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Abstract

We present a method for hierarchical music clustering,
based on compression of strings that represent the music
pieces. The method uses no background knowledge about
music whatsoever: it is completely general and can, with-
out change, be used in different areas like linguistic classi-
fication, literature, and genomics. Indeed, it can be used to
simultaneously cluster objects from completely differentdo-
mains, like with like. It is based on an ideal theory of the in-
formation content in individual objects (Kolmogorov com-
plexity), information distance, and a universal similarity
metric. The approximation to the universal similarity metric
obtained using standard data compressors is called “nor-
malized compression distance (NCD).” Experiments using
our CompLearn software tool show that the method distin-
guishes between various musical genres and can even clus-
ter pieces by composer.

1. Introduction

The amount of digitized music available on the internet
has grown dramatically in recent years, both in the public
domain and on commercial sites. Napster and its clones are
prime examples. Websites offering musical content in some
form or other (MP3, MIDI, . . . ) need a way to organize their
wealth of material; they need to somehow classify their files
according to musical genres and subgenres, putting similar
pieces together. The purpose of such organization is to en-
able users to navigate to pieces of music they already know
and like, but also to give them advice and recommendations
(“If you like this, you might also like. . . ”). Currently, such
organization is mostly done manually by humans, but some
recent research has been looking into the possibilities of au-
tomating music classification.� Supported in part by NWO, the NoE QUIPROCONE +IST–1999–

29064, the ESF QiT Programmme, and the EU Fourth Framework
BRA NeuroCOLT II Working Group EP 27150.

A human expert, comparing different pieces of music
with the aim to cluster likes together, will generally look for
certain specific similarities. Previous attempts to automate
this process do the same. Generally speaking, they take a file
containing a piece of music and extract from it various spe-
cific numerical features, related to pitch, rhythm, harmony
etc. One can extract these using for instance Fourier trans-
forms [26] or wavelet transforms [15]. The feature vectors
corresponding to the various files are then classified or clus-
tered using existing classification software, based on vari-
ous standard statistical pattern recognition classifiers [26],
Bayesian classifiers [12], hidden Markov models [7], en-
sembles of nearest-neighbor classifiers [15] or neural net-
works [12, 24]. For example, one feature would be to look
for rhythm in the sense of beats per minute. One can make
a histogram where each histogram bin corresponds to a par-
ticular tempo in beats-per-minute and the associated peak
shows how frequent and strong that particular periodicity
was over the entire piece. In [26] we see a gradual change
from a few high peaks to many low and spread-out ones
going from hip-hip, rock, jazz, to classical. One can use
this similarity type to try to cluster pieces in these cate-
gories. However, such a method requires specific and de-
tailed knowledge of the problem area, since one needs to
know what features to look for.

Our aim is much more general. We do not look for sim-
ilarity in specific features known to be relevant for classi-
fying music; instead we apply a general mathematical the-
ory of similarity. The aim is to capture, in a single sim-
ilarity metric, every effective metric: effective versions of
Hamming distance, Euclidean distance, edit distances [23],
Lempel-Ziv distance [11], and so on. This metric should be
so general that it works in every domain: music, text, lit-
erature, programs, genomes, executables, natural language
determination, equally and simultaneously. Such a metric
would be able to simultaneously detectall similarities be-
tween pieces that other effective metrics can detect. Rather
surprisingly, such a “universal” metric indeed exists. It was
developed in [17, 18, 19], based on the “information dis-
tance” of [20, 3]. Roughly speaking, two objects are deemed



close if we can significantly “compress” one given the in-
formation in the other, the idea being that if two pieces
are more similar, then we can more succinctly describe
one given the other. The underlying mathematical theory
is provably universal and is based on the ideal notion of
Kolmogorov complexity, which unfortunately is not effec-
tively computable. We replace the ideal but noncomputable
Kolmogorov-based version by standard compression tech-
niques. Theoretical analysis of the application of real-world
compressors is given in [9]. (In contrast, a later and par-
tially independent approach of [1, 2] for building language-
trees—while citing [20, 3]—is byad hocarguments about
empirical Shannon entropy and Kullback-Leibler distance
resulting in non-metric distances.) The resulting distance is
called “normalized compression distance (NCD)”, and re-
sulted in an open source software package [10] freely avail-
able on the web. The NCD metric appears to be truly uni-
versal in practice: it works well on all concrete examples
we tried in very different application fields—the first com-
pletely automatic construction of the phylogeny tree based
on whole mitochondrial genomes, [17, 18, 19], a completely
automatic construction of a language tree for over 50 Euro-
Asian languages [19], detecting plagiarism in student pro-
gramming assignments [25], and phylogeny of chain letters
[4], literature, astronomy, OCR [9].

