
Tidying up the Mess around theSubsumption Theoremin Inductive Logic ProgrammingShan-Hwei Nienhuys-Cheng Ronald de Wolfcheng@cs.few.eur.nl bidewolf@cs.few.eur.nlDepartment of Computer Science, H4-19Erasmus University of RotterdamP.O. Box 1738, 3000 DR Rotterdam, the NetherlandsAbstractThe subsumption theorem is an important theorem concerning resolution. Es-sentially, it says that if a set of clauses � logically implies a clause C, theneither C is a tautology, or a clause D which subsumes C can be derived from �with resolution. It was originally proved in 1967 by Lee in [Lee67]. In InductiveLogic Programming, interest in this theorem is increasing since its rediscoveryby Bain and Muggleton [BM92]. It provides a quite natural \bridge" betweensubsumption and logical implication. Unfortunately, a correct formulation andproof of the subsumption theorem are not available. It is not clear which formsof resolution are allowed. In fact, at least one of the current forms of thistheorem is false. This causes a lot of confusion.In this paper we give a careful proof of the subsumption theorem for un-constrained resolution, and show that the well-known refutation-completenessof resolution is just a special case of this theorem. We also show that the sub-sumption theorem does not hold when only input resolution is used, not evenin case � contains only one clause. Since [Mug92, I-A93] assume the contrary,some results (for instance results on nth roots and nth powers) in these articlesshould perhaps be reconsidered.1 IntroductionInductive Logic Programming (ILP) investigates methods to learn theories from ex-amples, within the framework of �rst-order logic. In ILP, the proof-method that ismost often used is resolution. A very important theorem concerning resolution is theSubsumption Theorem, which essentially states the following. Let � be a set of clausesand C a clause. If � j= C, then C is a tautology or there exists a clause D whichsubsumes C and which can be derived from � by resolution.This theorem was �rst stated and proved by Lee in 1967 in his PhD-thesis [Lee67].



However, we have not been able to �nd a copy of his thesis.1 So it is unclear whatprecisely Lee stated, and how he proved his result. Surprisingly, nowhere in thestandard literature concerning resolution (not even in Lee's own book [CL73]) thetheorem is mentioned.One thing is clear, though: the subsumption theorem states that logical implica-tion between clauses can be divided in two separate steps|a derivation by resolution,and then a subsumption. The theorem provides a natural \bridge" between logi-cal implication and subsumption. Subsumption is very popular in generalizations inILP, since it is decidable and machine-implementable. However, subsumption is not\enough": if D subsumes C then D j= C, but not always the other way around. So itis desirable to make the step from subsumption to implication, and the subsumptiontheorem provides an excellent tool for those who want to make this step. It is usedin [BM92, I-A93, LN94b, Mug92, NLT93], for instance.The subsumption theorem is more natural than the better-known refutation-com-pleteness of resolution, which states that an unsatis�able set of clauses has a refutation(a derivation by resolution of the empty clause 2). For example, if one wants to prove� j= C using the refutation-completeness, one must �rst normalize the set �[f:Cg toa set of clauses. Usually �[f:Cg is not a set of clauses, since negating the (universallyquanti�ed) clause C yields a formula which involves existential quanti�ers. So if wewant to prove � j= C by refuting � [ f:Cg, we must �rst apply Skolemization toC. Deriving from � a clause D which subsumes C, is a much more \direct" way ofproving � j= C.Hence we|and perhaps many others|feel that the subsumption theorem deservesat least as much attention as the refutation-completeness. We can in fact prove thatthe latter is a direct consequence of the former, as given in Section 3. It is surprisingthat the subsumption theorem was so little known. Only after Bain and Muggletonrediscovered the theorem in [BM92], people have started paying attention to it.A reproof of the subsumption theorem is given in the appendix of [BM92]. Unfor-tunately this reproof is not fully correct. For example, it does not take factors intoaccount, whereas factors are necessary for completeness. Without factors one cannotderive the empty clause 2 from the