MDL exercises, fourth handout

Solutions

24 March 2020

1. (a) Let $H(p)=-p \log p-(1-p) \log (1-p)$ denote the binary entropy of a Bernoulli $[\mathrm{p}]$ distribution when the probability of observing a zero is p. (The logarithm is base two.) Use Stirling's approximation $\ln (n!)=\left(n+\frac{1}{2}\right) \ln n-n+\frac{1}{2} \ln 2 \pi+O(1 / n)$ to show that $\log \binom{n}{\gamma n}=n H(\gamma)-\frac{1}{2} \log n+O(1)$.

Below, we will abbreviate Stirling's approximation by SA. We see

$$
\begin{aligned}
\ln \binom{n}{\gamma n}= & \ln \left(\frac{n!}{(\gamma n)!(n-\gamma n)!}\right) \\
= & \ln (n!)-\ln ((\gamma n)!)-\ln ((n(1-\gamma))!) \\
\stackrel{\text { SA }}{=} & \left(n+\frac{1}{2}\right) \ln n-n+\frac{1}{2} \ln 2 \pi+O(1 / n) \\
& -\left(\gamma n+\frac{1}{2}\right) \ln (\gamma n)+\gamma n-\frac{1}{2} \ln 2 \pi+O(1 /(\gamma n)) \\
& -\left(n(1-\gamma)+\frac{1}{2}\right) \ln (n(1-\gamma))+n(1-\gamma)-\frac{1}{2} \ln 2 \pi+O(1 /(n(1-\gamma))) \\
= & \left(n+\frac{1}{2}-\gamma n-\frac{1}{2}-n(1-\gamma)-\frac{1}{2}\right) \ln (n)-\left(\gamma n+\frac{1}{2}\right) \ln (\gamma) \\
& -\left(n(1-\gamma)+\frac{1}{2}\right) \ln (1-\gamma)-\frac{1}{2} \ln (2 \pi)+O(1 / n) \\
= & -\frac{1}{2} \ln (n)+n(-\gamma \ln (\gamma)-(1-\gamma) \ln (1-\gamma)) \\
& -\frac{1}{2} \ln (\gamma)-\frac{1}{2} \ln (1-\gamma)-\frac{1}{2} \ln 2 \pi+O(1 / n) \\
= & -\frac{1}{2} \ln (n)+n(-\gamma \ln (\gamma)-(1-\gamma) \ln (1-\gamma))+O(1),
\end{aligned}
$$

where we have used that all constant terms and all $O(1 / n)$ terms are $O(1)$. Finally, dividing by $\ln 2$ on both sides, we see

$$
\begin{aligned}
\log \binom{n}{\gamma n} & =-\frac{1}{2} \log n+n(-\gamma \log (\gamma)-(1-\gamma) \log (1-\gamma))+O(1) \\
& =-\frac{1}{2} \log n+n H(\gamma)+O(1) .
\end{aligned}
$$

(b) More generally, consider a sample space $\mathcal{X}=\{1, \ldots, k\}$ and probability mass functions p on \mathcal{X}, given in the form of a vector $p=$ $\left(p_{1}, \ldots, p_{k}\right)$. Let $H(p)=\sum_{i=1}^{k}-p_{i} \log p_{i}$ denote the binary entropy of the distribution with mass function p. Use Stirling's approximation to express $\log \binom{n}{p_{1} n \ldots p_{k} n}=n!/\left(\left(p_{1} n\right)!\ldots\left(p_{k} n\right)!\right)$ up to an $O(1)$ term.

