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Abstract Positive semidefinite rank (PSD-rank) is a relatively new complexity measure on matrices, with appli-5

cations to combinatorial optimization and communication complexity. We first study several basic properties of6

PSD-rank, and then develop new techniques for showing lower bounds on the PSD-rank. All of these bounds are7

based on viewing a positive semidefinite factorization of a matrixM as a quantum communication protocol. These8

lower bounds depend on the entries of the matrix and not only on its support (the zero/nonzero pattern), overcom-9

ing a limitation of some previous techniques. We compare these new lower bounds with known bounds, and give10

examples where the new ones are better. As an application we determine the PSD-rank of (approximations of)11

some common matrices.12

Keywords semidefinite programming · extended formulation · PSD-rank · slack matrix13

1 Introduction14

1.1 Background15

We study the properties of positive semidefinite factorizations. Such a factorization (of size r) of a nonnegativem-16

by-n matrix A is given by r-by-r positive semidefinite matrices E1, . . . , Em and F1, . . . , Fn satisfying A(i, j) =17

Tr(EiFj) for all i, j. The positive semidefinite rank (PSD-rank) of A is the smallest r such that A has a positive18

semidefinite factorization of size r. We denote it by rankpsd(A). The notion of PSD-rank has been introduced19

relatively recently because of applications to combinatorial optimization and communication complexity [1,2].20

These applications closely parallel those of the nonnegative rank of A, which is the minimum number r such that21

there exists an m-by-r nonnegative matrix B and an r-by-n nonnegative matrix C satisfying A = BC.22

In the context of combinatorial optimization, a polytope P is associated with a nonnegative matrix known23

as the slack matrix of P . A classic result by Yannakakis shows that the nonnegative rank of the slack matrix of24

P characterizes the size of a natural way of formulating the optimization of a linear function over P as a linear25

program [3]. More precisely, the nonnegative rank of the slack matrix of P equals the linear extended formulation26

size of P , which is the minimum number of facets of a (higher-dimensional) polytope Q that projects to P .27

Analogously, the PSD-rank of the slack matrix of P captures the size of a natural way of optimizing a linear28

function over P as a semidefinite program [1,2]. More precisely, the PSD-rank of the slack matrix of P is equal to29

the positive semidefinite extension size of P , which is the smallest r for which P can be expressed as the projection30

of an affine slice of the cone of r-dimensional positive semidefinite matrices.31
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There have recently been great strides in understanding linear extended formulations, showing that the linear32

extended formulation size for the traveling salesman and matching polytopes is exponentially large in the number33

of vertices of the underlying graph [2,4]. In a more recent breakthrough, it was similarly proved that the traveling34

salesman polytope requires superpolynomial positive semidefinite extension complexity, and showing this required35

showing strong lower bounds on the PSD-rank of the corresponding slack matrix [5] (See also [6] for a simple36

proof for the special case of rank-one positive semidefinite factorizations.)37

In communication complexity, nonnegative and PSD-rank arise in the model of computing a function f :38

{0, 1}m × {0, 1}n → R+ in expectation. In this model, Alice has an input x ∈ {0, 1}m, Bob has an input39

y ∈ {0, 1}n and their goal is to communicate in order for Bob to output a nonnegative random variable whose40

expectation is f(x, y). The associated communication matrix for this problem is a 2m-by-2n matrix whose (x, y)41

entry is f(x, y). The nonnegative rank of the communication matrix of f characterizes the amount of classical42

communication needed to compute f in expectation [7]. Analogously, the PSD-rank of the communication matrix43

of f characterizes the amount of quantum communication needed to compute f in expectation [2]. Alternatively,44

one can consider the problem where Alice and Bob wish to generate a probability distribution P (x, y) using shared45

randomness or shared entanglement, but without communication. The number of bits of shared randomness or46

qubits of shared entanglement are again characterized by the nonnegative rank and PSD-rank, respectively [8,9].47

Accordingly, providing lower and upper bounds on the PSD-rank is interesting in the context of communication48

complexity as well. Among other things, here we will pin down (up to constant factors) the PSD-rank of some49

common matrices studied in communication complexity like the inner product and non-equality matrices [10].50

1.2 Our results51

As PSD-rank is a relatively new quantity, even some basic questions about its behavior remain unanswered. We52

address several properties here. First we show that, unlike the usual rank, PSD-rank is not strictly multiplicative53

under tensor product: we give an example of a matrix P where rankpsd(P ⊗ P ) < rankpsd(P )2. We do this by54

making a connection between PSD-rank and planar geometry to give a simple sufficient condition for when the55

PSD-rank is not full.56

The second question we address is the dependence of PSD-rank on the underlying field. At the Dagstuhl57

Seminar 13082 (February 2013), Dirk Oliver Theis raised the question if the PSD-rank where the factorization58

is by real symmetric PSD-matrices is the same as that by complex Hermitian PSD-matrices. It is easy to see that59

the real PSD-rank can be at most a factor of 2 larger than the complex PSD-rank; we give an infinite family of60

matrices where the real PSD-rank is asymptotically a factor of
√
2 larger than the complex PSD-rank.61

Our main goal in this paper is showing lower bounds on the PSD-rank, a task of great importance to both62

the applications to combinatorial optimization and communication complexity mentioned above. Unfortunately,63

at this point very few techniques exist to lower bound the PSD-rank. For example, though the technique developed64

in [5] is very powerful, it is very complicated and not easy to utilize generally.65

One lower bound direction is to consider only the support of the matrix, that is the pattern of zero/nonzero66

entries. For the nonnegative rank, this method can show good lower bounds—in particular, support-based argu-67

ments sufficed to show exponential lower bounds on the linear extension complexity of the traveling salesman68

polytope [2]. For the PSD-rank, however, support-based arguments cannot show lower bounds larger than the rank69

of the matrix [11]. This means that for cases like the traveling salesman polytope, where the positive semidefinite70

extension complexity is superpolynomial in the rank of the slack matrix, other techniques need to be developed.71

We develop three easy-to-compute lower bounds on PSD-rank. All three depend on the values of the matrix72

and not only on its support structure—in particular, they can show nontrivial lower bounds for matrices with full73

support, i.e., without zero entries. All three are derived from the viewpoint of PSD-rank of a nonnegative matrix as74

a quantum communication protocol. We compare these lower bounds with previous techniques and show examples75

where they are better.76

We also give nearly tight bounds on the PSD-rank of (approximations of) the identity matrix and on the PSD-77

rank of the matrix corresponding to the inner product and nonequality functions.78

It should be noted, however, that our new bounds do not take advantage of structural aspects of matrices like79

their sparsity patterns, and hence will not give tight bounds in many cases. For an example where the technique80

we develop here can be improved using extra structural information of the problem, see [12].81
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2 Preliminaries82

Let [n] = {1, 2, . . . , n}. Let M = [M(i, j)] be an arbitrary m-by-n matrix of rank r with the (i, j)-th entry being83

M(i, j). The conjugate transpose of M is defined as an n-by-m matrix M† with M†(i, j) = M(j, i), where84

M(j, i) is the complex conjugate of M(j, i).85

Let σ1, σ2, . . . , σr be the nonzero singular values of M . The trace norm of M is defined as ‖M‖tr =
∑
i σi,86

and the Frobenius norm ofM is defined as ‖M‖F = (
∑
i σ

2
i )

1/2; this equals (Tr(M†M))1/2 = (
∑
i,jM(i, j)2)1/2.87

Note that ‖M‖F ≤ ‖M‖tr. By the Cauchy-Schwarz inequality we have88

rank(M) ≥
(
‖M‖tr
‖M‖F

)2

(1)

2.1 PSD-rank89

Since it is the central topic of this paper, we repeat the definition of PSD-rank from the introduction:90

