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Abstract
We study how well functions over the boolean hypercube of the form fk(x) = (|x|−k)(|x|−k−1)
can be approximated by sums of squares of low-degree polynomials, obtaining good bounds for the
case of approximation in `∞-norm as well as in `1-norm. We describe three complexity-theoretic
applications: (1) a proof that the recent breakthrough lower bound of Lee, Raghavendra, and
Steurer [19] on the positive semidefinite extension complexity of the correlation and TSP poly-
topes cannot be improved further by showing better sum-of-squares degree lower bounds on
`1-approximation of fk; (2) a proof that Grigoriev’s lower bound on the degree of Positivstellen-
satz refutations for the knapsack problem is optimal, answering an open question from [12]; (3)
bounds on the query complexity of quantum algorithms whose expected output approximates
such functions.
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1 Introduction

1.1 Approximation of functions on the boolean hypercube by
polynomials

Classical approximation theory studies how well a function f : R→ R can be approximated by
simpler functions, most commonly by polynomials of bounded degree. Approximation theory
has found applications throughout complexity theory, for example in learning theory [21, 23],
query complexity [22, 1], communication complexity [29, 30], and more.

An important special case is the investigation of the best approximation to a real boolean
function f : {0, 1}n → R in `∞-distance by a degree-d polynomial in the n variables x1, . . . , xn.
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2 On the sum-of-squares degree of symmetric quadratic functions

Nisan and Szegedy [22] initiated this study, showing that any polynomial that approximates
the OR function with constant error in `∞-norm on {0, 1}n has degree Ω(

√
n). They also

showed this bound is tight by constructing an O(
√
n)-degree approximating polynomial for

the OR function from a Chebyshev polynomial. Paturi [25] followed this by characterizing the
approximate degree of any symmetric boolean function, i.e., any function f : {0, 1}n → {0, 1}
which only depends on the number of ones |x| in the n-bit input x, and not on their locations.
To get a feel for Paturi’s theorem, consider the special case of a function gk : {0, 1}n → {0, 1}
where gk(x) = 0 unless |x| = k in which case gk(x) = 1. Paturi’s theorem says that the
1
4 -error approximate degree of gk, denoted by deg1/4(gk), is Θ(

√
k(n− k)). Later, the `∞-

approximate degree of symmetric boolean functions was characterized for all approximation
errors ε by [28, 34]. Again in the special case of gk, these results say that the degree of a
polynomial that approximates gk up to error ε ≥ 2−n is Θ(

√
k(n− k) +

√
n log(1/ε)).

1.2 Our results on sum-of-squares approximation
Here we study the representation of non-negative functions on the boolean hypercube by sums
of squares of polynomials. More precisely, a non-negative boolean function f : {0, 1}n → R+
has an (exact) degree-d sum-of-squares (sos) representation if there exist degree-d polynomials
h1, . . . , hr over the reals such that for all x ∈ {0, 1}n,

f(x) = h1(x)2 + · · ·+ hr(x)2.

Let sos-deg(f) be the minimum d such that a non-negative function f has a degree-d sum-of-
squares representation.1 This sos degree is an important quantity that arises in the context
of optimization and proof complexity, as also witnessed by our applications below.

The obvious fact that a sum of squares of polynomials is globally non-negative is remark-
ably useful. For example, for a graph G = ([n], E), if f(x1, . . . , xn) = c−

∑
(i,j)∈E(xi − xj)2

has an sos representation on the boolean cube, then c ≥
∑

(i,j)∈E(xi−xj)2 for all x ∈ {0, 1}n,
and hence G has no cut of size larger than c. Moreover if f has a degree-d sos representation
for small d, then this provides a small certificate (of size nO(d)) that f has no cut of size
larger than c. Such certificates can in fact be found by means of semidefinite programming;
these observations are the basis of the semidefinite programming hierarchies of Lasserre and
Parrilo [31, 18, 24] that have been the subject of intense study in approximation algorithms.

While exact sum-of-squares degree of functions on the boolean hypercube has been
previously studied, there has been little work on the approximation of such functions by sos
polynomials. This is the focus of our paper, and we prove a number of tight bounds on the
approximate sum-of-squares degree of functions on the hypercube. We consider two notions
of approximation in this paper. The most familiar is `∞-approximation: an sos polynomial
h ε-approximates a function f : {0, 1}n → R+ in `∞-distance if |f(x) − h(x)| ≤ ε for all
x ∈ {0, 1}n. We let sos-degε(f, `∞) denote the minimum degree of an sos polynomial that
ε-approximates f in `∞-distance. The other notion is `1-approximation: an sos polynomial
h ε-approximates f in `1-distance if

∑
x∈{0,1}n |f(x)− h(x)| ≤ ε, and we let sos-degε(f, `1)

denote the minimum degree of an sos polynomial that ε-approximates f in `1-distance. Note
that ε = δ2n corresponds to average approximation error δ.2

1 Note that the degree of the polynomial representing f will actually be 2d.
2 Also note that the existence of a degree-d sos approximation in either of these notions can be formulated

as the feasibility of a semidefinite program of size polynomial in the domain size 2n, as follows. For
x ∈ {0, 1}n, let mx be the column vector of dimension D =

