TODAY: Maximum Entropy & MDL, S-Value Connection

- 1. Note: No More Homework
- 2. Test Kaltura for final examination
- 3. Maximum Entropy and Minimum Description Length
- 4. Wrap-Up, Feedback

The Coding (or Log-Loss) Game

- Data-compression as a two-player zero-sum game
- Nature picks a distribution P
- Statistician only knows that $P \in \mathcal{P} = \{P : E_P[\phi(X)] = t\}$ but nothing else
- Statistician's goal is to minimize expected code-length in the worst-case, i.e. find Q achieving

$$\min_{q} \max_{P \in \mathcal{P}} \mathbf{E}_{X \sim P}[-\log q(X)]$$
 Nature's choice

Statistician's choice: over all (incl defective) distrs

The Coding (or Log-Loss) Game

 Statistician's goal is to minimize expected code-length in the worst-case, i.e. find Q achieving

$$\min_{q} \max_{P \in \mathcal{P}} \mathbf{E}_{X \sim P}[-\log q(X)]$$

• Nature's goal is to maximize expected code-length in the worst-case, i.e. find $P \in \mathcal{P}$ achieving

$$\max_{P \in \mathcal{P}} \min_{q} \mathbf{E}_{X \sim P} [-\log q(X)]$$

...it seems that Nature's goal is rather 'un-natural'. However, we have:

$$\min_{q} \max_{P \in \mathcal{P}} \mathbf{E}_{X \sim P}[-\log q(X)] = \max_{P \in \mathcal{P}} \min_{q} \mathbf{E}_{X \sim P}[-\log q(X)]$$

It does not matter who is allowed to move second!

The Coding (or Log-Loss) Game

$$\min_{q} \max_{P \in \mathcal{P}} \mathbf{E}_{X \sim P}[-\log q(X)] = \max_{P \in \mathcal{P}} \min_{q} \mathbf{E}_{X \sim P}[-\log q(X)]$$

- Instance of the celebrated minimax theorem of gametheory/convex analysis. Originally due to Von Neumann (1928), but only for finite sample spaces and functions with bounded range
- This form holds for (quite) general convex constraints and is due to Topsoe (1979)
- We will show it for linear constraints (proof is easy)

Relation to Maximum Entropy

$$\min_{q} \max_{P \in \mathcal{P}} \mathbf{E}_{X \sim P} [-\log q(X)] = \max_{P \in \mathcal{P}} \min_{q} \mathbf{E}_{X \sim P} [-\log q(X)]$$

$$= \max_{P \in \mathcal{P}} H(P)$$

- Both minimum on left and maximum on right achieved for P_{me}
 - ...for the left-hand-side this is surprising: the solution satisfies the constraint, even though we did not impose it!
 - although the game is extremely asymmetric, the optimal move for both players is the same
- P_{me} can thus be thought of as the worst-case optimal distribution to use for data-compression when data comes from some distribution in P, but you have no idea which → motivation for use of MaxEnt in practice!

Proof, Part 1

(this part we already saw last week)

$$p_{\beta}(x) = \frac{1}{Z(\beta)} \cdot e^{\beta^T \phi(X)}$$
 $Z(\beta) = \sum_{x \in \mathcal{X}} e^{\beta^T \phi(X)}$

Theorem, Part 1: suppose there exists $\tilde{\beta}$ s.t. $P_{\tilde{\beta}} \in \mathcal{P}$ i.e.

$$E_{X \sim P_{\widetilde{\beta}}}[\phi(X)] = t$$
 . Then: $P_{\widetilde{\beta}} = P_{\mathsf{me}} := \arg\max_{P \in \mathcal{P}} H(P)$

$$H(P_{\tilde{\beta}}) = \max_{P \in \mathcal{P}} \min_{q} \mathbf{E}_{X \sim P}[-\log q(X)] = \max_{P \in \mathcal{P}} H(P)$$

Proof: let $P \in \mathcal{P}$. We have:

$$\begin{split} &H(P) \leq \mathbf{E}_{X \sim P}[-\log p_{\tilde{\beta}}(X)] = \\ &\mathbf{E}_{X \sim P}[-\tilde{\beta}^T \phi(X) + \log Z(\tilde{\beta})] = -\tilde{\beta}^T t + \log Z(\tilde{\beta}) = \\ &\mathbf{E}_{X \sim P_{\tilde{\beta}}}[-\beta^T \phi(X) + \log Z(\tilde{\beta})] = H(P_{\tilde{\beta}}) \end{split}$$

Proof, Part 2

Theorem, Part 2: suppose there exists $\tilde{\beta}$ s.t. $P_{\tilde{\beta}} \in \mathcal{P}$ i.e.