In this paper we apply this compression-based method
to the hierarchical clustering of pieces of music. We use
hierarchical clustering because visual representation ofthe
natural-data distance matrix using multidimensional scaling
gives higher distortion of the distances involved, and is less
informative, than hierarchical clustering, see [9]. We per-
form various experiments on sets of mostly classical pieces
given as MIDI (Musical Instrument Digital Interface) files.
This contrasts with most earlier research, where the music
was digitized in some wave format or other, and often re-
ceived inmp3 or other compressed format. We compute
the distances between all pairs of pieces, and then build
a tree containing those pieces in a way that is consistent
with those distances. First, as proof of principle, we run the
program on three artificially generated data sets, where we
know what the final answer should be. The program indeed
classifies these perfectly. Secondly, we show that our pro-
gram can distinguish between various musical genres (clas-
sical, jazz, rock) quite well. Thirdly, we experiment with
various sets of classical pieces. The results are good (in the
sense of conforming to our expectations) for small sets of
data, but tend to be worse for large sets. This is an unavoid-
able consequence of the fact that whilen objects with dis-
tances can be faithfully represented inn-dimensional space,
representing the relations in 2-dimensional space (multidi-
mensional clustering), or hierarchical (ternary) tree cluster-
ing, induces unavoidable distortion (like the Mercator pro-
jection of the earth sphere to a two-dimensional map). In-

creasing the number of objects also increases the number
of distance requirements that cannot be satisfied, and hence
the distortion. The method has received considerable me-
dia attention, e.g. [22, 27].

Related work: After a first version of our paper ap-
peared on a preprint server [8], we learned of recent inde-
pendent experiments on MIDI files [21]. Here, the matrix
of distances is computed using the alternative compression-
based approach of [1, 2] and the files are clustered on a Ko-
honen map rather than a tree. Their first experiment takes
17 classical piano pieces as input, and gives a clustering of
comparable quality to ours. Their second experiment is on
a set of 48 short artificial musical pieces (stimuli), and clus-
ters these reasonably well in 8 categories.

Another very interesting line of music research using
compression-based techniques may be found in the sur-
vey [13] and the references therein. Here the aim is not to
cluster similar musical pieces together, but to model themu-
sical styleof a given MIDI file. For instance, given (part of)
a piece by Bach, one would like to predict how the piece
continues, or to algorithmically generate new pieces of mu-
sic in the same style. Techniques based on Lempel-Ziv com-
pression do a surprisingly good job at this.

A third related line of work is the area of “query by
humming”, for which see [14] and many later papers. Here
a user “hums” a tune, and a program is supposed to find
the piece of music (in some database) that is closest to
the hummed tune. Clearly, any such approach will involve
some quantitative measure of similarity. However, we are
not aware of any compression-based similarity measure be-
ing used in this area.

2. Algorithmic Clustering

2.1. Kolmogorov complexity

Each object (in the application of this paper: each piece
of music) is coded as a stringx over a finite alphabet, say
the binary alphabet. The integerK(x) gives the length of
the shortest compressed binary version from whichx can be
fully reproduced, also known as theKolmogorov complex-
ity of x. “Shortest” means the minimum taken over every
possible decompression program, the ones that are currently
known as well as the ones that are possible but currently un-
known. We explicitly write only “decompression” because
we do not even require that there is also a program that com-
presses the original file to this compressed version—if there
is such a program then so much the better.