∑d

i=0

(
n
i

)
indexed by sets S ⊆ [n]
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For much of this paper we will focus on understanding the approximate sos degree of the
symmetric quadratic functions fk : {0, 1}n → R+ defined as fk(x) = (|x| − k)(|x| − k − 1)
for k = 0, 1, 2, . . . , n− 1. Our study of these functions is motivated by several reasons. First,
these functions have a close connection to the proof complexity of the knapsack problem [12],
and have recently been used to show lower bounds on semidefinite extension complexity [19];
we survey these two applications in Section 1.3 below. Furthermore, while the fk may look
very special, they are not too far from a general symmetric quadratic polynomial with real
coefficients that is nonnegative on the hypercube, for the following reason. Any symmetric
quadratic polynomial on the hypercube is of the form p(|x|) for a quadratic univariate
polynomial p. The polynomial p will have two roots. If the roots are complex they must
come in a conjugate pair and p is already sos; if the roots are real, and not both ≤ 0 or ≥ n,
then they must lie in an interval [k, k + 1], for some k ∈ {0, 1, . . . , n}, just as with fk.

In our first set of results, we give lower and upper bounds on the `∞-approximate sos
degree of the functions fk.

I Theorem 1.1 (`∞ sos approximations of fk). For all integers n ≥ 0, k ∈ {1, . . . , n − 2},
and ε = ε(n) satisfying 0 < ε < 1/50, we have
1. sos-degε(fk, `∞) = Ω(

√
k(n− k))

2. sos-degε(fk, `∞) = O(
√
k(n− k) +

√
n log(1/ε))

We expect the lower bound can be improved for the case of small ε to match the upper
bound, but have been unable to show that so far. Observe that in the case of constant error,
we obtain the tight bound of sos-deg1/50(fk, `∞) = Θ

(√
k(n− k)

)
. While we are not aware

of any previous work on `∞-approximate sos degree, techniques of Grigoriev [12] can be used
to show that, for n odd, any degree-(n− 1)/2 sos polynomial has error at least Ω(1/ logn)
for approximating fbn/2c. This derivation is given in Appendix D.

The similarity between our `∞ bounds for fk and Paturi’s bound for the 0/1-valued
functions gk defined above is striking. For the upper bound, the connection can be seen as
follows: we can construct an ε-approximation to fk in `∞-distance by finding a univariate
polynomial e(z) such that h(z) = (z − k)(z − k − 1) + e(z) is globally nonnegative (i.e.,
h(z) ≥ 0 for all z ∈ R), and |e(i)| ≤ ε on integer points i ∈ {0, 1, . . . , n}. As h(z) is a globally
nonnegative univariate polynomial, it is sos, and furthermore h(|x|) is an ε-approximation
to fk. What are the requirements on e? It must be large enough to “cancel out” the
negative values of (z − k)(z − k − 1) in the interval (k, k + 1), but small on all integer points
0, 1, . . . , n. This is very similar to looking for an ε-approximation of gk, and techniques
similar to those used by Paturi show that there is an e satisfying these requirements of
degree O(

√
k(n− k)+

√
n log(1/ε)). Note that this is slightly weaker than what Theorem 1.1

claims; we will soon discuss how to bring the log(1/ε) inside the square-root.
This upper bound argument shows that fk can be approximated by a polynomial h(|x|)

where h is globally nonnegative. For the lower bound, it is not clear at all why the optimal

of size ≤ d, with entry mx,S =
∏

i∈S
xi. Let Mx be the D × D rank-1 matrix mxm

T
x . Suppose

p(x) =
∑

S:|S|≤d
pS

∏
i∈S

xi is a multilinear polynomial of degree d, where with slight abuse of notation
we use p also to denote the D-dimensional vector of real coefficients pS . Then p(x) is the inner product
of p and mx, so p(x)2 = Tr(ppTMx). Accordingly, every sos polynomial h of degree ≤ d corresponds to
a psd matrix Z such that h(x) = Tr(ZMx) for all x ∈ {0, 1}n (Z can be written as

∑r

i=1 pip
T
i , so the

rank r of Z would be the number of squared polynomials that h sums over). Hence the existence of an
sos polynomial h of degree ≤ d that ε-approximates f in `∞-distance, is equivalent to the existence
of a psd matrix Z such that |Tr(ZMx)− f(x)| ≤ ε for all x ∈ {0, 1}n. The latter corresponds to the
feasibility of an SDP with 2n constraints, which (up to issues of precision) can be solved in time 2O(n).
However, we won’t use this fact in this paper.

CCC’16



4 On the sum-of-squares degree of symmetric quadratic functions

approximating polynomial should be of this form. Any symmetric polynomial f(x1, . . . , xn)
on the hypercube is of the form f(x1, . . . , xn) = p(|x|) for a univariate polynomial p. Even if
f is sos, however, this does not mean that p will be globally nonnegative.

For the lower bound, we use an elegant recent result of Blekherman [2] that gives a
characterization of the possible form of univariate polynomials p such that f(x1, . . . , xn) =
p(|x|) when f is a sos and symmetric real-valued boolean function. This structural theorem
allows us to reduce the analysis of the approximate sos degree of fk to the approximate
degree of a symmetric function on the boolean hypercube, for which we can apply Paturi’s
lower bound.