Definition 1 Let A be a nonnegative m-by-n matrix. A positive semidefinite factorization of size r of A is given91

by r-by-r positive semidefinite matrices E1, . . . , Em and F1, . . . , Fn satisfying A(i, j) = Tr(EiFj). The positive92

semidefinite rank (PSD-rank, rankpsd(A)) of A is the smallest integer r such that A has a positive semidefinite93

factorization of size r.94

In the definition of PSD-rank, we allow the matrices of the PSD-factorization to be arbitrary Hermitian PSD95

matrices, with complex-valued entries. One can also consider the real PSD-rank, where the matrices of the factor-96

ization are restricted to be real symmetric PSD matrices. For a nonnegative matrix A, we denote its real PSD-rank97

by rankR
psd(A).98

Note that for a nonnegative matrixA, the PSD-rank is unchanged when we remove all-zero rows and columns.99

Also, for nonnegative diagonal matrices D1, D2, the PSD-rank of D1AD2 is at most that of A. Throughout this100

paper we will use these facts to achieve a particular normalization for A. In particular, we will frequently assume101

without loss of generality that each column of A sums to one, i.e., that A is a stochastic matrix.102

The following lemma is very useful for giving upper bounds on the PSD-rank.103

Lemma 1 ([1,8]) If A is a nonnegative matrix, then104

rankpsd(A) ≤ min
M : M◦M=A

rank(M),

where ◦ is the Hadamard product (entry-wise product) and M is the entry-wise complex conjugate of M .105

2.2 Quantum background106

A quantum state ρ is a positive semidefinite matrix with trace Tr(ρ) = 1. If the rank of ρ is 1, it can be written as107

ρ = |ψ〉〈ψ|, where |ψ〉 is a complex column vector, and 〈ψ| is its conjugate transpose. In this case, we call this a108

pure state, and denote it by |ψ〉 directly. In order to express an arbitrary r-dimensional pure state, one can choose109

an orthonormal basis of r unit vectors. A typical choice is the so-called computational basis, {|0〉, |1〉, . . . , |r−1〉},110

where |i〉 is the vector that has only one nonzero entry 1, at position i + 1. If one concatenates two pure states111

|x〉 and |y〉, the state of the joint system is expressed as their tensor product, i.e., |x〉 ⊗ |y〉, which is sometimes112

abbreviated to |x〉|y〉 or |xy〉.113

For an r-dimensional quantum system, one can use unitary operations to change its quantum state. A unitary114

operation can be expressed as an r-by-r matrix U with UU† = I , where I is the identity. As an example, in this115

paper we will use the Hadamard gate for 2-dimensional quantum states, which can be written as 1√
2

[
1 1
1 −1

]
.116

A POVM (“Positive Operator Valued Measure”) E = {Ei} consists of positive semidefinite matrices Ei117

that sum to the identity. When measuring a quantum state ρ with this POVM, the outcome is i with probability118

pi = Tr(ρEi).119

For our purposes, a (one-way) quantum protocol between two players Alice (with input x) and Bob (with120

input y) is the following: Alice sends a quantum state ρx to Bob, who measures it with a POVM Ey = {Ei}.121
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Each outcome i of this POVM is associated with a nonnegative value, which is Bob’s output. We say the protocol122

computes anm-by-nmatrixM in expectation if, for every x ∈ [m] and y ∈ [n], the expected value of Bob’s output123

equals M(x, y). Fiorini et al. [2] showed that the minimal dimension of the states ρx in such a protocol is either124

rankpsd(M) or rankpsd(M)+1, so the minimal number of qubits of communication equals dlog2 rankpsd(M)e125

up to one qubit.126

For two quantum states ρ and σ, we definite the fidelity between them by127

F (ρ, σ) = ‖
√
σ
√
ρ‖tr.

See the excellent book [13, Chapter 9] for additional properties and equivalent formulations of the fidelity. The128

fidelity between two probability distributions p = {pi} and q = {qi} is F (p, q) =
∑
i

√
piqi.129

The following two facts about fidelity will be useful for us.130

Fact 1 If σ, ρ are quantum states, then Tr(σρ) ≤ F (σ, ρ)2.131

Proof We have Tr(σρ) = Tr((
√
σ
√
ρ)(
√
σ
√
ρ)†) = ‖

√
σ
√
ρ‖2F ≤ ‖

√
σ
√
ρ‖2tr = F (σ, ρ)2. 2132

Fact 2 ([13]) If σ, ρ are quantum states, then133

F (σ, ρ) = min
{Ei}

F (p, q),

where the minimum is over all POVMs {Ei}, and p and q are the probability distributions when ρ and σ are134

measured by POVM {Ei} respectively, i.e., pi = Tr(ρEi), and qi = Tr(σEi) for any i.135

The (von Neuman) entropy of a state ρ is defined as H(ρ) = −Tr(ρ log ρ); equivalently, it is the Shannon136

entropy of the probability distribution given by the eigenvalues of ρ. If the joint state of Alice and Bob is ρAB137

(i.e., the state lives on the tensor product of two Hilbert spaces, one for Alice and one for Bob), then we can define138

the local state of Alice by the partial trace1: ρA = TrB(ρAB). Similarly Bob’s local state is ρB = TrA(ρAB),139

which traces out Alice’s part of the state. The mutual information between A and B is defined as H(A : B) =140

H(ρA) +H(ρB)−H(ρAB).141

2.3 Some existing lower bounds142

We now review some existing lower bound for the PSD-rank. Firstly, it is well known that the PSD-rank cannot143

be much smaller than the normal rank rank(A) of A.144

Definition 2 For a nonnegative matrix A, define

B1(A) =
√
rank(A) and B′1(A) =

1

2

(√
1 + 8rank(A)− 1

)
.

Fact 3 ([1]) rankpsd(A) ≥ B1(A) and rankR
psd(A) ≥ B′1(A).145

This bound does not look very powerful since, as stated in the introduction, usually our goal is to show lower146

bounds on the PSD-rank that are superpolynomial in the rank. However, this bound can be nearly tight and we147

give two examples in Section 6 where this is the case.148

Jain et al. [9] proved that the amount of quantum communication needed for two separated players to generate149

a joint probability distribution P is completely characterized by the logarithm of the PSD-rank of P . According to150

Holevo’s bound, if we encode classical information through quantum states and transfer information by sending151

them, then the amount of classical information that the receiver can retrieve, i.e., the mutual information, is upper152

bounded by the total number of qubits communicated. For more details on Holevo’s bound and mutual informa-153

tion, see [13, Chapter 12]. Combining these two results, a trivial lower bound for PSD-rank is given by mutual154

information.155

Definition 3 Let P = [P (i, j)]i,j be a two-dimensional probability distribution between two players A and B.156

Define B2(P ) = 2H(A:B), where H(A : B) is the mutual information between the two players.157

Fact 4 rankpsd(P ) ≥ B2(P ).158

1 TrB(ρ⊗ σ) = Tr(σ)ρ, which is extended linearly to states that are not tensor products.
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As an application of this lower bound, it is easy to see that the PSD-rank of a diagonal nonnegative matrix is159

the same as its normal rank.160

Gouveia et al. [1] introduced a very general result showing that lower bounds on PSD-rank can be asymptoti-161

cally larger than the rank. More precisely, they show the following.162

Fact 5 ([1]) Let P ⊆ Rd be a polytope with f facets and let SP be its associated slack matrix. Let T =163 √
log(f)/d. Then164

rankpsd(SP ) = Ω

(
T√

log(T )

)
In particular, this shows that the slack matrix of a regular n-gon in R2, which has n facets and rank 3, has165

PSD-rank Ω(
√
log n/ log log n). The nonnegative rank of this matrix is known to be Θ(log n) [14].166

3 Some properties of PSD-rank167

The PSD-rank is a relatively new quantity, and even some of its basic properties are still not yet known. In this168

section we give a simple condition for the PSD-rank of a matrix to not be full. We then use this condition to show169

that PSD-rank can be strictly sub-multiplicative under tensor product. Finally, we investigate the power of using170

complex Hermitian over real symmetric matrices in a PSD factorization.171

3.1 A sufficient condition for PSD-rank to be less than maximal172

We first need a definition and a simple lemma. Let v ∈ Rm be a vector. We say that an entry vk is dominant if173

|vk| >
∑
j 6=k |vj |.174

Lemma 2 Suppose that v ∈ Rm is nonnegative and has no dominant entries. Then there exist complex units eiθj175

such that
∑
j vje

iθj = 0.176

Proof Let v ∈ Rm. If m = 1 then v has a dominant entry and there is nothing to prove. If m = 2 and v has no177

dominant entries, then v1 = v2 and the lemma holds as v1 − v2 = 0.178

The first interesting case is m = 3. That v has no dominant entries means there is a triangle with side lengths179

v1, v2, v3, as these satisfy the triangle inequality with respect to all permutations. Letting v1eiθ1 , v2eiθ2 , v3eiθ3 be180

the vectors in the complex plane (oriented head to tail) defining the sides of this triangle gives v1eiθ1 + v2e
iθ2 +181

v3e
iθ3 = 0 as desired.182

We can reduce the case m > 3 to the case m = 3. Without loss of generality, order v such that v1 ≥ v2 ≥183

· · · ≥ vm. Choose the least k such that184

v1 +

k∑
j=2

vj ≥
m∑

j=k+1

vj .

