
The Subsumption Theoremin Inductive Logic Programming:Facts and FallaciesShan-Hwei Nienhuys-Cheng Ronald de Wolfcheng@cs.few.eur.nl bidewolf@cs.few.eur.nlDepartment of Computer Science, H4-19Erasmus University of RotterdamP.O. Box 1738, 3000 DR Rotterdam, the NetherlandsAbstract. The subsumption theorem is an important theorem con-cerning resolution. Essentially, it says that if a set of clauses � logicallyimplies a clause C, then either C is a tautology, or a clause D whichsubsumes C can be derived from � with resolution. It was originallyproved in 1967 by Lee. In Inductive Logic Programming, interest inthis theorem is increasing since its independent rediscovery by Bain andMuggleton. It provides a quite natural \bridge" between subsumptionand logical implication. Unfortunately, a correct formulation and proofof the subsumption theorem are not available. It is not clear which formsof resolution are allowed. In fact, at least one of the current forms ofthis theorem is false. This causes a lot of confusion.In this paper we give a careful proof of the subsumption theoremfor unconstrained resolution, and show that the well-known refutation-completeness of resolution is just a special case of this theorem. Wealso show that the subsumption theorem does not hold when only inputresolution is used, not even in case � contains only one clause. Sincesome recent articles assume the contrary, certain results (for instanceresults on nth roots and nth powers) in these articles should perhaps bereconsidered.1 IntroductionInductive Logic Programming (ILP) investigates methods to learn theories from exam-ples, within the framework of �rst-order logic. In ILP, the proof-method that is mostoften used is resolution. Resolution is used for deduction, but also for induction inthe form of inverse resolution. A very important theorem concerning resolution is theSubsumption Theorem, which essentially states the following. Let � be a set of clausesand C a clause. If � j= C, then C is a tautology or there exists a clause D whichsubsumes C and which can be derived from � by resolution.This theorem was probably �rst stated and proved by Lee in 1967 in his PhD-thesis [11]. However, we have not been able to �nd a copy of his thesis. So it is unclearwhat precisely Lee stated, and how he proved his result. Surprisingly, the theorem ismentioned nowhere in the standard reference-books concerning resolution, not even inLee's own book [2].We are aware of two other early papers concerning the subsumption theorem.1 [8]gives a proof of the subsumption theorem for unconstrained resolution, which is rather1We would like to thank Stephen Muggleton for sending us a copy of [8] and a reference to [20].



sketchy and presupposes knowledge of semantic trees. This makes that proof harder tounderstand than the proof we will give here, which only needs the elementary de�nitionsof logic and resolution. [20] proves a version of the subsumption theorem for semanticresolution. However, these papers are rather unknown in the ILP-community, wheredi�erent versions of the subsumption theorem are used, at least one of which is false.Our aim in this paper is to clarify this confusion.One thing is clear, though: the subsumption theorem states that logical implica-tion between clauses can be divided in two separate steps|a derivation by resolution,and then a subsumption. Hence the theorem provides a natural \bridge" between log-ical implication and subsumption. Subsumption is very popular in generalizations inILP, since it is decidable and machine-implementable. However, subsumption is not\enough": if D subsumes C then D j= C, but not always the other way around. So itis desirable to make the step from subsumption to implication, and the subsumptiontheorem provides an excellent tool for those who want to make this step, since it statesthat implication = resolution + subsumption. It is used for instance in [4, 13]2 forinverse resolution. In [10], the theorem is used to extend the result of [9] that theredoes not exist an ideal re�nement operator in subsumption, to the result that there isno ideal re�nement operator in logical implication. In [15], the theorem is related toseveral generality orderings.The subsumption theorem is more natural than the better-known refutation-com-pleteness of resolution, which states that an unsatis�able set of clauses has a refutation(a derivation by resolution of the empty clause 2). For example, if one wants to prove� j= C using the refutation-completeness, one must �rst normalize the set �[f:Cg to aset of clauses. Usually � [ f:Cg is not a set of clauses, since negating the (universallyquanti�ed) clause C yields a formula which involves existential quanti�ers. So if wewant to prove � j= C by refuting � [ f:Cg, we must �rst apply Skolemization to C.Deriving from � a clause D which subsumes C, is a much more \direct" way of proving� j= C.Hence we|and perhaps many others|feel that the subsumption theorem deservesat least as much attention