Interestingly, for small ε we can show a better upper bound than that given by the
argument sketched above. To get the better upper bound of Theorem 1.1, we take advantage
of a recent characterization of the sos degree of a non-negative real-valued boolean function as
the quantum query complexity of computing that function in expectation (see Section 1.3.3).
We explicitly design a quantum algorithm to approximately compute fk in expectation with
query complexity O(

√
k(n− k) +

√
n log(1/ε)), which by the characterization implies the

same upper bound on sos-degε(fk, `∞). This again parallels the situation for symmetric
boolean-valued functions, where the tight upper bound of O(

√
k(n− k) +

√
n log(1/ε)) on

degε(gk) was first shown by the construction of a quantum query algorithm [34].
We also study sos `1-approximations of fk:

I Theorem 1.2 (sos `1-approximations of fk). Let n be odd and k = bn/2c. Then

sos-degδ2n(fk, `1) ≤
⌈

3
√
n√

2δ
ln
(

1
δ

)⌉
,

for any 8/
√

2n ≤ δ ≤ 1/4. For k < 0.49n, we have sos-degδ2n(fk, `1) = O

(
ln
(

1
δ

))
.

The proof of this theorem follows the same plan sketched above for the upper bound in
the `∞ case. We construct a low-degree univariate polynomial e(z) such that h(z) =
(z − k)(z − k − 1) + e(z) is globally nonnegative and ε =

∑n
i=0
(
n
i

)
|e(i)| is relatively small.

Then h(|x|) gives the desired sos approximation to fk in `1-norm. We discuss the applications
of this theorem to the lower bounds on semidefinite extension complexity of [19] below in
Section 1.3.1.

1.3 Applications in complexity theory
Here we describe complexity-theoretic consequences of such sos bounds in three different
settings.

1.3.1 Positive semidefinite extension complexity
The approximation of boolean functions by sos polynomials has played an important role in
inapproximability results. Our first application is to the analysis of the positive semidefinite
extension complexity of polytopes. The recent breakthrough work of Lee, Raghavendra and
Steurer [19] showed that any semidefinite program whose feasible region projects to the
correlation polytope must have size 2Ω̃(n2/11). By reduction this in turn implies a 2Ω̃(n1/11) lower
bound for the polytope corresponding to the Traveling Salesman Problem on n-vertex graphs,
showing (roughly speaking) that TSP cannot be solved by small semidefinite programs.

The argument of [19] shows that lower bounds on the degree of sos polynomials that
approximate a function fk(x) = (|x|−k)(|x|−k−1) in `1-distance on the boolean cube imply
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lower bounds on the semidefinite extension complexity of the correlation polytope. They
build on the work of Grigoriev [12] to show that, for odd n and k = bn/2c, any sum of squares
of degree-bn/2c polynomials has `1-error at least 2n−2/

√
n in approximating fbn/2c.3 Our

Theorem 1.2 shows that this bound is tight, up to logarithmic factors. Further, our upper
bound on sos-degδ2n(fk, `1) throughout the full range of error implies, roughly speaking, that
the quantitative bounds of [19] cannot be improved simply by showing better sos degree
lower bounds on fk.

1.3.2 Proof complexity
Our second result is in proof complexity. Grigoriev and Vorobjov [14] introduced a proof
system based on the Positivstellensatz [32]. We explain this proof system in the context of
the knapsack problem. In this instance, the knapsack problem can be phrased as looking for
a solution x ∈ Rn to the system of equations

n∑
i=1

xi − r = 0, x2
1 − x1 = 0, . . . , x2

n − xn = 0 (1)

where r ∈ R. When r is not an integer, this system obviously has no solution. One way to
certify that there is no solution, is to find polynomials g, g1, . . . , gn and sos polynomial h
such that

g(x) ·
(

n∑
i=1

xi − r

)
+

n∑
i=1

gi(x) · (x2
i − xi) = 1 + h(x) . (2)

Such a collection of polynomials constitutes a Positivstellensatz refutation of the statement
that (1) has a solution: if a ∈ Rn satisfied

∑n
i=1 ai − r = 0, and a2

i − ai = 0 for i = 1, . . . , n,
then the left-hand side of (2) would evaluate to 0 on a, while the right-hand side would
evaluate to 1 + h(a) ≥ 1, a contradiction.

Grigoriev and Vorobjov define the Positivstellensatz refutation degree of the system (1) as

max
{

deg
(
g(x) ·

(
n∑
i=1

xi − r

))
,max
i∈[n]
{deg(gi(x) · (x2

i − xi))},deg(h(x))
}
,

maximized over all sets of polynomials satisfying (2). Grigoriev [12] shows that if k < r < k+1
for a nonnegative integer k < (n − 3)/2, then any Positivstellensatz refutation of (1) has
degree at least 2k + 4. We provide a simple proof of this in Appendix C using Blekherman’s
theorem. Kurpisz et al. [17] independently also give an alternative proof of Grigoriev’s lower
bound, by showing a more general theorem that reduces the analysis of dual certificates
for very symmetric sos proof systems (such as for knapsack) to the analysis of univariate
polynomials.

Grigoriev’s lower bound shows the weakness of the Positivstellensatz-based proof system:
even to refute such easy instances it already needs polynomials of fairly high degree. We prove
here that Grigoriev’s lower bound is exactly tight, answering an open question from [12].

I Theorem 1.3. Let k < r < k + 1 for a nonnegative integer k. The Positivstellensatz
refutation degree of (1) with this value of r is at most 2k + 4.

3 The initial version of [19] only claimed a lower bound on the `1-error of Ω(2n/n3/2). However, their
argument actually shows a bound of Ω(2n/

√
n) after a computational error is corrected. This improves

the bound on the psd extension complexity of the correlation polytope from the 2Ω̃(n2/13), of their paper,
to the 2Ω̃(n2/11) quoted here.