Considering the order of v, and the fact that v has no dominant entries, such a 2 ≤ k < m must exist. The choice185

of k implies that186

v1 +

k−1∑
j=2

vj < vk +

m∑
j=k+1

vj ,

which means that187

2v1 +

k∑
j=2

vj < 2vk + v1 +

m∑
j=k+1

vj .

Combining with the fact that v1 ≥ vk, this gives that188

k∑
j=2

vj < v1 +

m∑
j=k+1

vj .

Then v1,
∑k
j=2 vj ,

∑m
j=k+1 vj mutually satisfy the triangle inequality and we can repeat the construction from189

the case m = 3 with these lengths. 2190
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Using the construction of Lemma 1, we can give a sufficient condition for A not to have full PSD-rank.191

Theorem 6 Let A be an m-by-n nonnegative matrix, and A′ be the entry-wise square root of A (so A′ is nonneg-192

ative as well). If every column of A′ has no dominant entry, then the PSD-rank of A is less than m.193

Proof As each column of A′ has no dominant entry, by Lemma 2 there exist complex units eiθjk such that194 ∑
j A
′(j, k)eiθjk = 0 for every k. Define M(j, k) = A′(j, k)eiθjk . Then M ◦M = A and M has rank < m: as195

each column of M sums to zero, the sum of the m rows is the 0-vector so they are linearly dependent. Lemma 1196

then completes the proof. 2197

3.2 The behavior of PSD-rank under tensoring198

In this subsection, we discuss how PSD-rank behaves under tensoring. Firstly, we have the following trivial obser-199

vation on PSD-rank.200

Lemma 3 If P1 and P2 are two nonnegative matrices, then it holds that201

rankpsd(P1 ⊗ P2) ≤ rankpsd(P1)rankpsd(P2).

Proof Suppose {Ci} and {Dj} form a size-optimal PSD-factorization of P1, and {Ek} and {Fl} form a size-202

optimal PSD-factorization of P2, where the indices are determined by the sizes of P1 and P2. Then it can be seen203

that {Ci ⊗ Ek} and {Dj ⊗ Fl} form a PSD-factorization of P1 ⊗ P2. 2204

We now consider an example. Let x, y be two subsets of {1, 2, . . . , n}. The disjointness function, DISJn(x, y),205

is defined to be 1 if x ∩ y = ∅ and 0 otherwise. We denote its corresponding 2n-by-2n matrix by Dn, i.e.,206

Dn(x, y) = DISJn(x, y). This function is one of the most important and well-studied in communication com-207

plexity. It can be easily checked that for any natural number k, Dk = D⊗k1 . According to the above lemma, we208

have that rankpsd(Dn) ≤ 2n, where we used the fact that rankpsd(D1) = 2. This upper bound is trivial as the209

size of Dn is 2n, but in this case it is tight as we show now.210

The following lemma was also found independently by Braun and Pokutta (personal communication).211

Lemma 4 Suppose A is an m-by-n nonnegative matrix, and has the following block expression,212

A =

[
B C
D 0

]
.

Then rankpsd(A) ≥ rankpsd(C) + rankpsd(D).213

Proof Let the size of B be k-by-l. Suppose {E1, E2, . . . , Em} and {F1, F2, . . . , Fn} form a size-optimal PSD-214

factorization of A. Then {E1, E2, . . . , Ek} and {Fl+1, Fl+2, . . . , Fn} form a PSD-factorization of C, while215

{Ek+1, Ek+2, . . . , Em} and {F1, F2, . . . , Fl} form a PSD-factorization of D.216

Let the support of a Hermitian operator be the vector space spanned by its eigenvectors with non-zero eigen-217

values. We claim that the dimension of the support of
∑n
i=l+1 Fi, denoted by d, will be at least rankpsd(C).218

Suppose this is not the case, i.e., d < rankpsd(C). We can find a unitary matrix U such that U(
∑n
i=l+1 Fi)U

† is219

diagonal, has rank d, and is zero outside of the upper left d-by-d block.220

We claim that each matrix in the set {UFl+1U
†, UFl+2U

†, . . . , UFnU
†}will also be zero outside of the upper221

left d-by-d block. The (t, t) entry of each UF`+iU† is non-negative as it is positive semidefinite. If t > d then the222

(t, t) entry of the sum of UF`+iU† for i = 1, . . . , n − ` is zero. Thus the (t, t) entry of each UF`+iU† must be223

zero as well. The fact that all entries of UF`+iU† outside of the upper left d-by-d block are zero now follows from224

the fact that Z(s, s)Z(t, t) ≥ |Z(s, t)|2 for a positive semidefinite matrix Z.225

Now let Xi be the upper left d-by-d block of UFl+iU† for i = 1, . . . , n − ` and similarly let Yi be the upper226

left d-by-d block of UEiU† for i = 1, . . . , k. Then {Xi}, {Yi} form a PSD-factorization of C with size d. Since227

d is smaller than rankpsd(C), this is a contradiction. By a similar argument, the dimension of the support of228 ∑m
i=k+1Ei will be at least rankpsd(D).229

On the other hand, for any i ∈ {k + 1, k + 2, . . . ,m} and j ∈ {l + 1, . . . , n}, Tr(EiFj) = 0, so the230

support of
∑m
i=k+1Ei is orthogonal to that of

∑n
i=l+1 Fi, meaning the kernel of

∑m
i=k+1Ei has dimension at231

least rankpsd(C). Hence rankpsd(A) ≥ rankpsd(C) + rankpsd(D). 2232

Then we have that233
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Theorem 7 rankpsd(Dn) = 2n.234

Proof Note that for any integer k, Dk+1 can be expressed as the following block matrix.235

Dk+1 =

[
Dk Dk

Dk 0

]
,

Then by Lemma 4 we have that rankpsd(Dk+1) ≥ 2rankpsd(Dk). Since rankpsd(D1) = 2, it follows that236

rankpsd(Dn) ≥ 2n. Since rankpsd(Dn) ≤ 2n, this completes the proof, and the PSD-rank of Dn is full. 2237

Based on this example and by analogy to the normal rank, one might conjecture that generally rankpsd(P1 ⊗238

P2) = rankpsd(P1)rankpsd(P2). This is false, however, as shown by the following counterexample.239

Example 1 Let A =

[
1 a
a 1

]
for nonnegative a. Then A has rank 2, and therefore PSD-rank 2, as long as a 6= 1. On240

the other hand,241

A⊗A =


1 a a a2

a 1 a2 a
a a2 1 a
a2 a a 1


satisfies the condition of Theorem 6 for any a ∈ [−1 +

√
2, 1 +

√
2]. Thus for a ∈ [−1 +

√
2, 1 +

√
2] \ {1} we242

have rankpsd(A⊗A) < rankpsd(A)2.243

3.3 PSD-rank and real PSD-rank244

In the original definition of PSD-rank, the matrices of the PSD-factorization can be arbitrary complex Hermitian245

PSD matrices. A natural and interesting question is what happens if we restrict these matrices instead to be positive246

semidefinite real matrices. We call this restriction the real PSD-rank, and for a nonnegative matrix A we denote247

it by rankR
psd(A). The following observation shows that the multiplicative gap between these notions cannot be248

too large.249

Theorem 8 If A is a nonnegative matrix, then rankpsd(A) ≤ rankR
psd(A) ≤ 2rankpsd(A).250

Proof It is trivial that rankpsd(A) ≤ rankR
psd(A), so we only need to prove the second inequality. Suppose251

r = rankpsd(A), and {Ek} and {Fl} are a size-optimal PSD-factorization ofA. We now separate all the matrices252

involved into their real and imaginary parts. Specifically, for any k and l, letEk = Ck+i·Dk, and Fl = Gl+i·Hl,253

where Ck andGl are real symmetric matrices, andDk andHl are real skew-symmetric matrices (i.e.,DT
k = −Dk254

and HT
l = −Hl). Then it holds that255

Akl = Tr(EkFl) = (Tr(CkGl)− Tr(DkHl)) + i · (Tr(DkGl) + Tr(CkHl)).

