
The Equivalence of the Subsumption Theoremand the Refutation-completeness forUnconstrained ResolutionShan-Hwei Nienhuys-Cheng Ronald de Wolfcheng@cs.few.eur.nl bidewolf@cs.few.eur.nlDepartment of Computer Science, H4-19Erasmus University of RotterdamP.O. Box 1738, 3000 DR Rotterdam, the NetherlandsSub�eld: Automated Reasoning, (Inductive) Logic Programming.AbstractThe subsumption theorem is an important theorem concerning resolution.Essentially, it says that a set of clauses � logically implies a clause C, i�C is a tautology, or a clause D which subsumes C can be derived from� with resolution. It was originally proved in 1967 by Lee in [Lee67]. InInductive Logic Programming, interest in this theorem is increasing sinceits independent rediscovery by Bain and Muggleton [BM92]. It provides aquite natural \bridge" between subsumption and logical implication. Un-fortunately, a correct formulation and proof of the subsumption theoremare not available. It is not clear which forms of resolution are allowed. Infact, at least one of the current forms of this theorem is false. This causesa lot of confusion.In this paper, we give a careful proof of the subsumption theoremfor unconstrained resolution, and show that the well-known refutation-completeness of resolution is an immediate consequence of this theorem.On the other hand, we also show here that the subsumption theorem canbe proved starting from the refutation-completeness. This establishes thatthese two results have equal strength.Furthermore, we show that the subsumption theorem does not holdwhen only input resolution is used, not even in case � contains only oneclause. Since [Mug92, Ide93a] assume the contrary, some results (for in-stance results on nth roots and nth powers) in these articles should perhapsbe reconsidered.1 IntroductionInductive Logic Programming (ILP) investigates methods to learn theories fromexamples, within the framework of �rst-order logic. In ILP, the proof-method

that is most often used is resolution. A very important theorem concerningresolution is the Subsumption Theorem, which essentially states the following.Let � be a set of clauses and C a clause. Then � j= C, i� C is a tautology orthere exists a clause D which subsumes C and which can be derived from � byresolution.This theorem was �rst stated and proved by Lee in 1967 in [Lee67], his PhD-thesis. However, we have not been able to �nd a copy of his thesis. So it isunclear what precisely Lee stated, and how he proved his result. Surprisingly,nowhere in the standard literature concerning resolution (not even in Lee's ownbook [CL73]) the theorem is mentioned.1One thing is clear, though: the subsumption theorem states that logicalimplication between clauses can be divided in two separate steps|a derivationby resolution, and then a subsumption. Hence the theorem provides a natural\bridge" between logical implication and subsumption. Subsumption is verypopular in Inductive Logic Programming, since it is decidable and machine-implementable. However, subsumption is not \enough": if D subsumes C thenD j= C, but not always the other way around. So it is desirable to make thestep from subsumption to implication, and the subsumption theorem providesan excellent tool for those who want to make this step. It is used for instancein [Mug92, Ide93a]2 for inverse resolution. In [LN94b], the theorem is usedto extend the result of [LN94a] that there does not exist an ideal re�nementoperator3 in the set of clauses ordered by subsumption, to the result that thereis no ideal re�nement operator in the ordering induced by logical implication.In [NLT93], the theorem is related to several generality orderings.The subsumption theorem is more natural than the better-known refutation-completeness of resolution, which states that an unsatis�able set of clauses hasa refutation (a derivation by resolution of the empty clause 2). For example,if one wants to prove � j= C using the refutation-completeness, one must �rstnormalize the set � [f:Cg to a set of clauses. Usually � [f:Cg is not a setof clauses, since negating the (universally quanti�ed) clause C yields a formulawhich involves existential quanti�ers. So if we want to prove � j= C by refuting� [f:Cg, we must �rst apply Skolemization to C. Deriving from � a clause Dwhich subsumes C, is a much more \direct" way of proving � j= C.Hence we|and perhaps many others|feel that the subsumption theoremdeserves at least as much attention as the refutation-completeness. We can infact prove that the latter is a direct consequence of the former, as given inSection 3. It is surprising that the subsumption theorem was so little known.Only after Bain and Muggleton rediscovered the theorem in [BM92], people havestarted paying attention to it.41Recently we received a copy of [Kow70] and a reference to [SCL69] from Stephen Mug-gleton. [Kow70] gives a proof of the subsumption theorem for unconstrained resolution, usingsemantic trees, which is very di�erent from the proof we give here. [SCL69] proves a versionof the subsumption theorem for semantic resolution.2[Ide93a] is a PhD-thesis based upon articles such as [Ide93b, Ide93c, Ide93d].3A re�nement operator is a device to specialize clauses.4From recent personal communication with Stephen Muggleton, we know Bain and Mug-