CCC’16



6 On the sum-of-squares degree of symmetric quadratic functions

1.3.3 Quantum query complexity of approximating a function in
expectation

The third application is to quantum algorithms. Kaniewski et al. [16] observed a very close
connection between the sos degree of a function f : {0, 1}n → R+ and a variant of quantum
query complexity: sos-deg(f) is exactly equal to the optimal query complexity among all
quantum algorithms with non-negative outputs whose expected output on input x equals
f(x).4 This model of query complexity in expectation is motivated by similar models of
communication complexity that arose in the study of extension complexity of polytopes [9].

However, as [16] note, this model has some intrinsic interest and motivation as well.
Suppose we want to approximate F (x) =

∑m
i=1 fi(x), where each fi is a non-negative

function of x ∈ {0, 1}n. Then we can just compute, for each i, a random variable whose
expected value is fi(x) and then output the sum of those random variables. By linearity of
expectation, the output will have the correct expectation F (x). It will be tightly concentrated
around its expectation if the individual random variables have a variance that is not too
large. Thus in some cases it suffices to compute the fi(x) in expectation only, rather than to
compute the values fi(x) themselves (which may be much more expensive). In this example,
it is actually not even necessary to compute each fi(x) exactly in expectation. If the ith
random variable has an expectation that is within εi of fi(x), then the expected value of our
output is within

∑m
i=1 εi of the correct value F (x).

The same proofs that Kaniewski et al. [16] used to equate sos-deg(f) and quantum query
complexity in expectation also work in the approximate case. For example, sos-degε(f, `∞)
is the optimal query complexity among all quantum algorithms with non-negative outputs
whose expected output on input x differs from f(x) by at most ε, for every x ∈ {0, 1}n, and
the analogous statements hold for approximation using the other norms. Accordingly, our
above results about approximate sos degree immediately translate to results about quantum
query complexity of algorithms that approximate f in expectation.

1.4 Organization
The rest of the paper is organized as follows. In Section 2, we prove our sos `∞-approximation
bounds (Theorem 1.1). In Section 3 we prove upper bounds on the degree of sos `1-
approximations to fbn/2c (Theorem 1.2), and show that the lower bound of [19] on the
extension complexity of the correlation polytope cannot be improved by obtaining better sos
`1-approximate degree lower bounds. In Section 4 we prove Theorem 1.3, showing tightness
of Grigoriev’s knapsack lower bound.

2 Sum-of-squares approximation in `∞-norm

In this section we give lower and upper bounds on the `∞-approximate sos degree of the
function fk(x) = (|x| − k)(|x| − k − 1) to prove Theorem 1.1.

I Remark. Throughout this section, we will assume that k ≤ n/2. Letting x̄ denote the bitwise
complement of x, we see that fk(x) = (|x̄|−(n−k−1))(|x̄|−(n−k)) = (|x̄|−`)(|x̄|−`−1) where
` = n− k− 1. Thus if k > n/2, then ` ≤ n/2 and fk(x) = f`(x̄). For any h : {0, 1}n → R the
functions h(x) and h(x̄) have the same sos degree, so it suffices to work with fk for k ≤ n/2.

4 To avoid potential confusion: for each fixed x the expectation is taken over the internal randomness of
the algorithm; it is not an expectation over different inputs x.
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2.1 Lower bound preliminaries
The following lemma is implicit in Paturi [25].

I Lemma 2.1 (Paturi [25]). Let p : R → R be a univariate polynomial and suppose that
0 ≤ p(i) ≤ c for all i ∈ {0, 1, . . . , n}. If |p′(α)| ≥ δ for some 0 ≤ α ≤ n, then deg(p) =
Ω( δc

√
α(n− α)).

We give a simple, but convenient, application of this lemma to the case where p is bounded
on {0, 1, . . . , n}, except possibly for a small set S near where p is known to be small.

I Lemma 2.2. Let p : R → R be a univariate polynomial, S ⊆ {0, 1, . . . , n}, and suppose
that the following bounds are known.
|p(i)| ≤ c for all i ∈ {0, 1, . . . , n} \ S, for a constant c.
p(α) ≤ ε, for some α ∈ {0, 1, . . . , bn/2c}.
p(β) ≥ a where |α− β| ≤ d1, for a constant d1.
maxi∈S |i− α| ≤ d2, for a constant d2.

If a ≥ c > ε, then deg(p) = Ω(
√
α(n− α)), where the constant in the Ω(.) depends on

c, d1, d2.

Proof. If |p(i)| ≤ c for all i ∈ S, then applying Paturi’s lemma directly we obtain a bound of

Ω
(
a− ε
d1c

√
(α− d1)(n− α+ d1)

)
.

Otherwise, suppose the maximum of |p(i)| over i ∈ {0, 1, . . . , n} is attained at j ∈ S. Then
the derivative of p is at least (|p(j)| − ε)/d2. Applying Paturi’s lemma in this case gives a
bound of

Ω
(
|p(j)| − ε
d2|p(j)|

√
(α− d2)(n− α+ d2)

)
≥ Ω

(
1
d2

(
1− ε

c

)√
(α− d2)(n− α+ d2)

)
.

J

We will also need the following elegant theorem of Blekherman [2]. Recall that a symmetric
real-valued boolean function f : {0, 1}n → R satisfies f(x) = f(π(x)) for all x ∈ {0, 1}n
and π ∈ Sn, where the permutation π acts as π((x1, . . . , xn)) = (xπ(1), . . . , xπ(n)). For any
symmetric boolean function f of degree d, there is a univariate polynomial f̃ of degree d
such that f(x1, . . . , xn) = f̃(x1 + · · ·+ xn).