as the refutation-completeness. We can in fact prove thatthe latter is a direct consequence of the former, as given in Section 3. It is surprisingthat the subsumption theorem was so little known. Only after Bain and Muggletonrediscovered the theorem in [1], people have started paying attention to it.A reproof of the subsumption theorem is given in the appendix of [1]. However, weare not completely satis�ed with their proof. For example, it does not take factors intoaccount, whereas factors are necessary for completeness. Without factors one cannotderive the empty clause 2 from the unsatis�able set f(P (x)_P (y)); (:P (u)_:P (v))g(see [3]). Furthermore, it is not always clear how the concepts that are used in the proofare de�ned, and how the skolemization works. Their proof is based on transforminga refutation-tree into a derivation-tree, but we feel this transformation is not clearlyde�ned. Despite these points, Bain and Muggleton certainly deserve a lot of credit fortheir rediscovery of this theorem3, which is very important in ILP. The proof in [1] isoften quoted, and is sometimes also referred to as a proof for other kinds of resolution.The two main formulations we have found are the following:S Let � be a set of clauses and C a clause which is not a tautology. De�ne R0(�) = �2[4] is a PhD-thesis based upon articles such as [5, 6, 7].3From recent personal communication with Stephen Muggleton, we know Bain and Muggletondiscovered the theorem themselves, independently of [11]. Only afterwards did they found out fromreferences in other literature that their theorem was probably the same as Lee's.



and Rn(�) = Rn�1(�) [ fC : C is a resolvent of C1; C2 2 Rn�1(�)g. Also de�neR�(�) = R0(�)[R1(�)[ : : :. Then the subsumption theorem is stated as follows(we assume the authors of [1] used ``' for what we mean by `j=', i.e. logicalimplication):� ` C i� there exists a clause D 2 R�(�) such that D subsumes C.S0 Let � be a set of clauses and C a clause which is not a tautology. De�ne L1(�) = �and Ln(�) = fC : C is a resolvent of C1 2 Ln�1(�) and C2 2 �g. Also de�neL�(�) = L1(�)[L2(�)[ : : :. Then the subsumption theorem is stated as follows:� j= C i� there exists a clause D 2 L�(�) such that D subsumes C.S is given in [1], S0 is given in [13]. In [13], Muggleton does not prove S0, but refersinstead to [1]. In other articles such as [4, 10, 15], the theorem is also given in the formof S0. These articles do not give a proof of S0, but refer instead to [1] or [13]. That is,they refer to a proof of S assuming that this is also a proof of S0. But clearly that is notthe case, because S0 demands that at least one of the parent clauses of a clause in L�(�)is a member of �, so S0 is stronger than S. In fact, whereas S is true, S0 is actuallyfalse! A counterexample is the deduction from the set � that we use to illustrate ourde�nitions in Section 2: no clause in L�(�) subsumes R(a) _ S(a). Besides, if S0 weretrue, then input resolution would be refutation-complete (as we will show in Section 3),which it is not. An easy propositional counterexample for the refutation-completenessof input resolution is given on p. 99 of [3].The confusion about S0 is perhaps a consequence of the subtle distinction betweenlinear resolution and input resolution. S0 employs a form of input resolution, which isa special case of linear resolution. Linear resolution is complete, but input resolution isnot complete. See [2] or [3].However, the articles we mentioned do not use S0 itself. [10, 15] are restricted toHorn clauses. It can be shown that for Horn clauses there is no problem. Due to alack of space we will not prove that here. If we examine [13, 4] carefully, then we seethat the results of these articles only depend on a special case of S0, namely the casewhere � consists of a single clause. Muggleton and others have used the de�nition ofLn(fCg) to de�ne nth powers and nth roots. Unfortunately, S0 does not even hold inthis special case. We give a counterexample in Section 4. This means that the resultsof [13, 4] which are consequences of this special case of S0 need to be reconsidered.4The confusion around the subsumption theorem made us investigate this theorem our-selves, which led to the discovery of the mixture of true and false results that wementioned above. In this paper, we focus on three results of our research:1. In Section 2, we prove S, the subsumption theorem for unconstrained resolution.Our proof does not presuppose the refutation-completeness, contrary to the proofin [1].2. The refutation-completeness of unconstrained resolution is an immediate conse-quence of S, as we show in Section 3.3. S0 is false, even when � (the set of premisses) contains only one clause. InSection 4, we present our counterexample.Our other results on the subsumption theorem are brie
y described in the future work,Section 6.4From recent personal communication with Peter Idestam-Almquist, we know he has adjusted hiswork from [4], incorporating our results.