SoK(x) gives the length of the ultimate compressed ver-
sion, sayx�, of x. This can be considered as the amount of
information, number of bits, contained in the string. Simi-
larly, K(xjy) is the minimal number of bits (which we may



think of as constituting a computer program) required to re-
constructx from y. In a wayK(x) expresses the individual
“entropy” of x—the minimal number of bits to communi-
catex when sender and receiver have no knowledge where
x comes from. For example, to communicate Mozart’s “Za-
uberflöte” from a library of a million items requires at most
20 bits (220 � 1;000;000), but to communicate it from
scratch requires megabits. For more details on this pristine
notion of individual information content we refer to [20].

2.2. Distance-based classification

As mentioned, our approach is based on a new very gen-
eral similarity distance, classifying the objects in clusters
of objects that are close together according to this distance.
In mathematics, lots of different distances arise in all sorts
of contexts, and one usually requires these to be a ‘met-
ric’, since otherwise undesirable effects may occur. A met-
ric is a distance functionD(�; �) that assigns a non-negative
distanceD(a;b) to any two objectsa andb, in such a way
thatD(a;b) = 0 only wherea= b, D(a;b) = D(b;a) (sym-
metry), andD(a;b) � D(a;c) +D(c;b) (triangle inequal-
ity). We are interested in “similarity metrics”. For exam-
ple, if the objects are classical music pieces then the func-
tion D(a;b) = 0 if a andb are by the same composer and
D(a;b) = 1 otherwise, is a similarity metric, albeit a some-
what elusive one. This captures only one, but quite a signif-
icant, similarity aspect between music pieces.

In [19], a new theoretical approach to a wide class of
similarity metrics was proposed: their “normalized infor-
mation distance” is a metric, and is universal in the sense
that this single metric uncovers all similarities simultane-
ously that the metrics in the class uncover separately. This
should be understood in the sense that if two pieces of mu-
sic are similar (that is, close) according to the particularfea-
ture described by a particular metric, then they are also simi-
lar (that is, close) in the sense of the normalized information
distance metric. This justifies calling the latterthesimilar-
ity metric. Oblivious to the problem area concerned, sim-
ply using the distances according to the similarity metric,
our method fully automatically classifies the objects con-
cerned, be they music pieces, text corpora, or genomic data.

More precisely, the approach is as follows. Each pair of
such stringsx andy is assigned a distance

d(x;y) = maxfK(xjy);K(yjx)g
maxfK(x);K(y)g : (1)

There is a natural interpretation tod(x;y): If, say, K(y) �
K(x) then we can rewrite

d(x;y) = K(y)� I(x : y)
K(y) ;

whereI(x : y) is the information iny aboutx satisfying the
symmetry propertyI(x : y) = I(y : x) up to a logarithmic ad-

ditive error [20]. That is, the distanced(x;y) betweenx and
y is the number of bits of information that is not shared be-
tween the two strings per bit of information that could be
maximally shared between the two strings.

It is clear thatd(x;y) is symmetric, and in [19] it is
shown that it is indeed a metric. Moreover, it is universal
in the sense that every metric expressing some similarity
that can be computed from the objects concerned is com-
prised (in the sense of minorized) byd(x;y). It is these dis-
tances that we will use, albeit in the form of a rough ap-
proximation: forK(x) we simply use standard compression
software like ‘gzip’, ‘bzip2’, or ‘PPMZ’. To compute the
conditional version,K(xjy) we use a sophisticated theorem,
known as “symmetry of algorithmic information” in [20].
This says

K(yjx)� K(xy)�K(x); (2)

so to compute the conditional complexityK(xjy) we can
just take the difference of the unconditional complexities
K(xy) andK(y). The theory based on real-world compres-
sors is developed in [9], for a new theoretical class of
compressors called “normal.” For our normal real-world
compressors (like gzip, bzip2, PPMZ) the resulting vari-
ant ofd(x;y) is called thenormalized compression distance
(NCD). It is shown to be a metric, we don’t need (2), and
we have approximate universality. (The Kolmogorov com-
plexity case represents the ultimate normal compressor.)
The NCD can be computed using our freely available Com-
pLearn Toolkit [10].