A proof of the subsumption theorem, based on the refutation-completeness,is given in the appendix of [BM92]. However, this proof seems unsatisfactory.For example, it does not take factors into account, whereas factors are necessaryfor completeness. Without factors one cannot derive the empty clause 2 fromthe unsatis�able set f(P (x) _ P (y)); (:P (u) _ :P (v))g (see [GN87]). In fact,our counterexample in Section 5 also depends on factors. Furthermore, it is notalways clear how the concepts that are used in the proof are de�ned, and howthe skolemization works. Their proof is based on transforming a refutation-treeinto a derivation-tree, but this transformation is not clearly de�ned and thusinsu�cient to prove that the transformation can always be performed.Even though the proof in [BM92] is not quite satisfactory, it is often quoted|sometimes even incorrectly. The two main formulations we have found are thefollowing:S Let � be a set of clauses and C a clause which is not a tautology. De�neR0(�) = � and Rn(�) = Rn�1(�) [fC : C is a resolvent of C1; C2 2Rn�1(�)g. Also de�ne R�(�) = R0(�)[R1(�)[: : :. Then the subsump-tion theorem is stated as follows (we assume the authors of [BM92] used``' for what we mean by `j=', i.e. logical implication):� ` C i� there exists a clause D 2 R�(�) such that D subsumes C.S0 Let � be a set of clauses and C a clause which is not a tautology. De�neL1(�) = � and Ln(�) = fC : C is a resolvent of C1 2 Ln�1(�) and C2 2�g. Also de�ne L�(�) = L1(�) [L2(�) [: : :. Then the subsumptiontheorem is stated as follows:� j= C i� there exists a clause D 2 L�(�) such that D subsumes C.S is given in [BM92], S0 is given in [Mug92]. In [Mug92], Muggleton does notprove S0, but refers instead to [BM92]. In other articles such as [Ide93a, LN94b,NLT93], the theorem is also given in the form of S0. These articles do not give aproof of S0, but refer instead to [BM92] or [Mug92]. That is, they refer to a proofof S assuming that this is also a proof of S0. But clearly that is not the case,because S0 demands that at least one of the parent clauses of a clause in L�(�) isa member of �, so S0 is stronger than S. In fact, whereas S is true, S0 is actuallyfalse! If S0 were true, then input resolution would be refutation-complete (as wewill show in Section 5), which it is not. An easy propositional counterexamplefor the refutation-completeness of input resolution is given on p. 99 of [GN87].The confusion about S0 is perhaps a consequence of the subtle distinctionbetween linear resolution and input resolution. S0 employs a form of input reso-lution, which is a special case of linear resolution. Linear resolution is complete5,but input resolution is not complete. See [CL73] or [GN87].However, the articles we mentioned do not use S0 itself. [LN94b, NLT93]are restricted to Horn clauses. It can be shown that for Horn clauses there isgleton discovered the theorem themselves, independently of [Lee67]. Only afterwards did theyfound out from references in other literature that their theorem was probably the same as thetheorem in Lee's thesis.5It is possible to prove that the subsumption theorem holds in case of linear resolution, butwe will not do that here.

no problem. Due to a lack of space we will not prove that here, but in anotherarticle [NW95b]. If we examine [Mug92, Ide93a] carefully, then we see that theresults of these articles only depend on a special case of S0, namely the case where� consists of a single clause. Muggleton and others have used the de�nition ofLn(fCg) to de�ne nth powers and nth roots. Unfortunately, S0 does not evenhold in this special case. We give a counterexample in Section 5. This meansthat the results of [Mug92, Ide93a] which are consequences of this special caseof S0 need to be reconsidered.6The confusion around the subsumption theoremmade us investigate this theoremourselves, which led to the discovery of the mixture of true and false results thatwe mentioned above. We investigated the subsumption theorem both in thecase of unconstrained resolution, and in the case of SLD-resolution for Hornclauses. For the latter case we generalized the de�nition of SLD-resolution givenin [Llo87], following an idea of [MP94]. The main results of both parts of ourresearch can be summarized in the following sequence (where a)b)c)d).a. The subsumption theorem for unconstrained resolution.b. The refutation-completeness of unconstrained resolution.c. The refutation-completeness of SLD-resolution for Horn clauses.d. The subsumption theorem for SLD-resolution for Horn clauses.e. S0 is false, even when � (the set of premisses) contains only one clause.We defer c and d to the second part of our research [NW95b]. c is similar toTheorem 8.4 of [Llo87], but our proof of c is interesting in that it avoids partialorders and �xpoints, using only the basic de�nitions of unconstrained resolutionand SLD-resolution.In this paper we focus on a, b and e. In Section 2, we prove a. Our proofdoes not presuppose the refutation-completeness, contrary to the inadequateproof in [BM92]. b is well-known, but it is not well-known that b is a directconsequence of a, as we will show in Section 3 (this fact can also be used to es-tablish the falsity of S0). Thus b follows immediately from a. On the other hand,a can also be proved starting from b, as we show in Section 4. This establishesthe equivalence of the subsumption theorem and the refutation-completeness:these results have equal power. Finally, in Section 5 we prove e, by presentingour counterexample to the special case of S0 that we mentioned.2 The Subsumption TheoremIn this section, we give a proof of the subsumption theorem. Before startingwith our proof, we will �rst brie
y de�ne the main concepts we use. We treat aclause as a disjunction of literals, so we consider P (a) and P (a)_P (a) as di�erentclauses. However, the results of our paper remain valid also for other notations,for instance if one treats a clause as a set of literals instead of a disjunction. For6From recent personal communication with Peter Idestam-Almquist, we know he has ad-justed his work from [Ide93a], based on our �ndings.

