Tidying up the Mess around the
Subsumption Theorem
in Inductive Logic Programming

Shan-Hwei Nienhuys-Cheng Ronald de Wolf

cheng@cs.few.eur.nl bidewolf@cs.few.eur.nl
Department of Computer Science, H4-19
Erasmus University of Rotterdam
P.O. Box 1738, 3000 DR Rotterdam, the Netherlands

Abstract

The subsumption theorem is an important theorem concerning resolution. Es-
sentially, it says that if a set of clauses ¥ logically implies a clause C, then
either C is a tautology, or a clause D which subsumes C' can be derived from %
with resolution. It was originally proved in 1967 by Lee in [Lee67]. In Inductive
Logic Programming, interest in this theorem is increasing since its rediscovery
by Bain and Muggleton [BM92]. It provides a quite natural “bridge” between
subsumption and logical implication. Unfortunately, a correct formulation and
proof of the subsumption theorem are not available. It is not clear which forms
of resolution are allowed. In fact, at least one of the current forms of this
theorem is false. This causes a lot of confusion.

In this paper we give a careful proof of the subsumption theorem for un-
constrained resolution, and show that the well-known refutation-completeness
of resolution is just a special case of this theorem. We also show that the sub-
sumption theorem does not hold when only input resolution is used, not even
in case ¥ contains only one clause. Since [Mug92, I-A93] assume the contrary,
some results (for instance results on nth roots and nth powers) in these articles
should perhaps be reconsidered.

1 Introduction

Inductive Logic Programming (ILP) investigates methods to learn theories from ex-
amples, within the framework of first-order logic. In ILP, the proof-method that is
most often used is resolution. A very important theorem concerning resolution is the
Subsumption Theorem, which essentially states the following. Let X be a set of clauses
and C a clause. If ¥ = C, then C is a tautology or there exists a clause D which
subsumes C' and which can be derived from ¥ by resolution.

This theorem was first stated and proved by Lee in 1967 in his PhD-thesis [Lee67].

However, we have not been able to find a copy of his thesis.! So it is unclear what
precisely Lee stated, and how he proved his result. Surprisingly, nowhere in the
standard literature concerning resolution (not even in Lee’s own book [CL73]) the
theorem is mentioned.

One thing is clear, though: the subsumption theorem states that logical implica-
tion between clauses can be divided in two separate steps—a derivation by resolution,
and then a subsumption. The theorem provides a natural “bridge” between logi-
cal implication and subsumption. Subsumption is very popular in generalizations in
ILP, since it is decidable and machine-implementable. However, subsumption is not
“enough”: if D subsumes C then D = C, but not always the other way around. So it
is desirable to make the step from subsumption to implication, and the subsumption
theorem provides an excellent tool for those who want to make this step. It is used
in [BM92, I-A93, LN94b, Mug92, NLT93], for instance.

The subsumption theorem is more natural than the better-known refutation-com-
pleteness of resolution, which states that an unsatisfiable set of clauses has a refutation
(a derivation by resolution of the empty clause 0). For example, if one wants to prove
¥ = C using the refutation-completeness, one must first normalize the set YU{-C'} to
a set of clauses. Usually XU{—=C'} is not a set of clauses, since negating the (universally
quantified) clause C yields a formula which involves existential quantifiers. So if we
want to prove ¥ = C by refuting ¥ U {=C'}, we must first apply Skolemization to
C. Deriving from ¥ a clause D which subsumes C, is a much more “direct” way of
proving ¥ = C.

Hence we—and perhaps many others—feel that the subsumption theorem deserves
at least as much attention as the refutation-completeness. We can in fact prove that
the latter is a direct consequence of the former, as given in Section 3. It is surprising
that the subsumption theorem was so little known. Only after Bain and Muggleton
rediscovered the theorem in [BM92], people have started paying attention to it.