Since Akl is real, we in fact have256

Akl = Tr(CkGl)− Tr(DkHl).

Now for any k and l, define new matrices as follows: Sk = 1√
2

[
Ck Dk

−Dk Ck

]
, and Tl = 1√

2

[
Gl Hl

−Hl Gl

]
. Then Sk257

and Tl are real symmetric matrices, and Tr(SkTl) = Tr(CkGl)− Tr(DkHl) = Akl.258

It remains to show that the matrices Sk and Tl are positive semidefinite. Suppose u =

[
v1
v2

]
is a 2r-dimensional259

real vector, where v1 and v2 are two arbitrary r-dimensional real vectors. Since Ek is positive semidefinite, we260

have261

0 ≤ (vT2 − i · vT1 )Ek(v2 + i · v1) = vT1 Ckv1 − vT2 Dkv1 + vT1 Dkv2 + vT2 Ckv2 =
√
2uTSku.

Hence Sk is positive semidefinite. Similarly we can show that Tl is positive semidefinite for every l. 2262

Below in Example 9 we will exhibit a gap between rankpsd(A) and rankR
psd(A) by a factor of

√
2.263
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4 Three new lower bounds for PSD-rank264

In this section we give three new lower bounds on the PSD-rank. All of these bounds are based on the interpretation265

of PSD-rank in terms of communication complexity.266

4.1 A physical explanation of PSD-rank267

For a nonnegative m × n matrix P = [P (i, j)]i,j , suppose rankpsd(P ) = r. Then there exist r × r positive268

semidefinite matrices Ei, Fj , satisfying that P (i, j) = Tr(EiFj), for every i ∈ [m] and j ∈ [n]. Fiorini et al.269

showed how a size-r PSD-factorization of a matrix P induces a one-way quantum communication protocol with270

(r+1)-dimensional messages that computes P in expectation [2]. We will now show that without loss of generality271

the factors E1, . . . , Em, F1, . . . , Fn have a very particular form. Namely, we can assume that
∑
iEi = I (so they272

form a POVM) and Tr(Fj) = 1 (so the Fj can be viewed as quantum states). We now give a direct proof of this273

without increasing the size. This observation will be the key to our lower bounds.274

Lemma 5 Let P be an m-by-n matrix where each column is a probability distribution. If rankpsd(P ) = r, then
there exists a PSD-factorization for P (i, j) = Tr(EiFj) such that Tr(Fj) = 1 for each j and

m∑
i=1

Ei = I,

where I is the r-dimensional identity.275

Proof Suppose r-by-r positive semidefinite matrices C1, . . . , Cm and D1, . . . , Dn form a PSD-factorization for
P . Note that for any r-by-r unitary matrix U , it holds that

Tr(CiDj) = Tr((UCiU
†)(UDjU

†)).

Therefore UCiU† and UDjU
† also form a PSD-factorization for P . In the following, we choose U as the unitary276

matrix that makes C ′ = UCU† diagonal, where C =
∑
i Ci.277

According to the proof for Lemma 4, the dimension of the support of C cannot be smaller than r. Since the278

size of C is also r, C must be full-rank. Then C ′ is also full-rank, and one can always find another full-rank279

nonnegative diagonal matrix V such that V C ′V † = I . Let Ei = V UCiU
†V †, and Fj = (V −1)†UDjU

†V −1. It280

is not difficult to verify that Ei and Fj form another PSD-factorization for P with size r, satisfying
∑
iEi = I .281

Finally note that Tr(Fj) = Tr(FjI) =
∑
i Tr(EiFj) = 1 as each column of P sums to one. 2282

4.2 A lower bound based on fidelity283

Definition 4 For nonnegative stochastic matrix P , define

B3(P ) = max
q

1∑
i,j qiqjF (Pi, Pj)

2
,

where Pi is the ith column of P and the max is taken over probability distributions q = {qj}.284

Theorem 9 rankpsd(P ) ≥ B3(P ).285

Proof Let {Ei}, {ρj} be a size-optimal PSD-factorization of P . According to Lemma 5, we may assume that286 ∑
iEi = I and Tr(ρj) = 1 for each j. For a probability distribution {qj}, let ρ =

∑
j qjρj . Notice that the287

dimension of ρ is rankpsd(P ), thus the rank of ρ will be at most rankpsd(P ). We use the trace norm bound288

Eq. (1) to lower bound the rank of ρ giving289

rankpsd(P ) ≥
‖ρ‖2tr
‖ρ‖2F

=
1

‖ρ‖2F
.

Let us now proceed to upper bound ‖ρ‖2F . We have290

‖ρ‖2F = Tr(ρ2) =
∑
i,j

qiqjTr(ρiρj) ≤
∑
i,j

qiqjF (ρi, ρj)
2,
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where we used Fact 1. As Pi is obtained from measuring ρi with the POVM {Ej}, according to Fact 2 we have291

that F (ρi, ρj) ≤ F (Pi, Pj), which gives the bound rankpsd(P ) ≥ max
q

1∑
i,j qiqjF (Pi, Pj)

2
. 2292

We can extend the notation B3(P ) to nonnegative matrices P that are not stochastic, by first normalizing293

the columns of P to make it stochastic and then applying B3 to the resulting stochastic matrix. As rescaling a294

nonnegative matrix by multiplying its rows or columns with nonnegative numbers does not increase its PSD-rank,295

we have the following definition and corollary.296

Definition 5 For a nonnegative m× n matrix P = [P (i, j)]i,j , define

B′3(P ) = max
q,D

1∑
i,j qiqjF ((DP )i, (DP )j)

2
,

where q = {qj} is a probability distribution, D is a diagonal nonnegative matrix, and (DP )i is the probability297

distribution obtained by normalizing the ith column of DP via a constant factor.298

Corollary 1 rankpsd(P ) ≥ B′3(P ).299

We now see an example where rescaling can improve the bound.300

Example 2 Consider the following n× n nonnegative matrix A, where n = 10, and ε = 0.01.301

A =



1 1 1 · · · 1 1
ε 1 ε · · · ε ε
ε ε 1 · · · ε ε
...

...
...

. . .
...

...
ε ε ε · · · 1 ε
ε ε ε · · · ε 1


.

Let P be the nonnegative stochastic matrix obtained by normalizing the columns of A. P has the same PSD-rank302

as A. By choosing q as the uniform probability distribution, we can get a lower bound on B3(P ) as follows. Note303

that for any i ∈ [n] \ {1}, we have that304

f1 := F (P1, Pi) =
1 +
√
ε+ (n− 2)ε√

1 + (n− 1)ε ·
√

2 + (n− 2)ε
,

and for any distinct i, j ∈ [n] \ {1}, it holds that305

f2 := F (Pi, Pj) =
1 + 2

√
ε+ (n− 3)ε

2 + (n− 2)ε
.