I Theorem 2.3 (Blekherman [2]). Let f : {0, 1}n → R+ be a symmetric non-negative real-
valued boolean function and f̃ a univariate polynomial such that f(x1, . . . , xn) = f̃(x1 + · · ·+
xn). If f can be written as the sum of squares of n-variate polynomials of degree d ≤ n/2,
then we can write

f̃(z) = qd(z) + z(n− z)qd−1(z) + z(z − 1)(n− z)(n− 1− z)qd−2(z) + · · ·
· · ·+ z(z − 1) · · · (z − d+ 1)(n− z)(n− 1− z) · · · (n− d+ 1− z)q0(z) (3)

where each qt(z) is a univariate sos polynomial with sos-deg(qt) ≤ t.

In Appendix B we include a proof of Blekherman’s theorem. In Appendix C, we use
Blekherman’s theorem to provide a simple proof of Grigoriev’s lower bound [12] on the degree
of Positivstellensatz refutations for the knapsack problem.

CCC’16



8 On the sum-of-squares degree of symmetric quadratic functions

2.2 Lower bound for exact sos degree

To illustrate our proof technique, we first show how the above tools can be used to prove a
bound of Ω(

√
k(n− k)) on the exact sos degree of f(x) = (|x| − k)(|x| − k − 1). In the next

section, we will extend this proof to also work for the approximate case.

I Theorem 2.4. Let fk : {0, 1}n → R+ be defined as fk(x) = (|x| − k)(|x| − k − 1) for an
integer 1 ≤ k ≤ n− 2. Then sos-deg(fk) = Ω(

√
k(n− k)).

Proof. Following Remark 2, if we show the theorem for 1 ≤ k ≤ n/2, then it will also imply
the theorem for 1 ≤ k ≤ n− 2. We thus assume 1 ≤ k ≤ n/2.

Let d be the sos degree of f . We may assume d ≤ n/2 as otherwise the theorem holds.
Let f̃ be a univariate polynomial of degree ≤ 2d such that f̃(x1 + · · ·+ xn) = f(x1, . . . , xn).
Write f̃(z) = g1(z) + g2(z) where g1(z) = qd(z) + z(n − z)qd−1(z) + · · ·+ z(z − 1) · · · (z −
(k− 1))(n− z)(n− 1− z)(n− (k− 1)− z)qd−k(z) is the first k+ 1 terms in the representation
of f̃ of Theorem 2.3, and g2(z) is the remaining part of that representation.

Our first claim is that (z − k) is a factor of both g1 and g2. Notice that f̃(k) =
g1(k) + g2(k) = 0. Furthermore each term of g1 and g2 is nonnegative on integer points
between 0 and n, which means that each individual term of g1 and g2 must evaluate to 0 at
k.

Consider now a general term z(z − 1) · · · (z − t)(n − z)(n − 1 − z)(n − t − z)qd−t−1(z)
of Blekherman’s representation. If t ≥ k then this term obviously has a factor of z − k. If
t < k then the prefactor z(z− 1) · · · (z− t)(n− z)(n− 1− z)(n− t− z) is non-zero for z = k,
so it must be the case that qd−t−1(k) = 0. Since qd−t−1(z) is a univariate sum-of-squares
polynomial, even (z − k)2 divides qd−t−1(z).

By the choice of the breakpoint between g1 and g2, this shows that (z − k)2 is a factor of
g1 and z − k is a factor of g2. By the same argument, (z − (k + 1))2 is also a factor of g1,
and (z − (k + 1)) is a factor of g2.

In light of this, we can write g1(z) = (z−k)(z−k−1)h1(z), g2(z) = (z−k)(z−k−1)h2(z)
so that

(z − k)(z − k − 1) = f̃(z) = (z − k)(z − k − 1)(h1(z) + h2(z)) .

This means that h1(i) + h2(i) = 1 for all i ∈ {0, 1, . . . , n} \ {k, k + 1}. Furthermore,
h1(k) = h1(k + 1) = 0 as h1 still has roots at k, k + 1 (as g1 had double roots there),
and h2(i) = 0 for i ∈ {0, . . . , k − 1} because each term in h2 includes the prefactor z(z −
1) · · · (z − k+ 1). Combining these observations with the fact that h1(i) ≥ 0, h2(i) ≥ 0 for all
i ∈ {0, 1, . . . , n} \ {k, k + 1} gives the following:
1. 0 ≤ h1(i) ≤ 1 for all i ∈ {0, 1, . . . , n}.
2. h1(i) = 1 for i ∈ {0, . . . , k − 1}.
3. h1(k) = h1(k + 1) = 0.
Applying Lemma 2.2 to h1 now gives the desired result. J

2.3 Lower bound for `∞-approximate sos degree

Now we show the lower bound of Theorem 1.1.