2 The subsumption theoremIn this section, we give a proof of the subsumption theorem. Before starting withour proof, we will �rst brie
y de�ne the main concepts we use. We treat a clauseas a disjunction of literals, so we consider P (a) and P (a) _ P (a) as di�erent clauses.However, the results of our paper remain valid also for other notations, for instance ifone treats a clause as a set of literals instead of a disjunction. For convenience, we useC � D to denote that the set of literals in C is a subset of the set of literals in D.De�nition 1 Let C1 and C2 be clauses. If C1 and C2 have no variables in common,then they are said to be standardized apart.Given C1 and C2, let C 01 = L1_ : : :_Li_ : : :_Lm and C 02 =M1_ : : :_Mj _ : : :_Mnbe variants of C1 and C2 respectively, which are standardized apart (1 � i � m and1 � j � n). If the substitution � is a most general uni�er (mgu) of the set fLi;:Mjg,then the clause(L1 _ : : : _ Li�1 _ Li+1 _ : : : _ Lm _M1 _ : : : _Mj�1 _Mj+1 _ : : : _Mn)�is called a binary resolvent of C1 and C2. The literals Li and Mj are said to be theliterals resolved upon. 3De�nition 2 Let C be a clause, L1; : : : ; Ln (n � 1) uni�able literals from C, and �an mgu of fL1; : : : ; Lng. Then the clause obtained by deleting L2�; : : : ; Ln� from C� iscalled a factor of C.A resolvent C of clauses C1 and C2 is a binary resolvent of a factor of C1 and afactor of C2, where the literals resolved upon are the literals uni�ed in the respectivefactors. C1 and C2 are called the parent clauses of C. 3Note that any non-empty clause C is a factor of itself, using the empty substitution "as an mgu of a single literal in C. Factors are sometimes built into the resolution stepitself|for instance in Robinson's original paper [19], where sets of literals from bothparent clauses are uni�ed|but we have chosen to seperate the de�nitions of a factorand a binary resolvent. The reason for this is that binary resolution without factors issu�cient in case of SLD-resolution for Horn clauses.De�nition 3 Let � be a set of clauses and C a clause. A derivation of C from �is a �nite sequence of clauses R1; : : : ; Rk = C, such that each Ri is either in �, or aresolvent of two clauses in fR1; : : : ; Ri�1g. If such a derivation exists, we write � `r C.A derivation of the empty clause 2 from � is called a refutation of �. 3De�nition 4 Let C and D be clauses. We say D subsumes (or �-subsumes) C if thereexists a substitution � such that D� � C.Let � be a set of clauses and C a clause. We say there exists a deduction of C from�, written as � `d C, if C is a tautology, or if there exists a clause D such that � `r Dand D subsumes C. 3To illustrate these de�nitions, we will give an example of a deduction of the clauseC = R(a) _ S(a) from the set � = f(P (x) _ Q(x) _ R(x)); (:P (x) _ Q(a)); (:P (x) _:Q(x)); (P (x) _ :Q(x))g. Figure 1 shows a derivation of the clause D = R(a) _ R(a)from �. Note that we use the factor Q(a) _ R(a) of the parent clause C6 = Q(x) _R(x) _ Q(a) in the last step of the derivation, and also the factor P (y) _ R(y) of



C5 = P (y) _ P (y) _ R(y) in the step leading to C7. Since D subsumes C, we have� `d C.It is not very di�cult to see the equivalence between our de�nition of a deriva-tion, and the de�nition of Rn(�) we gave in Section 1. For instance, in �gure 1,C1; C2; C3; C4; C 01 are variants of clauses in R0(�) (C1 and C 01 are variants of the sameclause). C5; C6 are in R1(�), C7 is in R2(�), and D is in R3(�).
