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Abstract. The subsumption theorem is an important theorem con-
cerning resolution. Essentially, it says that if a set of clauses ¥ logically
implies a clause C, then either C is a tautology, or a clause D which
subsumes C' can be derived from ¥ with resolution. It was originally
proved in 1967 by Lee. In Inductive Logic Programming, interest in
this theorem is increasing since its independent rediscovery by Bain and
Muggleton. It provides a quite natural “bridge” between subsumption
and logical implication. Unfortunately, a correct formulation and proof
of the subsumption theorem are not available. It is not clear which forms
of resolution are allowed. In fact, at least one of the current forms of
this theorem is false. This causes a lot of confusion.

In this paper we give a careful proof of the subsumption theorem
for unconstrained resolution, and show that the well-known refutation-
completeness of resolution is just a special case of this theorem. We
also show that the subsumption theorem does not hold when only input
resolution is used, not even in case ¥ contains only one clause. Since
some recent articles assume the contrary, certain results (for instance
results on nth roots and nth powers) in these articles should perhaps be
reconsidered.

1 Introduction

Inductive Logic Programming (ILP) investigates methods to learn theories from exam-
ples, within the framework of first-order logic. In ILP, the proof-method that is most
often used is resolution. Resolution is used for deduction, but also for induction in
the form of inverse resolution. A very important theorem concerning resolution is the
Subsumption Theorem, which essentially states the following. Let ¥ be a set of clauses
and C a clause. If ¥ = C, then C is a tautology or there exists a clause D which
subsumes C' and which can be derived from ¥ by resolution.

This theorem was probably first stated and proved by Lee in 1967 in his PhD-
thesis [11]. However, we have not been able to find a copy of his thesis. So it is unclear
what precisely Lee stated, and how he proved his result. Surprisingly, the theorem is
mentioned nowhere in the standard reference-books concerning resolution, not even in
Lee’s own book [2].

We are aware of two other early papers concerning the subsumption theorem.! [8]
gives a proof of the subsumption theorem for unconstrained resolution, which is rather

'We would like to thank Stephen Muggleton for sending us a copy of [8] and a reference to [20].



sketchy and presupposes knowledge of semantic trees. This makes that proof harder to
understand than the proof we will give here, which only needs the elementary definitions
of logic and resolution. [20] proves a version of the subsumption theorem for semantic
resolution. However, these papers are rather unknown in the ILP-community, where
different versions of the subsumption theorem are used, at least one of which is false.
Our aim in this paper is to clarify this confusion.

One thing is clear, though: the subsumption theorem states that logical implica-
tion between clauses can be divided in two separate steps—a derivation by resolution,
and then a subsumption. Hence the theorem provides a natural “bridge” between log-
ical implication and subsumption. Subsumption is very popular in generalizations in
ILP, since it is decidable and machine-implementable. However, subsumption is not
“enough”: if D subsumes C' then D = C, but not always the other way around. So it
is desirable to make the step from subsumption to implication, and the subsumption
theorem provides an excellent tool for those who want to make this step, since it states
that implication = resolution + subsumption. It is used for instance in [4, 13]* for
inverse resolution. In [10], the theorem is used to extend the result of [9] that there
does not exist an ideal refinement operator in subsumption, to the result that there is
no ideal refinement operator in logical implication. In [15], the theorem is related to
several generality orderings.

The subsumption theorem is more natural than the better-known refutation-com-
pleteness of resolution, which states that an unsatisfiable set of clauses has a refutation
(a derivation by resolution of the empty clause O). For example, if one wants to prove
¥ = C using the refutation-completeness, one must first normalize the set YU{-C'} to a
set of clauses. Usually ¥ U {—=C'} is not a set of clauses, since negating the (universally
quantified) clause C yields a formula which involves existential quantifiers. So if we
want to prove X = C by refuting ¥ U {=~C'}, we must first apply Skolemization to C.
Deriving from ¥ a clause D which subsumes C', is a much more “direct” way of proving
YEC.

Hence we—and perhaps many others—feel that the subsumption theorem deserves
at least as much attention as the refutation-completeness. We can in fact prove that
the latter is a direct consequence of the former, as given in Section 3. It is surprising
that the subsumption theorem was so little known. Only after Bain and Muggleton
rediscovered the theorem in [1], people have started paying attention to it.