Analogous to the previous exercise:

$$
\begin{aligned}
& \ln \binom{n}{p_{1} n \ldots p_{k} n}= \ln \left(n!/\left(\left(p_{1} n\right)!\ldots\left(p_{k} n\right)!\right)\right) \\
&= \ln (n!)-\sum_{i=1}^{k} \ln \left(\left(p_{i} n\right)!\right) \\
& \stackrel{\mathrm{SA}}{=}\left(n+\frac{1}{2}\right) \ln n-n+\frac{1}{2} \ln (2 \pi)+O(1 / n) \\
&-\sum_{i=1}^{k}\left(p_{i} n+\frac{1}{2}\right) \ln \left(p_{i} n\right)-p_{i} n+\frac{1}{2} \ln (2 \pi)+O\left(1 /\left(p_{i} n\right)\right) \\
&=\left(n+\frac{1}{2}\right) \ln n-n+\sum_{i=1}^{k} p_{i} n-\sum_{i=1}^{k}\left(p_{i} n+\frac{1}{2}\right) \ln \left(p_{i} n\right)+O(1) \\
&=\left(n+\frac{1}{2}\right) \ln n-\sum_{i=1}^{k}\left(p_{i} n+\frac{1}{2}\right) \ln \left(p_{i} n\right)+O(1) \\
&=\left(n+\frac{1}{2}-\sum_{i=1}^{k}\left(p_{i} n+\frac{1}{2}\right)\right) \ln n-n \sum_{i=1}^{k} p_{i} \ln p_{i}-\frac{1}{2} \sum_{i=1}^{k} \frac{1}{2} \ln p_{i}+O(1) \\
&=\frac{1-k}{2} \ln n-n \sum_{i=1}^{k} p_{i} \ln p_{i}+O(1) .
\end{aligned}
$$

Dividing by $\ln 2$ on both sides:

$$
\begin{aligned}
\log \binom{n}{p_{1} n \ldots p_{k} n} & =\frac{1-k}{2} \log n-n \sum_{i=1}^{k} p_{i} \log p_{i}+O(1) \\
& =\frac{1-k}{2} \log n+n H(p)+O(1)
\end{aligned}
$$

Note that if we put $k=2$, we indeed see that this is a generalisation of the formula given in the previous exercise.
2. Consider two codes for coding sequences of 0 s and 1 s . One is the Bayesian code with lengths $-\log P_{M}\left(x^{n}\right)$, where P_{M} is the Bayesian probability based on a uniform prior over the Bernoulli model. The other is the twostage code where you first code the number of $1 \mathrm{~s} n_{1}$ in x^{n} using a uniform
code, and then you code the actual sequence with that number of 1's, using again a uniform code over all sequences of length n with $n_{1} 1$ s.
Which code is better and why?

In the first handout, we proved that

$$
P_{M}\left(x^{n}\right)=\frac{1}{(n+1)\binom{n}{n_{1}}},
$$

so the Bayesian code has code length

$$
L_{\text {Bayes }}\left(x^{n}\right)=-\log P_{M}\left(x^{n}\right)=\log (n+1)+\log \binom{n}{n_{1}}
$$

The two-stage code needs $\log (n+1)$ bits to encode n_{1}, because $n_{1} \in$ $\{0,1, \ldots n\}$. Since there are $\binom{n}{n_{1}}$ sequences with n_{1} ones, it needs $\log \binom{n}{n_{1}}$ bits to encode which sequence with n_{1} ones it precisely is. Therefore the two-stage code has total code length

$$
L_{2-\text { stage }}\left(x^{n}\right)=\log (n+1)+\log \binom{n}{n_{1}}
$$

We thus see that the codes have the same codelength for every x^{n} and are therefore equally good.
3. Markov chains.
(a) Compute the maximum likelihood estimator $\hat{\theta}=\left(p_{0 \rightarrow 1}, p_{1 \rightarrow 1}\right)$ for a binary first order Markov chain.

By definition of the Markov chain, we have for any sequence x^{n} :

$$
P\left(x^{n}\right)=\frac{1}{2} \prod_{i=2}^{n} P\left(x_{i} \mid x_{i-1}\right)
$$

Now, let us denote with $n_{i j}(i, j \in\{0,1\})$ the number of times a transition $i \rightarrow j$ occurs in x^{n}. Then we can rewrite the probability to

$$
P\left(x^{n}\right)=\frac{1}{2} \prod_{i=0}^{1} \prod_{j=0}^{1} p_{i \rightarrow j}^{n_{i j}}
$$