convenience, we use C � D to denote that the set of literals appearing in thedisjunction C is a subset of the set of literals in D.De�nition 1 Let C1 and C2 be clauses. If C1 and C2 have no variables incommon, then they are said to be standardized apart.Given C1 and C2, let C 01 = L1_ : : :_Li _ : : :_Lm and C 02 =M1 _ : : :_Mj _: : : _Mn be variants of C1 and C2 respectively, which are standardized apart(1 � i � m and 1 � j � n). If the substitution � is a most general uni�er (mgu)of the set fLi;:Mjg, then the clause(L1 _ : : : _ Li�1 _ Li+1 _ : : : _ Lm _M1 _ : : : _Mj�1 _Mj+1 _ : : : _Mn)�is called a binary resolvent of C1 and C2. The literals Li and Mj are said to bethe literals resolved upon. 3De�nition 2 Let C be a clause, L1; : : : ; Ln (n � 1) uni�able literals from C,and � an mgu of fL1; : : : ; Lng. Then the clause obtained by deleting L2�; : : : ; Ln�from C� is called a factor of C.A resolvent C of clauses C1 and C2 is a binary resolvent of a factor of C1and a factor of C2, where the literals resolved upon are the literals uni�ed bythe respective factors. C1 and C2 are called the parent clauses of C. 3Note that any non-empty clause C is a factor of itself, using the empty substi-tution " as an mgu of a single literal in C.De�nition 3 Let � be a set of clauses and C a clause. A derivation of C from� is a �nite sequence of clauses R1; : : : ; Rk = C, such that each Ri is either in�, or a resolvent of two clauses in fR1; : : : ; Ri�1g. If such a derivation exists, wewrite � `r C. A derivation of the empty clause 2 from � is called a refutationof �. 3De�nition 4 Let C and D be clauses. We say D subsumes (or �-subsumes) Cif there exists a substitution � such that D� � C.Let � be a set of clauses and C a clause. We say there exists a deduction ofC from �, written as � `d C, if C is a tautology, or if there exists a clause Dsuch that � `r D and D subsumes C. 3To illustrate these de�nitions, we will give an example of a deduction of theclause C = R(a) _ S(a) from the set � = f(P (x) _ Q(x) _ R(x)); (:P (x) _Q(a)); (:P (x) _ :Q(x)); (P (x) _ :Q(x))g. Figure 1 shows a derivation of theclause D = R(a)_R(a) from �. Note that we use the factor Q(a)_R(a) of theparent clause C6 = Q(x) _ R(x) _ Q(a) in the last step of the derivation, andalso the factor P (y) _ R(y) of C5 = P (y) _ P (y) _ R(y) in the step leading toC7. Since D subsumes C, we have � `d C.It is not very di�cult to see the equivalence between our de�nition of aderivation, and the de�nition of Rn(�) we gave in Section 1. For instance,in �gure 1, C1; C2; C3; C4; C 01 are variants of clauses in R0(�) (C1 and C 01 are

C1 = P (x) _Q(x) _R(x) C2 = :P (y) _Q(a)@@@@R ����	C6 = Q(x) _R(x) _Q(a)
C4 = P (x) _ :Q(x) C01 = P (y) _Q(y) _R(y)C3 = :P (x) _ :Q(x) @@@@R ����	C5 = P (y) _ P (y) _R(y)@@@@R ����	C7 = :Q(y) _R(y)@@@@R ����	D = R(a) _R(a)Figure 1: The tree for the derivation of D from �variants of the same clause). C5; C6 are in R1(�), C7 is in R2(�), and D is inR3(�).The subsumption theorem states that � j= C i� � `d C. The `if'-part of thisresult follows immediately from the soundness of resolution. We prove the `only-if' part in a number of successive steps in the following subsections. First weprove the theorem in case both � and C are ground, then we prove it in case �consists of arbitrary clauses but C is ground, and �nally we prove the theoremwhen neither � nor C need to be ground.2.1 The Subsumption Theorem for Ground � and CFirst we prove our result for the case when both � and C are restricted to groundclauses.Theorem 1 Let � be a set of ground clauses, and C be a ground clause. If� j= C, then � `d C.Proof If C is a tautology, the theorem is obvious. Assume C is not a tautology.Then we need to �nd a clause D, such that � `r D and D � C (note that forground clauses D and C, D subsumes C i� D � C). The proof is by inductionon the number of clauses in �.1. Suppose � = fC1g. We will show that C1 � C. Suppose C1 6� C.Then there exists a literal L, such that L 2 C1 but L 62 C. Let I be aninterpretation which makes L true, and all literals in C false (such an Iexists, since C is not a tautology). Then I is a model of C1, but not of C.But that contradicts � j= C. So C1 � C, and � `d C.2. Suppose the theorem holds if j�j � m. We will prove that this impliesthat the theorem also holds if j�j = m+ 1. Let � = fC1; : : : ; Cm+1g, and�0 = fC1; : : : ; Cmg. If Cm+1 subsumes C or �0 j= C, then the theoremholds. So assume Cm+1 does not subsume C and �0 6j= C.