A reproof of the subsumption theorem is given in the appendix of [BM92]. Unfor-
tunately this reproof is not fully correct. For example, it does not take factors into
account, whereas factors are necessary for completeness. Without factors one cannot
derive the empty clause O from the unsatisfiable set {(P(x)V P(y)), (=P (u)V—-P(v))}
(see [GN8T]). In fact, our counterexample in Section 4 also depends on factors. Fur-
thermore, it is not always clear how the concepts that are used in the proof are
defined, and how the skolemization works. Their proof is based on transforming a
refutation-tree into a derivation-tree, but this transformation is not clearly defined
and thus insufficient to prove that the transformation can always be performed.

Even though the proof in [BM92] is not quite correct, it is often quoted—sometimes
even incorrectly. The two main formulations we have found are the following:

S Let T be a set of clauses and C' a clause which is not a tautology. Define R(T) =T
and R™(T) = R"(T) U {C : C is a resolvent of C;,Cy € R"(T)}. Also
define R*(T) = R°(T) URYT) U.... Then the subsumption theorem is stated
as follows (we assume the authors of [BM92] used ‘+’ for what we mean by ‘=,
i.e. logical implication):

T + C iff there exists a clause D € R*(T') such that D subsumes C.

'One of the authors of this article actually sent a letter to dr. Lee, asking for details about the
theorem and his proof. However, we have not received a reply.

S’ Let T be a set of clauses and C' a clause which is not a tautology. Define £L'(T) =T
and L"(T) = {C : C is a resolvent of C; € L~ (T) and Cy € T}. Also define
L*(T) = LYT)UL*(T)U.... Then the subsumption theorem is stated as follows:
T |= C iff there exists a clause D € L£*(T') such that D subsumes C'.

S is given in [BM92], S’ is given in [Mug92]. In [Mug92], Muggleton does not prove
S’, but refers instead to [BM92]. In other articles such as [I-A93, LN94b, NLT93],
the theorem is also given in the form of S’. These articles do not give a proof of S’,
but refer instead to [BM92] or [Mug92]. That is, they refer to a proof of S assuming
that this is also a proof of S’. But clearly that is not the case, because S’ demands
that at least one of the parent clauses of a clause in £*(T) is a member of T', so S' is
stronger than S. In fact, whereas S is true, S’ is actually false! An easy propositional
counterexample is given on p. 99 of [GN87]. Another counterexample is the deduction
from the set ¥ that we use to illustrate our definitions in Section 2: no clause in £*(X)
subsumes R(a) V S(a).

The confusion about S’ is perhaps a consequence of the subtle distinction between
linear resolution and input resolution. S’ employs a form of input resolution, which is
a special case of linear resolution. Linear resolution is complete, but input resolution
is not complete. See [CL73] or [GN87].

However, the articles we mentioned do not use S’ itself. [LN94b, NLT93] are
restricted to Horn clauses. It can be shown that for Horn clauses there is no problem.
Due to a lack of space we will not prove that here, but in another article. And if
we examine [Mug92, I-A93] carefully, then we see that the results of these articles
only depend on a special case of S’, namely the case where T consists of a single
clause. Muggleton and others have used the definition of £"(C') to define nth powers
and nth roots. Unfortunately, S’ does not even hold in this special case. We give a
counterexample in Section 4. This means that the results of [Mug92, I-A93] which
are consequences of this special case of S’ need to be reconsidered.

The confusion around the subsumption theorem made us investigate this theorem
ourselves, which led to the discovery of the mixture of true and false results that we
mentioned above. The main results that we have found are the following;:

a. The subsumption theorem for unconstrained resolution.
b. The refutation-completeness of unconstrained resolution.
c. S is false, even when T (the set of premisses) contains only one clause.

In Section 2, we prove a. Our proof does not presuppose the refutation-completeness,
contrary to the inadequate proof in [BM92]. b is well-known, but it is not well-known
that b is a direct consequence of a, as we will show in Section 3. Finally, in Section 4
we present our counterexample to the special case of S’.

