ex~p~[§[¢(X)] =t . Then: P = Pme := arg max H(P)

p pPep
H(Pz) = maxmin Ex._p[— 10 X)l=maxH(P
(Pg) = maxminEx. p[—109¢(X)] = max H(P)

Proof: let P € P . We have:
H(P) < Ex.p[-109p;(X)] =
Expl-B"¢(X) +log Z(B)] = -3t + log Z(B) =
Ex~py [~ ¢(X) + 109 Z(B)] = H(Pp)



Proof, Part 2

Theorem, Part 2: suppose there exists f s.t. Prpe® .e.

H(Pg) = min max Ex.pl—109q(X)]

=~ = — argmin maxExy._p|— 10 X
P5 = Pme gmip maxEx.pl-10g¢(X)]

Proof: let g be a (defective) prob. mass fn. We have

max Ep[— 109 q(X)] > Ex.p,[~109q(X)] > H(P;) ...yet

I’IglaX Ep[—log pB-(X)] =
cP
max Ex.p[-BL¢(X) +log Z(B)] = -1t +log Z(B) =

Ex~py [~ ¢(X) +log Z(B)] = H(P;



Equalizer Property

In fact we proved something stronger than

5 = — arg min maxExy._p|— 10 X
PG = Pme gmip maxEx.pl-109¢(X)]

Namely, we showed that for all P € P,
Ex~pl=10gpz(X)] = Ex.p,[~logpz(X)] = H(Pp).
So not only is pp worst-case optimal for coding, you

also have a guarantee how well you will do in
expectation!

Data behaves as if P; were the true distribution,
even though it isn't!

« weird property. Called “robustness” in book
* have already seen this e.g. for Bernoulli



MaxEnt vs MDL

« S0 the maximum entropy distribution minimizes
worst-case expected codelength

« Can MaxEnt therefore be seen as ‘a form of’ MDL?

Not really: with MDL model selection

« we restrict the models we look at beforehand (e.g. all
polynomials)

« we then pick the model minimizing actual codelength on the
data...where the code we use minimizes maximum regret.

With MaxEnt

« we don't pick any model beforehand; we just observe a
constraint.

* We then pick distribution minimizing maximum codelength
of the data



MaxEnt vs MDL, Il

« Also, the MaxEnt distribution is a solution to a
minimax absolute codelength problem

e Solution in set of distributions under consideration
(constraint)

 ....whereas the NML distribution is a solution to a
minimax relative codelength problem

« Solution not in set of distributions under
consideration (model); leads to ‘learning’
(predictive distributions pick up on patterns in past
data)

Usually the first is taken in-expectation and the second for
Individual sequences, but that is a less fundamental difference



From MaxEnt to MinRelEnt

We can extend the story from MaxEnt to general
exponential families (with nonuniform carrier ry(x) ):

Let L, (P,q) == Ex.p [—log q(X) —[—logry (X)]] be
‘P-expected codelength achieved by q relative to ry’

Let L 87600

pp(x) = Z(3) -ro(x) Z(B) = ZXG}BTQMX)TO(‘T)
Te

Theorem: fix arbitrary 7, s.t. there exists § s.t. pz € P
L.e. EX“’PZ? |9p(X)] =t . Then

min max Lq,(P,q) = maxmin Ly, (P,
a4 pep r0(F ) PeP 4 ro( P q)

...both min on left and max on right achieved by Pz




From MaxEnt to MinRelEnt

Theorem: fix arbitrary 7, s.t. there exists 8 s.t. p; € P

.e. Ex~Pﬁ[gb(X)] =t . Then
minmax Lry(P,q) = maxmin Lo (P, )
...both min on left and max on right achieved by Pz

P can now be thought of as minimum relative entropy

distribution ‘the closest to R, satisfying constraint’:
P = argmax min Ex.p[~109¢(X) +10g70(X)]

—=argmaxEy._p|—10 X lo X
gmaxEx pl—1ogp(X) + log ro(X)]

=argmin Ex. pl[logp(X) —logrg(X)]
PeP

= arg min D(P||Rp).
g min D(P||Ro)



Relation to S-Values

* And now for something completely different...

Hypothesis Testing
with S-Values

...but then again, maybe not so different...



Recall Definition of S-Values

« LetH, ={Py|O € 0y} represent the null hypothesis
« Assume data X;,X,,...arei.i.d. underall P € H, .
 LetH;={Pyl|O € 0,} represent alternative hypothesis

* An S-value for sample size nis a function S : X" - R]

such that for all P, € H, , we have

EXnNPO [S(Xn)] <1



Safe Tests

 The Safe Test against H, at level o based on S-
value S is defined as the test which rejects H, if

ny s 1
S(X™) = -

« SinceforallPeHy,all0<a<1,

1
P(S(Xn)ga)ga

« ....the safe test which rejects H,, iff S(X™) = 20, i.e.
S~1(X™) < 0.05, has Type-l Error Bound of 0.05




How to design S-Values?

* Suppose we are willing to admit that we’'ll only be
able to tell H, and H, apart if P € Hy, U H; for some
H; c H, that excludes points that are ‘too close’ to H,

e.g.

