The Equivalence of the Subsumption Theorem
and the Refutation-completeness for
Unconstrained Resolution

Shan-Hwei Nienhuys-Cheng Ronald de Wolf

cheng@cs.few.eur.nl bidewolf@cs.few.eur.nl
Department of Computer Science, H4-19
Erasmus University of Rotterdam
P.O. Box 1738, 3000 DR Rotterdam, the Netherlands

Subfield: Automated Reasoning, (Inductive) Logic Programming.

Abstract

The subsumption theorem is an important theorem concerning resolution.
Essentially, it says that a set of clauses ¥ logically implies a clause C, iff
C is a tautology, or a clause D which subsumes C can be derived from
Y with resolution. It was originally proved in 1967 by Lee in [Lee67]. In
Inductive Logic Programming, interest in this theorem is increasing since
its independent rediscovery by Bain and Muggleton [BM92]. It provides a
quite natural “bridge” between subsumption and logical implication. Un-
fortunately, a correct formulation and proof of the subsumption theorem
are not available. It is not clear which forms of resolution are allowed. In
fact, at least one of the current forms of this theorem is false. This causes
a lot of confusion.

In this paper, we give a careful proof of the subsumption theorem
for unconstrained resolution, and show that the well-known refutation-
completeness of resolution is an immediate consequence of this theorem.
On the other hand, we also show here that the subsumption theorem can
be proved starting from the refutation-completeness. This establishes that
these two results have equal strength.

Furthermore, we show that the subsumption theorem does not hold
when only input resolution is used, not even in case ¥ contains only one
clause. Since [Mug92, Ide93a] assume the contrary, some results (for in-
stance results on nth roots and nth powers) in these articles should perhaps
be reconsidered.

1 Introduction

Inductive Logic Programming (ILP) investigates methods to learn theories from
examples, within the framework of first-order logic. In ILP, the proof-method

that is most often used is resolution. A very important theorem concerning
resolution is the Subsumption Theorem, which essentially states the following.
Let ¥ be a set of clauses and C' a clause. Then ¥ = C, iff C is a tautology or
there exists a clause D which subsumes C' and which can be derived from ¥ by
resolution.

This theorem was first stated and proved by Lee in 1967 in [Lee67], his PhD-
thesis. However, we have not been able to find a copy of his thesis. So it is
unclear what precisely Lee stated, and how he proved his result. Surprisingly,
nowhere in the standard literature concerning resolution (not even in Lee’s own
book [CL73]) the theorem is mentioned.!

One thing is clear, though: the subsumption theorem states that logical
implication between clauses can be divided in two separate steps—a derivation
by resolution, and then a subsumption. Hence the theorem provides a natural
“bridge” between logical implication and subsumption. Subsumption is very
popular in Inductive Logic Programming, since it is decidable and machine-
implementable. However, subsumption is not “enough”: if D subsumes C' then
D E C, but not always the other way around. So it is desirable to make the
step from subsumption to implication, and the subsumption theorem provides
an excellent tool for those who want to make this step. It is used for instance
in [Mug92, Ide93a]® for inverse resolution. In [LN94b], the theorem is used
to extend the result of [LN94a] that there does not exist an ideal refinement
operator® in the set of clauses ordered by subsumption, to the result that there
is no ideal refinement operator in the ordering induced by logical implication.
In [NLT93], the theorem is related to several generality orderings.

The subsumption theorem is more natural than the better-known refutation-
completeness of resolution, which states that an unsatisfiable set of clauses has
a refutation (a derivation by resolution of the empty clause O). For example,
if one wants to prove ¥ |= C using the refutation-completeness, one must first
normalize the set ¥ U {—~C?} to a set of clauses. Usually ¥ U {-=C} is not a set
of clauses, since negating the (universally quantified) clause C yields a formula
which involves existential quantifiers. So if we want to prove ¥ = C by refuting
Y U{-C}, we must first apply Skolemization to C. Deriving from ¥ a clause D
which subsumes C, is a much more “direct” way of proving ¥ = C.

Hence we—and perhaps many others—feel that the subsumption theorem
deserves at least as much attention as the refutation-completeness. We can in
fact prove that the latter is a direct consequence of the former, as given in
Section 3. It is surprising that the subsumption theorem was so little known.
Ouly after Bain and Muggleton rediscovered the theorem in [BM92], people have
started paying attention to it.*

IRecently we received a copy of [Kow70] and a reference to [SCL69] from Stephen Mug-
gleton. [Kow70] gives a proof of the subsumption theorem for unconstrained resolution, using
semantic trees, which is very different from the proof we give here. [SCL69] proves a version
of the subsumption theorem for semantic resolution.

2[1de93a] is a PhD-thesis based upon articles such as [Ide93b, Tde93c, Tde93d].

3A refinement operator is a device to specialize clauses.

4From recent personal communication with Stephen Muggleton, we know Bain and Mug-

A proof of the subsumption theorem, based on the refutation-completeness,
is given in the appendix of [BM92]. However, this proof seems unsatisfactory.
For example, it does not take factors into account, whereas factors are necessary
for completeness. Without factors one cannot derive the empty clause O from
the unsatisfiable set {(P(z) V P(y)), (=P(u) V =P(v))} (see [GN87]). In fact,
our counterexample in Section 5 also depends on factors. Furthermore, it is not
always clear how the concepts that are used in the proof are defined, and how
the skolemization works. Their proof is based on transforming a refutation-tree
into a derivation-tree, but this transformation is not clearly defined and thus
insufficient to prove that the transformation can always be performed.