2 The subsumption theorem

In this section, we give a proof of the subsumption theorem. Before starting with
our proof, we will first briefly define the main concepts we use. We treat a clause
as a disjunction of literals, and not as a set of literals. Hence we consider P(a) and
P(a) V P(a) as different clauses. For convenience we use C' C D to denote that the
set of literals in C' is a subset of the set of literals in D.

Definition 1 Let C; and C5 be clauses. If C and C5 have no variables in common,
then they are said to be standardized apart.

Let Cy = LiV...VL;V...VLyand Cy = M V...VM;V...VM, be two clauses
which are standardized apart (1 < i < m and 1 < j < n). If the substitution 6 is a
most general unifier (mgu) of the set {L;, ~M;}, then the clause

(LyV...VLiyVLigyyV...VLy, VMV ...VM;_yVMV...VM,)0

is called a binary resolvent of Cy and Cy. The literals L, and M; are said to be the
literals resolved upon. &

Definition 2 Let C be a clause, Ly,..., L, (n > 1) unifiable literals from C, and 6
an mgu of {Ly,...,L,}. Then the clause obtained by deleting Lsf, ..., L,0 from C6
is called a factor of C.

A resolvent C' of clauses C; and (5 is a binary resolvent of a factor of C'; and a
factor of Cy. C and C5 are called the parent clauses of C. O

Note that any non-empty clause C' is a factor of itself, using the empty substitution
¢ as an mgu of a single literal in C'.

Definition 3 Let ¥ be a set of clauses and C' a clause. A derivation of C' from X
is a finite sequence of clauses Ry,..., R, = C, such that each R; is either in ¥, or a
resolvent of variants of two clauses in {Ry,..., R; 1}. If such a derivation exists, we
write ¥ F, C. A derivation of the empty clause O from X is called a refutation of X.
O

Definition 4 Let C and D be clauses. We say D subsumes (or 6-subsumes) C' if
there exists a substitution # such that D8 C C.

Let ¥ be a set of clauses and C' a clause. We say there exists a deduction of C
from ¥, written as ¥ F, C, if C' is a tautology, or if there exists a clause D such that

¥+, D and D subsumes C. <&

To illustrate these definitions, we will give an example of a deduction of the clause
C = R(a) V S(a) from the set ¥ = {(P(z) VQ(z) V R(z)), (=P(z) V Q(a)), (-P(z) V
=Q(x)), (P(x)V-Q(x))}. Figure 1 shows a derivation of the clause D = R(a) V R(a)
from 3. Note that we use the factor Q(a) V R(a) of the parent clause Cs = Q(z) V
R(z) V Q(a) in the last step of the derivation, and also the factor P(y) V R(y) of
Cs = P(y) V P(y) V R(y) in the step leading to C7. Since D subsumes C, we have
Yy C.

It is not very difficult to see the equivalence between our definition of a deriva-
tion, and the definition of R"(T) we gave in Section 1. For instance, in figure 1,
C1, Cy, C3, Cy, C} are variants of clauses in R%(X) (C} and C} are variants of the same
clause). Cs, Cg are in RY(X), C7 is in R*(X), and D is in R*(X).

The subsumption theorem states that if X = C, then ¥ F; C. We prove this in a
number of successive steps in the following subsections. First we prove the theorem in
case both ¥ and C are ground, then we prove it in case > consists of arbitrary clauses
but C' is ground, and finally we prove the theorem when neither 3 nor C' need to be
ground.

Ci=P(x)v-Q(z) C]=Py)VQy)VR(y)

N/

Ci=P(@)VQ(@)V R(x) C2=-Ply)VQa) C3=-Plx)Vv-Q(z) Cs=P(y)VP(y)VR({y)

NN

Ce = Q(z) V R(z) v Q(a) Cr=-Q(y) V R(y)

NS

D = R(a) V R(a)

Figure 1: The tree for the derivation of D from X

2.1 The subsumption theorem for ground ¥ and C

First we prove the subsumption theorem for the case when both ¥ and C' are restricted
to ground clauses.