A reproof of the subsumption theorem is given in the appendix of [1]. However, we
are not completely satisfied with their proof. For example, it does not take factors into
account, whereas factors are necessary for completeness. Without factors one cannot
derive the empty clause O from the unsatisfiable set {(P(x)V P(y)), (=P(u)V =P (v))}
(see [3]). Furthermore, it is not always clear how the concepts that are used in the proof
are defined, and how the skolemization works. Their proof is based on transforming
a refutation-tree into a derivation-tree, but we feel this transformation is not clearly
defined. Despite these points, Bain and Muggleton certainly deserve a lot of credit for
their rediscovery of this theorem?, which is very important in ILP. The proof in [1] is
often quoted, and is sometimes also referred to as a proof for other kinds of resolution.
The two main formulations we have found are the following:

S Let ¥ be a set of clauses and C' a clause which is not a tautology. Define R%(3Z) = %

2[4] is a PhD-thesis based upon articles such as [5, 6, 7].

3From recent personal communication with Stephen Muggleton, we know Bain and Muggleton
discovered the theorem themselves, independently of [11]. Only afterwards did they found out from
references in other literature that their theorem was probably the same as Lee’s.



and R"(X) = R" YZ) U {C : C is a resolvent of C,Cy € R"1(X)}. Also define
R*(XZ) = RY(Z)UR(Z)U. ... Then the subsumption theorem is stated as follows
(we assume the authors of [1] used ‘+’ for what we mean by ‘=’  i.e. logical
implication):
Y | C iff there exists a clause D € R*(X) such that D subsumes C.

S" Let X be a set of clauses and C a clause which is not a tautology. Define £'(X) =X
and L"(X) = {C : C is a resolvent of C; € L" (X)) and Cy € X}. Also define
L£*(X) = LY(Z)UL*(Z)U. ... Then the subsumption theorem is stated as follows:

Y |= C iff there exists a clause D € L£*(3) such that D subsumes C.

S is given in [1], S’ is given in [13]. In [13], Muggleton does not prove S’, but refers
instead to [1]. In other articles such as [4, 10, 15], the theorem is also given in the form
of S’. These articles do not give a proof of S’, but refer instead to [1] or [13]. That is,
they refer to a proof of S assuming that this is also a proof of S’. But clearly that is not
the case, because S’ demands that at least one of the parent clauses of a clause in £*(X)
is a member of ¥, so S’ is stronger than S. In fact, whereas S is true, S’ is actually
false! A counterexample is the deduction from the set ¥ that we use to illustrate our
definitions in Section 2: no clause in £*(3) subsumes R(a) V S(a). Besides, if S" were
true, then input resolution would be refutation-complete (as we will show in Section 3),
which it is not. An easy propositional counterexample for the refutation-completeness
of input resolution is given on p. 99 of [3].

The confusion about S’ is perhaps a consequence of the subtle distinction between
linear resolution and input resolution. S’ employs a form of input resolution, which is
a special case of linear resolution. Linear resolution is complete, but input resolution is
not complete. See [2] or [3].

However, the articles we mentioned do not use S’ itself. [10, 15] are restricted to
Horn clauses. It can be shown that for Horn clauses there is no problem. Due to a
lack of space we will not prove that here. If we examine [13, 4] carefully, then we see
that the results of these articles only depend on a special case of S, namely the case
where Y consists of a single clause. Muggleton and others have used the definition of
L"({C}) to define nth powers and nth roots. Unfortunately, S’ does not even hold in
this special case. We give a counterexample in Section 4. This means that the results
of [13, 4] which are consequences of this special case of S’ need to be reconsidered.*

The confusion around the subsumption theorem made us investigate this theorem our-
selves, which led to the discovery of the mixture of true and false results that we
mentioned above. In this paper, we focus on three results of our research:

1. In Section 2, we prove S, the subsumption theorem for unconstrained resolution.
Our proof does not presuppose the refutation-completeness, contrary to the proof
in [1].

2. The refutation-completeness of unconstrained resolution is an immediate conse-
quence of S, as we show in Section 3.

3. S’ is false, even when ¥ (the set of premisses) contains only one clause. In
Section 4, we present our counterexample.

Our other results on the subsumption theorem are briefly described in the future work,
Section 6.