Even though the proof in [BM92] is not quite satisfactory, it is often quoted—
sometimes even incorrectly. The two main formulations we have found are the
following;:

S Let ¥ be a set of clauses and C a clause which is not a tautology. Define
RY(X) = ¥ and R*"(Z) = R"1(Z) U {C : C is a resolvent of C1,Cs €
R"1(X)}. Also define R*(%) = R%(Z)UR'(X)U.... Then the subsump-
tion theorem is stated as follows (we assume the authors of [BM92] used
‘I’ for what we mean by ‘=’, i.e. logical implication):

T I C iff there exists a clause D € R*(X) such that D subsumes C.

S’ Let ¥ be a set of clauses and C a clause which is not a tautology. Define
L1(X) =X and £(X) = {C : C is a resolvent of C; € L"~1(X) and C; €
¥}. Also define £*(X) = £Y(X) U £%(Z) U.... Then the subsumption
theorem is stated as follows:

T |= C iff there exists a clause D € £*(X) such that D subsumes C.

S is given in [BM92], S’ is given in [Mug92]. In [Mug92], Muggleton does not
prove S', but refers instead to [BM92]. In other articles such as [Ide93a, LN94b,
NLT93], the theorem is also given in the form of S’. These articles do not give a
proof of S’, but refer instead to [BM92] or [Mug92]. That is, they refer to a proof
of S assuming that this is also a proof of S’. But clearly that is not the case,
because S’ demands that at least one of the parent clauses of a clause in £*(X) is
a member of X, so S’ is stronger than S. In fact, whereas S is true, S’ is actually
false! If 8" were true, then input resolution would be refutation-complete (as we
will show in Section 5), which it is not. An easy propositional counterexample
for the refutation-completeness of input resolution is given on p. 99 of [GN8T].

The confusion about S’ is perhaps a consequence of the subtle distinction
between linear resolution and input resolution. S’ employs a form of input reso-
lution, which is a special case of linear resolution. Linear resolution is complete?,
but input resolution is not complete. See [CL73] or [GN8T].

However, the articles we mentioned do not use S’ itself. [LN94b, NLT93]
are restricted to Horn clauses. It can be shown that for Horn clauses there is

gleton discovered the theorem themselves, independently of [Lee67]. Only afterwards did they
found out from references in other literature that their theorem was probably the same as the
theorem in Lee’s thesis.

5Tt is possible to prove that the subsumption theorem holds in case of linear resolution, but
we will not do that here.

no problem. Due to a lack of space we will not prove that here, but in another
article [NW95b]. If we examine [Mug92, Ide93a] carefully, then we see that the
results of these articles only depend on a special case of S’, namely the case where
Y consists of a single clause. Muggleton and others have used the definition of
L™({C}) to define nth powers and nth roots. Unfortunately, S’ does not even
hold in this special case. We give a counterexample in Section 5. This means
that the results of [Mug92, Ide93a] which are consequences of this special case
of S’ need to be reconsidered.b

The confusion around the subsumption theorem made us investigate this theorem
ourselves, which led to the discovery of the mixture of true and false results that
we mentioned above. We investigated the subsumption theorem both in the
case of unconstrained resolution, and in the case of SLD-resolution for Horn
clauses. For the latter case we generalized the definition of SLD-resolution given
in [L1o87], following an idea of [MP94]. The main results of both parts of our
research can be summarized in the following sequence (where a=b=c=d).

The subsumption theorem for unconstrained resolution.

The refutation-completeness of unconstrained resolution.

The refutation-completeness of SLD-resolution for Horn clauses.

The subsumption theorem for SLD-resolution for Horn clauses.

S’ is false, even when ¥ (the set of premisses) contains only one clause.

@ Ao T

We defer ¢ and d to the second part of our research [NW95b]. c is similar to
Theorem 8.4 of [L1o87], but our proof of ¢ is interesting in that it avoids partial
orders and fixpoints, using only the basic definitions of unconstrained resolution
and SLD-resolution.

In this paper we focus on a, b and e. In Section 2, we prove a. Our proof
does not presuppose the refutation-completeness, contrary to the inadequate
proof in [BM92]. b is well-known, but it is not well-known that b is a direct
consequence of a, as we will show in Section 3 (this fact can also be used to es-
tablish the falsity of S’). Thus b follows immediately from a. On the other hand,
a can also be proved starting from b, as we show in Section 4. This establishes
the equivalence of the subsumption theorem and the refutation-completeness:
these results have equal power. Finally, in Section 5 we prove e, by presenting
our counterexample to the special case of S’ that we mentioned.

2 The Subsumption Theorem

In this section, we give a proof of the subsumption theorem. Before starting
with our proof, we will first briefly define the main concepts we use. We treat a
clause as a disjunction of literals, so we consider P(a) and P(a)V P(a) as different
clauses. However, the results of our paper remain valid also for other notations,
for instance if one treats a clause as a set of literals instead of a disjunction. For

6From recent personal communication with Peter Idestam-Almquist, we know he has ad-
justed his work from [Ide93a], based on our findings.

convenience, we use C C D to denote that the set of literals appearing in the
disjunction C' is a subset of the set of literals in D.