The idea is to derive, using the induction hypothesis, a number of clausesfrom which a derivation of a subset of C can be constructed (see �gure 2).First note that since � j= C, we have �0 j= C_:Cm+1 (using the DeductionTheorem7). Let L1; : : : ; Lk be all the literals in Cm+1 which are not in C(k � 1 since Cm+1 does not subsume C). Then we can write Cm+1 =L1 _ : : : _ Lk _ C 0, where C 0 � C (the order of literals in a clause is notimportant). Since C does not contain Li (1 � i � k), the clause C _:Li isnot a tautology. Also, since �0 j= C_:Cm+1 and Cm+1 is ground, we havethat �0 j= C _ :Li, for each i. Then by the induction hypothesis, thereexists for each i a ground clause Di such that �0 `r Di and Di � (C_:Li).We will use Cm+1 and the derivations from �0 of these Di to constructa derivation of a subset of C from �. :Li 2 Di, otherwise Di � C and�0 j= C. So we can write each Di as :Li _ D0i, and D0i � C. The casewhere some Di contains :Li more than once can be solved by taking afactor of Di.Now we can construct a derivation of the ground clause de�ned as D =C 0 _D01 _ : : : _D0k from �, using Cm+1 and the derivations of D1; : : : ; Dkfrom �0. See �gure 2. In this tree, the derivations of D1; : : : ; Dk areindicated by the vertical dots. So we have that � `r D. Since C 0 � C,and D0i � C for each i, we have that D � C. Hence � `d C.Cm+1 = L1 _ : : : _ Lk _ C0 ...D1 = :L1 _D01@@@@R ����	L2 _ : : : _ Lk _C0 _D01 ...D2 = :L2 _D02@@@@R ����	L3 _ : : : _ Lk _ C0 _D01 _D02. . .Lk _ C0 _D01 _ : : : _D0k�1 ...Dk = :Lk _D0k@@@@R ����	D = C0 _D01 _ : : : _D0kFigure 2: The tree for the derivation of D from � 27� [fCg j= D i� � j= (C ! D).

2.2 The Subsumption Theorem when C is GroundIn this section, we will prove the theorem in case C is ground and � is a set ofarbitrary clauses. The idea is to \translate" � j= C to �g j= C, where �g is aset of ground instances of clauses of �. Then by Theorem 1, there is a clauseD such that �g `r D, and D subsumes C. Afterwards, we can \lift" this to adeduction of C from �.Theorem 2 (Herbrand, [CL73]) A set � of clauses is unsatis�able i� thereis a �nite unsatis�able set �0 of ground instances of clauses of �.Lemma 1 Let � be a set of clauses, and C be a ground clause. If � j= C,then there exists a �nite set of clauses �g, where each clause in �g is a groundinstance of a clause in �, such that �g j= C.Proof Let C = L1 _ : : : _ Lk (k � 0). If � is unsatis�able then the lemmafollows immediately from Theorem 2, so suppose � is satis�able. Note that sinceC is ground, :C is equivalent to :L1 ^ : : : ^ :Lk. Then:� j= C i� (by the Deduction Theorem)� [f:Cg is unsatis�able i�� [f:L1; : : : ;:Lkg is unsatis�able i� (by Theorem 2)there exists a �nite unsatis�able set �0, consisting of ground instancesof clauses from � [f:L1; : : : ;:Lkg.Since � is satis�able, the unsatis�able set �0 must contain one or more membersof the set f:L1; : : : ;:Lkg, i.e. �0 = �g [f:Li1 ; : : : ;:Lijg, where �g is a �nitenon-empty set of ground instances of clauses in �. So:�0 is unsatis�able i��g [f:Li1 ; : : : ;:Lijg is unsatis�able i��g[f:(Li1_: : :_Lij)g is unsatis�able i� (by the Deduction Theorem)�g j= (Li1 _ : : : _ Lij).Since fLi1 ; : : : ; Lijg � C, it follows that �g j= C. 2The next lemma shows that if a set �0 consists of instances of clauses in �,then a derivation from �0 can be \lifted" to a derivation from �. Similar lifting-lemmas are proved in [CL73, GN87]. We prove our own lifting-lemma, becauseour de�nition of resolution slightly di�ers from the de�nitions used in those books(we treat a clause as a disjunction, rather than as a set of literals). Because ofits rather technical nature, we have deferred the proof to Appendix A.Lemma 2 (Derivation Lifting) Let � be a set of clauses, and �0 be a set ofinstances of clauses in �. Suppose R01; : : : ; R0k is a derivation of the clause R0kfrom �0. Then there exists a derivation R1; : : : ; Rk of the clause Rk from �,such that R0i is an instance of Ri, for each i.

Theorem 3 Let � be a set of clauses, and C be a ground clause. If � j= C,then � `d C.Proof If C is a tautology, the theorem is obvious. Assume C is not a tautology.We want to �nd a clause D such that � `r D and D subsumes C. From � j= Cand Lemma 1, there exists a �nite set �g such that each clause in �g is a groundinstance of a clause in �, and �g j= C. Then by Theorem 1, there exists aground clause D0 such that �g `r D0, and D0 � C. Let R01; : : : ; R0k = D0 bea derivation of D0 from �g . From Lemma 2, we can \lift" this to a derivationR1; : : : ; Rk of Rk from �, where Rk� = D0 for some �. Let D = Rk. ThenD� = D0 � C. Hence D subsumes C. 22.3 The Subsumption Theorem (General Case)In this subsection, we will prove the subsumption theorem for arbitrary � andC. In the proof, we will use a Skolemizing substitution.De�nition 5 Let � be a set of clauses, and C a clause. Let x1; : : : ; xn be allthe variables appearing in C and a1; : : : ; an be distinct constants not appearingin � or C. Then fx1=a1; : : : ; xn=ang is called a Skolemizing substitution for Cw.r.t. �. 3Lemma 3 Let C and D be clauses. Let � = fx1=a1; : : : ; xn=ang be a Skolem-izing substitution for C w.r.t. D. If D subsumes C�, then D also subsumesC.Proof Since D subsumes C�, there exists a substitution � such that D� �C�. Let � be the substitution fy1=t1; : : : ; ym=tmg. Let �0 be the substitutionobtained from � by replacing each ai by xi in every tj . Note that � = �0�.Since � only replaces each xi by ai (1 � i � n), it follows that D�0 � C, so Dsubsumes C. 2Theorem 4 (Subsumption Theorem) Let � be a set of clauses, and C be aclause. Then � j= C i� � `d C.Proof(: Follows immediately from the soundness of resolution, and the fact thatif D subsumes C, then D j= C.): If C is a tautology, the theorem is obvious. Assume C is not a tautology.Let � be a Skolemizing substitution for C w.r.t. �. Then C� is a ground clausewhich is not a tautology, and � j= C�. So by Theorem 3, there is a clause Dsuch that � `r D and D subsumes C�. Since � is a Skolemizing substitutionfor C w.r.t. �, and D can only contain constants appearing in �, � is also aSkolemizing substitution for C w.r.t. D. Then by Lemma 3, D also subsumesC. Thus we have � `d C. 2