C1 = P (x) _Q(x) _R(x) C2 = :P (y) _Q(a)@@@@R ����	C6 = Q(x) _ R(x) _Q(a)

C4 = P (x) _ :Q(x) C01 = P (y) _Q(y) _ R(y)C3 = :P (x) _ :Q(x) @@@@R ����	C5 = P (y) _ P (y) _R(y)@@@@R ����	C7 = :Q(y) _ R(y)@@@@R ����	D = R(a) _ R(a)Figure 1: The tree for the derivation of D from �The subsumption theorem states that if � j= C, then � `d C. We prove this in anumber of successive steps in the following subsections. First we prove the theorem incase both � and C are ground, then we prove it in case � consists of arbitrary clausesbut C is ground, and �nally we prove the theorem when neither � nor C need to beground.2.1 The subsumption theorem for ground � and CFirst we prove the subsumption theorem for the case when both � and C are restrictedto ground clauses.Theorem 1 Let � be a set of ground clauses, and C be a ground clause. If � j= C,then � `d C.Proof Assume C is not a tautology. Then we need to �nd a clause D, such that� `r D and D � C (note that for ground clauses D and C, D subsumes C i� D � C).The proof is by induction on the number of clauses in �.1. Suppose � = fC1g. We will show that C1 � C. Suppose C1 6� C. Then thereexists a literal L, such that L 2 C1 but L 62 C. Let I be an interpretationwhich makes L true, and all literals in C false (such an I exists, since C is not atautology). Then I is a model of C1, but not of C. But that contradicts � j= C.So C1 � C, and � `d C.2. Suppose the theorem holds if j�j � m. We will prove that this implies thatthe theorem also holds if j�j = m + 1. Let � = fC1; : : : ; Cm+1g, and �0 =fC1; : : : ; Cmg. If Cm+1 subsumes C or �0 j= C, then the theorem holds. Soassume Cm+1 does not subsume C and �0 6j= C.The idea is to derive, using the induction hypothesis, a number of clauses fromwhich a derivation of a subset of C can be constructed. First note that since



� j= C, we have �0 j= C_:Cm+1 (using the Deduction Theorem5). Let L1; : : : ; Lkbe all the literals in Cm+1 which are not in C (k � 1 since Cm+1 does not subsumeC). Then we can write Cm+1 = L1 _ : : : _ Lk _ C 0, where C 0 � C. Since C doesnot contain Li (1 � i � k), the clause C _ :Li is not a tautology. Also, since�0 j= C _ :Cm+1 and Cm+1 is ground, we have that �0 j= C _ :Li, for each i.Then by the induction hypothesis, there exists for each i a ground clause Di suchthat �0 `r Di and Di � (C _ :Li).We will use Cm+1 and the derivations from �0 of these Di to construct a derivationof a subset of C from �. :Li 2 Di, otherwise Di � C and �0 j= C. So we canwrite each Di as :Li _ D0i, and D0i � C. The case where some Di contains :Limore than once can be solved by taking a factor of Di.Now we can construct a derivation of the ground clause de�ned as D = C 0 _D01 _ : : :_D0k from �, using Cm+1 and the derivations of D1; : : : ; Dk from �0. See�gure 2. In this tree, the derivations of D1; : : : ; Dk are indicated by the verticaldots. So we have that � `r D. Since C 0 � C, and D0i � C for each i, we havethat D � C. Hence � `d C.Cm+1 = L1 _ : : : _ Lk _ C0 ...D1 = :L1 _D01@@@@R ����	L2 _ : : : _ Lk _ C0 _D01 ...D2 = :L2 _D02@@@@R ����	L3 _ : : : _ Lk _ C0 _D01 _D02. . .Lk _ C0 _D01 _ : : : _D0k�1 ...Dk = :Lk _D0k@@@@R ����	D = C0 _D01 _ : : : _D0kFigure 2: The tree for the derivation of D from � 2Notice that the previous proof in fact contains an algorithm, a procedure to constructthe deduction of C from �. First the algorithm checks if C is a tautology, which isthe case i� C contains a complementary pair of literals. If not, then the constructionproceeds by induction on j�j. If � = fC1g, then C1 � C. If � = fC1; : : : ; Cm; Cm+1g,then we can write Cm+1 = L1 _ : : : _ Lk _ C 0, where C 0 � C. As our proof has shown,we can then �nd deductions of :Li _ C from �0 = fC1; : : : ; Cmg (i = 1; : : : ; k). Cm+1can be combined with these deductions of :Li _ C to form a deduction of C from �,as shown in �gure 2.2.2 The subsumption theorem when C is groundIn this section, we will prove the subsumption theorem in case C is ground and � is aset of arbitrary clauses. The idea is to \translate" � j= C to �g j= C, where �g is a set5� [ fCg j= D i� � j= (C ! D).