Definition 1 Let C'; and C5 be clauses. If ¢ and C5 have no variables in
common, then they are said to be standardized apart.

Given C; and Cs, let C] = L1 V...VL;V...VLy, and Cy = My V...V M;V
...V M, be variants of Cy and (5 respectively, which are standardized apart
(1<i<mand1<j<n). If the substitution 6 is a most general unifier (mgu)
of the set {L;,—M;}, then the clause

(LiV...VLi-yVLig1 V...V Ly VM V...V M1V Mjg1 V...V M)

is called a binary resolvent of Cy and C5. The literals L; and M; are said to be
the literals resolved upon. O

Definition 2 Let C be a clause, Ly,...,L, (n > 1) unifiable literals from C|,
and # an mgu of {L4,..., L,}. Then the clause obtained by deleting Lo, ..., L,
from C4 is called a factor of C.

A resolvent C of clauses C; and Cs is a binary resolvent of a factor of C
and a factor of Cy, where the literals resolved upon are the literals unified by
the respective factors. C; and Cs are called the parent clauses of C. &

Note that any non-empty clause C is a factor of itself, using the empty substi-
tution € as an mgu of a single literal in C.

Definition 3 Let ¥ be a set of clauses and C a clause. A derivation of C from

Y is a finite sequence of clauses Ry,..., R = C, such that each R; is either in
¥, or a resolvent of two clauses in {Ry, ..., R;_1}. If such a derivation exists, we
write ¥ F, C. A derivation of the empty clause O from ¥ is called a refutation
of 3. O

Definition 4 Let C' and D be clauses. We say D subsumes (or §-subsumes) C
if there exists a substitution # such that D8 C C.

Let ¥ be a set of clauses and C' a clause. We say there exists a deduction of
C from X, written as ¥ k4 C, if C is a tautology, or if there exists a clause D
such that ¥+, D and D subsumes C. O

To illustrate these definitions, we will give an example of a deduction of the
clause C = R(a) V S(a) from the set ¥ = {(P(z) V Q(z) V R(z)), (-P(z) V
Q(a)), (=P(x) V ~Q(x)), (P(z) V =Q(z))}. Figure 1 shows a derivation of the
clause D = R(a) V R(a) from ¥. Note that we use the factor Q(a) V R(a) of the
parent clause Cs = Q(z) V R(z) V Q(a) in the last step of the derivation, and
also the factor P(y) V R(y) of Cs = P(y) V P(y) V R(y) in the step leading to
C. Since D subsumes C', we have ¥ F, C.

It is not very difficult to see the equivalence between our definition of a
derivation, and the definition of R™(X) we gave in Section 1. For instance,
in figure 1, Cy,Cy,C3,Cy, C} are variants of clauses in R%(X) (C; and C] are

C1=P@)VQ)VR(@) COy=-Py)VQa) C3=-Pa)V-Qa) Cs=P(y)VPy)VRy)

Cs = Q(z) V R(z) V Q(a) C7=-Q(y) vV R(y)

D = R(a) V R(a)

Figure 1: The tree for the derivation of D from ¥

variants of the same clause). Cs,Cg are in R*(X), Cy is in R?*(X), and D is in
R3(T).

The subsumption theorem states that ¥ | C iff ¥ F; C. The ‘if’-part of this
result follows immediately from the soundness of resolution. We prove the ‘only-
if’ part in a number of successive steps in the following subsections. First we
prove the theorem in case both ¥ and C are ground, then we prove it in case &
consists of arbitrary clauses but C' is ground, and finally we prove the theorem
when neither ¥ nor C' need to be ground.

2.1 The Subsumption Theorem for Ground ¥ and C

First we prove our result for the case when both ¥ and C are restricted to ground
clauses.

Theorem 1 Let X be a set of ground clauses, and C be a ground clause. If
YEC, thenX H,4C.

Proof If C is a tautology, the theorem is obvious. Assume C is not a tautology.
Then we need to find a clause D, such that ¥ F,. D and D C C (note that for
ground clauses D and C, D subsumes C' iff D C C). The proof is by induction
on the number of clauses in X.

1. Suppose ¥ = {C;}. We will show that C; C C. Suppose C; ¢ C.
Then there exists a literal L, such that L € Cy but L ¢ C. Let I be an
interpretation which makes L true, and all literals in C false (such an I
exists, since C is not a tautology). Then I is a model of Cy, but not of C.
But that contradicts £ = C. So C; C C, and X +4 C.

2. Suppose the theorem holds if || < m. We will prove that this implies
that the theorem also holds if || =m + 1. Let ¥ = {C1,...,Cm+1}, and
¥ ={C,...,Cn}. If Cpy1 subsumes C or ¥’ = C, then the theorem
holds. So assume C), 1 does not subsume C' and X' £ C.

The idea is to derive, using the induction hypothesis, a number of clauses
from which a derivation of a subset of C' can be constructed (see figure 2).
First note that since ¥ = C, we have ¥’ = CV—Cj,41 (using the Deduction
Theorem”). Let Ly,..., Ly be all the literals in C,;1 which are not in C
(k > 1 since Cp41 does not subsume C). Then we can write Cpyp1 =
Lyv...VL,VvC', where C' C C (the order of literals in a clause is not
important). Since C' does not contain L; (1 < i < k), the clause C'V =L, is
not a tautology. Also, since X! |= CV=Cp41 and C, 41 is ground, we have
that ¥’ | C V —L;, for each i. Then by the induction hypothesis, there
exists for each i a ground clause D; such that X' I, D; and D; C (CV—L;).
We will use Cy,11 and the derivations from ¥’ of these D; to construct
a derivation of a subset of C' from ¥. —L; € D;, otherwise D; C C' and
Y |= C. So we can write each D; as —L; V D}, and D; C C. The case
where some D; contains —L; more than once can be solved by taking a
factor of D;.