Theorem 1 Let 3 be a set of ground clauses, and C be a ground clause. If ¥ = C,
then ¥ 4 C.

Proof Assume C is not a tautology. Then we need to find a clause D such that
Y F, D and D C C (note that for ground clauses D and C, D subsumes C' iff
D C C). The proof is by induction on the number of clauses in X.

1. Suppose X = {Cy}. We will show that C; C C. Suppose C; Z C. Then there
exists a literal L such that L € C; but L ¢ C. Let I be an interpretation
which makes L true, and all literals in C false (such an [exists, since C'is not a
tautology). Then I is a model of Cy, but not of C'. But that contradicts ¥ = C.
SoCy CC,and ¥, C.

2. Suppose the theorem holds if |X| < m. We will prove that this implies that
the theorem also holds if || = m + 1. Let ¥ = {C},...,Cpy1}, and ¥’ =
{C1,...,Cp}. If Cpyyq subsumes C or ¥’ = C, then the theorem holds. So
assume Cl,,; does not subsume C' and X' j£= C.

The idea is to derive, using the induction hypothesis, a number of clauses from
which a derivation of a subset of C' can be constructed. First note that since
Y = C, we have ¥ = CV—C)p, 41 (using the Deduction Theorem). Let Ly, ..., L
be all the literals in C, 1 which are not in C' (k > 1 since Cy, ;1 does not subsume
(). Then we can write Cpyy = L1 V...V Ly V C', where C" C C. Since C
does not contain L; (1 < i < k), the clause C' VvV =L; is not a tautology. Also,
since ¥’ | C'V =C,,11 and Cp,4q is ground, we have that ¥/ = C VvV =L;, for
each 7. Then by the induction hypothesis there exists for each 7 a ground clause
D; such that X'+, D; and D; C (C'V —L;).

We will use C,,,; and the derivations from ¥’ of these D; to construct a deriva-
tion of a subset of C from ¥. =L; € D;, otherwise D; C C' and ¥’ = C. So we
can write each D; as =L; V D}, and D) C C. The case where some D; contains
—=L; more than once can be solved by taking a factor of D;.

Now we can construct a derivation of the ground clause defined as D = C' V
Div...v D, from ¥, using C,,; and the derivations of Dy, ..., Dy from ¥'. See

figure 2. In this tree, the derivations of Dy, ..., Dy are indicated by the vertical
dots. So we have that ¥+, D. Since C' C C, and D} C C for each i, we have
that D C C. Hence ¥ +, C.

Cm+1:L1V...\/Lk\/C’ D1=—|L1\/D’1

N

Lg\/...\/Lk\/C"\/D’1 D2:_|L2\/D,2

N/

LyVv...vL,VvC'VvD|VD)

LyvC'VD{V...VD;_, Dy=-L, VD)

N

D=C'VDV...vD

Figure 2: The tree for the derivation of D from X

2.2 The subsumption theorem when C is ground

In this section, we will prove the subsumption theorem in case C' is ground and ¥ is
a set of arbitrary clauses. The idea is to “translate” ¥ = C to ¥, = C, where ¥, is a
set of ground instances of clauses of ¥. Then by Theorem 1, there is a clause D such
that X, -, D, and D subsumes C. We can “lift” this to a deduction of C' from ¥.

Theorem 2 (Herbrand, [CL73]) A set ¥ of clauses is unsatisfiable iff there is a
finite unsatisfiable set X' of ground instances of clauses of X.

Lemma 1 Let ¥ be a set of clauses, and C be a ground clause. If ¥ = C, then there
exists a finite set of clauses X, where each clause in X, is a ground instance of a
clause in X, such that £, = C.