Using that $p_{0 \rightarrow 0}=1-p_{0 \rightarrow 1}$ and $p_{1 \rightarrow 0}=1-p_{1 \rightarrow 1}$, we write

$$
P\left(x^{n}\right)=\frac{1}{2} p_{0 \rightarrow 1}^{n_{01}}\left(1-p_{0 \rightarrow 1}\right)^{n_{00}} p_{1 \rightarrow 1}^{n_{11}}\left(1-p_{1 \rightarrow 1}\right)^{n_{10}}
$$

Taking the logarithm, we see

$$
\begin{aligned}
\log P\left(x^{n}\right)= & \log (1 / 2)+n_{01} \log \left(p_{0 \rightarrow 1}\right)+n_{00} \log \left(1-p_{0 \rightarrow 1}\right) \\
& +n_{11} \log \left(p_{1 \rightarrow 1}\right)+n_{10} \log \left(1-p_{1 \rightarrow 1}\right)
\end{aligned}
$$

Differentiating with respect to $p_{0 \rightarrow 1}$:

$$
\frac{\partial}{\partial p_{0 \rightarrow 1}} \log P\left(x^{n}\right)=\frac{n_{01}}{p_{0 \rightarrow 1}}-\frac{n_{00}}{1-p_{0 \rightarrow 1}} .
$$

Setting to zero to find the maximum likelihood value $\hat{p}_{0 \rightarrow 1}$:

$$
\frac{n_{01}}{\hat{p}_{0 \rightarrow 1}}=\frac{n_{00}}{1-\hat{p}_{0 \rightarrow 1}} \Rightarrow \hat{p}_{0 \rightarrow 1}=\frac{n_{01}}{n_{01}+n_{00}} .
$$

Similar for $p_{1 \rightarrow 1}$:

$$
\frac{\partial}{\partial p_{1 \rightarrow 1}} \log P\left(x^{n}\right)=\frac{n_{11}}{p_{1 \rightarrow 1}}-\frac{n_{10}}{1-p_{1 \rightarrow 1}} .
$$

Setting to zero to find the maximum likelihood value $\hat{p}_{1 \rightarrow 1}$:

$$
\frac{n_{11}}{\hat{p}_{1 \rightarrow 1}}=\frac{n_{10}}{1-\hat{p}_{1 \rightarrow 1}} \Rightarrow \hat{p}_{1 \rightarrow 1}=\frac{n_{11}}{n_{11}+n_{10}} .
$$

So the maximum likelihood estimator is given by:

$$
\hat{\theta}=\left(\frac{n_{01}}{n_{01}+n_{00}}, \frac{n_{11}}{n_{11}+n_{10}}\right) .
$$

(b) Draw X_{1}, X_{2}, X_{3} from an order 1 Markov chain. Are X_{1} and X_{3} dependent? What if you know the value of X_{2} ?
We see
$P\left(X_{3}=1 \mid X_{1}=0\right)=p_{0 \rightarrow 0} p_{0 \rightarrow 1}+p_{0 \rightarrow 1} p_{1 \rightarrow 1}=\left(1-p_{0 \rightarrow 1}\right) p_{0 \rightarrow 1}+p_{0 \rightarrow 1} p_{1 \rightarrow 1}$
and
$P\left(X_{3}=1 \mid X_{1}=1\right)=p_{1 \rightarrow 0} p_{0 \rightarrow 1}+p_{1 \rightarrow 1} p_{1 \rightarrow 1}=\left(1-p_{1 \rightarrow 1}\right) p_{0 \rightarrow 1}+p_{1 \rightarrow 1}^{2}$.
Therefore $P\left(X_{3}=1 \mid X_{1}=0\right) \neq P\left(X_{3}=1 \mid X_{1}=1\right)$, so X_{1} and X_{3} are dependent.
If we know the value of X_{2}, then we see

$$
P\left(X_{3}=1 \mid X_{2}=x_{2}, X_{1}=x_{1}\right)=p_{x_{2} \rightarrow 1}=P\left(X_{3}=1 \mid X_{2}=x_{2}\right)
$$

so X_{3} is independent of X_{1}, if we know X_{2}.