Now we can construct a derivation of the ground clause defined as D =
C'vDiVv...vDjfrom ¥, using Cp,41 and the derivations of D1,..., Dy
from ¥'. See figure 2. In this tree, the derivations of Di,..., Dy are
indicated by the vertical dots. So we have that ¥ +, D. Since C' C C,
and D} C C for each i, we have that D C C. Hence X 4 C.

Om+1=L1\/...\/Lk\/CI D1:—\L1\/Dll

LQ\/...\/L)C\/C,\/D,I DQ:—\LQ\/DIQ

L3V ...VL,VvC' VD]V D,

LpyvC'vDiVv...vD,_, Dy = =Ly V D;,

D=C'VD|V...VDy

Figure 2: The tree for the derivation of D from ¥

"SU{C}=Diff S (C = D).

2.2 The Subsumption Theorem when C' is Ground

In this section, we will prove the theorem in case C' is ground and ¥ is a set of
arbitrary clauses. The idea is to “translate” £ |= C to ¥, = C, where I, is a
set of ground instances of clauses of ¥. Then by Theorem 1, there is a clause
D such that ¥, -, D, and D subsumes C. Afterwards, we can “lift” this to a
deduction of C' from .

Theorem 2 (Herbrand, [CL73]) A set ¥ of clauses is unsatisfiable iff there
is a finite unsatisfiable set ¥ of ground instances of clauses of X.

Lemma 1 Let ¥ be a set of clauses, and C be a ground clause. If ¥ = C,
then there exists a finite set of clauses ¥,, where each clause in ¥, is a ground
instance of a clause in ¥, such that £, |= C.

Proof Let C =Ly V...V L, (k> 0). If ¥ is unsatisfiable then the lemma
follows immediately from Theorem 2, so suppose X is satisfiable. Note that since
C is ground, —C is equivalent to =Ly A ... A =Lj. Then:

Y = C iff (by the Deduction Theorem)

Y U {~C1} is unsatisfiable iff

YU {-L,...,nL;} is unsatisfiable iff (by Theorem 2)

there exists a finite unsatisfiable set ¥’, consisting of ground instances
of clauses from ¥ U {-Ly,...,~Ly}.

Since ¥ is satisfiable, the unsatisfiable set ¥’ must contain one or more members
of the set {—~L1,..., Ly}, ie. X' =%, U{-L;,...,7L;;}, where ¥, is a finite
non-empty set of ground instances of clauses in ¥. So:

¥’ is unsatisfiable iff

Yo U{-L;i,...,~L;;} is unsatisfiable iff

YgU{=(Ls V...VL;,)} is unsatisfiable iff (by the Deduction Theorem)
Eg ‘: (L“ V...V L,])

Since {L;,,...,L;;} C C, it follows that ¥, |= C. O

The next lemma shows that if a set ¥’ consists of instances of clauses in X,
then a derivation from ¥’ can be “lifted” to a derivation from X. Similar lifting-
lemmas are proved in [CL73, GN87]. We prove our own lifting-lemma, because
our definition of resolution slightly differs from the definitions used in those books
(we treat a clause as a disjunction, rather than as a set of literals). Because of
its rather technical nature, we have deferred the proof to Appendix A.

Lemma 2 (Derivation Lifting) Let ¥ be a set of clauses, and ¥' be a set of
instances of clauses in X. Suppose R},..., R} is a derivation of the clause R},

from X'. Then there exists a derivation Ry,..., Ry of the clause Ry from X,
such that R} is an instance of R;, for each i.

Theorem 3 Let ¥ be a set of clauses, and C be a ground clause. If ¥ | C,
then ¥ 4 C.

Proof If C is a tautology, the theorem is obvious. Assume C is not a tautology.
We want to find a clause D such that ¥ F, D and D subsumes C. From ¥ = C
and Lemma 1, there exists a finite set ¥, such that each clause in 3, is a ground
instance of a clause in ¥, and ¥, |= C. Then by Theorem 1, there exists a
ground clause D' such that ¥, -, D', and D' C C. Let R{,..., R}, = D' be
a derivation of D' from ¥,. From Lemma 2, we can “lift” this to a derivation
Ry,...,R; of R from X, where Ry = D' for some 6. Let D = Rj. Then

D6 = D' C C. Hence D subsumes C. O

2.3 The Subsumption Theorem (General Case)

In this subsection, we will prove the subsumption theorem for arbitrary ¥ and
C. In the proof, we will use a Skolemizing substitution.

Definition 5 Let ¥ be a set of clauses, and C a clause. Let z1,...,z, be all
the variables appearing in C and ay, ..., a, be distinct constants not appearing
in ¥ or C. Then {z1/a1,...,2n/an} is called a Skolemizing substitution for C
w.r.t. X. &

Lemma 3 Let C and D be clauses. Let = {x1/a1,...,xy/an} be a Skolem-
izing substitution for C' w.r.t. D. If D subsumes CO, then D also subsumes

C.