Proof Let C =L V...V Ly (k> 0). If ¥ is unsatisfiable then the lemma follows
immediately from Theorem 2, so suppose ¥ is satisfiable. Note that since C'is ground,
=(C'is equivalent to =Ly A ... A =Lg. Then:

Y = C iff (by the Deduction Theorem)

Y U {=C} is unsatisfiable iff

Y U{=Ly,...,— Ly} is unsatisfiable iff (by Theorem 2)

there exists a finite unsatisfiable set ¥’, consisting of ground instances of
clauses from ¥ U {=Ly, ..., 2L}

Since ¥ is satisfiable, the unsatisfiable set ¥’ must contain one or more members of the
set {=Li,..., 2Ly}, ie. X' =X U{=Ly,..., 7Ly}, where ¥, is a finite non-empty
set of ground instances of clauses in . So:

¥’ is unsatisfiable iff

Yy U{-Li,...,~L;} is unsatisfiable iff

Yo U{=(Ly V...V L)} is unsatisfiable iff (by the Deduction Theorem)
¥y (Liy V...V Ly).

Since {Lj,, ..., L;;} C C, it follows that ¥, = C. O

The next two lemmas show that if a set ¥’ consists of instances of clauses in X, then
a derivation from X' can be “lifted” to a derivation from ¥X. We omit the proof of
the first lemma, which is fairly straightforward. It is similar to Lemma 5.1 of [CL73],
taking into account that we use a slightly different definition of a resolvent.

Lemma 2 If C| and C} are instances of Cy and Cy, respectively, and if C' is a
resolvent of C| and C%, then there is a resolvent C' of Cy and Cy, such that C' is an
instance of C'.

Lemma 3 (Derivation Lifting) Let ¥ be a set of clauses, and X' be a set of in-
stances of clauses in 3. Suppose R\, ..., R} is a derivation of the clause R} from Y.
Then there exists a derivation Ry, ..., Ry of the clause Ry, from X, such that R} is an
instance of R;, for each i.

Proof The proof is a simple induction on k, using the previous lemma. O

Theorem 3 Let ¥ be a set of clauses, and C' be a ground clause. If ¥ | C, then
YhqC.

Proof Assume C is not a tautology. We want to find a clause D such that ¥ F, D
and D subsumes C. From ¥ = C and Lemma 1, there exists a finite set ¥, such
that each clause in ¥, is a ground instance of a clause in ¥, and ¥, = C. Then by
Theorem 1, there exists a ground clause D' such that ¥, -, D', and D' C C. Let

R,..., R, = D' be a derivation of D' from ¥,. It follows from Lemma 3 that we can
“lift” this to a derivation Ry, ..., Ry of Ry from ¥, where Ry0 = D' for some 6. Let
D = Ry,. Then D = D' C C. Hence D subsumes C. O

2.3 The subsumption theorem (general case)

In this subsection, we will prove the subsumption theorem for arbitrary > and C'. In
the proof, we will use a Skolemizing substitution.

Definition 5 Let ¥ be a set of clauses, and C a clause. Let z,...,x, be all the
variables appearing in C' and a4, ..., a, be distinct constants not appearing in ¥ or
C. Then {z1/ay,...,x,/a,} is called a Skolemizing substitution for C w.r.t. ¥. <

Lemma 4 Let ¥ be a set of clauses, and C and D be clauses. Let 0 = {x/ay,...,
xn/an} be a Skolemizing substitution for C w.r.t. . If ¥ . D and D subsumes C0,
then D also subsumes C'.

Proof Since none of the constants a4, ..., a, appears in ¥, none of these constants
appears in D. Since D subsumes C#, there exists a substitution o such that Do C C#.
Let o be the substitution {y; /1, ..., Ym/tm}. Let o’ be the substitution obtained from
o by replacing each a; by z; in every ¢;. Note that 0 = ¢'f. Since 6 only replaces
each z; by a; (1 <i < n), it follows that Do’ C C, so D subsumes C. O

Theorem 4 (Subsumption Theorem) Let ¥ be a set of clauses, and C be a clause.
If S EC, then ¥ 4 C.