unsatis�able set f(P (x)_P (y)); (:P (u)_:P (v))g(see [GN87]). In fact, our counterexample in Section 4 also depends on factors. Fur-thermore, it is not always clear how the concepts that are used in the proof arede�ned, and how the skolemization works. Their proof is based on transforming arefutation-tree into a derivation-tree, but this transformation is not clearly de�nedand thus insu�cient to prove that the transformation can always be performed.Even though the proof in [BM92] is not quite correct, it is often quoted|sometimeseven incorrectly. The two main formulations we have found are the following:S Let T be a set of clauses and C a clause which is not a tautology. De�neR0(T ) = Tand Rn(T ) = Rn�1(T ) [ fC : C is a resolvent of C1; C2 2 Rn�1(T )g. Alsode�ne R�(T ) = R0(T ) [R1(T ) [ : : :. Then the subsumption theorem is statedas follows (we assume the authors of [BM92] used ``' for what we mean by `j=',i.e. logical implication):T ` C i� there exists a clause D 2 R�(T ) such that D subsumes C.1One of the authors of this article actually sent a letter to dr. Lee, asking for details about thetheorem and his proof. However, we have not received a reply.



S0 Let T be a set of clauses and C a clause which is not a tautology. De�ne L1(T ) = Tand Ln(T ) = fC : C is a resolvent of C1 2 Ln�1(T ) and C2 2 Tg. Also de�neL�(T ) = L1(T )[L2(T )[: : :. Then the subsumption theorem is stated as follows:T j= C i� there exists a clause D 2 L�(T ) such that D subsumes C.S is given in [BM92], S0 is given in [Mug92]. In [Mug92], Muggleton does not proveS0, but refers instead to [BM92]. In other articles such as [I-A93, LN94b, NLT93],the theorem is also given in the form of S0. These articles do not give a proof of S0,but refer instead to [BM92] or [Mug92]. That is, they refer to a proof of S assumingthat this is also a proof of S0. But clearly that is not the case, because S0 demandsthat at least one of the parent clauses of a clause in L�(T ) is a member of T , so S0 isstronger than S. In fact, whereas S is true, S0 is actually false! An easy propositionalcounterexample is given on p. 99 of [GN87]. Another counterexample is the deductionfrom the set � that we use to illustrate our de�nitions in Section 2: no clause in L�(�)subsumes R(a) _ S(a).The confusion about S0 is perhaps a consequence of the subtle distinction betweenlinear resolution and input resolution. S0 employs a form of input resolution, which isa special case of linear resolution. Linear resolution is complete, but input resolutionis not complete. See [CL73] or [GN87].However, the articles we mentioned do not use S0 itself. [LN94b, NLT93] arerestricted to Horn clauses. It can be shown that for Horn clauses there is no problem.Due to a lack of space we will not prove that here, but in another article. And ifwe examine [Mug92, I-A93] carefully, then we see that the results of these articlesonly depend on a special case of S0, namely the case where T consists of a singleclause. Muggleton and others have used the de�nition of Ln(C) to de�ne nth powersand nth roots. Unfortunately, S0 does not even hold in this special case. We give acounterexample in Section 4. This means that the results of [Mug92, I-A93] whichare consequences of this special case of S0 need to be reconsidered.The confusion around the subsumption theorem made us investigate this theoremourselves, which led to the discovery of the mixture of true and false results that wementioned above. The main results that we have found are the following:a. The subsumption theorem for unconstrained resolution.b. The refutation-completeness of unconstrained resolution.c. S0 is false, even when T (the set of premisses) contains only one clause.In Section 2, we prove a. Our proof does not presuppose the refutation-completeness,contrary to the inadequate proof in [BM92]. b is well-known, but it is not well-knownthat b is a direct consequence of a, as we will show in Section 3. Finally, in Section 4we present our counterexample to the special case of S0.2 The subsumption theoremIn this section, we give a proof of the subsumption theorem. Before starting withour proof, we will �rst briey de�ne the main concepts we use. We treat a clauseas a disjunction of literals, and not as a set of literals. Hence we consider P (a) andP (a) _ P (a) as di�erent clauses. For convenience we use C � D to denote that theset of literals in C is a subset of the set of literals in D.