I Theorem 2.5. Let f : {0, 1}n → R+ be defined as f(x) = (|x| − k)(|x| − k − 1) for some
integer 1 ≤ k ≤ n− 2. Then sos-deg1/50(f, `∞) = Ω(

√
k(n− k)).
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Proof. We now describe how the above proof can be modified to work for `∞-approximate
sum-of-squares degree. We again assume 1 ≤ k ≤ n/2. Suppose that h : {0, 1}n → R is a sum
of squares of degree-d ≤ n/2 polynomials that satisfies |h(x)− f(x)| ≤ ε for all x ∈ {0, 1}n,
for some ε < 1/4 to be determined later. Let h̃ be the univariate polynomial such that
h̃(x1 + · · ·+ xn) = h(x1, . . . , xn). Note that h̃ satisfies |h̃(i)− (i− k)(i− k − 1)| ≤ ε for all
i ∈ {0, 1, . . . , n}. We again use Blekherman’s theorem to decompose h̃(z) = g1(z) + g2(z)
where, as before, g1(z) = qd(z) + z(n− z)qd−1(z) + · · ·+ z(z − 1) · · · (z − k + 1)(n− z)(n−
1− z)(n− k + 1− z)qd−k(z). The polynomial g1 has the following properties.
1. g1(i) = h̃(i) for i ∈ {0, 1, . . . , k}, because all terms of g2 are zero on these points.
2. g1(i) ≤ h̃(i) for i ∈ {0, 1, . . . , n}. This follows as g2(i) is nonnegative on integer points in
{0, 1, . . . , n}.

3. g1(i) ≥ 0 for i ∈ [k− 1, n− k+ 1]. Each term of g1 is nonnegative in this interval because
the prefactor is.

We will consider two cases based on the value of g1(k + 3/2). First consider the case
g1(k + 3/2) > ε. In this case, consider a point α ∈ argminz{g1(z) : k − 1 ≤ z ≤ k + 3/2}.
Let g1(α) = δ. By item (3) above and as g1(k − 1), g1(k + 3/2) > ε and g1(k), g1(k + 1) ≤ ε
we have 0 ≤ δ ≤ ε and also g′1(α) = 0.

Now consider the function p1 = g1 − δ. As p1(α) = p′1(α) = 0 it follows that p1 has
a double root at α. Define q1 by p1(z) = (z − α)2q1(z). Note that q1 has the following
properties.
1. q1(i) ≤ 6 + ε for i ∈ {0, 1, . . . , n} \ {k − 1, k, k + 1, k + 2}.
2. q1(k − 1) ≥ 2−2ε

9 .
3. As either |α− k| ≥ 1/2 or |α− k − 1| ≥ 1/2 we have either q1(k) ≤ 4ε or q1(k + 1) ≤ 4ε.
Applying Lemma 2.2 then gives the desired lower bound in this case as long as ε < 1/19.

Now we consider the second case, that g1(k + 3/2) ≤ ε. In this case, we modify g1 by
adding a function that is shaped like a “smile.” Let p1(z) = g1(z) + 8ε(x− k − 1)(x− k − 2).
Note that p1 satisfies p1(k + 1) ≥ 0, p1(k + 3/2) ≤ −ε, and p1(k + 2) ≥ 0. Thus p1(z) has
two roots α, β in [k+ 1, k+ 2], with α ≤ β. Let p1(z) = (z−α)(z−β)r1(z). Then r1 satisfies
the following properties.
1. r1(i) ≤ 2 for i ∈ {0, 1, . . . , n} \ {k + 1, k + 2}.
2. r1(k − 1) ≥ 2

9 + 5ε.
3. |r1(k)| ≤ 16ε.
Applying Lemma 2.2 then gives the desired lower bound as long as ε < 2/99. J

2.4 Upper bound for `∞-approximate sos degree
In this section we show that the lower bound in Theorem 2.5 is tight. To do this, we use
the characterization of the sos degree of a function f : {0, 1}n → R+ as the quantum query
complexity of computing f in expectation [16]. In this model, a quantum algorithm A makes
a number T of quantum queries to the hidden input x, and outputs a non-negative real
number. We say that the algorithm A computes f in expectation if the expected value of the
output of the algorithm A on input x is exactly equal to f(x). We will use QE(f) to denote
the minimum number of quantum queries T needed by such an algorithm to compute f in
expectation. Kaniewski et al. [16] show that QE(f) exactly captures the sos degree of f :

I Theorem 2.6 ([16]). Let f : {0, 1}n → R+. Then QE(f) = sos-deg(f).

Thus, in order to prove an upper bound on the (approximate) sos degree of a function f ,
it suffices to construct a quantum query algorithm that (approximately) computes f in
expectation. The only knowledge of quantum query complexity needed to understand the
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algorithm is Theorem 2.6 above, and the existence of the following quantum algorithms, all
of which are variants of Grover search.

Regular Grover [15, 4]: If |x| ≥ t then there is a quantum algorithm (depending on t)
using O(

√
n/t) queries that finds an i such that xi = 1 with probability at least 1/2.

ε-error Grover [5]: There is a quantum algorithm using O(
√
n log(1/ε)) queries that

finds an i such that xi = 1 with probability at least 1− ε if |x| ≥ 1.
Exact Grover [4]: If |x| = t then there is a quantum algorithm (depending on t) using
O(
√
n/t) queries that finds an i such that xi = 1 with certainty.

The algorithm consists of three subroutines, which we now describe. We begin with the
simplest procedure, SAMPLE(x, S), which motivates the basic plan of the algorithm.

Algorithm 1 Given x ∈ {0, 1}n and S ⊆ [n], samples two entries of x outside of S
1: procedure Sample(x, S)
2: Randomly choose i 6= j ∈ [n] \ S. Output xixj · (n− |S|)(n− |S| − 1)
3: end procedure

I Claim 2.7. The procedure SAMPLE(x, S) makes two queries and the expected value of its
output is (|x| − |S|)(|x| − |S| − 1).