Proof Since D subsumes C#@, there exists a substitution o such that Do C
C6. Let o be the substitution {y1/t1,...,Ym/tm}. Let o’ be the substitution
obtained from o by replacing each a; by z; in every ¢;. Note that ¢ = o'6.
Since 6 only replaces each x; by a; (1 < i < n), it follows that Do’ C C, so D

subsumes C. O

Theorem 4 (Subsumption Theorem) Let X be a set of clauses, and C be a
clause. Then ¥ |=C iff S k4 C.

Proof

<: Follows immediately from the soundness of resolution, and the fact that
if D subsumes C, then D = C.

=: If C is a tautology, the theorem is obvious. Assume C is not a tautology.
Let 6 be a Skolemizing substitution for C' w.r.t. ¥. Then C#8 is a ground clause
which is not a tautology, and ¥ |= C6. So by Theorem 3, there is a clause D
such that ¥ F, D and D subsumes Cf. Since # is a Skolemizing substitution
for C w.r.t. ¥, and D can only contain constants appearing in X, 6 is also a
Skolemizing substitution for C w.r.t. D. Then by Lemma 3, D also subsumes
C. Thus we have ¥ F, C. O

3 The Refutation-Completeness of Resolution

The subsumption theorem actually tells us that resolution and subsumption form
a complete set of proof-rules for clauses. A form of completeness that is usually
stated in the literature on resolution is the refutation-completeness. This is an
easy consequence of the subsumption theorem.

Theorem 5 (Refutation-Completeness of Resolution) Let ¥ be a set of
clauses. Then ¥ is unsatisfiable iff ¥ -, O.

Proof

<: Follows immediately from the soundness of resolution.

=: Suppose ¥ is unsatisfiable. Then ¥ = O. So by Theorem 4, there exists
a clause D, such that ¥ F,. D and D subsumes the empty clause O. But O is
the only clause which subsumes O, so D = O. O

4 The Other Way Around

In Section 3, we showed that the refutation-completeness is a direct consequence
of the subsumption theorem. In this section, we will show the converse: that
we can obtain the subsumption theorem from the refutation-completeness. This
establishes the equivalence of the subsumption theorem and the refutation-com-
pleteness (i.e., the one can be proved from the other).

To prove the subsumption theorem from the refutation-completeness, we will
show how to turn a refutation of YU{—Ly,...,~L;} into a deduction of Ly V...V
L. Thus our proof, which has some similarities with the unsatisfactory proof of
the subsumption theorem in [BM92], is constructive. We start with an example.
Suppose ¥ = {(P(z)V-R(f(f(b)))), (R(f(z))V-R(z))}, and C' = P(z)VQ(z)V
—R(b). It is not difficult to see that ¥ = C'. We would like to produce a deduction
of C from ¥. First we note that # = {z/a} is a Skolemizing substitution for C
w.r.t. ¥. Since ¥ | C0, we know that XU {=P(a),-Q(a), R(b)} is unsatisfiable,
and hence (by the refutation-completeness) has a refutation. Figure 3 shows
such a refutation.

Now by omitting the leaves of the refutation-tree which come from C8 (the
framed literals) and by making appropriate changes in the tree, we get a deriva-
tion of the clause D = P(z) V —~R(b). See figure 4. D subsumes C, so we have
turned the refutation of figure 3 into a deduction of C from X.

This approach also works in the general case. The following lemma does most
of the work.

Lemma 4 Let ¥ be a set of clauses, and C = L1V ...V Ly be a non-tautologous
ground clause. If XU {-Ly,...,mLy} F,. O, then X 4 C.

Proof Suppose ¥ U {-Ly,...,—Li} F,. O. Then there exists a refutation
Ry,...,R, =00of XU{-Ly,...,~Li}. Let r be the number of resolvents in this

sequence (r = n—the number of members of ¥ U {=Ly,...,=Li} in Ry,..., Ry).
We prove the lemma by induction on r.

P(z) v =R(f(f(b))) ﬁP
—~R(f(£(b)))

]

Figure 3: A refutation of ¥ U {-P(a),~Q(a), R(b)}

e

P(z) (FOr((v)

NS

P(z)V —R(b
subsumption

C=P(z)vVQ(z)V

Figure 4: A deduction of C' from X, obtained by transforming the previous figure

1.

2.

Suppose r = 0. Then we must have R,, = O € X, so obviously the lemma
holds.

Suppose the lemma holds for r < m. We will prove that this implies
that the lemma also holds for r = m + 1. Let Ry,...,R, = O be a
refutation of ¥ U {=L4,...,—L;} containing m + 1 resolvents. Let R; be
the first resolvent. Then Ry,...,R, = O is a refutation of ¥ U {R;} U
{-=Ly,...,~ Ly} containing only m resolvents, since R; is now one of the
original premisses. Hence by the induction hypothesis, there is a clause D,
such that ¥ U {R;} F, D and D subsumes C.