Then we get306

B3(A) ≥
n2

n+ 2(n− 1) · f12 + (n− 2)(n− 1) · f22
≈ 2.09.

We now multiply every row of A by 10 except that the first one is multiplied by 0, i.e., the matrix D in Corollary 1307

is a diagonal nonnegative matrix with diagonal (0, 10, . . . , 10). Then we obtain another nonnegative matrix Â =308

DA. By a similar calculation as above, it can be verified thatB3(Â) ≥ 4.88, hence we haveB′3(A) ≥ 4.88, which309

is a better lower bound than B3(A).310

4.3 A lower bound based on the structure of POVMs311

Definition 6 For nonnegative stochastic matrix P , define B4(P ) =
∑
imaxj P (i, j).312

Theorem 10 rankpsd(P ) ≥ B4(P ).313
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Proof Let {Ei}, {ρj} be a size-optimal PSD-factorization of P with
∑
iEi = I and Tr(ρj) = 1 for each j. Note314

that this condition on the trace of ρj implies I � ρj . Thus315

Tr(Ei) = Tr(Ei · I) ≥ max
j

Tr(Eiρj) = max
j
P (i, j).

On the other hand, since
∑
iEi = I , we have316

rankpsd(P ) =
∑
i

Tr(Ei) ≥
∑
i

max
j
P (i, j),

where we used that the size of I is rankpsd(P ). 2317

A variant of B4 involving rescaling can sometimes lead to better bounds:318

Definition 7 For a nonnegative m× n matrix P = [P (i, j)]i,j , define

B′4(P ) = max
D

∑
i

max
j

((DP )j)i,

where D is a diagonal nonnegative matrix, (DP )j is the probability distribution obtained by normalizing the jth319

column of DP via a constant factor, and ((DP )j)i is the ith entry of (DP )j .320

Corollary 2 rankpsd(P ) ≥ B′4(P ).321

Example 3 We consider the same matrices A and D as in Example 2, and get that322

B4(A) =
1

1 + (n− 1)ε
+ (n− 1) · 1

2 + (n− 2)ε
≈ 5.24.

Similarly, it can be checked that B′4(A) ≥ 8.33. The latter indicates that rankpsd(A) ≥ 9, which is better than323

the bound 4 given by B1(A) or 6 by B2(A).324

4.4 Another bound that combines B3 with B4325

Here we will show that B4 can be strengthened further by combining it with the idea that bounds Tr(σ2) in B3,326

where σ is a quantum state that can be expressed as some linear combination of ρi’s.327

Definition 8 For a nonnegative stochastic matrix P = [P (i, j)]i,j , define

B5(P ) =
∑
i

max
q(i)

∑
k q

(i)
k P (i, k)√∑

s,t q
(i)
s q

(i)
t F (Ps, Pt)2

,

where Ps is the sth column of P , and for every i, q(i) = {q(i)k } is a probability distribution.328

Theorem 11 rankpsd(P ) ≥ B5(P ).329

Proof We define {Ei} and {ρj} as before. For an arbitrary i, we define σi =
∑
k q

(i)
k ρk. This is a valid quantum330

state. Since Tr(Eiρj) = P (i, j), it holds that Tr(Eiσi) =
∑
k q

(i)
k P (i, k). The Cauchy-Schwarz inequality gives331

Tr2(Eiσi) ≤ Tr(E2
i )Tr(σ

2
i ). This implies that332 (∑

k

q
(i)
k P (i, k)

)2

≤ Tr2(Ei)
∑
s,t

q(i)s q
(i)
t F (Ps, Pt)

2,

where we used the facts that Tr(E2
i ) ≤ Tr2(Ei) and Tr(σ2

i ) ≤
∑
s,t q

(i)
s q

(i)
t F (Ps, Pt)

2; the latter has been proved333

in Theorem 9. Therefore, for any distribution q(i) it holds that334

Tr(Ei) ≥
∑
k q

(i)
k P (i, k)√∑

s,t q
(i)
s q

(i)
t F (Ps, Pt)2

.

Substituting this result into the fact that
∑
i Tr(Ei) = rankpsd(P ) completes the proof. 2335
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We also have the following corollary that allows rescaling.336

Definition 9 For a nonnegative m× n matrix P = [P (i, j)]i,j , define

B′5(P ) = max
D

∑
i

max
q(i)

∑
k q

(i)
k ((DP )k)i√∑

s,t q
(i)
s q

(i)
t F ((DP )s, (DP )t)2

,

where for every i, q(i) = {q(i)k } is a probability distribution, D is a diagonal nonnegative matrix, (DP )k is the337

probability distribution obtained by normalizing the kth column of P via a constant factor, and ((DP )k)i is the338

ith entry of (DP )k.339

Corollary 3 rankpsd(P ) ≥ B′5(P ).340

We now give an example showing that B5 can be better than B4.341

Example 4 Consider the following n× n nonnegative matrix A, where n = 10, and ε = 0.01.342

A =



1 1 ε · · · ε ε
ε 1 1 · · · ε ε
ε ε 1 · · · ε ε
...

...
...

. . .
...

...
ε ε ε · · · 1 1
1 ε ε · · · ε 1


.

It can be verified that B4(A) ≈ 4.81. In order to provide a lower bound for B5(A), for any i we choose q(i) as343

{0, . . . , 0, 1/2, 1/2, 0, . . . 0}, where the positions of 1/2 are exactly the same as those of 1 in the ith row of A.344

Straightforward calculation shows that B5(A) ≥ 5.36, which is better than B4(A).345

Even B5 can be quite weak in some cases. For example for the matrix in Example 7 one can show B5(A) <346

1.1, which is weaker than B1(A) ≈ 3.16.347

5 Comparisons between the bounds348

In this section we give explicit examples comparing the three new lower bounds on PSD-rank (B3, B4 and B5)349

and the two that were already known (B1 and B2). These examples will show that: (1) for some cases the three350

new lower bounds are better than B1 and B2; (2) the bounds B3 and B4 are incomparable.351

All our examples will only use positive entries, which trivializes all support-based lower bound methods, i.e.,352

methods that only look at the pattern of zero and non-zero entries in the matrix. Note that most lower bounds on353

nonnegative rank are in fact support-based (one exception is [15]). Since PSD-rank is always less than or equal to354

nonnegative rank, the results obtained in the current paper could also serve as new lower bounds for nonnegative355

rank that apply to arbitrary nonnegative matrices. Serving as lower bounds for nonnegative rank, our bounds are356

more coarse than the bounds in [15] (this is natural, as we focus on PSD-rank essentially, and the gap between357

PSD-rank and nonnegative rank can be very large [2]). On the other hand, our bounds are much easier to calculate.358

The first example indicates that in some cases B4 can be at least quadratically better than each of B1, B2359

and B3.360

Example 5 Consider the following (n+ 1)× (n+ 1) nonnegative matrix A, where ε = 1/n.361

A =



1 ε ε · · · ε ε
ε 1 ε · · · ε ε
ε ε 1 · · · ε ε
...

...
...

. . .
...

...
ε ε ε · · · 1 ε
ε ε ε · · · ε 1


.

Theorem 14 (below) shows that B4(A) =
n+1
2 , and by straightforward calculation one can also get that B1(A) =362

√
n, B2(A) =

n+1
2
√
n
≈
√
n
2 , and numerical calculation indicates that B3(A) is around 4.363
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The second example shows that B3 can also be the best among the four lower bounds B1, B2, B3, B4, indicat-364

ing that B3 and B4 are incomparable.365

Example 6 Consider the following n× n nonnegative matrix A, where n = 10, and ε = 0.001.366

A =



1 1 ε · · · ε ε
1 1 1 · · · ε ε
ε 1 1 · · · ε ε
...

...
...

. . .
...

...
ε ε ε · · · 1 1
ε ε ε · · · 1 1


.