4From recent personal communication with Peter Idestam-Almquist, we know he has adjusted his
work from [4], incorporating our results.



2 The subsumption theorem

In this section, we give a proof of the subsumption theorem. Before starting with
our proof, we will first briefly define the main concepts we use. We treat a clause
as a disjunction of literals, so we consider P(a) and P(a) V P(a) as different clauses.
However, the results of our paper remain valid also for other notations, for instance if
one treats a clause as a set of literals instead of a disjunction. For convenience, we use
C C D to denote that the set of literals in C' is a subset of the set of literals in D.

Definition 1 Let ¢ and C5 be clauses. If C; and C5 have no variables in common,
then they are said to be standardized apart.

Given Cl and CQ, let C{ = L1V . VLZ\/VLm and Cé = Ml\/ \/M]\/ . \/Mn
be variants of C; and Cy respectively, which are standardized apart (1 < i < m and
1 < j < n). If the substitution 6 is a most general unifier (mgu) of the set {L;, =M},
then the clause

(LyV...VLiyVLiyV...VLy,VMV...VM; 1V MiV...VM,)§

is called a binary resolvent of C and C,. The literals L; and M; are said to be the
literals resolved upon. <&

Definition 2 Let C be a clause, Ly,..., L, (n > 1) unifiable literals from C, and 6
an mgu of {Ly,..., L,}. Then the clause obtained by deleting Lof, ..., L, from C# is
called a factor of C.

A resolvent C' of clauses C; and Cs is a binary resolvent of a factor of C; and a
factor of (5, where the literals resolved upon are the literals unified in the respective
factors. C and Cy are called the parent clauses of C. O

Note that any non-empty clause C' is a factor of itself, using the empty substitution ¢
as an mgu of a single literal in C. Factors are sometimes built into the resolution step
itself—for instance in Robinson’s original paper [19], where sets of literals from both
parent clauses are unified—but we have chosen to seperate the definitions of a factor
and a binary resolvent. The reason for this is that binary resolution without factors is
sufficient in case of SLD-resolution for Horn clauses.

Definition 3 Let ¥ be a set of clauses and C a clause. A derivation of C from X

is a finite sequence of clauses Ry,..., R, = C, such that each R; is either in ¥, or a
resolvent of two clauses in {Ry,..., R; 1}. If such a derivation exists, we write ¥ I, C.
A derivation of the empty clause O from X is called a refutation of X. &

Definition 4 Let C' and D be clauses. We say D subsumes (or 0-subsumes) C' if there
exists a substitution # such that D8 C C.

Let ¥ be a set of clauses and C' a clause. We say there exists a deduction of C from
Y, written as ¥ 4 C, if C' is a tautology, or if there exists a clause D such that ¥+, D
and D subsumes C. O

To illustrate these definitions, we will give an example of a deduction of the clause
C' = R(a) V S(a) from the set ¥ = {(P(z) V Q(z) V R(x)), (=P(x) V Q(a)), (—-P(z) V
=Q(x)), (P(x) V-Q(z))}. Figure 1 shows a derivation of the clause D = R(a) V R(a)
from X. Note that we use the factor Q(a) V R(a) of the parent clause Cs = Q(z) V
R(xz) V Q(a) in the last step of the derivation, and also the factor P(y) V R(y) of



Cs = P(y) V P(y) V R(y) in the step leading to C7. Since D subsumes C, we have
Y4 C.

It is not very difficult to see the equivalence between our definition of a deriva-
tion, and the definition of R™(X) we gave in Section 1. For instance, in figure 1,
C1,Cy, Cs,Cy, C} are variants of clauses in R%(X) (C; and O] are variants of the same
clause). Cjs, Cg are in R'(X), Cy is in R*(X), and D is in R3(X).

Ca=P(x)V-Q(z) C]=PH)VvQy)V R(y)

N

Ci=P@)VQ(x)VR(@) Cy=-P(y)vQ(a) C3=-P)Vv-Q(z) Cs5=Py)VPy)VR(y)

NSNS

Cé = Q(z) vV R(z) v Q(a) Cr ==Q(y) vV R(y)

NS

D = R(a) V R(a)

Figure 1: The tree for the derivation of D from X

The subsumption theorem states that if ¥ = C, then ¥ ; C. We prove this in a
number of successive steps in the following subsections. First we prove the theorem in
case both ¥ and C are ground, then we prove it in case X consists of arbitrary clauses
but C' is ground, and finally we prove the theorem when neither > nor C need to be
ground.