2.3. Our quartet method

The above approach allows us to compute the distance
between any pair of objects (any two pieces of music). We
now need to cluster the objects, so that objects that are simi-
lar according to our metric are placed close together. Multi-
dimensional non-hierarchical clustering turns out to distort
the clusters and give poor visual information. We chose hi-
erarchical clustering in ternary trees (each internal nodehas
three edges) to represent the hierarchical information in the
distance matrix as well as possible [9]. We need a sensitive
method to extract the information contained in the distance
matrix. For example, our experiments showed that recon-
structing a minimum spanning tree is not sensitive enough
and gives poor results. The “quartet method” in contrast is
quite sensitive. The idea is as follows: we consider every
group of four elements from our set ofn elements (in this
case, musical pieces); there are

�n
4

�
such groups. From each

groupu;v;w;x we construct a tree of arity 3, which implies
that the tree consists of two subtrees of two leaves each. Let
us call such a tree aquartet. There are three possibilities de-
noted (i)uvjwx, (ii) uwjvx, and (iii) uxjvw, where a vertical
bar divides the two pairs of leaf nodes into two disjoint sub-
trees.



For any given treeT and any group of four leaf la-
bels u;v;w;x, we sayT is consistentwith uvjwx if and
only if the path from u to v does not cross the path
from w to x. Note that exactly one of the three possi-
ble quartets for any set of 4 labels must be consistent
for any given tree. We may think of a large tree hav-
ing many smaller quartet trees embedded within its
structure. We formulate a possibly novel, sensitive, cost op-
timization problem: The cost of a quartet is defined as
the sum of the distances between each pair of neigh-
bors; that is,Cuvjwx = d(u;v) + d(w;x). The total costCT

of a treeT with a setN of leaves (external nodes of de-
gree 1) is defined asCT = ∑fu;v;w;xg�NfCuvjwx : T is
consistent withuvjwxg—the sum of the costs of all its con-
sistent quartets. First, we generate a list of all possible
quartets for all four-tuples of labels under considera-
tion. For each group of three possible quartets for a given
set of four labelsu;v;w;x, calculate a best (minimal) cost
m(u;v;w;x) = minfCuvjwx;Cuwjvx;Cuxjvwg, and a worst
(maximal) costM(u;v;w;x) = maxfCuvjwx;Cuwjvx;Cuxjvwg.
Summing all best quartets yields the best (minimal)
cost m = ∑fu;v;w;xg�N m(u;v;w;x). Conversely, sum-
ming all worst quartets yields the worst (maximal) cost
M = ∑fu;v;w;xg�N M(u;v;w;x). For some distance matri-
ces, these minimal and maximal values can not be attained
by actual trees; however, the scoreCT of every treeT will
lie between these two values. In order to be able to com-
pare tree scores in a more uniform way, we now rescale the
score linearly such that the worst score maps to 0, and the
best score maps to 1, and term this thenormalized tree ben-
efit score S(T) = (M �CT)=(M�m). Our goal is to find
a full tree with a maximum value ofS(T), which is to
say, the lowest total cost. This optimization problem re-
duces to problems that are known to be NP-hard [16], which
means that it is infeasible in practice, but we can some-
times solve it and always approximate it. Adapting current
methods in [5] results in far too computationally inten-
sive calculations; they run many months or years on
moderate-sized problems of 30 objects. We have de-
signed a simple heuristic method for our problem based
on randomization and hill-climbing. First, a random tree
with 2n� 2 nodes is created, consisting ofn leaf nodes
(with 1 connecting edge) labeled with the names of musi-
cal pieces, andn� 2 non-leaf orinternal nodes. Each in-
ternal node has exactly three connecting edges. For this
tree T, we calculate the total cost of all consistent quar-
tets, and invert and scale this value to findS(T). Typically,
a random tree will be consistent with around1

3 of all quar-
tets. Now, this tree is denoted the currently best known
tree, and is used as the basis for further searching. We de-
fine a simple mutation on a tree as one of the three possible
transformations:

1. A leaf swap, which consists of randomly choosing two

leaf nodes and swapping them.

2. A subtree swap, which consists of randomly choosing
two internal nodes and swapping the subtrees rooted at
those nodes.

3. A subtree transfer, whereby a randomly chosen sub-
tree (possibly a leaf) is detached and reattached in an-
other place, maintaining arity invariants.