That is, A = (1− ε) ·B + ε · J , where B is the tridiagonal matrix with all nonzero elements being 1, and J is the367

all-one matrix. By straightforward calculation, we find that B1(A) ≈ 3.16, B2(A) ≈ 3.42, B4(A) ≈ 3.99, and368

the calculation based on uniform probability distribution q shows that B3(A) ≥ 4.52. The result of B3(A) shows369

that rankpsd(A) ≥ 5.370

Unfortunately, sometimesB3 andB4 can be very weak bounds2, and even the trivial rank-based boundB1 can371

be much better than both of them.372

Example 7 Consider the following n× n nonnegative matrix A, where n = 10, and ε = 0.9.373

A =



1 ε ε · · · ε ε
ε 1 ε · · · ε ε
ε ε 1 · · · ε ε
...

...
...

. . .
...

...
ε ε ε · · · 1 ε
ε ε ε · · · ε 1


.

It can be verified that B2(A) ≈ 1.0005, and B4(A) ≈ 1.099. For B3(A), numerical calculation indicates that374

it is also around 1. However, B1(A) =
√
10 ≈ 3.16. Thus, the best lower bound is given by B1(A), i.e.,375

rankpsd(A) ≥ 4.376

Example 8 For slack matrices of regular polygons, the two new bounds B3 and B4 are not good either, and in377

many cases they are at most 3. Moreover, numerical calculations show that rescaling probably cannot improve378

them by much. Note that the two trivial bounds B1 and B2 are also very weak for these cases. As an example,379

consider the canonical slack matrix of the regular hexagon380

A =


0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0
0 1 2 2 1 0

 .

It can be verified that B1(A) ≈ 1.73, B2(A) ≈ 1.59, B4(A) = 6 × 2
6 = 2, and choosing q in the definition of381

B3(A) as the uniform distribution gives that B3(A) > 2.1. Furthermore, our numerical calculations showed that382

choosing other distributions or using rescaling could not improve the results much, and never gave lower bounds383

greater than or equal to 3. Note that the exact PSD-rank of this matrix is 4 [1].384

6 PSD-factorizations for specific functions385

In this section we show the surprising power of PSD-factorizations by giving nontrivial upper bounds on the PSD-386

ranks of the matrices defined by two important functions in theoretical computer science, i.e., the nonequality and387

the inner product functions. These bounds are tight up to constant factors.388

2 Even though a nonnegative matrix has the same PSD-rank as its transposition, the bounds given by B3 (or B4) can be quite different, for
instance for the matrix A of Example 2.
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6.1 The nonequality function389

The nonequality function defines an n-by-n matrix An with entries An(i, i) = 0 and An(i, j) = 1 if i 6= j. In390

other words, An = Jn − In where Jn is the all-ones matrix and In is the identity of size n. This is also known as391

the “derangement matrix.” Note that for n > 1 it has full rank.392

The basic idea of our PSD factorization is the following. We first construct n2 Hermitian matrices Gij of size393

n with spectral norm at most 1. Then the matrices I + Gij and I − Gij will be positive semidefinite, and these394

will form the factorization. Note that395

Tr((I +Gij)(I −Gkl)) = Tr(I) + Tr(Gij)− Tr(Gkl)− Tr(GijGkl).

Thus if we can design the Gij such that Tr(Gij) = Tr(Gkl) for all i, j, k, l and Tr(GijGkl) = δikδjln (where396

δij = 1 if i = j, and δij = 0 otherwise), this will give a factorization proportional to the nonequality matrix.397

For the case where n is odd, we are able to carry out this plan exactly.398

Lemma 6 Let n be odd. Then there are n2 Hermitian matrices Gij of size n such that399

– Tr(Gij) = Tr(Gkl) for all i, j, k, l ∈ {0, . . . , n− 1}.400

– Tr(GijGkl) = δikδjln.401

– G2
ij = In.402

Proof We will use two auxiliary matrices in our construction. We will label matrix entries from {0, . . . , n − 1}.403

Let L be the addition table of Zn, that is L(i, j) = i+ j mod n. Notice that L is a symmetric Latin square3 with404

distinct entries along the main diagonal. Let V be the n× n Vandermonde matrix where V (k, l) = e−2πikl/n for405

k, l ∈ {0, . . . , n− 1}. Note that V V † = nIn.406

We now define the matrices Gij for i, j ∈ {0, . . . , n− 1}. The matrix Gij will be nonzero only in those (k, l)-407

entries where L(k, l) = i. Thus the zero/nonzero pattern of each Gij forms a permutation matrix with exactly408

one 1 on the diagonal. These nonzero entries will be filled in from the j-th row of V . We do this in a way to ensure409

that Gij is Hermitian. Thus V (j, 0) = 1 will be placed on the diagonal entry of Gij . Now fix an ordering of the410

bn/2c other pairs (k, l), (l, k) of nonzero entries ofGij (say that each (k, l) is above the diagonal). In the t-th such411

pair we put the conjugate pair V (j, t), V (j, n − t). In this way, Gij is Hermitian, and as the ordering is the same412

for all j we have that Tr(GijGik) = (〈Vj |, 〈Vk|) = nδj,k, where 〈Vj | is the j-th row of V , and (〈Vj |, 〈Vk|) is the413

inner product of the two complex vectors 〈Vj | and 〈Vk|.414

To finish, we check the other properties. Each Gij has trace one. If i 6= k then Tr(GijGkl) = 0, because the415

zero/nonzero patterns are disjoint. Finally, as the zero/nonzero pattern of each Gij is a permutation matrix, and416

entries are roots of unity, G2
ij = In. 2417

This gives the following theorem for the n2-by-n2 nonequality matrix.418

Theorem 12 Suppose n is odd, and let An2 be the nonequality matrix of size n2. Then rankpsd(An2) ≤ n.419

Proof Suppose n2 Hermitian matrices Gij have been constructed as in Lemma 6. We now define the matrices
Xij = 1√

n
(I + Gij) and Yij = 1√

n
(I − Gij). Note that the spectral norm of each Gij is 1, so Xij and Yij are

PSD. Also, we have

Tr(XijYkl) =
1

n
(Tr(I) + Tr(Gij)− Tr(Gkl)− Tr(GijGkl))

=
1

n
(n− δikδjln) = 1− δikδjl.

2420

We now turn to the case that n is even. The result is slightly worse here.421

Lemma 7 Let n be even. Then there are n2 − 1 Hermitian matrices Gij such that422

– Tr(Gij) = Tr(Gkl) for all i, j, k, l.423

– Tr(GijGkl) = δikδjln.424

– G2
ij = In.425

3 A Latin square is an n-by-n matrix in which each row and each column is a permutation of {0, . . . , n− 1}.
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Proof The construction is similar. Again let V be the Vandermonde matrix of roots of unity. This time we take a426

symmetric Latin square L′ which is different from the L used above. The entries of L′ are from {0, . . . , n − 1}427

and the diagonal has all entries equal to 0. Note that constructing this kind of L′ is always possible, and can be428

obtained as follows. We first find a symmetric Latin square A of size n − 1 with entries from {1, 2, . . . , n − 1},429

whose diagonal entries are distinct (this kind of matrices exists according to the proof for Lemma 6). Then we add430

an n-th row and n-th column to A by setting A(n, k) = A(k, n) = A(k, k) for 1 ≤ k < n. Finally we change all431

the diagonal entries to 0 and let L′ be the resulting matrix, which is a symmetric Latin square.432

For i > 0, the matrix Gij is defined as before, i.e., Gij is nonzero only in those (k, l)-entries where L′(k, l) =433

i, and the nonzero entries are filled in from the j-th row of V . Since i > 0, according to the construction of L′ the434

nonzero entries of Gij will not be on the diagonal. Once again, we choose conjugate pairs from these entries and435

put each pair in symmetrical positions to make the matrix obtained Hermitian. An additional subtlety is that if j is436

odd then V (j, 0) = 1 and V (j, n/2) = −1. They are not conjugate, but we choose them as a pair and change them437

to be (i,−i) in the matrix Gij , where i denotes the imaginary unit (not to be confused with the index i). Then the438

new pair is conjugate, and it can be verified that this change does not affect the inner product between this matrix439

and the others.440

For i = 0, all the nonzero entries ofGij will be on the diagonal. For each j, we fill these entries with a real unit441

vector that sums to 0. Furthermore, the vectors chosen for different j are orthogonal to each other. By induction,442

it can be proved that the size of the largest set of such n-dimensional vectors is n − 1. In this way, we construct443

n2 − 1 matrices that satisfy the requirements. 2444

As with the case where n is odd, we have the following theorem based on Lemma 7.445