De�nition 1 Let C1 and C2 be clauses. If C1 and C2 have no variables in common,then they are said to be standardized apart.Let C1 = L1_ : : :_Li _ : : :_Lm and C2 = M1 _ : : :_Mj _ : : :_Mn be two clauseswhich are standardized apart (1 � i � m and 1 � j � n). If the substitution � is amost general uni�er (mgu) of the set fLi;:Mjg, then the clause(L1 _ : : : _ Li�1 _ Li+1 _ : : : _ Lm _M1 _ : : : _Mj�1 _Mj+1 _ : : : _Mn)�is called a binary resolvent of C1 and C2. The literals Li and Mj are said to be theliterals resolved upon. 3De�nition 2 Let C be a clause, L1; : : : ; Ln (n � 1) uni�able literals from C, and �an mgu of fL1; : : : ; Lng. Then the clause obtained by deleting L2�; : : : ; Ln� from C�is called a factor of C.A resolvent C of clauses C1 and C2 is a binary resolvent of a factor of C1 and afactor of C2. C1 and C2 are called the parent clauses of C. 3Note that any non-empty clause C is a factor of itself, using the empty substitution" as an mgu of a single literal in C.De�nition 3 Let � be a set of clauses and C a clause. A derivation of C from �is a �nite sequence of clauses R1; : : : ; Rk = C, such that each Ri is either in �, or aresolvent of variants of two clauses in fR1; : : : ; Ri�1g. If such a derivation exists, wewrite � `r C. A derivation of the empty clause 2 from � is called a refutation of �.3De�nition 4 Let C and D be clauses. We say D subsumes (or �-subsumes) C ifthere exists a substitution � such that D� � C.Let � be a set of clauses and C a clause. We say there exists a deduction of Cfrom �, written as � `d C, if C is a tautology, or if there exists a clause D such that� `r D and D subsumes C. 3To illustrate these de�nitions, we will give an example of a deduction of the clauseC = R(a) _ S(a) from the set � = f(P (x) _Q(x) _R(x)); (:P (x) _Q(a)); (:P (x) _:Q(x)); (P (x)_:Q(x))g. Figure 1 shows a derivation of the clause D = R(a)_R(a)from �. Note that we use the factor Q(a) _ R(a) of the parent clause C6 = Q(x) _R(x) _ Q(a) in the last step of the derivation, and also the factor P (y) _ R(y) ofC5 = P (y) _ P (y) _ R(y) in the step leading to C7. Since D subsumes C, we have� `d C.It is not very di�cult to see the equivalence between our de�nition of a deriva-tion, and the de�nition of Rn(T ) we gave in Section 1. For instance, in �gure 1,C1; C2; C3; C4; C 01 are variants of clauses in R0(�) (C1 and C 01 are variants of the sameclause). C5; C6 are in R1(�), C7 is in R2(�), and D is in R3(�).The subsumption theorem states that if � j= C, then � `d C. We prove this in anumber of successive steps in the following subsections. First we prove the theorem incase both � and C are ground, then we prove it in case � consists of arbitrary clausesbut C is ground, and �nally we prove the theorem when neither � nor C need to beground.