Suppose R; is itself a resolvent of two members of ¥. Then we also have
¥ k. D, so the lemma holds in this case. Note that R; cannot be a
resolvent of two members of {—L;,...,—L;} because this set does not
contain a complementary pair, due to the fact that C is not a tautology.
The only remaining case we have to check, is where R; is a resolvent of

C' € ¥ and some =Ly (1 <s<k). Let C'" =M V...VM; V...V M,
Suppose R; is a binary resolvent of (M V...V M;)o (a factor of C’, using
o as an mgu of {M;,...,Mp}) and =L;, with 6 as mgu of M;o and L,.
Then R; = (M1 V...V M;_1)o0 and C'6 = R;VL;V...VL; (h—j+1
copies of L), since Mj, ..., M}, are all unified to Ly by o6.
Now replace each time R; appears as leaf in the derivation-tree of D, by
C'c60 = R;VL;V...VLg, and add Ly V ...V Lg to all decendants of
such an R;-leaf. Then we obtain a derivation of DV L,V ...V L, from
Y U{C'o6}. Since C'of is an instance of a clause from ¥, we can lift (by
Lemma 2) this derivation to a derivation from ¥ of a clause D', which has
DV L,V...V L as an instance. Since D subsumes C, D’ also subsumes
C. Hence ¥ 4 C.
O
Now we can prove the subsumption theorem (Theorem 4) once more, this time
starting from Theorem 5.

Theorem 4 (Subsumption Theorem) Let ¥ be a set of clauses, and C be a
clause. Then ¥ = C iff £ 4 C.

Proof

<: By the soundness of resolution, and the fact that if D subsumes C, then
D E=C.

=: If C is a tautology, the theorem is obvious. Assume C is not a tautology.
Let 6 be a Skolemizing substitution for C' w.r.t. ¥. Let C8 be the clause L V
...V L. Since C is not a tautology, C'# is not a tautology. C6 is ground and
Y = C0, so the set of clauses Y U{-Lq,..., L} is unsatisfiable. Then it follows
from Theorem 5 that ¥ U {—L;,...,—L;} F, O. Therefore by Lemma 4, there
exists a clause D such that ¥ F,. D, and D subsumes Cf. From Lemma 3, D

also subsumes C' itself. Hence ¥ 4 C. O

Now that we have shown that the subsumption theorem can be proved from the
refutation-completeness, and vice versa, we also have the following;:

Theorem 6 For unconstrained resolution, the subsumption theorem and the re-
futation-completeness are equivalent.

5 The Incompleteness of Input Resolution

Note that if S’ (the subsumption theorem for input resolution) that we mentioned
in Section 1 were true, then it would follow along the same lines as Theorem 5
that input resolution is refutation-complete. However, since it is well-known
that input resolution is not refutation-complete [CL73, GN87], this again shows
that S’ cannot be true. Since [Mug92, Ide93a] only use the special case of S’
where ¥ contains only one clause, we investigate this here. We will show that
S’ is not even true in this special case. Hence the counterexample we give here

is relevant for [Mug92, Ide93a], and also for other results based on S’. In our
counterexample we let ¥ = {C'}, with C:

C = P(xy1,22) V Q(22,73) V 2Q(23,74) V =P (24, 71).

Figure 5 shows that clause D (see below) can be derived from C' by unconstrained
resolution. This also shows that C' = D. Figure 5 makes use of the clauses listed
below. Ci, Cy, C3, C4 are variants of C. D1 is a binary resolvent of C; and Cs,
D, is a binary resolvent of C3 and C4 (the underlined literals are the literals
resolved upon). D is a factor of Dy, using the subtitution {z5/21,26/22}. D}
is a factor of Dy, using {x11 /212, 213/29}. Finally, D is a binary resolvent of D;
and Dj.

Ch Cy C3 Cyq
Dy D,
factor V I/fgctor
D; Dy
D

Figure 5: The derivation of D from C' by unconstrained resolution

01 = P(ﬂ?l,ﬂfg)\/Q(CUQ,CUg)V"Q(CU3,$4)\/—|P(ZE4,ZE1)

02 = P($5,$6)VQ(1’6,$7)V_'Q(l’7,I8)V_|P(CE8,$5)

Cs = P(zg,z10)V Q(z10,211) V ~Q(x11,T12) V 7P (212, 29)

Cy = P(x13,714) V Q(214,%15) V ~Q(215,716) V P (216, 713)

D, P(z1,29) V = Q(x3,24) V - P(x4,21) V P(25,26) V Q(x6,22)V
—IP(CU3,$5)

DQ = P(iEg,iElo) \/—|Q(:U11,a:12) \/—|P(a:12,a:9) \/P(21313,CU14)\/
Q(x14,710) V P (211, 713)

D} = P(z1,22)V-Q(z3,24)V P(zg,21) V Q(22,22) V " P(x3,21)

DIQ = P(ﬂ:g,ﬂ?lo)\/"Q(Cﬂlg,ﬂflg)\/ﬁp(wlg,wg) \/P(ZEQ,CUM)\/Q(ZEM,ZEH))

D = -Q(z3,24)V - P(x4,21)V Q(x2,22) V ~P(x3,21) V P(Z2,210)V

=Q(71,21) V P(22,714) V Q(Z14, T10)
So D can be derived from C' using unconstrained resolution. However, neither
D nor a clause which subsumes D can be derived from C using only input
resolution. We prove this in Proposition 1 (see the Introduction of this paper for
the definition of £*(X) and £*(X)). This shows that the subsumption theorem
does not hold for input resolution, not even if . contains only one clause.

Lemma 5 Let C be as defined above. Then for each n > 1: if E € L"({C}),
then E contains an instance of P(z1,xz2) V = P(z4,21) or an instance of

Q(z2,z3) V ~Q(x3,24).