2.1 The subsumption theorem for ground ¥ and C

First we prove the subsumption theorem for the case when both ¥ and C' are restricted
to ground clauses.

Theorem 1 Let X be a set of ground clauses, and C be a ground clause. If ¥ | C,
then ¥ 4 C.

Proof Assume C is not a tautology. Then we need to find a clause D, such that
Yk, D and D C C (note that for ground clauses D and C, D subsumes C'iff D C ().
The proof is by induction on the number of clauses in X.

1. Suppose X = {C;}. We will show that C; C C. Suppose C; € C. Then there
exists a literal L, such that L € C} but L ¢ C. Let I be an interpretation
which makes L true, and all literals in C false (such an I exists, since C is not a
tautology). Then I is a model of C, but not of C'. But that contradicts ¥ = C.
So Cl Q C, and Zl_d C.

2. Suppose the theorem holds if || < m. We will prove that this implies that
the theorem also holds if || = m 4+ 1. Let ¥ = {C},...,Cp11}, and ¥ =
{C1,...,C}. If Cpyq subsumes C or ¥ = C, then the theorem holds. So
assume C,;1 does not subsume C and X' j~= C.

The idea is to derive, using the induction hypothesis, a number of clauses from
which a derivation of a subset of C' can be constructed. First note that since



Y = C, we have X = CV~-C,,.1 (using the Deduction Theorem®). Let Ly, ..., Ly
be all the literals in C,, 1 which are not in C' (k > 1 since Cy, 1 does not subsume
(). Then we can write Cp, 1 = L1 V...V Ly V C', where C' C C. Since C does
not contain L; (1 < i < k), the clause C'V =L, is not a tautology. Also, since
¥ = CV-C,y and Cpyq is ground, we have that ¥’ | C'V —L;, for each i.
Then by the induction hypothesis, there exists for each i a ground clause D; such
that X’ l_r Dz and Dz Q (C V _'Lz)

We will use C,, 11 and the derivations from ¥’ of these D; to construct a derivation
of a subset of C' from ¥. —L; € D;, otherwise D; C C' and ¥’ = C. So we can
write each D; as =L; V D., and D} C C. The case where some D; contains —L;
more than once can be solved by taking a factor of D;.

Now we can construct a derivation of the ground clause defined as D = C'V
Div ...V Dy from ¥, using Cy,+1 and the derivations of Dy, ..., Dy from X'. See
figure 2. In this tree, the derivations of Dy,..., D, are indicated by the vertical
dots. So we have that ¥ -, D. Since C' C C, and D} C C for each ¢, we have
that D C C'. Hence ¥+, C.

Cmy1=L1V...VLyVC D1:—‘L1VD’1

N

LQV...VLkVClVDll DQZ_‘LQ\/DIQ

N/

Lg\/...\/Lk\/C”\/Dll\/Dl2

LyVC'VD{V...VvD,_, Dy=-L;VD

N/

D=C'vD{Vv...vD,
Figure 2: The tree for the derivation of D from ¥

(Il
Notice that the previous proof in fact contains an algorithm, a procedure to construct
the deduction of C' from Y. First the algorithm checks if C' is a tautology, which is
the case iff C' contains a complementary pair of literals. If not, then the construction
proceeds by induction on |X|. If ¥ = {C}}, then C; C C. If ¥ = {C4,...,Cpn, Cris1},
then we can write Cp,;1 = L1 V...V L, vV C', where C' C C. As our proof has shown,
we can then find deductions of =L; V C from ¥/ = {Cy,...,Cy,} (i = 1,...,k). Cpp1
can be combined with these deductions of =L; V C to form a deduction of C from X,
as shown in figure 2.

2.2 The subsumption theorem when C is ground

In this section, we will prove the subsumption theorem in case C' is ground and ¥ is a
set of arbitrary clauses. The idea is to “translate” ¥ = C to ¥, = C, where X, is a set

SR U{C}EDiff S = (C = D).



of ground instances of clauses of ¥. Then by Theorem 1, there is a clause D such that
¥, D, and D subsumes C'. We can “lift” this to a deduction of C' from X.