C1 = P (x) _Q(x) _R(x) C2 = :P (y) _Q(a)@@@@R ����	C6 = Q(x) _ R(x) _Q(a)
C4 = P (x) _ :Q(x) C01 = P (y) _Q(y) _ R(y)C3 = :P (x) _ :Q(x) @@@@R ����	C5 = P (y) _ P (y) _R(y)@@@@R ����	C7 = :Q(y) _ R(y)@@@@R ����	D = R(a) _ R(a)Figure 1: The tree for the derivation of D from �2.1 The subsumption theorem for ground � and CFirst we prove the subsumption theorem for the case when both � and C are restrictedto ground clauses.Theorem 1 Let � be a set of ground clauses, and C be a ground clause. If � j= C,then � `d C.Proof Assume C is not a tautology. Then we need to �nd a clause D such that� `r D and D � C (note that for ground clauses D and C, D subsumes C i�D � C). The proof is by induction on the number of clauses in �.1. Suppose � = fC1g. We will show that C1 � C. Suppose C1 6� C. Then thereexists a literal L such that L 2 C1 but L 62 C. Let I be an interpretationwhich makes L true, and all literals in C false (such an I exists, since C is not atautology). Then I is a model of C1, but not of C. But that contradicts � j= C.So C1 � C, and � `d C.2. Suppose the theorem holds if j�j � m. We will prove that this implies thatthe theorem also holds if j�j = m + 1. Let � = fC1; : : : ; Cm+1g, and �0 =fC1; : : : ; Cmg. If Cm+1 subsumes C or �0 j= C, then the theorem holds. Soassume Cm+1 does not subsume C and �0 6j= C.The idea is to derive, using the induction hypothesis, a number of clauses fromwhich a derivation of a subset of C can be constructed. First note that since� j= C, we have �0 j= C_:Cm+1 (using the Deduction Theorem). Let L1; : : : ; Lkbe all the literals in Cm+1 which are not in C (k � 1 since Cm+1 does not subsumeC). Then we can write Cm+1 = L1 _ : : : _ Lk _ C 0, where C 0 � C. Since Cdoes not contain Li (1 � i � k), the clause C _ :Li is not a tautology. Also,since �0 j= C _ :Cm+1 and Cm+1 is ground, we have that �0 j= C _ :Li, foreach i. Then by the induction hypothesis there exists for each i a ground clauseDi such that �0 `r Di and Di � (C _ :Li).We will use Cm+1 and the derivations from �0 of these Di to construct a deriva-tion of a subset of C from �. :Li 2 Di, otherwise Di � C and �0 j= C. So wecan write each Di as :Li _D0i, and D0i � C. The case where some Di contains:Li more than once can be solved by taking a factor of Di.Now we can construct a derivation of the ground clause de�ned as D = C 0 _D01_ : : :_D0k from �, using Cm+1 and the derivations of D1; : : : ; Dk from �0. See



�gure 2. In this tree, the derivations of D1; : : : ; Dk are indicated by the verticaldots. So we have that � `r D. Since C 0 � C, and D0i � C for each i, we havethat D � C. Hence � `d C.Cm+1 = L1 _ : : : _ Lk _ C0 ...D1 = :L1 _D01@@@@R ����	L2 _ : : : _ Lk _ C0 _D01 ...D2 = :L2 _D02@@@@R ����	L3 _ : : : _ Lk _ C0 _D01 _D02. . .Lk _ C0 _D01 _ : : : _D0k�1 ...Dk = :Lk _D0k@@@@R ����	D = C0 _D01 _ : : : _D0kFigure 2: The tree for the derivation of D from � 22.2 The subsumption theorem when C is groundIn this section, we will prove the subsumption theorem in case C is ground and � isa set of arbitrary clauses. The idea is to \translate" � j= C to �g j= C, where �g is aset of ground instances of clauses of �. Then by Theorem 1, there is a clause D suchthat �g `r D, and D subsumes C. We can \lift" this to a deduction of C from �.Theorem 2 (Herbrand, [CL73]) A