Proof Assume C' is not a tautology. Let be a Skolemizing substitution for C'
w.r.t. 3. Then C# is a ground clause which is not a tautology, and ¥ | C6. So by
Theorem 3, there is a clause D such that ¥ -, D and D subsumes C'f. Then by
Lemma 4, D subsumes C. Hence ¥ -, C. O

3 The refutation-completeness of resolution

The subsumption theorem actually tells us that resolution and subsumption form
a complete set of proof-rules for clauses. A form of completeness that is usually
stated in the literature on resolution is the refutation-completeness. This is an easy
consequence of the subsumption theorem (note that the converses of Theorems 4 and 5
follow immediately from the soundness of resolution)

Theorem 5 (Refutation-completeness of Resolution) Let X be a set of clauses.
If ¥ is unsatisfiable, then ¥, O.

Proof Suppose X is unsatisfiable. Then ¥ = O. So by Theorem 4, there exists a
clause D, such that ¥ =, D and D subsumes the empty clause 0. But O is the only
clause which subsumes 0O, so D = 0. O

4 The incompleteness of input resolution

In this section, we show that the subsumption theorem for input resolution (S') is
not true, not even in the special case where the set of premises T consists of only
one clause. [Mug92, [-A93] state S’ without proof, and apply this special case of S'.
Hence the counterexample we give here is relevant for those articles, and also for other
results based on S’. In our counterexample we let 7' = {C'}, with C:

C = P(.’El,l‘g) V Q(I‘Q,.’Eg) V _|Q(IE3,.’E4) V _|P(.’E4,IE1).

Figure 3 shows that clause D (see below) can be derived from C' by unconstrained
resolution. This also shows that C = D. Figure 3 makes use of the clauses listed
below. C4, Cy, C5, Cy are variants of C'. Dy is a binary resolvent of C; and Cy, D, is a
binary resolvent of C3 and Cy (the underlined literals are the literals resolved upon).
D} is a factor of Dy, using the subtitution {z5/x,z¢/22}. D) is a factor of Dy, using
{x11/712, x13/29}. Finally, D is a binary resolvent of D} and D).

Cy Cy C3 Cy

NN

D Ds
factor |/ actor
D} Dy
D

Figure 3: The derivation of D from C by unconstrained resolution

C1 = P(z1,22) VQ(22,73) V —Q(x3,24) V =P (24, 21)

Cy = Plxs,26) V Q(x6,77) V ~Q (27, 28) V ~P(78, 75)

Cs = P(xg,210) V Q(z10,211) V ~Q(211, Z12) V 7P (212, 29)

Cy = P(ri3,14) V Q(14,715) V 2Q(215,T16) V = P(T16, T13)

D1 = P(ZEl,ZEQ) V _|Q(SE3,ZE4) V _|P(SE4,1‘1) V P(l‘5,l‘6) V Q(l‘ﬁ,lﬁg) V _|P(SE3,1‘5)
Dy, = P(zg,210) V2Q(211,212) V 7P (212, 29) V P(213, 214) V Q(%14, T10)V

_'P($11,$13)
D} = P(xy,29) V-Q(x3,24) V 2 P(x4,21) V Q(x29,25) V 2P (23, 11)
P(xg,210) V ~Q(212, T12) V 7P (212, 29) V P(29, 214) V Q(Z14, Z10)

D = =Q(x3,24)V-P(xg,21)V Q(x2,22) V2 P(x3,21) V P(x9,210)V
=Q(z1,71) V P(22,214) V Q(214, 210)

So D can be derived from C' using unconstrained resolution. However, neither D nor
a clause which subsumes D can be derived from C' using only input resolution. We
prove this in Proposition 1 (see the Introduction of this paper for the definition of
L™(T) and £*(T)). This shows that input resolution is not complete, not even if T
contains only one clause.

Ae
[

Lemma 5 Let C' be as defined above. Then for eachn > 1: if E € L*"({C}), then E
contains an instance of P(x1,x9) VP (x4, 1) or an instance of Q(xa, x3)V—Q(x3, x4).