Theorem 13 Suppose n is even, and let An2−1 be the nonequality matrix of size n2 − 1. Then it holds that446

rankpsd(An2−1) ≤ n.447

The nonequality function gives a family of matrices where PSD-rank is smaller than the real PSD-rank.448

Example 9 We have seen that for odd n, the PSD-rank of the nonequality matrix of size n2 is at most n. This is449

tight by Fact 3, since the rank of the nonequality matrix of this size is n2. On the other hand, also by Fact 3, the450

real PSD-rank is at least
⌈√

2n− 1/2
⌉
. This shows a multiplicative gap of approximately

√
2 between the real and451

complex PSD-rank. The rank lower bound on the real PSD-rank is in fact tight, as shown by [16, Example 5.1].452

Fawzi-Gouveia-Parrilo-Robinson-Thomas [16, Section 2.2] independently observed that the real and complex453

PSD-rank are not the same, showing that the 4-by-4 derangement matrix has complex PSD-rank 2, while by Fact 3454

the real PSD-rank is at least 3.455

It should be pointed out that the results in the current subsection reveal a fundamental difference between PSD-456

rank and the normal rank. Recall that for the normal rank we have that rank(A− B) ≥ rank(B)− rank(A).457

Thus if A is a rank-one matrix, the ranks of A − B and B cannot be very different. The results above, on the458

other hand, indicate that the situation is very different for PSD-rank, where A−B and B can have vastly different459

PSD-ranks even for a rank-one matrix A. This fact shows that the PSD-rank is not as robust to perturbations as the460

normal rank, a contributing reason to why the PSD-rank is difficult to bound.461

Proposition 1 There exist nonnegative matrices A and B, such that A−B is also nonnegative, and462

rankpsd(A−B) < rankpsd(B)− rankpsd(A).

Proof Choose A = J and B = I , where their common size is n, and J is the all-one matrix. Then we have that463

rankpsd(A − B) ≈
√
n, rankpsd(B) = n, while rankpsd(A) = 1. Choosing n large enough gives the desired464

separation. 2465

6.2 Approximations of the identity466

Here we first consider the PSD-rank of approximations of the identity. We say that an n-by-n matrix A is an467

ε-approximation of the identity if A(i, i) = 1 for all i ∈ [n] and 0 ≤ A(i, j) ≤ ε for all i 6= j. The usual rank of468

approximations of the identity has been well studied by Alon [17].469

In particular, it is easy to show that if A is an ε-approximation of the identity then470

rank(A) ≥ n

1 + ε2(n− 1)
.

Using the bound B4 we can show a very analogous result for PSD-rank.471
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Theorem 14 If an n-by-n matrix A is an ε-approximation of the identity, then472

rankpsd(A) ≥
n

1 + ε(n− 1)
.

In particular, if ε ≤ 1/n then rankpsd(A) > n/2.473

Proof We first normalize each column of A to a probability distribution, obtaining a stochastic matrix P . Each474

column will be divided by a number at most 1 + ε(n − 1). Thus the largest entry of each column is at least475

1/(1 + ε(n− 1)). Hence the method B4 gives the claimed bound. 2476

We now show that this bound is tight in the case of small ε. If ε ≥ 1/(n − 1)2, then by Theorem 6 the477

PSD-rank of the n-by-n matrix with ones on the diagonal and ε off the diagonal is not full. On the other hand,478

if ε < 1/(n − 1)2 then any ε-approximation of the identity has full PSD-rank, by Theorem 14. This gives the479

following proposition.480

Proposition 2 Suppose A(i, i) = 1 for all i ∈ [n] and A(i, j) = ε for i 6= j, then rankpsd(A) = n if and only if481

ε < 1/(n− 1)2.482

Combining this proposition and Lemma 3, we immediately have the following proposition.483

Proposition 3 Let m divide n and consider the m-by-m matrix B where B(i, i) = 1 and B(i, j) = 1/(m− 1)2.484

Then A = In/m ⊗B is an ε-approximation of the identity, and rankpsd(A) ≤ n− n
m , where ε = 1/(m− 1)2.485

Proof Note that rankpsd(B) ≤ m− 1. 2486

As a generalization of approximations of the identity with the same off-diagonal entries, we now turn to487

consider the PSD-rank of the following class of matrices488

Mc =



c 1 1 · · · 1 1
1 c 1 · · · 1 1
1 1 c · · · 1 1
...

...
...

. . .
...

...
1 1 1 · · · c 1
1 1 1 · · · 1 c


,

where c could be any nonnegative real number, and suppose the size of Mc is n-by-n. For c = 0, Mc is exactly489

the matrix corresponding to the Nonequality function. Besides, if c > (n − 1)2, Proposition 2 implies that the490

PSD-rank of Mc will be full. In both of these two cases, our results are very tight. Then a natural question is, how491

about the case when 0 < c < (n − 1)2 (excluding c = 1)? For this case, it turns out that we have the following492

theorem. Combined with B1(Mc) =
√
n, this result indicates that when c is not very large, rankpsd(Mc) is very493

small, which is much stronger than Proposition 3.494

Theorem 15 If c > 2, rankR
psd(Mc) ≤ 2dce · d

√
ne. If c ∈ [0, 2], rankR

psd(Mc) ≤ d
√
2ne+ 1.495

Proof Note that rankR
psd(Mc) ≤ n, which means that when c ≥

√
n/2, the above theorem is trivially true.496

Therefore, we only consider the case that c <
√
n/2. We first suppose c is an integer in the interval (2,

√
n/2).497

For a fixed r ≥ c, we consider the largest set S of subsets of [r] such that every subset has exactly c elements and498

the intersection of any two subsets contains at most one element in [r]. Suppose the cardinality of S is p(r, c), and499

the elements of S are {S1, S2, . . . , Sp(r,c)}, i.e., for any i ∈ [p(r, c)], Si is a subset of [r] with size c.500

For any i ∈ [p(r, c)], we now construct two r-by-r matrices Ei and Fi based on Si as follows. In Ei, we first501

choose the submatrix whose row index set and column index set are Si, and let this submatrix be a c-by-c all-one502

matrix. All the other entries of Ei are set to 0. Fi is similar to Ei except that all its diagonal entries are 1. Thus,503

for every i, both Ei and Fi are positive semidefinite.504

It is not difficult to verify that for any x, y ∈ [p(r, c)], if x = y then Tr(ExFy) = c2, and if x 6= y then505

Tr(ExFy) = c. That is, if we choose r properly such that p(r, c) ≥ n, then { 1cE1, . . . ,
1
cEn} and {F1, . . . , Fn}506

form a size-r PSD-factorization of Mc, which shows that rankR
psd(Mc) ≤ r. We have the following lemma to507

provide bounds on p(r, c).508

Lemma 8 Let c be a positive integer and r ≥ c be a prime number. There exists a family of r2 many c-element509

sets over a universe of size cr, such that any two distinct sets from this family intersect in at most one point.510
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Proof Since r is a prime number, Fr is a finite field. With each (a, b) ∈ Fr × Fr we associate the following set in
the universe [c]× Fr. It is a c-element subset of the graph of the line y = ax+ b.

Sab = {(x, ax+ b) : x ∈ [c]}.