set � of clauses is unsatis�able i� there is a�nite unsatis�able set �0 of ground instances of clauses of �.Lemma 1 Let � be a set of clauses, and C be a ground clause. If � j= C, then thereexists a �nite set of clauses �g, where each clause in �g is a ground instance of aclause in �, such that �g j= C.Proof Let C = L1 _ : : : _ Lk (k � 0). If � is unsatis�able then the lemma followsimmediately from Theorem 2, so suppose � is satis�able. Note that since C is ground,:C is equivalent to :L1 ^ : : : ^ :Lk. Then:� j= C i� (by the Deduction Theorem)� [ f:Cg is unsatis�able i�� [ f:L1; : : : ;:Lkg is unsatis�able i� (by Theorem 2)there exists a �nite unsatis�able set �0, consisting of ground instances ofclauses from � [ f:L1; : : : ;:Lkg.Since � is satis�able, the unsatis�able set �0 must contain one or more members of theset f:L1; : : : ;:Lkg, i.e. �0 = �g [ f:Li1 ; : : : ;:Lijg, where �g is a �nite non-emptyset of ground instances of clauses in �. So:



�0 is unsatis�able i��g [ f:Li1 ; : : : ;:Lijg is unsatis�able i��g [ f:(Li1 _ : : : _ Lij )g is unsatis�able i� (by the Deduction Theorem)�g j= (Li1 _ : : : _ Lij ).Since fLi1 ; : : : ; Lijg � C, it follows that �g j= C. 2The next two lemmas show that if a set �0 consists of instances of clauses in �, thena derivation from �0 can be \lifted" to a derivation from �. We omit the proof ofthe �rst lemma, which is fairly straightforward. It is similar to Lemma 5.1 of [CL73],taking into account that we use a slightly di�erent de�nition of a resolvent.Lemma 2 If C 01 and C 02 are instances of C1 and C2, respectively, and if C 0 is aresolvent of C 01 and C 02, then there is a resolvent C of C1 and C2, such that C 0 is aninstance of C.Lemma 3 (Derivation Lifting) Let � be a set of clauses, and �0 be a set of in-stances of clauses in �. Suppose R01; : : : ; R0k is a derivation of the clause R0k from �0.Then there exists a derivation R1; : : : ; Rk of the clause Rk from �, such that R0i is aninstance of Ri, for each i.Proof The proof is a simple induction on k, using the previous lemma. 2Theorem 3 Let � be a set of clauses, and C be a ground clause. If � j= C, then� `d C.Proof Assume C is not a tautology. We want to �nd a clause D such that � `r Dand D subsumes C. From � j= C and Lemma 1, there exists a �nite set �g suchthat each clause in �g is a ground instance of a clause in �, and �g j= C. Then byTheorem 1, there exists a ground clause D0 such that �g `r D0, and D0 � C. LetR01; : : : ; R0k = D0 be a derivation of D0 from �g. It follows from Lemma 3 that we can\lift" this to a derivation R1; : : : ; Rk of Rk from �, where Rk� = D0 for some �. LetD = Rk. Then D� = D0 � C. Hence D subsumes C. 22.3 The subsumption theorem (general case)In this subsection, we will prove the subsumption theorem for arbitrary � and C. Inthe proof, we will use a Skolemizing substitution.De�nition 5 Let � be a set of clauses, and C a clause. Let x1; : : : ; xn be all thevariables appearing in C and a1; : : : ; an be distinct constants not appearing in � orC. Then fx1=a1; : : : ; xn=ang is called a Skolemizing substitution for C w.r.t. �. 3Lemma 4 Let � be a set of clauses, and C and D be clauses. Let � = fx1=a1; : : : ;xn=ang be a Skolemizing substitution for C w.r.t. �. If � `r D and D subsumes C�,then D also subsumes C.