Proof By induction on n:

1. LY({C}) = {C}, so the lemma is obvious for n = 1.

2. Suppose the lemma holds for n < m. Let E € L™"({C}). Note that the
only factor of C is C itself. Therefore E is a binary resolvent of C' and a
factor of a clause in L™({C}). Let 6 be the mgu used in obtaining this binary
resolvent. If P(xy,x9) or =P (x4, 1) is the literal resolved upon in C, then E
must contain (Q(za, x3) V ~Q(x3,24))0. Otherwise Q(zq,x3) or ~Q(x3,x4) is
the literal resolved upon in C, so then E contains (P(x1,x2) V =P (x4, 21))0.

Proposition 1 Let C' and D be as defined above. Then L*({C}) does not contain a
clause which subsumes D.

Proof Suppose £ € £*({C}). From Lemma 5 and the definition of L*({C'}), we know
that E contains an instance of P(xy,z3) V =P (x4, 1) or an instance of Q(xq,x3) V
—Q(x3,x4). It is easy to see that neither P(zy,z9) V = P(z4,71) nor Q(zs,x3) V
—(Q(x3,r4) subsumes D. Then E does not subsume D. O

5 Conclusion

In this paper, we discussed the importance of the subsumption theorem in ILP. No
really rigorous proof of this theorem was until now available, and applications of the
theorem in the literature often use the incorrect version S’. A proof of the subsumption
theorem was given by us. The refutation-completeness of resolution can then be
considered as an easy corollary of this theorem. Finally we showed that S’ is not even
true when the set of premisses consists of only one clause. This means that results
based on S’ or its special case, among which are results on nth powers and nth roots,
need to be reconsidered.

References

[BM92] M. Bain, and S. Muggleton. Non-monotonic Learning. In S. Muggleton
(ed.), Inductive Logic Programming, pp. 145-153. APIC series 38, Aca-
demic Press, 1992.

[CL73] C. L. Chang, and R. C. T. Lee. Symbolic Logic and Mechanical Theorem
Proving. Academic Press, San Diego, 1973.

[GN8T7] M. R. Genesereth, and N. J. Nilsson. Logical Foundations of Artificial
Intelligence. Morgan Kaufmann, Palo Alto, 1987.

[I-A93] P. Idestam-Almquist. Generalization of Clauses, PhD Thesis. Stockholm
University, 1993.

[LN94a] P.van der Laag, and S.-H. Nienhuys-Cheng. Existence and Nonexistence of
Complete Refinement Operators. In Proc. of the European Conference on
Machine Learning (ECML-94), Lecture Notes in Artificial Intelligence 784,
pp. 307-322. Springer-Verlag, 1994.

[LN94b] P. van der Laag, and S.-H. Nienhuys-Cheng. A Note on Ideal Refinement
Operators in Inductive Logic Programming. In S. Wrobel (ed.), Proc. of the
Fourth Int. Workshop on Inductive Logic Programming (ILP-94), pp. 247—
262. Bad Honnef, Germany, 1994.

[Lee67] R.C.T.Lee. A Completeness Theorem and a Computer Program for Find-
ing Theorems Derivable from Given Azioms, PhD Thesis. University of
California, Berkeley, 1967.

[Mug92] S. Muggleton. Inverting Implication. In S. H. Muggleton, and K. Furukawa
(eds.), Proc. of the Second Int. Workshop on Inductive Logic Programming
(ILP92). ICOT Technical Memorandum TM-1182, 1992.

[NLT93] S.-H. Nienhuys-Cheng, P. van der Laag, and L. van der Torre. Constructing
Refinement Operators by Deconstructing Logical Implication. In Proc. of
the Third Congress of the Italian Association for AI (AI*IA93), pp. 178~
189. Lecture Notes in Artificial Intelligence 728, Springer-Verlag, 1993.

