Combinatorics with Computer Science Applications Midterm exam

Thu March 29, 2012, 13.00–16.00, UvA Science Park, Room G2.13 Ronald de Wolf, rdewolf@cwi.nl

- 1. (1 point) Let n be a nonnegative integer. Give two proofs of the identity $\sum_{i=0}^{n} \binom{n}{i} = 2^n$, one algebraic proof and one combinatorial proof.
- 2. (1 point) Let \mathcal{F} be a k-uniform family of sets over [n]. The $shadow \mathcal{S}$ of \mathcal{F} is the set of all (k-1)-element sets that lie entirely in at least one member of \mathcal{F} , i.e., $\mathcal{S} = \{A \subseteq [n] : |A| = k-1 \text{ and } \exists B \in \mathcal{F} \text{ s.t. } A \subset B\}$. Show that the size of \mathcal{S} is at least $k|\mathcal{F}|/(n-k+1)$ elements.
- 3. (2 points) Derive the Erdős-Szekeres theorem (Theorem 4.5 in the book) from Theorem 8.1 of the book.
- 4. (2 points) Let G = (V, E) be an undirected graph without self-loops. A matching of size k in G is a set of k vertex-disjoint edges. A star of size k in G is a set of k edges that all share a vertex a (i.e., edges $(a, b_1), (a, b_2), \ldots, (a, b_k)$). Prove that every graph with more than $2(k-1)^2$ edges contains a matching of size k or a star of size k.

 Hint: view the edges of the graph as a 2-uniform family of sets.
- 5. (3 points) Let $f: \{0,1\}^n \to \{0,1\}$ be a Boolean function. For $x \in \{0,1\}^n$ and $S \subseteq [n]$, let x^S denote x after changing all bits x_i with $i \in S$. For example, $0101^{\{2,3\}} = 0011$. For $i \in [n]$ abbreviate $x^i = x^{\{i\}}$. The sensitivity of f at input x is $s(f,x) = |\{i: f(x) \neq f(x^i)\}|$. The sensitivity of f is $s(f) = \max_{x \in \{0,1\}^n} s(f,x)$. The block sensitivity of f at input f is $f(f) = \max_{x \in \{0,1\}^n} s(f)$, which is the largest number $f(f) = \max_{x \in \{0,1\}^n} s(f)$ for all f is f in f is f in f in
 - (a) Show that $s(f) \leq bs(f)$.
 - (b) Show that if $S \subseteq [n]$ is a minimal set satisfying $f(x) \neq f(x^S)$, then $|S| \leq s(f)$.
 - (c) Show that if $C: S \to \{0,1\}$ is a certificate for input x (Section 9.4 of the book), then S intersects each set T for which $f(x) \neq f(x^T)$.
 - (d) Show that $C_1(f) \leq bs(f) \cdot s(f)$, where $C_1(f) = \max_{x: f(x)=1} C(f, x)$.
 - (e) Show that the decision tree complexity of f is at most $bs(f)^4$.