
TODAY: Maximum Entropy & MDL, 

S-Value Connection

1. Note: No More Homework

2. Test Kaltura for final examination

3. Maximum Entropy and Minimum Description Length 

4. Wrap-Up, Feedback



The Coding (or Log-Loss) Game

• Data-compression as a two-player zero-sum game

• Nature picks a distribution 𝑃

• Statistician only knows that 𝑃 ∈ 𝒫 = 𝑃: 𝐸𝑃 𝜙 𝑋 = 𝑡
but nothing else

• Statistician’s goal is to minimize expected code-length 

in the worst-case, i.e. find 𝑄 achieving 

Nature’s choice

Statistician’s choice: over all (incl defective) distrs



The Coding (or Log-Loss) Game

• Statistician’s goal is to minimize expected code-length 

in the worst-case, i.e. find 𝑄 achieving

• Nature’s goal is to maximize expected code-length in 

the worst-case, i.e. find 𝑃 ∈ 𝒫 achieving

…it seems that Nature’s goal is rather ‘un-natural’.

However, we have:

It does not matter who is allowed to move second!



The Coding (or Log-Loss) Game

• Instance of the celebrated minimax theorem of game-

theory/convex analysis. Originally due to Von Neumann 

(1928), but only for finite sample spaces and functions 

with bounded range 

• This form holds for (quite) general convex constraints 

and is due to Topsoe (1979)

• We will show it for linear constraints (proof is easy) 



Relation to Maximum Entropy

• Both minimum on left and maximum on right achieved

for 𝑃me

• …for the left-hand-side this is surprising: the solution satisfies

the constraint, even though we did not impose it!

• although the game is extremely asymmetric, the optimal move

for both players is the same

• 𝑃me can thus be thought of as the worst-case optimal 

distribution to use for data-compression when data 

comes from some distribution in 𝒫 , but you have no 

idea which → motivation for use of MaxEnt in practice!



Proof, Part 1 
(this part we already saw last week) 

Theorem, Part 1: suppose there exists ෨𝛽 s.t. 𝑃෩𝛽 ∈ 𝒫 i.e. 

𝐸𝑋∼𝑃෩𝛽 𝜙(𝑋) = 𝑡 . Then: 

Proof: let 𝑃 ∈ 𝒫 . We have: 



Proof, Part 2 

Theorem, Part 2: suppose there exists ෨𝛽 s.t. 𝑃෩𝛽 ∈ 𝒫 i.e. 

𝐸𝑋∼𝑃෩𝛽 𝜙(𝑋) = 𝑡 . Then: 

Proof: let 𝑞 be a (defective) prob. mass fn. We have

…yet 



Equalizer Property

• In fact we proved something stronger than 

• Namely, we showed that for all 𝑃 ∈ 𝒫, 

• So not only is 𝑝෩𝛽 worst-case optimal for coding, you 

also have a guarantee how well you will do in 

expectation! 

• Data behaves as if 𝑃෩𝛽 were the true distribution, 

even though it isn't!

• weird property. Called “robustness”  in book

• have already seen this e.g. for Bernoulli



MaxEnt vs MDL

• So the maximum entropy distribution minimizes

worst-case expected codelength

• Can MaxEnt therefore be seen as ‘a form of’ MDL?

Not really: with MDL model selection

• we restrict the models we look at beforehand (e.g. all 

polynomials)

• we then pick the model minimizing actual codelength on the 

data…where the code we use minimizes maximum regret.

With MaxEnt

• we don't pick any model beforehand; we just observe a

constraint. 

• We then pick distribution minimizing maximum codelength

of the data 



MaxEnt vs MDL, II 

• Also, the MaxEnt distribution is a solution to a 

minimax absolute codelength problem

• Solution in set of distributions under consideration 

(constraint)

• ….whereas the NML distribution is a solution to a

minimax relative codelength problem

• Solution not in set of distributions under

consideration (model); leads to ‘learning’

(predictive distributions pick up on patterns in past 

data)

Usually the first is taken in-expectation and the second for

individual sequences, but that is a less fundamental difference



From MaxEnt to MinRelEnt

• We can extend the story from MaxEnt to general 

exponential families (with nonuniform carrier 𝑟0 𝑥 ):

• Let 𝐿𝑟0 𝑃, 𝑞 ≔ 𝐸𝑋∼𝑃 [− log 𝑞 𝑋 − − log 𝑟0 𝑋 ] be 

‘𝑃-expected codelength achieved by 𝑞 relative to 𝑟0’

• Let

• Theorem: fix arbitrary 𝑟0 s.t. there exists ෨𝛽 s.t. 𝑝෩𝛽 ∈ 𝒫

i.e. 𝐸𝑋∼𝑃෩𝛽 𝜙(𝑋) = 𝑡 . Then

…both min on left and max on right achieved by 𝑃෩𝛽



From MaxEnt to MinRelEnt

Theorem: fix arbitrary 𝑟0 s.t. there exists ෨𝛽 s.t. 𝑝෩𝛽 ∈ 𝒫

i.e. 𝐸𝑋∼𝑃෩𝛽 𝜙(𝑋) = 𝑡 . Then

…both min on left and max on right achieved by 𝑃෩𝛽
𝑷෩𝜷 can now be thought of as minimum relative entropy 

distribution ‘the closest to 𝑹𝟎 satisfying constraint’: 



Relation to S-Values 

• And now for something completely different…

…but then again, maybe not so different…

Hypothesis Testing 

with S-Values



Recall Definition of S-Values

• Let 𝐻0 = 𝑃𝜃 𝜃 ∈ Θ0} represent the null hypothesis

• Assume data 𝑋1, 𝑋2, … are i.i.d. under all 𝑃 ∈ 𝐻0 .