The procedure SAMPLE suggests the following high-level idea for an algorithm for
computing fk(x) = (|x| − k)(|x| − k − 1). For simplicity we describe the high-level idea for
the case where k ≤ n/2 and where we want to compute a constant-error ε-approximation of
fk, in expectation.

First we try to find a set S of k ones in x assuming that |x| > 2k, using a procedure HIGH.
If we find such a set S then we run SAMPLE(x, S) and output f(x) exactly, in expectation.
If the procedure HIGH fails to find such a set S, then we run a procedure LOW. This uses
exact Grover search to determine the Hamming weight of x with certainty if |x| ≤ 2k. Once
we know the Hamming weight of x we can correctly output f(x), deterministically. Both the
procedures HIGH and LOW can be done with O(

√
kn) queries, in the constant error ε case.

The only case where the algorithm may err is if |x| > 2k but the procedure HIGH fails to
find k ones in x. The most subtle part of the algorithm is tuning the parameters such that
this error is at most ε in expectation. We now describe the procedures HIGH and LOW.

Algorithm 2 Find k ones in x with probability 1− δ, assuming |x| ≥ t > 2k
1: procedure High(x, t, δ)
2: S = ∅
3: ` = 1
4: while ` ≤ 5 max(k, dlog(1/δ)e) and |S| < k do
5: `← `+ 1
6: Grover search assuming |x| ≥ t/2.
7: if find xi = 1 then S ← S ∪ i, x← x \ xi
8: end if
9: end while
10: return S

11: end procedure
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I Lemma 2.8. Fix δ and let M = max{k, dlog(1/δ)e}. Suppose that |x| ≥ t > 2k. Then
procedure HIGH(x, t, δ) makes O(M

√
n/t) queries and returns a set S with |S| = k and

xi = 1 for all i ∈ S with probability at least 1− δ.

Proof. As each Grover search requires O(
√
n/t) queries, in total the procedure makes

O(M
√
n/t) queries. Let us now estimate the probability that it exits without finding a set

S of size k.
As we are given that initially |x| ≥ t > 2k, if less than k ones are found then throughout

the algorithm there remain at least t/2 ones in x. Thus each run of Grover has probability
of success at least 1/2. The probability to have fewer than k successes among the 5M runs
is therefore at most

1
25M

k−1∑
i=0

(
5M
i

)
≤ 2−(1−H(k/5M))5M ≤ 2−M ≤ 2− log(1/δ) = δ,

where H(·) denotes binary entropy, and we used that 1−H(k/5M) ≥ 1−H(1/5) ≥ 1/5. J

Next we give the algorithm LOW.

Algorithm 3 Outputs (|x| − k)(|x| − k − 1) with certainty if |x| ≤ t
1: procedure Low(x, t)
2: S = ∅
3: for i = t to 1 do
4: Exact Grover search assuming |x| = i

5: if find xi = 1 then S ← S ∪ i, x← x \ xi
6: end if
7: end for
8: Output (|S| − k)(|S| − k − 1).
9: end procedure

I Claim 2.9. If |x| ≤ t, then LOW(x,t) outputs (|x| − k)(|x| − k − 1) and makes O(
√
tn)

queries.

Proof. The number of queries is

t∑
i=1

O(
√
n/i) = O(

√
tn) .

Next we show that if |x| ≤ t, then LOW(x, t) will find all of the ones in x (this is similar
to [11]). Initially the index i = t and thus i ≥ |x|. This invariant is maintained throughout
the algorithm. If ever i = |x| then we will find all the remaining ones in x as our guess for
the number of ones is always correct after this point. On the other hand, if the algorithm
terminates with i = 1 > |x| then we have found all the ones in the original input x. J

With these procedures in place, we can describe the main algorithm and prove its
correctness.

I Theorem 2.10. For every x ∈ {0, 1}n, the expected value of Main(x, ε) differs from
(|x| − k)(|x| − k − 1) by at most ε. The algorithm makes at most O(

√
kn +

√
n log(1/ε))

queries.
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Algorithm 4 Main
1: procedure Main(x, ε)
2: m = max(k, dlog(1/ε)e)
3: for i = 1 to blog(n/m)c do
4: t← 2im
5: δ ← ε/(4t2)
6: S=HIGH(x, t, δ)
7: if |S| = k then
8: SAMPLE(x, S)
9: Exit
10: end if
11: end for
12: LOW(x, 2m)
13: end procedure

Proof. Following Remark 2 we may assume that k ≤ n/2. First we verify the stated
complexity of the algorithm. Note that by definition of m in the main Algorithm 4, it suffices
to show that the algorithm makes O(

√
nm) queries. By Claim 2.9 the call to LOW(x, 2m)

makes O(
√
mn) queries, and by Claim 2.7 there are at most 2 queries made by SAMPLE as

this is called at most once. Finally, the number of queries in the call to HIGH when t = 2im
and δ = ε/(4t2) is at most

O

(
k

√
n

2im + log(22i+2m2/ε)
√

n

2im

)
= O

(√
kn

2i +
√
n log(1/ε)

2i + log(22i+2m2)
√

n

2im

)

where we have used the fact that m ≥ k and m ≥ log(1/ε). The sum of the first two terms
over i ≥ 1 is O(

√
kn+

√
n log(1/ε)) as desired. As for the sum of the third term, we have

∑
i≥1

O

(
log(22i+2m2)

√
n

2im

)
= O

(
log(m)

√
n

m

)
= O(

√
n) .