Each of these simple mutations keeps invariant the number
of leaf and internal nodes in the tree; only the structure and
placements change. Define a full mutation as a sequence of
at least one but potentially many simple mutations, picked
according to the following distribution. First we pick the
numberk of simple mutations that we will perform with
probability 2�k. For each such simple mutation, we choose
one of the three types listed above with equal probability.
Finally, for each of these simple mutations, we pick leaves
or internal nodes, as necessary. Notice that trees which are
close to the original tree (in terms of number of simple mu-
tation steps in between) are examined often, while trees that
are far away from the original tree will eventually be ex-
amined, but not very frequently. So in order to search for
a better tree, we simply apply a full mutation onT to ar-
rive at T 0, and then calculateS(T 0). If S(T 0) > S(T), then
keepT 0 as the new best tree. Otherwise, try a new differ-
ent tree and repeat. IfS(T 0) ever reaches 1, then halt, out-
putting the best tree. Otherwise, run until it seems no bet-
ter trees are being found in a reasonable amount of time, in
which case the approximation is complete.

Note that if a tree is ever found such thatS(T) = 1, then
we can stop because we can be certain that this tree is op-
timal, as no tree could have a lower cost. In fact, this per-
fect tree result is achieved in our artificial tree reconstruc-
tion experiment (Section 4.1) reliably in less than ten min-
utes. For real-world data,S(T) reaches a maximum some-
what less than 1, presumably reflecting inconsistency in the
distance matrix data fed as input to the algorithm, or indicat-
ing a search space too large to solve exactly. On many typi-
cal problems of up to 40 objects this tree-search gives a tree
with S(T) � 0:9 within half an hour. Progress occurs typi-
cally in a sigmoidal fashion towards a maximal value� 1.
For large numbers of objects, tree scoring itself can be slow
(as this takes ordern4 computation steps), and the space of
trees is also large, so the algorithm may slow down substan-
tially. For larger experiments, we use a C++/Ruby imple-
mentation with MPI (Message Passing Interface, a common
standard used on massively parallel computers) on a clus-
ter of workstations in parallel to find trees more rapidly.

3. Details of our implementation

The software that we developed for the experiments of
this paper (and for later experiments reported in [9]) is



freely available [10]. We downloaded 118 separate MIDI
files selected from a range of classical composers, as well as
some popular music. We then preprocessed these MIDI files
to make them more uniform. This is done to keep the exper-
iments “honest”: We want to analyze just the musical com-
ponent, not the title indicator in the MIDI file, nor the se-
quencer’s name, or author/composer’s name, nor sequenc-
ing program used, nor any of the many other non-musical
data that can be incorporated in the MIDI file. We strip off
this information from the MIDI file to avoid detecting sim-
ilarity between files for non-musical reasons, for example,
like being prepared by the same source.

The preprocessor extracts just MIDI Note-On and Note-
Off events. These events were then converted to a player-
piano style representation, with time quantized in 0:05 sec-
ond intervals. All instrument indicators, MIDI Control sig-
nals, and tempo variations were ignored. For each track in
the MIDI file, we calculate two quantities: anaverage vol-
umeand amodal note(“modal” is used here in a statistical
sense, not in a musical sense). The average volume is cal-
culated by averaging the volume (MIDI Note velocity) of
all notes in the track. The modal note is defined to be the
note pitch that sounds most often in that track. If this is not
unique, then the lowest such note is chosen. The modal note
is used as a key-invariant reference point from which to rep-
resent all notes. It is denoted by 0, higher notes are denoted
by positive numbers, and lower notes are denoted by neg-
ative numbers. A value of 1 indicates a half-step above the
modal note, and a value of�2 indicates a whole-step be-
low the modal note. The modal note is written as the first
byte of each track. For each track, we iterate through each
0:05-sec time sample in order, outputting a single signed
8-bit value for each currently sounding note (ordered from
lowest to highest). Two special values are reserved to repre-
sent the end of a time step and the end of a track. The tracks
are sorted according to decreasing average volume, and then
output in succession. The preprocessing phase does not sig-
nificantly alter the musical content of the MIDI file: the pre-
processed file sounds almost the same as the original.