3 The Refutation-Completeness of ResolutionThe subsumption theorem actually tells us that resolution and subsumption forma complete set of proof-rules for clauses. A form of completeness that is usuallystated in the literature on resolution is the refutation-completeness. This is aneasy consequence of the subsumption theorem.Theorem 5 (Refutation-Completeness of Resolution) Let � be a set ofclauses. Then � is unsatis�able i� � `r 2.Proof(: Follows immediately from the soundness of resolution.): Suppose � is unsatis�able. Then � j= 2. So by Theorem 4, there existsa clause D, such that � `r D and D subsumes the empty clause 2. But 2 isthe only clause which subsumes 2, so D = 2. 24 The Other Way AroundIn Section 3, we showed that the refutation-completeness is a direct consequenceof the subsumption theorem. In this section, we will show the converse: thatwe can obtain the subsumption theorem from the refutation-completeness. Thisestablishes the equivalence of the subsumption theorem and the refutation-com-pleteness (i.e., the one can be proved from the other).To prove the subsumption theorem from the refutation-completeness, we willshow how to turn a refutation of �[f:L1; : : : ;:Lkg into a deduction of L1_: : :_Lk. Thus our proof, which has some similarities with the unsatisfactory proof ofthe subsumption theorem in [BM92], is constructive. We start with an example.Suppose � = f(P (x)_:R(f(f(b)))); (R(f(x))_:R(x))g, and C = P (x)_Q(x)_:R(b). It is not di�cult to see that � j= C. We would like to produce a deductionof C from �. First we note that � = fx=ag is a Skolemizing substitution for Cw.r.t. �. Since � j= C�, we know that �[f:P (a);:Q(a); R(b)g is unsatis�able,and hence (by the refutation-completeness) has a refutation. Figure 3 showssuch a refutation.Now by omitting the leaves of the refutation-tree which come from C� (theframed literals) and by making appropriate changes in the tree, we get a deriva-tion of the clause D = P (x) _ :R(b). See �gure 4. D subsumes C, so we haveturned the refutation of �gure 3 into a deduction of C from �.This approach also works in the general case. The following lemma does mostof the work.Lemma 4 Let � be a set of clauses, and C = L1_ : : :_Lk be a non-tautologousground clause. If � [f:L1; : : : ;:Lkg `r 2, then � `d C.Proof Suppose � [f:L1; : : : ;:Lkg `r 2. Then there exists a refutationR1; : : : ; Rn = 2 of �[f:L1; : : : ;:Lkg. Let r be the number of resolvents in thissequence (r = n�the number of members of � [f:L1; : : : ;:Lkg in R1; : : : ; Rn).We prove the lemma by induction on r.

R(f(x)) _ :R(x) R(b)@@@@R ����	R(f(b))R(f(x)) _ :R(x)@@@@R ����	R(f(f(b)))P (x) _ :R(f(f(b))) :P (a)@@@@R ����	:R(f(f(b)))@@@@R ����	2Figure 3: A refutation of � [f:P (a);:Q(a); R(b)gR(f(y)) _ :R(y)R(f(x)) _ :R(x)@@@@R ����	R(f(f(y))) _ :R(y)P (x) _ :R(f(f(b)))@@@@R ����	D = P (x) _ :R(b)?subsumptionC = P (x) _Q(x) _ :R(b)Figure 4: A deduction of C from �, obtained by transforming the previous �gure1. Suppose r = 0. Then we must have Rn = 2 2 �, so obviously the lemmaholds.2. Suppose the lemma holds for r � m. We will prove that this impliesthat the lemma also holds for r = m + 1. Let R1; : : : ; Rn = 2 be arefutation of � [f:L1; : : : ;:Lkg containing m + 1 resolvents. Let Ri bethe �rst resolvent. Then R1; : : : ; Rn = 2 is a refutation of � [fRig [f:L1; : : : ;:Lkg containing only m resolvents, since Ri is now one of theoriginal premisses. Hence by the induction hypothesis, there is a clause D,such that � [fRig `r D and D subsumes C.Suppose Ri is itself a resolvent of two members of �. Then we also have� `r D, so the lemma holds in this case. Note that Ri cannot be aresolvent of two members of f:L1; : : : ;:Lkg because this set does notcontain a complementary pair, due to the fact that C is not a tautology.The only remaining case we have to check, is where Ri is a resolvent of