Proof By induction on n:

1. £Y({C}) = {C}, so the lemma is obvious for n = 1.

2. Suppose the lemma holds for n < m. Let E € L™ ({C}). Note that
the only factor of C' is C itself. Therefore E is a binary resolvent of C
and a factor of a clause in £L™({C}). Let 8 be the mgu used in obtaining
this binary resolvent. If P(xz1,z2) or =P(z4,z1) is the literal resolved
upon in C, then E must contain (Q(za,2z3) V =Q(x3,24))0. Otherwise
Q(za, x3) or =Q(z3, x4) is the literal resolved upon in C, so then E contains

(P(z1,22) V2P (24,21))0.
O

Proposition 1 Let C and D be as defined above. Then L*({C}) does not con-
tain a clause which subsumes D.

Proof Suppose E € L*({C}). From Lemma 5 and the definition of £*({C}),
we know that E contains an instance of P(x1,22)V —P(x4,21) or an instance of
Q(z2,23) V-Q(x3,24). It is easy to see that neither P(x1,22) V ~P(24,21) nor
Q(z2,23) V =Q(x3,24) subsumes D. Then E does not subsume D. O

6 Conclusion

This paper forms the first part of our research concerning the subsumption
theorem. This part pertains to unconstrained resolution. The second part of
our research is concerned with SLD-resolution and Horn clauses, and is described
in [NW95b]. There we show that the subsumption theorem for SLD-resolution
is equivalent with the refutation-completeness of SLD-resolution.

In this paper, we discussed the importance of the subsumption theorem in
ILP. No really rigorous proof of this theorem for unconstrained resolution was
until now available, and applications of the theorem in the literature often use
the incorrect version S’. A proof of the subsumption theorem for unconstrained
resolution was given by us. The refutation-completeness of unconstrained res-
olution was then shown to be an easy corollary of this theorem. Since the
subsumption theorem in turn also follows from the refutation-completeness (as
proved in Section 4), we have in fact proved that the subsumption theorem and
the refutation-completeness are equivalent.

Finally we showed that S’ is not even true when the set of premisses consists
of only one clause. This means that results based on S’ or its special case, among
which are results on nth powers and nth roots, need to be reconsidered.

References

[BM92] Bain, M., and Muggleton, S., ‘Non-monotonic Learning’, in: Mug-
gleton, S. (ed.), Inductive Logic Programming, APIC series, no. 38,
Academic Press, 1992, pp. 145-153.

[CL73] Chang, C. L., and Lee, R. C. T., Symbolic Logic and Mechanical The-
orem Proving, Academic Press, San Diego, 1973.

[GN87]

[Ide93a]

[Ide93b]

[Ide93c]

[Ide93d]

[Kow70)]

[LN94a]

[LN94b]

[Lee67)

[L1087]

[Mug92]

[MP94]

Genesereth, M. R., and Nilsson, N. J., Logical Foundations of Artificial
Intelligence, Morgan Kaufmann, Palo Alto, 1987.

Idestam-Almquist, P., Generalization of Clauses, PhD Thesis, Stock-
holm University, 1993.

Idestam-Almquist, P., ‘Generalization under Implication by Recursive
Anti-Unification’, in: Proceedings of the Tenth International Confer-
ence on Machine Learning, Morgan Kaufmann, 1993.

Idestam-Almquist, P., ‘Generalization under Implication by Using Or-
Introduction’, in: Proceedings of the European Conference on Machine
Learning-93, Springer Verlag, 1993.

Idestam-Almquist, P., ‘Generalization under Implication: Expansion
of Clauses for Indirect Roots’, in: Scandinavian Conference on Artifi-
cial Intelligence-93, 10S Press, Amsterdam, Netherlands, 1993.

Kowalski, R., ‘The Case for Using Equality Axioms in Automatic
Demonstration’, in: Proc. of the Symposium on Automatic Demon-
stration, Lecture Notes in Mathematics 125, Springer Verlag, 1970,
pp- 112-127.

van der Laag, P., and Nienhuys-Cheng, S.-H., ‘Existence and Nonex-
istence of Complete Refinement Operators’, in: Proc. the European
Conference on Machine Learning (ECML-94), Lecture Notes in Arti-
ficial Intelligence 784, Springer-Verlag, pp. 307-322.

van der Laag, P., and Nienhuys-Cheng, S.-H., ‘A Note on Ideal Re-
finement Operators in Inductive Logic Programming’, in: Wrobel, S.
(ed.), Proc. of the Fourth Int. Workshop on Inductive Logic Program-
ming (ILP-94), Bad Honnef, Germany, 1994, pp. 247-262.

Lee, R. C. T., A Completeness Theorem and a Computer Program for
Finding Theorems Derivable from Given Azioms, PhD Thesis, Univer-
sity of California, Berkeley, 1967.

Lloyd, J. W., Foundations of Logic Programming, Second edition,
Springer-Verlag, Berlin, 1987.

Muggleton, S., ‘Inverting Implication’, in: Muggleton, S. H., and Fu-
rukawa, K. (eds.), Proc. of the Second Int. Workshop on Inductive
Logic Programming (ILP-92), ICOT Technical Memorandum TM-
1182, 1992.

Muggleton, S., and Page, C. D., ‘Self-Saturation of Definite Clauses’,
in: Wrobel, S. (ed.), Proc. of the Fourth Int. Workshop on Inductive
Logic Programming (ILP-94), Bad Honnef, Germany, 1994, pp. 161-
174.