These preprocessed MIDI files are then used as input
to the compression stage for distance matrix calculation
and subsequent tree search. We chose to use the compres-
sion program ‘bzip2’ for our experiments. Unlike the well
known dictionary-based Lempel-Zip compressors, bzip2
transforms a file into a data-dependent permutation of itself
by using the Burrows Wheeler Transform [6]. Very briefly:
The BWT operates on the file as well as on all of its rota-
tions; the algorithm sorts this block of rotations and uses a
move-to-front encoding scheme to focus the redundancy in
the file into simple statistical biases that can be used by an
entropy coder in the output stage without context.

The resulting matrix of pairwise distances is then fed into
our tree construction program, described in detail in the pre-

vious section, which lays out the experiment’s MIDI files in
tree format. Everything runs on 1.5GHz pentiums with an
insignificant memory footprint.

4. Results

4.1. Three controlled experiments

With the natural data sets of music pieces that we use,
one may have the preconception (or prejudice) that mu-
sic by Bach should be clustered together, music by Chopin
should be clustered together, and so should music by rock
stars. However, the preprocessed music files of a piece by
Bach and a piece by Chopin, or the Beatles, may resem-
ble one another more than two different pieces by Bach—
by accident or indeed by design and copying. Thus, natu-
ral data sets may have ambiguous, conflicting, or counter-
intuitive outcomes. In other words, the experiments on ac-
tual pieces have the drawback of not having one clear “cor-
rect” answer that can function as a benchmark for assess-
ing our experimental outcomes. Before describing the ex-
periments we did with MIDI files of actual music, we dis-
cuss three experiments that show that our program indeed
does what it is supposed to do—at least in artificial situa-
tions where we know in advance what the correct answer
is. The similarity machine consists of two parts: (i) extract-
ing a distance matrix from the data, and (ii) constructing a
tree from the distance matrix using our novel quartet-based
heuristic.

Testing the quartet-based tree construction:We first
test whether the quartet-based tree construction heuristic is
trustworthy: We generated a random ternary treeT with 18
leaves, and derived a distance metric from it by defining the
distance between two nodes as follows: Given the length
of the path froma to b, in an integer number of edges, as
L(a;b), let

d(a;b) = L(a;b)+1
18

;
except whena= b, in which cased(a;b) = 0. It is easy to
verify that this simple formula always gives a number be-
tween 0 and 1, and is monotonic with path length. Given
only the 18�18 matrix of these normalized distances, our
quartet method exactly reconstructed the original tree with
S(T) = 1.

Testing the similarity machine on artificial data:
Given that the tree reconstruction method is accurate on
clean consistent data, we tried whether the full proce-
dure works in an acceptable manner when we know what
the outcome should be like. For reasons of space we omit
the details and resulting tree, but note that it had cluster-
ing occur exactly as we would expect. TheS(T) score is
0.905.



Testing the similarity machine on natural data: We
test gross classification of files based on markedly different
file types. Here, we chose several files: (i) Four mitochon-
drial gene sequences, from a black bear, polar bear, fox, and
rat; (ii) Four excerpts from the novelThe Zeppelin’s Passen-
gerby E. Phillips Oppenheim; (iii) Four MIDI files without
further processing; two from Jimi Hendrix and two move-
ments from Debussy’s Suite bergamasque; (iv) Two Linux
x86 ELF executables (thecp and rm commands); and (v)
Two compiled Java class files. As expected, the program
correctly classifies each of the different types of files to-
gether with like near like. The result is reported in Figure 1
with S(T) equal to 0.984. This experiment shows the power
and universality of the method: no features of any specific
domain of application is used.
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Figure 1. Classification of different file types

4.2. Music genre classification

The limited available space doesn’t allow many pictures,
so we briefly discuss the results. For the full paper, see [8].
Before testing whether our program can see the distinc-
tions between various classical composers, we first show
that it can distinguish between three broader musical gen-
res: classical music, rock, and jazz. This should be easier
than making distinctions “within” classical music. For the
genre-experiment we used 12 classical pieces from Bach,
Chopin, and Debussy, 12 jazz pieces from Miles Davis,
John Coltrane and the like, and 12 rock pieces from The
Beatles, The Police, etc. The output tree (Figure 2) hasS(T)
score 0.858. All musical pieces used are listed in the tables
in the full paper.