Theorem 2 (Herbrand, [2]) A set ¥ of clauses is unsatisfiable iff there is a finite
unsatisfiable set X' of ground instances of clauses of 3.

Lemma 1 Let 3 be a set of clauses, and C be a ground clause. If ¥ |= C, then there
exists a finite set of clauses X 4, where each clause in X, is a ground instance of a clause
in ¥, such that ¥, = C.

Proof Let C = Ly V...V L (k > 0). If ¥ is unsatisfiable then the lemma follows
immediately from Theorem 2, so suppose ¥ is satisfiable. Note that since C' is ground,
=(' is equivalent to =L A ... A —=Lj. Then:

¥ = C iff (by the Deduction Theorem)

Y U {=C1} is unsatisfiable iff

Y U{=Ly,...,—L;} is unsatisfiable iff (by Theorem 2)

there exists a finite unsatisfiable set ¥', consisting of ground instances of
clauses from X U {—Ly,..., L}

Since X is satisfiable, the unsatisfiable set ¥’ must contain one or more members of the
set {=Ly,..., L}, ie. X' =X,U{=L;,..., =L}, where ¥, is a finite non-empty set
of ground instances of clauses in 3. So:

¥ is unsatisfiable iff

Yy U{-Li,..., 7Ly} is unsatisfiable iff

Yo U{=(Liy V...V L)} is unsatisfiable iff (by the Deduction Theorem)
¥y = (Liy V...V Lyj).

Since {L;,,..., Ly} € C, it follows that ¥, = C. O

The next two lemmas show that if a set ¥ consists of instances of clauses in X, then
a derivation from ¥’ can be “lifted” to a derivation from ¥. We omit the proof of the
first lemma, which is fairly straightforward. It is similar to Lemma 5.1 of [2], taking
into account that we use a slightly different definition of a resolvent.

Lemma 2 IfC] and C4 are instances of Cy and Cy, respectively, and if C' is a resolvent
of C{ and CY), then there is a resolvent C' of Cy and Cy, such that C" is an instance of
C.

Lemma 3 (Derivation Lifting) Let X be a set of clauses, and X' be a set of instances
of clauses in ¥. Suppose R\,..., R} is a derivation of the clause Rj, from ¥'. Then
there ezists a derivation Ry, ..., Ry of the clause Ry, from X, such that R} is an instance

of R;, for each i.

Proof The proof is by induction on k.

1. If k =1, then R} € ¥', so there is a clause Ry € ¥ of which R is an instance.
2. Suppose the lemma holds if & < m. Let R},..., R, R, ., be a derivation of

m
R;, ., from ¥'. By the induction hypothesis, there exists a derivation Ry,..., R,
of Ry, from ¥, such that R; is an instance of R;, foralli1 <i:<m. If R ., €
¥', the lemma is obvious. Otherwise, R, is a resolvent of clauses R;, R €
{R},..., R }. It follows from Lemma 2 that there exists a resolvent R,, 1 of R;

and R; such that R, is an instance of R, .



O

Theorem 3 Let X be a set of clauses, and C be a ground clause. If ¥ = C, then
Yy C.

Proof Assume C is not a tautology. We want to find a clause D such that ¥ F. D and
D subsumes C. From ¥ |= C and Lemma 1, there exists a finite set X, such that each
clause in ¥, is a ground instance of a clause in ¥, and ¥, = C'. Then by Theorem 1,
there exists a ground clause D' such that ¥, F, D', and D' C C. Let R},..., R, = D'
be a derivation of D’ from ¥,. It follows from Lemma 3 that we can “lift” this to a
derivation Ry,..., R, of R; from ¥, where R0 = D’ for some 0. Let D = Rj,. Then
D6 = D' C C. Hence D subsumes C. O

2.3 The subsumption theorem (general case)

In this subsection, we will prove the subsumption theorem for arbitrary ¥ and C. In
the proof, we will use a Skolemizing substitution.

Definition 5 Let ¥ be a set of clauses, and C' a clause. Let zq,...,x, be all the
variables appearing in C and a4, ..., a, be distinct constants not appearing in ¥ or C.
Then {z1/ay,...,x,/a,} is called a Skolemizing substitution for C' w.r.t. ¥. <&

Lemma 4 Let C and D be clauses. Let 0 = {z1/ay,...,x,/a,} be a Skolemizing
substitution for C w.r.t. D. If D subsumes C, then D also subsumes C.