of ground instances of clauses of �. Then by Theorem 1, there is a clause D such that�g `r D, and D subsumes C. We can \lift" this to a deduction of C from �.Theorem 2 (Herbrand, [2]) A set � of clauses is unsatis�able i� there is a �niteunsatis�able set �0 of ground instances of clauses of �.Lemma 1 Let � be a set of clauses, and C be a ground clause. If � j= C, then thereexists a �nite set of clauses �g, where each clause in �g is a ground instance of a clausein �, such that �g j= C.Proof Let C = L1 _ : : : _ Lk (k � 0). If � is unsatis�able then the lemma followsimmediately from Theorem 2, so suppose � is satis�able. Note that since C is ground,:C is equivalent to :L1 ^ : : : ^ :Lk. Then:� j= C i� (by the Deduction Theorem)� [ f:Cg is unsatis�able i�� [ f:L1; : : : ;:Lkg is unsatis�able i� (by Theorem 2)there exists a �nite unsatis�able set �0, consisting of ground instances ofclauses from � [ f:L1; : : : ;:Lkg.Since � is satis�able, the unsatis�able set �0 must contain one or more members of theset f:L1; : : : ;:Lkg, i.e. �0 = �g [ f:Li1 ; : : : ;:Lijg, where �g is a �nite non-empty setof ground instances of clauses in �. So:�0 is unsatis�able i��g [ f:Li1 ; : : : ;:Lijg is unsatis�able i��g [ f:(Li1 _ : : : _ Lij )g is unsatis�able i� (by the Deduction Theorem)�g j= (Li1 _ : : : _ Lij ).Since fLi1 ; : : : ; Lijg � C, it follows that �g j= C. 2The next two lemmas show that if a set �0 consists of instances of clauses in �, thena derivation from �0 can be \lifted" to a derivation from �. We omit the proof of the�rst lemma, which is fairly straightforward. It is similar to Lemma 5.1 of [2], takinginto account that we use a slightly di�erent de�nition of a resolvent.Lemma 2 If C 01 and C 02 are instances of C1 and C2, respectively, and if C 0 is a resolventof C 01 and C 02, then there is a resolvent C of C1 and C2, such that C 0 is an instance ofC.Lemma 3 (Derivation Lifting) Let � be a set of clauses, and �0 be a set of instancesof clauses in �. Suppose R01; : : : ; R0k is a derivation of the clause R0k from �0. Thenthere exists a derivation R1; : : : ; Rk of the clause Rk from �, such that R0i is an instanceof Ri, for each i.Proof The proof is by induction on k.1. If k = 1, then R01 2 �0, so there is a clause R1 2 � of which R01 is an instance.2. Suppose the lemma holds if k � m. Let R01; : : : ; R0m; R0m+1 be a derivation ofR0m+1 from �0. By the induction hypothesis, there exists a derivation R1; : : : ; Rmof Rm from �, such that R0i is an instance of Ri, for all i 1 � i � m. If R0m+1 2�0, the lemma is obvious. Otherwise, R0m+1 is a resolvent of clauses R0i; R0j 2fR01; : : : ; R0mg. It follows from Lemma 2 that there exists a resolvent Rm+1 of Riand Rj such that R0m+1 is an instance of Rm+1.