The discrimination between the 3 genres is good but not
perfect. The upper-right branch of the tree contains 10 of
the 12 jazz pieces, but also Chopin’s Prélude no. 15 and a
Bach Prelude. The two other jazz pieces, Miles Davis’s “So
what” and John Coltrane’s “Giant steps” are placed else-
where in the tree, perhaps according to some kinship that
now escapes us but can be identified by closer studying of
the objects concerned. Of the rock pieces, 9 are placed close
together in the lower-left branch, while Hendrix’s “Voodoo
chile”, Rush’s “Yyz”, and Dire Straits’ “Money for noth-
ing” are further away. In the case of the Hendrix piece this
may be explained by the fact that it hovers between the
jazz and rock genres. Most of the classical pieces are in the
lower-right and middle part of the tree. Surprisingly, 2 of the
4 Bach pieces are placed elsewhere. It is not clear why this
happens and may be considered an error of our program,
since we perceive the 4 Bach pieces to be very close, both
structurally and melodically. However, Bach’s is a seminal
music and has been copied and cannibalized in all kinds of
recognizable or hidden manners; closer scrutiny could re-
veal likenesses in its present company that are not now ap-
parent to us. In effect our similarity engine aims at the ideal
of a perfect data mining process, discovering unknown fea-
tures in which the data can be similar.

4.3. Classical piano music

We then tested our method on three sets, of increasing
size, of classical piano music. The smallest set encompasses
the 4 movements from Debussy’s Suite bergamasque, 4
movements of book 2 of Bach’s Wohltemperierte Klavier,
and 4 preludes from Chopin’s opus 28. As one can see in
Figure 3, our program does a pretty good job at cluster-
ing these pieces. TheS(T) score is also high: 0.958. The
4 Debussy movements form one cluster, as do the 4 Bach
pieces. The only imperfection in the tree, judged by what
one would intuitively expect, is that Chopin’s Prélude no.15
lies a bit closer to Bach than to the other 3 Chopin pieces.
This Prélude no 15, in fact, consistently forms an odd-one-
out in our other experiments as well. There is some musical
truth to this, as no. 15 may be perceived as the most eccen-
tric among the 24 Préludes of Chopin’s opus 28.

We further tested the method with a medium-sized set
that added 20 pieces to the small set, which gave anS(T)
score slightly lower than in the small set experiment: 0.895;
a large set of 60 pieces where theS(T) score dropped further
from that of the medium-sized set to 0.844; more compli-
cated music, namely 34 symphonic pieces, which resulted
in anS(T) score of 0.860. In all cases theS(T) score is re-
liable with respect to what our intuition tells us. Note that
a lower S(T) score only indicates that the corresponding
matrix of distances is not faithfully represented by the tree.
Whether the distance matrix itself satisfies our preconceived
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Figure 2. Output for the 36 pieces from 3 genres

ideas about musical similarity is a separate issue, which we
do not address here.

5. Summary and conclusion

In this paper we reported on experiments that cluster sets
of MIDI files by means of compression. The intuitive idea
is that two files are closer to the extent that one can be com-
pressed better “given” the other. Thus the notion of com-
pression induces asimilarity metric on strings in general
and MIDI files in particular. Our method derives from the
notion of Kolmogorov complexity, which describes the ul-
timate limits of compression. As a theoretical approach this
is provably universal and optimal. The actual implemen-
tation, however, is by necessity non-optimal because the
uncomputable Kolmogorov complexity has to be replaced
by some practical compressor (we used bzip2 here, though
others give similar results). We described various experi-
ments where we first computed the matrix of pairwise dis-
tances between the various MIDI files involved, and then
used a new heuristic tree construction algorithm to lay out

the pieces in a tree, in accordance with the computed dis-
tances. We want to stress again that our method does not
rely on any music-theoretical knowledge or analysis, but
only on general-purpose compression techniques. The ver-
satility and general-purpose nature of our method is also ex-
emplified by the range of later experiments reported in the
subsequent paper [9].
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