C 0 2 � and some :Ls (1 � s � k). Let C 0 = M1 _ : : : _Mj _ : : : _Mh.Suppose Ri is a binary resolvent of (M1 _ : : :_Mj)� (a factor of C 0, using� as an mgu of fMj ; : : : ;Mhg) and :Ls, with � as mgu of Mj� and Ls.Then Ri = (M1 _ : : : _Mj�1)�� and C 0�� = Ri _ Ls _ : : : _Ls (h� j + 1copies of Ls), since Mj ; : : : ;Mh are all uni�ed to Ls by ��.Now replace each time Ri appears as leaf in the derivation-tree of D, byC 0�� = Ri _ Ls _ : : : _ Ls, and add Ls _ : : : _ Ls to all decendants ofsuch an Ri-leaf. Then we obtain a derivation of D _ Ls _ : : : _ Ls from� [fC 0��g. Since C 0�� is an instance of a clause from �, we can lift (byLemma 2) this derivation to a derivation from � of a clause D0, which hasD _ Ls _ : : : _ Ls as an instance. Since D subsumes C, D0 also subsumesC. Hence � `d C. 2Now we can prove the subsumption theorem (Theorem 4) once more, this timestarting from Theorem 5.Theorem 4 (Subsumption Theorem) Let � be a set of clauses, and C be aclause. Then � j= C i� � `d C.Proof(: By the soundness of resolution, and the fact that if D subsumes C, thenD j= C.): If C is a tautology, the theorem is obvious. Assume C is not a tautology.Let � be a Skolemizing substitution for C w.r.t. �. Let C� be the clause L1 _: : : _ Lk. Since C is not a tautology, C� is not a tautology. C� is ground and� j= C�, so the set of clauses �[f:L1; : : : ;:Lkg is unsatis�able. Then it followsfrom Theorem 5 that � [f:L1; : : : ;:Lkg `r 2. Therefore by Lemma 4, thereexists a clause D such that � `r D, and D subsumes C�. From Lemma 3, Dalso subsumes C itself. Hence � `d C. 2Now that we have shown that the subsumption theorem can be proved from therefutation-completeness, and vice versa, we also have the following:Theorem 6 For unconstrained resolution, the subsumption theorem and the re-futation-completeness are equivalent.5 The Incompleteness of Input ResolutionNote that if S0 (the subsumption theorem for input resolution) that we mentionedin Section 1 were true, then it would follow along the same lines as Theorem 5that input resolution is refutation-complete. However, since it is well-knownthat input resolution is not refutation-complete [CL73, GN87], this again showsthat S0 cannot be true. Since [Mug92, Ide93a] only use the special case of S0where � contains only one clause, we investigate this here. We will show thatS0 is not even true in this special case. Hence the counterexample we give here

is relevant for [Mug92, Ide93a], and also for other results based on S0. In ourcounterexample we let � = fCg, with C:C = P (x1; x2) _Q(x2; x3) _ :Q(x3; x4) _ :P (x4; x1):Figure 5 shows that clauseD (see below) can be derived from C by unconstrainedresolution. This also shows that C j= D. Figure 5 makes use of the clauses listedbelow. C1, C2, C3, C4 are variants of C. D1 is a binary resolvent of C1 and C2,D2 is a binary resolvent of C3 and C4 (the underlined literals are the literalsresolved upon). D01 is a factor of D1, using the subtitution fx5=x1; x6=x2g. D02is a factor of D2, using fx11=x12; x13=x9g. Finally, D is a binary resolvent of D01and D02. C1 C2 C3 C4@@@@R ����	D1 @@@@R ����	D2?factor ?factorD01 D02@@@@R ����	DFigure 5: The derivation of D from C by unconstrained resolutionC1 = P (x1; x2) _Q(x2; x3) _ :Q(x3; x4) _ :P (x4; x1)C2 = P (x5; x6) _Q(x6; x7) _ :Q(x7; x8) _ :P (x8; x5)C3 = P (x9; x10) _Q(x10; x11) _ :Q(x11; x12) _ :P (x12; x9)C4 = P (x13; x14) _Q(x14; x15) _ :Q(x15; x16) _ :P (x16; x13)D1 = P (x1; x2) _ :Q(x3; x4) _ :P (x4; x1) _ P (x5; x6) _Q(x6; x2)_:P (x3; x5)D2 = P (x9; x10) _ :Q(x11; x12) _ :P (x12; x9) _ P (x13; x14)_Q(x14; x10) _ :P (x11; x13)D01 = P (x1; x2) _ :Q(x3; x4) _ :P (x4; x1) _Q(x2; x2) _ :P (x3; x1)D02 = P (x9; x10) _ :Q(x12; x12) _ :P (x12; x9) _ P (x9; x14) _Q(x14; x10)D = :Q(x3; x4) _ :P (x4; x1) _Q(x2; x2) _ :P (x3; x1) _ P (x2; x10)_:Q(x1; x1) _ P (x2; x14) _Q(x14; x10)So D can be derived from C using unconstrained resolution. However, neitherD nor a clause which subsumes D can be derived from C using only inputresolution. We prove this in Proposition 1 (see the Introduction of this paper forthe de�nition of Ln(�) and L�(�)). This shows that the subsumption theoremdoes not hold for input resolution, not even if � contains only one clause.Lemma 5 Let C be as de�ned above. Then for each n � 1: if E 2 Ln(fCg),then E contains an instance of P (x1; x2) _ :P (x4; x1) or an instance ofQ(x2; x3) _ :Q(x3; x4).