2Theorem 3 Let � be a set of clauses, and C be a ground clause. If � j= C, then� `d C.Proof Assume C is not a tautology. We want to �nd a clause D such that � `r D andD subsumes C. From � j= C and Lemma 1, there exists a �nite set �g such that eachclause in �g is a ground instance of a clause in �, and �g j= C. Then by Theorem 1,there exists a ground clause D0 such that �g `r D0, and D0 � C. Let R01; : : : ; R0k = D0be a derivation of D0 from �g. It follows from Lemma 3 that we can \lift" this to aderivation R1; : : : ; Rk of Rk from �, where Rk� = D0 for some �. Let D = Rk. ThenD� = D0 � C. Hence D subsumes C. 22.3 The subsumption theorem (general case)In this subsection, we will prove the subsumption theorem for arbitrary � and C. Inthe proof, we will use a Skolemizing substitution.De�nition 5 Let � be a set of clauses, and C a clause. Let x1; : : : ; xn be all thevariables appearing in C and a1; : : : ; an be distinct constants not appearing in � or C.Then fx1=a1; : : : ; xn=ang is called a Skolemizing substitution for C w.r.t. �. 3Lemma 4 Let C and D be clauses. Let � = fx1=a1; : : : ; xn=ang be a Skolemizingsubstitution for C w.r.t. D. If D subsumes C�, then D also subsumes C.Proof Since D subsumes C�, there exists a substitution � such that D� � C�. Let �be the substitution fy1=t1; : : : ; ym=tmg. Let �0 be the substitution obtained from � byreplacing each ai by xi in every tj. Note that � = �0�. Since � only replaces each xi byai (1 � i � n), it follows that D�0 � C, so D subsumes C. 2Theorem 4 (Subsumption Theorem) Let � be a set of clauses, and C be a clause.If � j= C, then � `d C.Proof Assume C is not a tautology. Let � be a Skolemizing substitution for C w.r.t. �.Then C� is a ground clause which is not a tautology, and � j= C�. So by Theorem 3,there is a clause D such that � `r D and D subsumes C�. Since � is a Skolemizingsubstitution for C w.r.t. �, and D can only contain constants appearing in �, � is alsoa Skolemizing substitution for C w.r.t. D. Then by Lemma 4, D subsumes C. Hence� `d C. 23 The refutation-completeness of resolutionThe subsumption theorem actually tells us that resolution and subsumption form acomplete set of proof-rules for clauses. A form of completeness that is usually stated inthe literature on resolution is the refutation-completeness. This is an easy consequenceof the subsumption theorem (note that the converses of Theorems 4 and 5 follow im-mediately from the soundness of resolution and subsumption).Theorem 5 (Refutation-completeness of Resolution) Let � be a set of clauses.If � is unsatis�able, then � `r 2.



Proof Suppose � is unsatis�able. Then � j= 2. So by Theorem 4, there exists aclause D, such that � `r D and D subsumes the empty clause 2. But 2 is the onlyclause which subsumes 2, so D = 2. 2Note that if the S0 that we mentioned in Section 1 were true, then it would followalong the same lines as the theorem above that input resolution is refutation-complete.However, since we know that input resolution is not refutation-complete, this againshows that S0 cannot be true.4 The incompleteness of input resolutionIn this section, we show that the subsumption theorem for input resolution (S0) is nottrue, not even in the special case where the set of premises � consists of only oneclause. [13, 4] state S0 without proof, and apply this special case of S0. Hence thecounterexample we give here is relevant for those articles, and also for other resultsbased on S0. In our counterexample we let � = fCg, with C:C = P (x1; x2) _Q(x2; x3) _ :Q(x3; x4) _ :P (x4; x1):Figure 3 shows that clause D (see below) can be derived from C by unconstrainedresolution. This also shows that C j= D. Figure 3 makes use of the clauses listedbelow. C1, C2, C3, C4 are variants of C. D1 is a binary resolvent of C1 and C2, D2 isa binary resolvent of C3 