Proof Since none of the constants a1; : : : ; an appears in �, none of these constantsappears inD. Since D subsumes C�, there exists a substitution � such that D� � C�.Let � be the substitution fy1=t1; : : : ; ym=tmg. Let �0 be the substitution obtained from� by replacing each ai by xi in every tj. Note that � = �0�. Since � only replaceseach xi by ai (1 � i � n), it follows that D�0 � C, so D subsumes C. 2Theorem 4 (Subsumption Theorem) Let � be a set of clauses, and C be a clause.If � j= C, then � `d C.Proof Assume C is not a tautology. Let � be a Skolemizing substitution for Cw.r.t. �. Then C� is a ground clause which is not a tautology, and � j= C�. So byTheorem 3, there is a clause D such that � `r D and D subsumes C�. Then byLemma 4, D subsumes C. Hence � `d C. 23 The refutation-completeness of resolutionThe subsumption theorem actually tells us that resolution and subsumption forma complete set of proof-rules for clauses. A form of completeness that is usuallystated in the literature on resolution is the refutation-completeness. This is an easyconsequence of the subsumption theorem (note that the converses of Theorems 4 and 5follow immediately from the soundness of resolution)Theorem 5 (Refutation-completeness of Resolution) Let � be a set of clauses.If � is unsatis�able, then � `r 2.Proof Suppose � is unsatis�able. Then � j= 2. So by Theorem 4, there exists aclause D, such that � `r D and D subsumes the empty clause 2. But 2 is the onlyclause which subsumes 2, so D = 2. 24 The incompleteness of input resolutionIn this section, we show that the subsumption theorem for input resolution (S0) isnot true, not even in the special case where the set of premises T consists of onlyone clause. [Mug92, I-A93] state S0 without proof, and apply this special case of S0.Hence the counterexample we give here is relevant for those articles, and also for otherresults based on S0. In our counterexample we let T = fCg, with C:C = P (x1; x2) _Q(x2; x3) _ :Q(x3; x4) _ :P (x4; x1):Figure 3 shows that clause D (see below) can be derived from C by unconstrainedresolution. This also shows that C j= D. Figure 3 makes use of the clauses listedbelow. C1, C2, C3, C4 are variants of C. D1 is a binary resolvent of C1 and C2, D2 is abinary resolvent of C3 and C4 (the underlined literals are the literals resolved upon).D01 is a factor of D1, using the subtitution fx5=x1; x6=x2g. D02 is a factor of D2, usingfx11=x12; x13=x9g. Finally, D is a binary resolvent of D01 and D02.



C1 C2 C3 C4@@@@R ����	D1 @@@@R ����	D2?factor ?factorD01 D02@@@@R ����	DFigure 3: The derivation of D from C by unconstrained resolutionC1 = P (x1; x2) _Q(x2; x3) _ :Q(x3; x4) _ :P (x4; x1)C2 = P (x5; x6) _Q(x6; x7) _ :Q(x7; x8) _ :P (x8; x5)C3 = P (x9; x10) _Q(x10; x11) _ :Q(x11; x12) _ :P (x12; x9)C4 = P (x13; x14) _Q(x14; x15) _ :Q(x15; x16) _ :P (x16; x13)D1 = P (x1; x2) _ :Q(x3; x4) _ :P (x4; x1) _ P (x5; x6) _Q(x6; x2) _ :P (x3; x5)D2 = P (x9; x10) _ :Q(x11; x12) _ :P (x12; x9) _ P (x13; x14) _Q(x14; x10)_:P (x11; x13)D01 = P (x1; x2) _ :Q(x3; x4) _ :P (x4; x1) _Q(x2; x2) _ :P (x3; x1)D02 = P (x9; x10) _ :Q(x12; x12) _ :P (x12; x9) _ P (x9; x14) _Q(x14; x10)D = :Q(x3; x4) _ :P (x4; x1) _Q(x2; x2) _ :P (x3; x1) _ P (x2; x10)_:Q(x1; x1) _ P (x2; x14) _Q(x14; x10)So D can be derived from C using unconstrained resolution. However, neither D nora clause which subsumes D can be derived from C using only input resolution. Weprove this in Proposition 1 (see the Introduction of this paper for the de�nition