Proof Since D subsumes Cf, there exists a substitution o such that Do C C0. Let o
be the substitution {y;/t1,..., ym/tm}. Let ¢’ be the substitution obtained from o by
replacing each a; by z; in every ¢;. Note that o = ¢'f. Since 0 only replaces each z; by
a; (1 <i<n), it follows that Do’ C C, so D subsumes C'. O

Theorem 4 (Subsumption Theorem) Let ¥ be a set of clauses, and C' be a clause.
IfS EC, then X, C.

Proof Assume C'is not a tautology. Let 6 be a Skolemizing substitution for C' w.r.t. .
Then C# is a ground clause which is not a tautology, and ¥ = C#. So by Theorem 3,
there is a clause D such that ¥ ., D and D subsumes Cf. Since 6 is a Skolemizing
substitution for C' w.r.t. ¥, and D can only contain constants appearing in X, 6 is also
a Skolemizing substitution for C' w.r.t. D. Then by Lemma 4, D subsumes C'. Hence
Yy C. O

3 The refutation-completeness of resolution

The subsumption theorem actually tells us that resolution and subsumption form a
complete set of proof-rules for clauses. A form of completeness that is usually stated in
the literature on resolution is the refutation-completeness. This is an easy consequence
of the subsumption theorem (note that the converses of Theorems 4 and 5 follow im-
mediately from the soundness of resolution and subsumption).

Theorem 5 (Refutation-completeness of Resolution) Let ¥ be a set of clauses.
If ¥ is unsatisfiable, then ¥ F, O.



Proof Suppose ¥ is unsatisfiable. Then ¥ = O. So by Theorem 4, there exists a
clause D, such that ¥ . D and D subsumes the empty clause 0. But O is the only
clause which subsumes O, so D = 0. a

Note that if the S’ that we mentioned in Section 1 were true, then it would follow
along the same lines as the theorem above that input resolution is refutation-complete.
However, since we know that input resolution is not refutation-complete, this again
shows that S’ cannot be true.

4 The incompleteness of input resolution

In this section, we show that the subsumption theorem for input resolution (S’) is not
true, not even in the special case where the set of premises ¥ consists of only one
clause. [13, 4] state S" without proof, and apply this special case of S’. Hence the
counterexample we give here is relevant for those articles, and also for other results
based on S'. In our counterexample we let ¥ = {C'}, with C":

C = P(fEl,IEQ) \% Q(fEQ,l‘g) \% ﬁQ(l‘g,l@) V _|P(l‘4,.’E1).

Figure 3 shows that clause D (see below) can be derived from C by unconstrained
resolution. This also shows that C' = D. Figure 3 makes use of the clauses listed
below. C4, Cy, C3, Cy are variants of C'. D; is a binary resolvent of C; and Cy, D, is
a binary resolvent of C3 and C} (the underlined literals are the literals resolved upon).
D) is a factor of Dy, using the substitution {x5/x1,x6/22}. D} is a factor of Ds, using
{x11/x12, 213/29}. Finally, D is a binary resolvent of D] and D).

C1 Cy  Cs Cy

NN

D Ds>

factor V |/f£ct0r
D}

NS

D

Figure 3: The derivation of D from C' by unconstrained resolution

C1 = P(z1,22) VQ(z2,73) V—Q(x3,74) V P (24, 71)

Cy = P(xs,26) V Q(x6,77) V ~Q (27, 28) V ~P(78, 75)

Cs = P(xg,210) V Q(x10,211) V Q(z11, T12) V 2 P(x12, 29)

Cy = P(x3,214) V Q(x14,715) V 2Q (215, 216) V =P (716, T13)

D1 = P(l‘l,lﬁg) V _|Q(SE3,1‘4) V _|P(SE4,ZE1) V P(ZE5,1‘6) V Q(l‘ﬁ,lﬁg)\/
_|P(l‘3,$5)

Dy = P(xg,219) V =Q(x11,212) V =P (212, 29) V P(213, 214)V

Q(x14, 210) V 7P (211, T13)
Dy = P(x1,22) V ~Q(x3,74) V 2P (74, 21) V Q(x2, 72) V =P (23, 21)
Dy = P(xg,210) V 7Q(Z12,T12) V 7P (212, 29) V P(xg, 214) V Q(Z14, T10)
D = —=Q(x3,24) V- P(x4,21)V Q(x2,29) V = P(x3,21) V P(22,210)V
“Q(z1,21) V P(x2,214) V Q(214, 210)



So D can be derived from C using unconstrained resolution. However, neither D nor a
clause which subsumes D can be derived from C' using only input resolution. We prove
this in Proposition 1 (see the Introduction of this paper for the definition of £"(X) and
L*(X)). This shows that the subsumption theorem does not hold for input resolution,
not even if ¥ contains only one clause.