[NLT93] Nienhuys-Cheng, S.-H., van der Laag, P., and van der Torre, L., ‘Con-
structing Refinement Operators by Deconstructing Logical Implica-
tion’, in: Proc. of the Third Congress of the Italian Association for
Artificial Intelligence (AI*IA93), Lecture Notes in Artificial Intelli-
gence 728, Springer-Verlag, pp. 178-189.

[NW95a] Nienhuys-Cheng, S.-H., and de Wolf, R., ‘The Subsumption Theorem
in Inductive Logic Programming: Facts and Fallacies’, to appear in:
Proc. of the Fifth Workshop on Inductive Logic Programming (ILP-95,
workreport), Leuven, September 1995.

[NWO5b] Nienhuys-Cheng, S.-H., and de Wolf, R., ‘The Subsumption Theo-
rem Revisited: Restricted to SLD-resolution’, to appear in: Proc. of
Computing Science in the Netherlands (CSN-95), Utrecht, November
1995.

[SCL69] Slagle, J. R., Chang, C. L., and Lee, R. C. T., ‘Completeness Theo-
rems for Semantic Resolution in Consequence-finding’, in: Proc. of the
International Joint Conference on Artificial Intelligence (IJCAI-69),
1969, pp. 281-285.

A A Proof of the Lifting Lemma

In this appendix we give the rather technical proof of the lifting lemma.

Lemma 6 If C| and C} are instances of Cy and Ca, respectively, and if C' is a
resolvent of C| and C}, then there is a resolvent C' of Cy and Cs, such that C'
is an instance of C'.

Proof We assume without loss of generality that C; and Cs, and C] and C}
are standardized apart. Let C; = L1 V...V Ly, Cy = My V...V My, C| = Cyoy,
and C} = Cy05 (here we can assume o only acts on variables in Cy, k = 1,2).
Suppose C" is a resolvent of C{ and C4. Then C' is a binary resolvent of a factor
of C} and a factor of Cj.

For notational convenience, we assume without loss of generality that the
factor of Cy is (Ly V...V L;)o161, where 6; is an mgu of {L;01,..., Lyo1}.
Similarly, the factor of C% that is used, is (My V ...V M;)026>, where 6, is an
mgu of {M;os,...,Myo2}. L;o161 and M;o26> are the literals resolved upon,
say with mgu p. Abbreviate Ly V...V L;_; to Dy, and My V...V M;_; to D».
Then C' = (D10161V Dy0262) . By our assumption of standardizing apart, this
can be written as C' = (D1 V Ds)o16010202p.

Let 71 be an mgu of {L;,...,Ly}. Then (L1 V...V L;)y is a factor of C;.
Note that 16, is a unifier of L;,..., Ly,. Since 7, is an mgu of {L;,..., Ly},
there exists a substitution d; such that 0161 = 7y161. Similarly, (M1 V...V M)y,
is a factor of Cy, with 72 as mgu of {Mj,..., M,}, and there is a J» such that

026y = ’7252-

Since L;o16:1 and —M;0260> can be unified (they have u as mgu) and 74 is
more general than 060 (k = 1,2), Lyy1 and =M;v, can be unified. Let 6 be
an mgu of L;y; and ~M;7y,. Define C' = (D141 V Da¥2)6, which can be written
as C = (D1 V D2)v17v0. Since C is a binary resolvent of the above-mentioned
factors of Cy and Cs, it is a resolvent of C; and C, (see figure 6 for illustration).

Cy

Co

N %
o1 factor factor g

, \ / I
(&3] 51 . 5 Cq

01 f2
\ factor 5 factor /
\ /
OI

Figure 6: Lifting a resolvent

It remains to show that C" is an instance of C'. Since L;y1010o24 = L;o16102p =
Lio101pp = ~Mjoa0rp0 = ~Mjya0apt = = Mj7y261624, the substitution didop is a
unifier of L;y; and —Mjv>. 6 is an mgu of L;y; and —M;vs, so there exists a
substitution § such that §;dopu = 06. Therefore C' = (D1 V Ds)o1610202u =
(Dl \ DQ)’yl(Sl’)/Q(SQ/L = (Dl \Y DQ)’)/l’}/Q(Sl(SQ,u = (D1 \ Dg)vwg% = (4. Hence C’
is an instance of C. a

Lemma 2 (Derivation Lifting) Let ¥ be a set of clauses, and ¥’ be a set of
instances of clauses in ¥. Suppose R},...,R) is a derivation of the clause Rj,

from Y/. Then there exists a derivation Ry,..., Ry of the clause R from X,
such that R} is an instance of R;, for each i.

Proof The proof is by induction on k.

1. If k = 1, then R} € ¥', so there is a clause R; € ¥ of which R} is an
instance.

2. Suppose the lemma holds if k <m. Let RY,..., R, ,R;, ., be a derivation
of Ry, | from ¥'. By the induction hypothesis, there exists a derivation
Ry,...,R,, of R, from ¥, such that R} is an instance of R;, for all i

1<i<m. If R, , €Y, the lemma is obvious. Otherwise, R;, ,, is a
resolvent of clauses R}, R € {R},. .., R }. Tt follows from Lemma 6 that

3 3

there exists a resolvent R,,41 of R; and R; such that R;nﬂ is an instance

of Rm+1 .
O

