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1. (1 point) Let n be a positive even integer, and G be a connected 2-regular graph which is a
(n, 2, c)-expander. Show that c ≤ 4/n.

2. (a) (1 point) Let n, m, and d be positive integers. Suppose we have 2n binary vectors
u1, . . . , un, v1, . . . , vn of dimension m (i.e., ui ∈ {0, 1}m and vi ∈ {0, 1}m for every
i ∈ [n]) with the following inner-product properties over the field of real numbers:

〈ui, vi〉 = 0 for every i ∈ [n]
〈ui, vj〉 ∈ {1, . . . , d} for every i 6= j

Prove that n ≤
d∑

i=0

(
m

i

)
.

(b) (1 point) Suppose we have 2n subsets A1, . . . , An, B1, . . . , Bn of an m-element universe
with the following intersection properties:

Ai ∩Bi = ∅ for every i ∈ [n]
|Ai ∩Bj | ∈ {1, . . . , d} for every i 6= j

Prove that n ≤
d∑

i=0

(
m

i

)
.

3. (2 points) Let n and m be positive integers. Let G = (V,E) be an undirected graph on
|V | = n vertices with |E| = m edges. A bipartition of the graph divides V into two disjoint
sets V1 and V2 (with V = V1 ∪ V2). Prove that there is a bipartition of G with at least m/2
edges going from V1-vertices to V2-vertices.

4. Consider an undirected bipartite graph G = (V1 ∪V2, E), where V1 and V2 are disjoint sets of
n vertices each, and E ⊆ V1× V2 is the set of edges between V1-vertices and V2-vertices. The
adjacency matrix of G is the following n× n matrix A of 0s and 1s: rows are indexed by V1,
columns by V2, and the (i, j)-entry Ai,j is 1 iff (i, j) ∈ E.

(a) (1 point) Suppose we take the matrix A and replace each non-zero entry Ai,j by a
variable xi,j (the 0-entries remain 0). Call the resulting matrix A(x), where x is the
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sequence of all variables. The determinant1 of A(x) is a polynomial in those variables, of
total degree at most n. Show that this polynomial is identically equal to 0 iff the graph
G does not have a perfect matching.

(b) (1 point) Give a randomized algorithm to decide (with error probability less than 1/3)
whether G has a perfect matching, using O(n2.38) computational steps.
NB: you’re not required to find a perfect matching, only to decide if one exists.

5. (2 points) In the lecture we saw a probabilistic communication protocol for the equality
function on inputs (x, y) ∈ {0, 1}n × {0, 1}n that used private coin flips and O(log n) bits of
communication. Give a protocol that computes the equality function with error probability
≤ 1/3 on all possible inputs (x, y) ∈ {0, 1}n × {0, 1}n, using public coin flips and O(1) bits of
communication.
NB: The number of public coin flips is not counted as part of the communication, so you can
use as many as you want.

1The determinant of an n× n matrix A is defined asX
π∈Sn

sgn(π)
nY
i=1

Ai,π(i),

where the sum is over the set Sn of all n! permutations on n elements, and sgn(π) ∈ {+1,−1} is the signature of the
permutation π (it doesn’t matter if you don’t know what that is). It is known that we can compute the determinant
of an n × n matrix in O(nω) computational steps, for some ω ∈ [2, 2.38]. Here an addition or multiplication in the
field F counts as one computational step. This ω is the matrix multiplication exponent ; its precise value is unknown,
though it is conjectured to equal 2.
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