Lemma 5 Let C be as defined above. Then for each n > 1: if E € L"({C}), then E
contains an instance of P(xy,x9)V = P(x4, 1) or an instance of Q(x2, x3) V ~Q(x3, T4).

Proof By induction on n:

1. £L'({C}) = {C}, so the lemma is obvious for n = 1.
2. Suppose the lemma holds for n < m. Let E € L™ ({C}). Note that the only
factor of C' is C' itself. Therefore E is a binary resolvent of C' and a factor of
a clause in £L™({C}). Let 6 be the mgu used in obtaining this binary resolvent.
If P(zy,29) or =P(x4,xy) is the literal resolved upon in C, then E must contain
(Q(zg, x3)V-Q(x3,24))0. Otherwise Q(zs, x3) or ~Q(x3,x4) is the literal resolved
upon in C| so then F contains (P(z1,zs) V = P(x4,21))0.
O

Proposition 1 Let C and D be as defined above. Then L*({C}) does not contain a
clause which subsumes D.

Proof Suppose £ € L*({C}). From Lemma 5 and the definition of £*({C}), we know
that E contains an instance of P(zy,x9) V =P (24, x1) or an instance of Q(xq,z3) V
—Q(x3,x4). It is easy to see that neither P(xy, x9)V—P (24, x1) nor Q(za, x3)V-Q (13, 24)
subsumes D. Then E does not subsume D. a

5 Conclusion

In this paper, we discussed the importance of the subsumption theorem in ILP. No
really rigorous proof based on the elementary definitions of resolution of this theorem
for unconstrained resolution was until now available, and applications of the theorem in
the literature often use the incorrect version S’. A proof of the subsumption theorem for
unconstrained resolution was given by us. The refutation-completeness of unconstrained
resolution is then an easy corollary of this theorem. Finally, we showed that S’ is not
even true when the set of premisses consists of only one clause. This means that results
based on S’ or its special case, among which are results on nth powers and nth roots,
need to be reconsidered.

6 Future work

In this section, we will briefly describe some other results of our research concerning
the subsumption theorem. These will be published elsewhere (see [16, 17]).

Firstly, we have been able to prove the subsumption theorem for unconstrained
resolution starting from the refutation-completeness [17]. This proof seems to share the
same general idea with the proof of the subsumption theorem given in [1], so our proof
can be seen as an improved version of their proof. Since, conversely, the refutation-
completeness is also an immediate consequence of the subsumption theorem (as shown



in Theorem 5), this establishes the equivalence of the subsumption theorem and the
refutation-completeness for unconstrained resolution.

Secondly, we have been able to prove the subsumption theorem for linear resolution.
So linear resolution, which is more efficient than unconstrained resolution, is complete
for general clauses. In addition, it can be shown also for this case that the subsump-
tion theorem and the refutation-completeness can be proved from one another. Hence
we have the equivalence of these two completeness-results also for the case of linear
resolution.

Thirdly, we have proved the subsumption theorem for SLD-resolution, restricted to
Horn clauses [16]. For this we generalized the definition of SLD-resolution given in [12],
following an idea of [14]. Since SLD-resolution is a special case of input resolution,
this implies that version S’ of the subsumption theorem does hold in the restricted
case of Horn clauses. We have also been able to find a new proof of the refutation-
completeness of SLD-resolution, which has the advantage of avoiding partial orders and
fixpoint-theory. This makes our proof of this important completeness result—on which,
for instance, PROLOG is based—easier to understand for people in ILP than the proof
of [12]. Finally, also in the case of SLD-resolution the equivalence of the subsumption
theorem and the refutation-completeness can be established.

All these results will be collected in the workreport [18].
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