Proof By induction on n:1. L1(fCg) = fCg, so the lemma is obvious for n = 1.2. Suppose the lemma holds for n � m. Let E 2 Lm+1(fCg). Note thatthe only factor of C is C itself. Therefore E is a binary resolvent of Cand a factor of a clause in Lm(fCg). Let � be the mgu used in obtainingthis binary resolvent. If P (x1; x2) or :P (x4; x1) is the literal resolvedupon in C, then E must contain (Q(x2; x3) _ :Q(x3; x4))�. OtherwiseQ(x2; x3) or :Q(x3; x4) is the literal resolved upon in C, so then E contains(P (x1; x2) _ :P (x4; x1))�. 2Proposition 1 Let C and D be as de�ned above. Then L�(fCg) does not con-tain a clause which subsumes D.Proof Suppose E 2 L�(fCg). From Lemma 5 and the de�nition of L�(fCg),we know that E contains an instance of P (x1; x2)_:P (x4; x1) or an instance ofQ(x2; x3)_:Q(x3; x4). It is easy to see that neither P (x1; x2)_:P (x4; x1) norQ(x2; x3) _ :Q(x3; x4) subsumes D. Then E does not subsume D. 26 ConclusionThis paper forms the �rst part of our research concerning the subsumptiontheorem. This part pertains to unconstrained resolution. The second part ofour research is concerned with SLD-resolution and Horn clauses, and is describedin [NW95b]. There we show that the subsumption theorem for SLD-resolutionis equivalent with the refutation-completeness of SLD-resolution.In this paper, we discussed the importance of the subsumption theorem inILP. No really rigorous proof of this theorem for unconstrained resolution wasuntil now available, and applications of the theorem in the literature often usethe incorrect version S0. A proof of the subsumption theorem for unconstrainedresolution was given by us. The refutation-completeness of unconstrained res-olution was then shown to be an easy corollary of this theorem. Since thesubsumption theorem in turn also follows from the refutation-completeness (asproved in Section 4), we have in fact proved that the subsumption theorem andthe refutation-completeness are equivalent.Finally we showed that S0 is not even true when the set of premisses consistsof only one clause. This means that results based on S0 or its special case, amongwhich are results on nth powers and nth roots, need to be reconsidered.References[BM92] Bain, M., and Muggleton, S., `Non-monotonic Learning', in: Mug-gleton, S. (ed.), Inductive Logic Programming, APIC series, no. 38,Academic Press, 1992, pp. 145{153.[CL73] Chang, C. L., and Lee, R. C. T., Symbolic Logic and Mechanical The-orem Proving, Academic Press, San Diego, 1973.

[GN87] Genesereth, M. R., and Nilsson, N. J., Logical Foundations of Arti�cialIntelligence, Morgan Kaufmann, Palo Alto, 1987.[Ide93a] Idestam-Almquist, P., Generalization of Clauses, PhD Thesis, Stock-holm University, 1993.[Ide93b] Idestam-Almquist, P., `Generalization under Implication by RecursiveAnti-Uni�cation', in: Proceedings of the Tenth International Confer-ence on Machine Learning, Morgan Kaufmann, 1993.[Ide93c] Idestam-Almquist, P., `Generalization under Implication by Using Or-Introduction', in: Proceedings of the European Conference on MachineLearning-93, Springer Verlag, 1993.[Ide93d] Idestam-Almquist, P., `Generalization under Implication: Expansionof Clauses for Indirect Roots', in: Scandinavian Conference on Arti�-cial Intelligence-93, IOS Press, Amsterdam, Netherlands, 1993.[Kow70] Kowalski, R., `The Case for Using Equality Axioms in AutomaticDemonstration', in: Proc. of the Symposium on Automatic Demon-stration, Lecture Notes in Mathematics 125, Springer Verlag, 1970,pp. 112{127.[LN94a] van der Laag, P., and Nienhuys-Cheng, S.-H., `Existence and Nonex-istence of Complete Re�nement Operators', in: Proc. the EuropeanConference on Machine Learning (ECML-94), Lecture Notes in Arti-�cial Intelligence 784, Springer-Verlag, pp. 307{322.[LN94b] van der Laag, P., and Nienhuys-Cheng, S.-H., `A Note on Ideal Re-�nement Operators in Inductive Logic Programming', in: Wrobel, S.(ed.), Proc. of the Fourth Int. Workshop on Inductive Logic Program-ming (ILP-94), Bad Honnef, Germany, 1994, pp. 247{262.[Lee67] Lee, R. C. T., A Completeness Theorem and a Computer Program forFinding Theorems Derivable from Given Axioms, PhD Thesis, Univer-sity of California, Berkeley, 1967.[Llo87] Lloyd, J. W., Foundations of Logic Programming, Second edition,Springer-Verlag, Berlin, 1987.[Mug92] Muggleton, S., `Inverting Implication', in: Muggleton, S. H., and Fu-rukawa, K. (eds.), Proc. of the Second Int. Workshop on InductiveLogic Programming (ILP-92), ICOT Technical Memorandum TM-1182, 1992.[MP94] Muggleton, S., and Page, C. D., `Self-Saturation of De�nite Clauses',in: Wrobel, S. (ed.), Proc. of the Fourth Int. Workshop on InductiveLogic Programming (ILP-94), Bad Honnef, Germany, 1994, pp. 161{174.