We have r2 such sets, one for each choice of a, b. Since two distinct lines can intersect in at most one (x, y)-pair,511

we have |Sab ∩ Sa′b′ | ≤ 1 if (a, b) 6= (a′, b′). 2512

Let us go back to the proof for Theorem 15. Let r be the smallest prime number greater than or equal to d
√
ne,513

then we know r ≤ 2d
√
ne. Now r > c, and by the above lemma there exist r2 ≥ n c-element sets over a universe514

of size cr. This results in a PSD-factorization for Mc of size cr, hence rankR
psd(Mc) ≤ cr ≤ 2c · d

√
ne.515

We now turn to the case that c ∈ (2,
√
n/2) and c is not an integer. Firstly, we construct the PSD-factorization516

for Mdce as above. Then we replace all the nonzero off-diagonal entries of the Ei’s (which are 1’s) by a = c−1
dce−1 ,517

and obtain E′i’s. Now {E′1, . . . , E′n} and {F1, . . . , Fn} form a PSD-factorization for Mc.518

Finally, in order to settle the case that c ∈ [0, 2], we first focus on the special case that c = 2. It is easy to see519

that in this case, if r is a positive integer, p(r, c) = 1
2r(r − 1). Thus if we choose r = d

√
2ne + 1, it holds that520

p(r, c) ≥ n, and we have rankR
psd(M2) ≤ d

√
2ne+ 1. When c ∈ [0, 2), we replace all the nonzero off-diagonal521

entries of theEi’s (which are 1’s) by c−1, and obtainE′i’s. It can be verified that {E′1, . . . , E′n} and {F1, . . . , Fn}522

form a valid PSD-factorization for Mc. 2523

We now consider a more general approximation of the identity than Mc, where the diagonal entries do not524

have to be 1, and the off-diagonal entries do not have to be equal. Alon [17] proved:525

Theorem 16 ([17]) There exists an absolute positive constant c so that the following holds. Let A = [a(i, j)] be526

an n-by-n real matrix with |a(i, i)| ≥ 1/2 for all i and |a(i, j)| ≤ ε for any i 6= j, where 1
2
√
n
≤ ε ≤ 1/4. Then527

the rank of A satisfies528

rank(A) ≥ c log n

ε2 log (1/ε)
.

Combining the above theorem and Fact 3, we immediately obtain that529

Theorem 17 There exists an absolute positive constant c so that the following holds. Let A = [a(i, j)] be an530

n-by-n real matrix with |a(i, i)| ≥ 1/2 for all i and |a(i, j)| ≤ ε for any i 6= j, where 1
2
√
n
≤ ε ≤ 1/4. Then the531

PSD-rank of A satisfies532

rankpsd(A) ≥
c
√
log n

ε
√
log (1/ε)

.

We do not know if this lower bound on PSD-rank is tight. It is not hard to show that there are ε-approximations533

of the n-by-n identity matrix with ε ≈ 1/2 for which the nonnegative rank is O(log n). For example, we can take534

a set of n random `-bit words C1, . . . , Cn ∈ {0, 1}`. For ` = c log n and c a sufficiently large constant, 〈Ci|Cj〉535

will be close to `/2 for all i = j and close to `/4 for all i 6= j. Hence if we associate both the ith row and the ith536

column with the `-dimension vector
√

2
`Ci, we get an ` = O(log n)-dimensional nonnegative factorization of an537

approximation of the identity.538

6.3 The inner product function539

Let x, y ∈ {0, 1}n be two n-bit strings. The inner product function is defined as IP(x, y) =
∑n
i=1 xiyi mod 2.540

We denote the corresponding N -by-N matrix by IPn, where N = 2n. We have the following theorem.541

Theorem 18 rankR
psd(IPn) ≤ c

√
N , where c = 2 if n is even, and c = 2

√
2 if n is odd.542

Proof We will design a one-way quantum protocol to compute IPn in expectation and then invoke the equiv-543

alence between rankpsd and communication complexity mentioned in Section 2.2. We will actually prove the544

bound for more general 0/1-matrices, of which IPn is a special case. Let W be an N -by-N 0/1-matrix, with545

rows and columns indexed by n-bit strings x and y respectively. We first consider the case that n is even.546

View x = x0x1 as concatenation of two n/2-bit strings x0 and x1. Suppose there exist two Boolean functions547

f, g : {0, 1}n/2+n → {0, 1} such that W (x, y) = f(x0, y) + g(x1, y) mod 2. Then IPn is a special case of such548
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a W , where f(x0, y) = IP(x0, y0) and g(x1, y) = IP(x1, y1). We now show there exists a one-way quantum pro-549

tocol that computes W in expectation and whose quantum communication complexity is at most n/2 + 1 qubits.550

This implies rankpsd(W ) ≤ 2n/2+1 = 2
√
N .551

For any input x, Alice sends the following state of 1 + n/2 qubits to Bob:

|ψx〉 :=
1√
2
(|0, x0〉+ |1, x1〉).

Then by a unitary operation, Bob turns the state into552

|ψxy〉 :=
1√
2
((−1)f(x0,y)|0, x0〉+ (−1)g(x1,y)|1, x1〉).

Bob then applies the Hadamard gate to the last n/2 qubits and measures those in the computational basis. If he553

gets any outcome other than 0n/2, he outputs 0. With probability 1/
√
2n he gets outcome 0n/2, and then the first554

qubit will have become 1√
2
((−1)f(x0,y)|0〉 + (−1)g(x1,y)|1〉). By another Hadamard gate and a measurement in555

the computational basis, Bob learns the bit f(x0, y) + g(x1, y) mod 2 =W (x, y). Then he outputs that bit times556 √
2n. The expected value of the output is 1√

2n
· (W (x, y) ·

√
2n) =W (x, y).557

For the case that n is odd, Alice can make the length of x even by appending the bit 0 to the end of x, and Bob558

can do the same change to y. Then we go back to the case where the inputs have even length, and the inner product559

remains unchanged. Now the quantum communication complexity is at most (n + 1)/2 + 1 qubits, implying for560

odd n that rankpsd(W ) ≤ 2(n+1)/2+1 = 2
√
2 ·
√
N . 2561

We give another proof of this theorem by explicitly providing a PSD-factorization for IPn. Note that the factors562

in the following PSD-factorization are rank-1 real matrices.563

Theorem 19 rankR
psd(IPn) ≤ c

√
N . If n is even, c = 2, and if n is odd, c = 3

2

√
2.564

Proof For any k we have IPk+1 =

[
IPk IPk
IPk Jk − IPk

]
, where Jk is the k-by-k all-one matrix. Using this relation565

twice, we have that566

IPk+2 =


IPk IPk IPk IPk
IPk Jk − IPk IPk Jk − IPk
IPk IPk Jk − IPk Jk − IPk
IPk Jk − IPk Jk − IPk IPk

 .
Repeating this procedure, it can be seen that IPn can be expressed as a block matrix with each block being IPk567

or Jk − IPk for some k < n to be chosen later. We now consider a new block matrix Mn with the same block568

configuration as IPn generated as follows. The blocks in the first block row of Mn are the same as IPn, that is569

they are IPk’s. In the rest of the block rows, if a block of IPn is IPk, then we choose the corresponding block570

of Mn to be −IPk, and if a block of IPn is Jk − IPk, the corresponding block of Mn is also Jk − IPk. It is not571

difficult to check that Mn ◦Mn = IPn, and since Mn is real, we have that rankR
psd(IPn) ≤ rank(Mn).572

In order to upper bound the rank of Mn, we add its first block row to the other block rows, and obtain another573

matrix M ′n, with the same rank as Mn, in which all the blocks are 0 or Jk except those in the first row are still574

IPk’s. Since the rank of M ′n can be upper bounded by the sum of the rank of the first block row and that of the575

remaining block rows, we have that576

rankR
psd(IPn) ≤ rank(Mn) = rank(M ′n) ≤ 2k − 1 +

N

2k
,

where 2k − 1 comes from the rank of IPk, and N
2k

comes from the number of blocks in every row of M ′n. If n577

is even, we choose k = n/2, and the inequality above is rankR
psd(IPn) ≤ 2

√
N − 1. If n is odd, we choose578

k = (n+ 1)/2, and the inequality becomes rankR
psd(IPn) ≤ ( 32

√
2)
√
N − 1. 2579
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