and C4 (the underlined literals are the literals resolved upon).D01 is a factor of D1, using the substitution fx5=x1; x6=x2g. D02 is a factor of D2, usingfx11=x12; x13=x9g. Finally, D is a binary resolvent of D01 and D02.C1 C2 C3 C4@@@@R ����	D1 @@@@R ����	D2?factor ?factorD01 D02@@@@R ����	DFigure 3: The derivation of D from C by unconstrained resolutionC1 = P (x1; x2) _Q(x2; x3) _ :Q(x3; x4) _ :P (x4; x1)C2 = P (x5; x6) _Q(x6; x7) _ :Q(x7; x8) _ :P (x8; x5)C3 = P (x9; x10) _Q(x10; x11) _ :Q(x11; x12) _ :P (x12; x9)C4 = P (x13; x14) _Q(x14; x15) _ :Q(x15; x16) _ :P (x16; x13)D1 = P (x1; x2) _ :Q(x3; x4) _ :P (x4; x1) _ P (x5; x6) _Q(x6; x2)_:P (x3; x5)D2 = P (x9; x10) _ :Q(x11; x12) _ :P (x12; x9) _ P (x13; x14)_Q(x14; x10) _ :P (x11; x13)D01 = P (x1; x2) _ :Q(x3; x4) _ :P (x4; x1) _Q(x2; x2) _ :P (x3; x1)D02 = P (x9; x10) _ :Q(x12; x12) _ :P (x12; x9) _ P (x9; x14) _Q(x14; x10)D = :Q(x3; x4) _ :P (x4; x1) _Q(x2; x2) _ :P (x3; x1) _ P (x2; x10)_:Q(x1; x1) _ P (x2; x14) _Q(x14; x10)



So D can be derived from C using unconstrained resolution. However, neither D nor aclause which subsumes D can be derived from C using only input resolution. We provethis in Proposition 1 (see the Introduction of this paper for the de�nition of Ln(�) andL�(�)). This shows that the subsumption theorem does not hold for input resolution,not even if � contains only one clause.Lemma 5 Let C be as de�ned above. Then for each n � 1: if E 2 Ln(fCg), then Econtains an instance of P (x1; x2)_:P (x4; x1) or an instance of Q(x2; x3)_:Q(x3; x4).Proof By induction on n:1. L1(fCg) = fCg, so the lemma is obvious for n = 1.2. Suppose the lemma holds for n � m. Let E 2 Lm+1(fCg). Note that the onlyfactor of C is C itself. Therefore E is a binary resolvent of C and a factor ofa clause in Lm(fCg). Let � be the mgu used in obtaining this binary resolvent.If P (x1; x2) or :P (x4; x1) is the literal resolved upon in C, then E must contain(Q(x2; x3)_:Q(x3; x4))�. Otherwise Q(x2; x3) or :Q(x3; x4) is the literal resolvedupon in C, so then E contains (P (x1; x2) _ :P (x4; x1))�. 2Proposition 1 Let C and D be as de�ned above. Then L�(fCg) does not contain aclause which subsumes D.Proof Suppose E 2 L�(fCg). From Lemma 5 and the de�nition of L�(fCg), we knowthat E contains an instance of P (x1; x2) _ :P (x4; x1) or an instance of Q(x2; x3) _:Q(x3; x4). It is easy to see that neither P (x1; x2)_:P (x4; x1) norQ(x2; x3)_:Q(x3; x4)subsumes D. Then E does not subsume D. 25 ConclusionIn this paper, we discussed the importance of the subsumption theorem in ILP. Noreally rigorous proof based on the elementary de�nitions of resolution of this theoremfor unconstrained resolution was until now available, and applications of the theorem inthe literature often use the incorrect version S0. A proof of the subsumption theorem forunconstrained resolution was given by us. The refutation-completeness of unconstrainedresolution is then an easy corollary of this theorem. Finally, we showed that S0 is noteven true when the set of premisses consists of only one clause. This means that resultsbased on S0 or its special case, among which are results on nth powers and nth roots,need to be reconsidered.6 Future workIn this section, we will brie
y describe some other results of our research concerningthe subsumption theorem. These will be published elsewhere (see [16, 17]).Firstly, we have been able to prove the subsumption theorem for unconstrainedresolution starting from the refutation-completeness [17]. This proof seems to share thesame general idea with the proof of the subsumption theorem given in [1], so our proofcan be seen as an improved version of their proof. Since, conversely, the refutation-completeness is also an immediate consequence of the subsumption theorem (as shown
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