[NLT93] Nienhuys-Cheng, S.-H., van der Laag, P., and van der Torre, L., `Con-structing Re�nement Operators by Deconstructing Logical Implica-tion', in: Proc. of the Third Congress of the Italian Association forArti�cial Intelligence (AI*IA93), Lecture Notes in Arti�cial Intelli-gence 728, Springer-Verlag, pp. 178{189.[NW95a] Nienhuys-Cheng, S.-H., and de Wolf, R., `The Subsumption Theoremin Inductive Logic Programming: Facts and Fallacies', to appear in:Proc. of the Fifth Workshop on Inductive Logic Programming (ILP-95,workreport), Leuven, September 1995.[NW95b] Nienhuys-Cheng, S.-H., and de Wolf, R., `The Subsumption Theo-rem Revisited: Restricted to SLD-resolution', to appear in: Proc. ofComputing Science in the Netherlands (CSN-95), Utrecht, November1995.[SCL69] Slagle, J. R., Chang, C. L., and Lee, R. C. T., `Completeness Theo-rems for Semantic Resolution in Consequence-�nding', in: Proc. of theInternational Joint Conference on Arti�cial Intelligence (IJCAI-69),1969, pp. 281{285.A A Proof of the Lifting LemmaIn this appendix we give the rather technical proof of the lifting lemma.Lemma 6 If C 01 and C 02 are instances of C1 and C2, respectively, and if C 0 is aresolvent of C 01 and C 02, then there is a resolvent C of C1 and C2, such that C 0is an instance of C.Proof We assume without loss of generality that C1 and C2, and C 01 and C 02are standardized apart. Let C1 = L1_ : : :_Lm, C2 =M1_ : : :_Mn, C 01 = C1�1,and C 02 = C2�2 (here we can assume �k only acts on variables in Ck , k = 1; 2).Suppose C 0 is a resolvent of C 01 and C 02. Then C 0 is a binary resolvent of a factorof C 01 and a factor of C 02.For notational convenience, we assume without loss of generality that thefactor of C 01 is (L1 _ : : : _ Li)�1�1, where �1 is an mgu of fLi�1; : : : ; Lm�1g.Similarly, the factor of C 02 that is used, is (M1 _ : : : _Mj)�2�2, where �2 is anmgu of fMj�2; : : : ;Mn�2g. Li�1�1 and Mj�2�2 are the literals resolved upon,say with mgu �. Abbreviate L1 _ : : :_Li�1 to D1, and M1 _ : : :_Mj�1 to D2.Then C 0 = (D1�1�1_D2�2�2)�. By our assumption of standardizing apart, thiscan be written as C 0 = (D1 _D2)�1�1�2�2�.Let
1 be an mgu of fLi; : : : ; Lmg. Then (L1 _ : : : _ Li)
1 is a factor of C1.Note that �1�1 is a uni�er of Li; : : : ; Lm. Since
1 is an mgu of fLi; : : : ; Lmg,there exists a substitution �1 such that �1�1 =
1�1. Similarly, (M1_ : : :_Mj)
2is a factor of C2, with
2 as mgu of fMj ; : : : ;Mng, and there is a �2 such that�2�2 =
2�2.

Since Li�1�1 and :Mj�2�2 can be uni�ed (they have � as mgu) and
k ismore general than �k�k (k = 1; 2), Li
1 and :Mj
2 can be uni�ed. Let � bean mgu of Li
1 and :Mj
2. De�ne C = (D1
1 _D2
2)�, which can be writtenas C = (D1 _ D2)
1
2�. Since C is a binary resolvent of the above-mentionedfactors of C1 and C2, it is a resolvent of C1 and C2 (see �gure 6 for illustration).C1HHHHj
1 C2�����
2factor factorHHHHj ������ �C�1 ? �1 ? � ? �2? �2?C01HHHHj�1 C02������2factor factorHHHHj ������ �C0Figure 6: Lifting a resolventIt remains to show that C 0 is an instance of C. Since Li
1�1�2� = Li�1�1�2� =Li�1�1� = :Mj�2�2� = :Mj
2�2� = :Mj
2�1�2�, the substitution �1�2� is auni�er of Li
1 and :Mj
2. � is an mgu of Li
1 and :Mj
2, so there exists asubstitution � such that �1�2� = ��. Therefore C 0 = (D1 _ D2)�1�1�2�2� =(D1 _D2)
1�1
2�2� = (D1 _D2)
1
2�1�2� = (D1 _D2)
1
2�� = C�. Hence C 0is an instance of C. 2Lemma 2 (Derivation Lifting) Let � be a set of clauses, and �0 be a set ofinstances of clauses in �. Suppose R01; : : : ; R0k is a derivation of the clause R0kfrom �0. Then there exists a derivation R1; : : : ; Rk of the clause Rk from �,such that R0i is an instance of Ri, for each i.Proof The proof is by induction on k.1. If k = 1, then R01 2 �0, so there is a clause R1 2 � of which R01 is aninstance.2. Suppose the lemma holds if k � m. Let R01; : : : ; R0m; R0m+1 be a derivationof R0m+1 from �0. By the induction hypothesis, there exists a derivationR1; : : : ; Rm of Rm from �, such that R0i is an instance of Ri, for all i1 � i � m. If R0m+1 2 �0, the lemma is obvious. Otherwise, R0m+1 is aresolvent of clauses R0i; R0j 2 fR01; : : : ; R0mg. It follows from Lemma 6 thatthere exists a resolvent Rm+1 of Ri and Rj such that R0m+1 is an instanceof Rm+1. 2