$$E_{X \sim P_{\widetilde{\beta}}}[\phi(X)] = t$$
 . Then:

$$H(P_{\tilde{\beta}}) = \min_{q} \max_{P \in \mathcal{P}} \mathbf{E}_{X \sim P}[-\log q(X)]$$

$$p_{\tilde{\beta}} = p_{\text{me}} = \arg\min_{q \in \mathcal{Q}} \max_{P \in \mathcal{P}} \mathbf{E}_{X \sim P} [-\log q(X)]$$

Proof: let q be a (defective) prob. mass fn. We have

$$\max_{P \in \mathcal{P}} \mathbf{E}_P[-\log q(X)] \geq \mathbf{E}_{X \sim P_{\widetilde{\beta}}}[-\log q(X)] \geq H(P_{\widetilde{\beta}}) \quad ... \text{yet}$$

$$\max_{P \in \mathcal{P}} \mathbf{E}_P[-\log p_{\tilde{\beta}}(X)] =$$

$$\max_{P \in \mathcal{P}} \mathbf{E}_{X \sim P} [-\tilde{\beta}^T \phi(X) + \log Z(\tilde{\beta})] = -\tilde{\beta}^T t + \log Z(\tilde{\beta}) =$$

$$\mathbf{E}_{X \sim P_{\tilde{\beta}}}[-\beta^T \phi(X) + \log Z(\tilde{\beta})] = H(P_{\tilde{\beta}})$$

Equalizer Property

- In fact we proved something stronger than $p_{\widetilde{\beta}} = p_{\text{me}} = \arg\min_{q \in \mathcal{Q}} \max_{P \in \mathcal{P}} \mathbf{E}_{X \sim P} [-\log q(X)]$
- Namely, we showed that for all $P \in \mathcal{P}$, $\mathbf{E}_{X \sim P}[-\log p_{\widetilde{\beta}}(X)] = \mathbf{E}_{X \sim P_{\widetilde{\beta}}}[-\log p_{\widetilde{\beta}}(X)] = H(P_{\widetilde{\beta}}).$
- So not only is $p_{\widetilde{\beta}}$ worst-case optimal for coding, you also have a guarantee how well you will do in expectation!
- Data behaves as if $P_{\widetilde{\beta}}$ were the true distribution, even though it isn't!
 - weird property. Called "robustness" in book
 - have already seen this e.g. for Bernoulli

MaxEnt vs MDL

- So the maximum entropy distribution minimizes worst-case expected codelength
- Can MaxEnt therefore be seen as 'a form of' MDL?

Not really: with MDL model selection

- we restrict the models we look at beforehand (e.g. all polynomials)
- we then pick the model minimizing actual codelength on the data...where the code we use minimizes maximum regret.

With MaxEnt

- we don't pick any model beforehand; we just observe a constraint.
- We then pick distribution minimizing maximum codelength of the data

MaxEnt vs MDL, II

- Also, the MaxEnt distribution is a solution to a minimax absolute codelength problem
 - Solution in set of distributions under consideration (constraint)
-whereas the NML distribution is a solution to a minimax relative codelength problem
 - Solution not in set of distributions under consideration (model); leads to 'learning' (predictive distributions pick up on patterns in past data)

Usually the first is taken in-expectation and the second for individual sequences, but that is a less fundamental difference

From MaxEnt to MinRelEnt

- We can extend the story from MaxEnt to general exponential families (with nonuniform carrier $r_0(x)$):
- Let $L_{r_0}(P,q) \coloneqq E_{X \sim P}\left[-\log q(X) \left[-\log r_0(X)\right]\right]$ be 'P-expected codelength achieved by q relative to r_0 '
- Let $p_{\beta}(x) = \frac{1}{Z(\beta)} \cdot e^{\beta^T \phi(X)} \cdot r_0(x)$ $Z(\beta) = \sum_{x \in \mathcal{X}} e^{\beta^T \phi(X)} r_0(x)$
- Theorem: fix arbitrary r_0 s.t. there exists $\tilde{\beta}$ s.t. $p_{\tilde{\beta}} \in \mathcal{P}$ i.e. $E_{X \sim P_{\tilde{\beta}}}[\phi(X)] = t$. Then $\min_{q} \max_{P \in \mathcal{P}} L_{r_0}(P,q) = \max_{P \in \mathcal{P}} \min_{q} L_{r_0}(P,q)$
- ...both min on left and max on right achieved by $P_{\widetilde{\beta}}$