ofLn(T ) and L�(T )). This shows that input resolution is not complete, not even if Tcontains only one clause.Lemma 5 Let C be as de�ned above. Then for each n � 1: if E 2 Ln(fCg), then Econtains an instance of P (x1; x2)_:P (x4; x1) or an instance of Q(x2; x3)_:Q(x3; x4).Proof By induction on n:1. L1(fCg) = fCg, so the lemma is obvious for n = 1.2. Suppose the lemma holds for n � m. Let E 2 Lm+1(fCg). Note that theonly factor of C is C itself. Therefore E is a binary resolvent of C and afactor of a clause in Lm(fCg). Let � be the mgu used in obtaining this binaryresolvent. If P (x1; x2) or :P (x4; x1) is the literal resolved upon in C, then Emust contain (Q(x2; x3) _ :Q(x3; x4))�. Otherwise Q(x2; x3) or :Q(x3; x4) isthe literal resolved upon in C, so then E contains (P (x1; x2) _ :P (x4; x1))�. 2Proposition 1 Let C and D be as de�ned above. Then L�(fCg) does not contain aclause which subsumes D.Proof Suppose E 2 L�(fCg). From Lemma 5 and the de�nition of L�(fCg), we knowthat E contains an instance of P (x1; x2) _ :P (x4; x1) or an instance of Q(x2; x3) _:Q(x3; x4). It is easy to see that neither P (x1; x2) _ :P (x4; x1) nor Q(x2; x3) _:Q(x3; x4) subsumes D. Then E does not subsume D. 2



5 ConclusionIn this paper, we discussed the importance of the subsumption theorem in ILP. Noreally rigorous proof of this theorem was until now available, and applications of thetheorem in the literature often use the incorrect version S0. A proof of the subsumptiontheorem was given by us. The refutation-completeness of resolution can then beconsidered as an easy corollary of this theorem. Finally we showed that S0 is not eventrue when the set of premisses consists of only one clause. This means that resultsbased on S0 or its special case, among which are results on nth powers and nth roots,need to be reconsidered.References[BM92] M. Bain, and S. Muggleton. Non-monotonic Learning. In S. Muggleton(ed.), Inductive Logic Programming, pp. 145{153. APIC series 38, Aca-demic Press, 1992.[CL73] C. L. Chang, and R. C. T. Lee. Symbolic Logic and Mechanical TheoremProving. Academic Press, San Diego, 1973.[GN87] M. R. Genesereth, and N. J. Nilsson. Logical Foundations of Arti�cialIntelligence. Morgan Kaufmann, Palo Alto, 1987.[I-A93] P. Idestam-Almquist. Generalization of Clauses, PhD Thesis. StockholmUniversity, 1993.[LN94a] P. van der Laag, and S.-H. Nienhuys-Cheng. Existence and Nonexistence ofComplete Re�nement Operators. In Proc. of the European Conference onMachine Learning (ECML-94), Lecture Notes in Arti�cial Intelligence 784,pp. 307{322. Springer-Verlag, 1994.[LN94b] P. van der Laag, and S.-H. Nienhuys-Cheng. A Note on Ideal Re�nementOperators in Inductive Logic Programming. In S. Wrobel (ed.), Proc. of theFourth Int. Workshop on Inductive Logic Programming (ILP-94), pp. 247{262. Bad Honnef, Germany, 1994.[Lee67] R. C. T. Lee. A Completeness Theorem and a Computer Program for Find-ing Theorems Derivable from Given Axioms, PhD Thesis. University ofCalifornia, Berkeley, 1967.[Mug92] S. Muggleton. Inverting Implication. In S. H. Muggleton, and K. Furukawa(eds.), Proc. of the Second Int. Workshop on Inductive Logic Programming(ILP92). ICOT Technical Memorandum TM-1182, 1992.[NLT93] S.-H. Nienhuys-Cheng, P. van der Laag, and L. van der Torre. ConstructingRe�nement Operators by Deconstructing Logical Implication. In Proc. ofthe Third Congress of the Italian Association for AI (AI*IA93), pp. 178{189. Lecture Notes in Arti�cial Intelligence 728, Springer-Verlag, 1993.