• Let 𝐻1= 𝑃𝜃 𝜃 ∈ Θ1} represent alternative hypothesis

• An S-value for sample size 𝑛 is a function                

such that for all 𝑃0 ∈ 𝐻0 , we have 



Safe Tests

• The Safe Test against 𝐻0 at level 𝛼 based on S-

value S is defined as the test which rejects 𝐻0 if 

S 𝑋𝑛 ≥
1

𝛼

• Since for all 𝑃 ∈ 𝐻0, all 0 ≤ 𝛼 ≤ 1 ,  

• ....the safe test which rejects 𝐻0 iff  𝑆(𝑋𝑛) ≥ 20 , i.e.  

𝑆−1 𝑋𝑛 ≤ 0.05 , has Type-I Error Bound of 0.05



How to design S-Values?

• Suppose we are willing to admit that we’ll only be 

able to tell 𝐻0 and 𝐻1 apart if 𝑃 ∈ 𝐻0 ∪ 𝐻1
′ for some 

𝐻1
′ ⊂ 𝐻1 that excludes points that are ‘too close’ to 𝐻0

e.g. 

• We can then look for the  GROW (growth-optimal in 

worst-case) S-value achieving 



GROW: an analogue of Power

• The GROW (growth-optimal in worst-case) S-value 

relative to 𝐻1,𝛿 is the S-value achieving 

where the supremum is over all 𝑆-values relative to 𝐻0
• ...so we don’t expect to gain anything when investing 

in 𝑆 under 𝐻0
• ...but among all such 𝑆 we pick the one(s) that make 

us rich fastest if we keep reinvesting in new gambles 

under 𝐻1



The best S-Value is given by the 

Joint Information Projection (JIPr)

ഥ𝑯𝟎
𝑯′

𝟏

set of all priors (prob distrs) on Θ1
′



Here 𝐷 is the relative entropy or Kullback-Leibler

divergence, the central divergence measure in 

information theory and large deviations

(can give measure-theoretic definition making it well-

defined  even if 𝑃 and 𝑄 not abs. cont.)

Towards Main Theorem on S-

Values



Suppose (𝑊1
∗,𝑊0

∗) exists. Then 

is (a) an S-value relative to 𝐻0. (b)….

Main Theorem



Suppose (𝑊1
∗,𝑊0

∗) exists. Then 

is (a) an S-value. (b) In fact it is the GROW S-value, i.e. 

Main Theorem



Suppose (𝑊1
∗,𝑊0

∗) exists. Then 

is (a) an S-value. (b) In fact it is the GROW S-value, i.e. 

Main Theorem

and (c) ,



Suppose (𝑊1
∗,𝑊0

∗) exists. Then 

is (a) an S-value. (b) In fact it is the GROW S-value, i.e. 

Main Theorem

and (c) ,

This is really an extension of the previous 

minimum-relative-entropy minimax theorem!

(nobody knows this ☺ )



Wrap-Up: What I hope you take 

away from this course and why

• Basics of Data Compression

• Because it’s highly important by itself, and needed for rest

• Material: 

1. Kraft inequality

2. Entropy as expected codelength; KL as expected CL 

difference; Fisher information as ‘correction’ in approximation to 

KL by squared Euclidean distance

• Homework mainly intended to get a feel for basic properties of 

entropy such as concavity, upper bounds)



Wrap-Up: What I hope you take 

away from this course and why

• Some observations about likelihood

• Because it’s highly important if you do statistics and too 

much of it is taken for granted usually (I think)

• maximizing over data vs over parameters, a little bit about 

sufficient statistics

• Exponential Families

• because they’re highly important in statistics

• Because all our important theorems hold for general 

exponential families

• Some homework was to give you a feel for this; some (e.g. 

uniform distribution) to show that properties of exp fams are 

quite special 

•



Wrap-Up: What I hope you take 

away from this course and why

• Basics of Bayesian statistics.

• Generally important (30% of all statistics papers)

• Relation to Data Compression/Sequential 

Prediction (underappreciated!)

• Relation between MaxEnt and MDL

• Takes away the magic from MaxEnt



Wrap-Up: What I hope you take 

away from this course and why

• Universal Coding/MDL Model Selection

• Highly important in Information Theory; should also be

important in machine learning/statistics, but somewhat 

neglected there. Even if you can’t use this, there was 

enough other stuff you will be able to use

• S-Values/Hypothesis Testing: the future of MDL 

based methods? 

• General: the interaction between

information theory (data compression, 

gambling) and learning from data



•Questions?