From MaxEnt to MinRelEnt

Theorem: fix arbitrary r_0 s.t. there exists $\tilde{\beta}$ s.t. $p_{\tilde{\beta}} \in \mathcal{P}$ i.e. $E_{X \sim P_{\tilde{\beta}}}[\phi(X)] = t$. Then

$$\min_{q} \max_{P \in \mathcal{P}} L_{r_0}(P, q) = \max_{P \in \mathcal{P}} \min_{q} L_{r_0}(P, q)$$

...both min on left and max on right achieved by $P_{\widetilde{\beta}}$

 $P_{\widetilde{\beta}}$ can now be thought of as minimum relative entropy distribution 'the closest to R_0 satisfying constraint':

$$\begin{split} P_{\widetilde{\beta}} &= \arg\max_{P \in \mathcal{P}} \min_{q} \mathbf{E}_{X \sim P} [-\log q(X) + \log r_0(X)] \\ &= \arg\max_{P \in \mathcal{P}} \mathbf{E}_{X \sim P} [-\log p(X) + \log r_0(X)] \\ &= \arg\min_{P \in \mathcal{P}} \mathbf{E}_{X \sim P} [\log p(X) - \log r_0(X)] \\ &= \arg\min_{P \in \mathcal{P}} D(P \| R_0). \end{split}$$

Relation to S-Values

And now for something completely different...

Hypothesis Testing with S-Values

...but then again, maybe not so different...

Recall Definition of S-Values

- Let $H_0 = \{ P_{\theta} | \theta \in \Theta_0 \}$ represent the null hypothesis
 - Assume data $X_1, X_2, ...$ are i.i.d. under all $P \in H_0$.
- Let $H_1 = \{ P_{\theta} | \theta \in \Theta_1 \}$ represent alternative hypothesis
- An S-value for sample size n is a function $S: \mathcal{X}^n \to \mathbb{R}_0^+$ such that for $A \cap P_0 \in H_0$, we have

$$\mathbf{E}_{X^n \sim P_0} \left[S(X^n) \right] \le 1$$

Safe Tests

- The Safe Test against H_0 at level α based on S-value S is defined as the test which rejects H_0 if $S(X^n) \geq \frac{1}{\alpha}$
- Since for all $P \in H_0$, all $0 \le \alpha \le 1$,

$$P\left(\frac{1}{S(X^n)} \le \alpha\right) \le \alpha$$

•the safe test which rejects H_0 iff $S(X^n) \ge 20$, i.e. $S^{-1}(X^n) \le 0.05$, has Type-I Error Bound of 0.05

How to design S-Values?

• Suppose we are willing to admit that we'll only be able to tell H_0 and H_1 apart if $P \in H_0 \cup H_1'$ for some $H_1' \subset H_1$ that excludes points that are 'too close' to H_0 e.g.

$$H_1' = \{ P_\theta : \theta \in \Theta_1' \}, \Theta_1' = \{ \theta \in \Theta_1 : \inf_{\theta_0 \in \Theta_0} \|\theta - \theta_0\|_2 \ge \delta \}$$

 We can then look for the GROW (growth-optimal in worst-case) S-value achieving

$$\sup_{S}\inf_{\theta\in\Theta_{1}'}\mathbf{E}_{X^{n}\sim P_{\theta}}[\log S]$$

GROW: an analogue of Power

• The GROW (growth-optimal in worst-case) S-value relative to $H_{1,\delta}$ is the S-value achieving

$$\sup_{S} \inf_{\theta \in \Theta_1'} \mathbf{E}_{X^n \sim P_{\theta}} [\log S]$$

where the supremum is over all S-values relative to H_0

- ...so we don't expect to gain anything when investing in S under H_0
- ...but among all such S we pick the one(s) that make us rich fastest if we keep reinvesting in new gambles under H_1

The best S-Value is given by the Joint Information Projection (JIPr)

$$p_W(X^n) := \int p_{\theta}(X^n) dW(\theta)$$

 \mathcal{W}_1 set of all priors (prob distrs) on Θ_1'

$$(W_1^*, W_0^*) := \arg\min_{W_1 \in \mathcal{W}_1} \min_{W_0: \text{distr on } \Theta_0} D(P_{W_1} \| P_{W_0})$$

Towards Main Theorem on S-Values

$$\begin{split} p_W(X^n) := \int p_\theta(X^n) dW(\theta) \\ (W_1^*, W_0^*) := \arg\min_{W_1 \in \mathcal{W}_1} \min_{W_0: \text{distr on } \Theta_0} D(P_{W_1} \| P_{W_0}) \end{split}$$

Here *D* is the relative entropy or Kullback-Leibler divergence, the central divergence measure in information theory and large deviations

$$D(P||Q) := \mathbf{E}_{X^n \sim P} \left[\log \frac{p(X^n)}{q(X^n)} \right]$$

(can give measure-theoretic definition making it well-defined even if *P* and *Q* not abs. cont.)