Hy={P):0€©1},0] ={0ec©y: inf |6—-0bg2> 6}
RIESH

« We can then look for the GROW (growth-optimal in
worst-case) S-value achieving

sup inf Exn_p.[lOgS
WP oy, B pyllog 5]



GROW: an analogue of Power

 The GROW (growth-optimal in worst-case) S-value
relative to H, s IS the S-value achieving

sup inf Exn_p.[lOgS
P ey X pyllog 5]

where the supremum is over all S-values relative to H,,

* ...SO we don’t expect to gain anything when investing
In S under H,

« ...but among all such S we pick the one(s) that make
us rich fastest if we keep reinvesting in new gambles
under H,



The best S-Value is given by the
Joint Information Projection (JIPr)

pw (X™) = [ pp(X™)dW (0)

Wi set of all priors (prob distrs) on 07

W, WJ) :=arg min min D( Py, || P
( 1 O) gW1€W1WO:distr on ©g ( Wl” WO)




Towards Main Theorem on S-

Values
pw (X") 1= / po(X™)dW (6)
(W{,W3) :=arg_min min D( Py, || Pw,)

W1eW, Wp:distr on ©qg

Here D is the relative entropy or Kullback-Leibler
divergence, the central divergence measure In
iInformation theory and large deviations

D(P|Q) = Exeop [mg “X”)]

q(X™)
(can give measure-theoretic definition making it well-
defined even if P and Q not abs. cont.)



Main Theorem

pw (X™) = [ pp(X™)aW (0)

W, WJ) :=arg min min D( Py, || P
( 1 O) gW1€W1WO:distr on ©q ( Wl” WO)

pws(X")

Suppose (W;, Wy) exists. Then S§™ :=
pw (X™)

IS (a) an S-value relative to H,. (b)....



Main Theorem

pw (X™) = [ pp(X™)aW (0)

W, WJ) :=arg min min D( Py, || P
( 1 O) gW1€W1WO:distr on ©g ( Wl” WO)

pws(X")
pw (X™)

IS (a) an S-value. (b) In fact it is the GROW S-value, I.e.

Suppose (W;, Wy) exists. Then S§™ :=

inf Exnop, [l0ogS*]= sup inf Exn._p, [l0gS]
ool Py, 109 5] s oo, 0



Main Theorem

pw (X™) = [ pp(X™)aW (0)

W, WJ) :=arg min min D( Py, || P
( 1 O) gW1€W1WO:distr on ©g ( Wl“ WO)

pws(X")
pw (X™)

IS (a) an S-value. (b) In fact it is the GROW S-value, I.e.

Suppose (W;, Wy) exists. Then S§™ :=

inf Exnop, [l0ogS*]= sup inf Exn._p, [l0gS5]
pclr X Py, 1109 57] WP g e "X~y
and (c) , = _min min D(Py, ||Pw,)

Wiew; Wo



Main Theorem

pw (X™) = [ pp(X™)aW (0)

W, WJ) :=arg min min D( Py, || P
( 1 O) ngEWlWQ:diStr on ©q (WlH WO)

This Is really an extension of the previous
minimum-relative-entropy minimax theorem!

(nobody knows this ©)

IS (@) an S-value. (D) In Tact it IS the GRUW S-value, I.€.

inf Exn.p, [l0gS*] = sup inf Exn.p, [l0gS]
o0y BX Py, 1109 57] WP g e "X~y
and (c) , = _min min D(Py, || Pw,)

Wiew; Wo



Wrap-Up: What | hope you take
away from this course and why

Basics of Data Compression

« Because it's highly important by itself, and needed for rest
Material:

Kraft inequality

Entropy as expected codelength; KL as expected CL
difference; Fisher information as ‘correction’ in approximation to
KL by squared Euclidean distance

Homework mainly intended to get a feel for basic properties of
entropy such as concavity, upper bounds)



Wrap-Up: What | hope you take
away from this course and why

« Some observations about likelihood

Because it's highly important if you do statistics and too
much of it is taken for granted usually (I think)

maximizing over data vs over parameters, a little bit about
sufficient statistics

« Exponential Families

because they’re highly important in statistics

Because all our important theorems hold for general
exponential families

Some homework was to give you a feel for this; some (e.qg.
uniform distribution) to show that properties of exp fams are
quite special



Wrap-Up: What | hope you take
away from this course and why

« Basics of Bayesian statistics.
« Generally important (30% of all statistics papers)

* Relation to Data Compression/Sequential
Prediction (underappreciated!)

« Relation between MaxEnt and MDL
« Takes away the magic from MaxEnt



Wrap-Up: What | hope you take
away from this course and why

* Universal Coding/MDL Model Selection

Highly important in Information Theory; should also be
Important in machine learning/statistics, but somewhat
neglected there. Even if you can’t use this, there was
enough other stuff you will be able to use

« S-Values/Hypothesis Testing: the future of MDL
based methods?

* General: the interaction between
Information theory (data compression,
gambling) and learning from data



eQuestions?