$$p_W(X^n) := \int p_\theta(X^n) dW(\theta)$$

$$(W_1^*, W_0^*) := \arg\min_{W_1 \in \mathcal{W}_1} \min_{W_0: \text{distr on } \Theta_0} D(P_{W_1} \| P_{W_0})$$

Suppose
$$(W_1^*, W_0^*)$$
 exists. Then $S^* := \frac{p_{W_1^*}(X^n)}{p_{W_0^*}(X^n)}$

is (a) an S-value relative to H_0 . (b)....

$$p_W(X^n) := \int p_\theta(X^n) dW(\theta)$$

$$(W_1^*, W_0^*) := \arg\min_{W_1 \in \mathcal{W}_1} \min_{W_0: \text{distr on } \Theta_0} D(P_{W_1} \| P_{W_0})$$

Suppose
$$(W_1^*, W_0^*)$$
 exists. Then $S^* := \frac{p_{W_1^*}(X^n)}{p_{W_0^*}(X^n)}$

is (a) an S-value. (b) In fact it is the GROW S-value, i.e.

$$\inf_{\theta_1 \in \Theta_1'} \mathbf{E}_{X^n \sim P_{\theta_1}} [\log S^*] = \sup_{S} \inf_{\theta_1 \in \Theta_1'} \mathbf{E}_{X^n \sim P_{\theta_1}} [\log S]$$

$$p_W(X^n) := \int p_\theta(X^n) dW(\theta)$$

$$(W_1^*, W_0^*) := \arg\min_{W_1 \in \mathcal{W}_1} \min_{W_0: \text{distr on } \Theta_0} D(P_{W_1} \| P_{W_0})$$

Suppose
$$(W_1^*, W_0^*)$$
 exists. Then $S^* := \frac{p_{W_1^*}(X^n)}{p_{W_0^*}(X^n)}$

is (a) an S-value. (b) In fact it is the GROW S-value, i.e.

$$\inf_{\theta_1 \in \Theta_1'} \mathbf{E}_{X^n \sim P_{\theta_1}}[\log S^*] = \sup_{S} \inf_{\theta_1 \in \Theta_1'} \mathbf{E}_{X^n \sim P_{\theta_1}}[\log S]$$
 and (c) ,
$$= \min_{W_1 \in \mathcal{W}_1} \min_{W_0} D(P_{W_1} \| P_{W_0})$$

$$\begin{split} p_W(X^n) := \int p_\theta(X^n) dW(\theta) \\ (W_1^*, W_0^*) := \arg\min_{W_1 \in \mathcal{W}_1} \min_{W_0: \text{distr on } \Theta_0} D(P_{W_1} \| P_{W_0}) \end{split}$$

This is really an extension of the previous minimum-relative-entropy minimax theorem! (nobody knows this ©)

is (a) an S-value. (b) In fact it is the GROW S-value, i.e.

$$\inf_{\theta_1 \in \Theta_1'} \mathbf{E}_{X^n \sim P_{\theta_1}} [\log S^*] = \sup_{S} \inf_{\theta_1 \in \Theta_1'} \mathbf{E}_{X^n \sim P_{\theta_1}} [\log S]$$
 and (c) ,
$$= \min_{W_1 \in \mathcal{W}_1} \min_{W_0} D(P_{W_1} \| P_{W_0})$$

- Basics of Data Compression
 - Because it's highly important by itself, and needed for rest
- Material:
- 1. Kraft inequality
- Entropy as expected codelength; KL as expected CL difference; Fisher information as 'correction' in approximation to KL by squared Euclidean distance
- Homework mainly intended to get a feel for basic properties of entropy such as concavity, upper bounds)

- Some observations about likelihood
 - Because it's highly important if you do statistics and too much of it is taken for granted usually (I think)
 - maximizing over data vs over parameters, a little bit about sufficient statistics
- Exponential Families
 - because they're highly important in statistics
 - Because all our important theorems hold for general exponential families
 - Some homework was to give you a feel for this; some (e.g. uniform distribution) to show that properties of exp fams are quite special

- Basics of Bayesian statistics.
 - Generally important (30% of all statistics papers)
 - Relation to Data Compression/Sequential Prediction (underappreciated!)
- Relation between MaxEnt and MDL
 - Takes away the magic from MaxEnt

- Universal Coding/MDL Model Selection
 - Highly important in Information Theory; should also be important in machine learning/statistics, but somewhat neglected there. Even if you can't use this, there was enough other stuff you will be able to use
- S-Values/Hypothesis Testing: the future of MDL based methods?
- General: the interaction between information theory (data compression, gambling) and learning from data

•Questions?