We now verify correctness. If |x| ≤ 2m then the algorithm will output (|x| − k)(|x| − k − 1)
in expectation exactly: if k ones are found in x by a call to HIGH then this will be done
by SAMPLE, otherwise all ones in x will be found with certainty by LOW, which will
then output correctly. If |x| > 2m and a call to HIGH succeeds in finding k ones in x,
the algorithm will also output (|x| − k)(|x| − k − 1) exactly, in expectation. Let p be the
probability that this does not happen, i.e., that the output on x is given by the procedure
LOW. Then the expected value of the output on x is

(1− p)(|x| − k)(|x| − k − 1) + p · E[LOW(x, 2m)] ,

and the deviation from the desired output (|x| − k)(|x| − k − 1) is

p · (E[LOW(x, 2m)]− (|x| − k)(|x| − k − 1)) .

Now LOW(x, 2m) will always output a value 0 ≤ (`− k)(`− k− 1) for some ` ∈ [2m], which
is always at most the correct value (|x| − k)(|x| − k − 1) as |x| ≥ 2m > k. Therefore the
largest difference between these is when LOW(x, 2m) outputs 0, giving

|p · (E[LOW(x, 2m)]− (|x| − k)(|x| − k − 1))| ≤ p · (|x| − k)(|x| − k − 1) ≤ p · |x|2 .
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We now finally upper bound this error by giving an upper bound on p. Let i and t = 2im
be such that t ≤ |x| < 2t. For this value of t and δ = ε/(4t2) the call to HIGH(x, t, δ) fails
to find a set S of size k with probability at most δ ≤ ε/|x|2. Thus p · |x|2 ≤ δ · |x|2 ≤ ε, as
desired. J

By Theorem 2.6, the characterization of sos degree in terms of quantum query complexity
in expectation (Theorem 2.10) gives the upper bound in Theorem 1.1

3 Sum-of-squares approximation in `1-norm

In this section, we show upper bounds on the sos degree of polynomials to approximate fk
in `1-norm. In this section we focus on the case where k is bn/2c. When k < 0.49n the
function fk is quite easy to approximate in `1-norm: there is an sos polynomial of degree
O(ln(1/δ)) which gives a δ2n-approximation. We omit the details.5 Our main result on
`1-approximation is the following.

I Theorem 3.1. Let n be odd and k = bn/2c. Then for any 8/
√

2n ≤ δ ≤ 1/4

sos-degδ2n(fk, `1) ≤
⌈

3
√
n√

2δ
ln
(

1
δ

)⌉
.

Lee, Raghavendra, and Steurer [19], building on work of Grigoriev [12], show that in this
case sos-deg2n/

√
n(f, `1) ≥ (n− 1)/2. This lower bound was then plugged into their general

theorem to lift `1-approximate sos degree lower bounds to lower bounds on semidefinite
extension complexity. By taking δ = 3 ln(n)/

√
2n, Theorem 3.1 shows that this lower bound

on the `1-error is tight, up to a logarithmic factor. Also, taking δ to be a small additive
constant shows that there is a degree-O(

√
n) sos polynomial which, on average, disagrees with

fk by only a small constant. Taken as a whole, Theorem 3.1 implies that the quantitative
bounds on the semidefinite extension complexity of the correlation polytope of [19] cannot
be improved simply by improving the sos degree lower bounds on the fk. We now describe
the connection to [19] in greater detail.

3.1 The theorem of Lee, Raghavendra, and Steurer
For a function f : {0, 1}n → R and an integer N ≥ n, let Mf

N :
(
N
n

)
× {0, 1}N → [0, 1] be

the matrix where Mf
N (S, x) = f(x|S). The pattern matrix of f , introduced in the work of

Sherstov [29], is a submatrix of Mf
N . The main theorem of Lee, Raghavendra, and Steurer

is the following statement. Here a degree-d pseudo-density D is a function D : {0, 1}n → R
such that Ex[D(x)] = 1 and Ex[D(x)g(x)2] ≥ 0 for all polynomials g of degree at most d/2
on the boolean cube, with the expectation over a uniformly random x ∈ {0, 1}n. We use
‖D‖∞ to denote maxx∈{0,1}n |D(x)|.

I Theorem 3.2 ([19]). Let f : {0, 1}n → [0, 1]. If there exists an ε ∈ (0, 1] and a degree-d
pseudo-density D : {0, 1}n → R satisfying Ex[D(x)f(x)] < −ε, then for every N ≥ 2n

rkpsd(Mf
N ) ≥

(
cεN

dn2‖D‖∞ logn

)d/4(
ε

‖D‖∞

)3/2√
Exf(x) ,

5 One way to construct such an sos polynomial is to construct a polynomial e as mentioned after
Theorem 1.2 from a classical sampling algorithm: query O(ln(1/δ)) randomly chosen input bits; output
some large number if the observed ratio of 1s is very close to k/n, output 0 otherwise. This induces an
sos polynomial with the right properties.
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where c > 0 is a universal constant.

We do not formally define here the positive semidefinite (psd) rank of a matrix (denoted
by rkpsd above), but remark that psd rank lower bounds are equivalent to semidefinite
extension complexity lower bounds. Lee, Raghavendra, and Steurer proved Theorem 3.2 en
route to their breakthrough result on superpolynomial size lower bounds for semidefinite
programming relaxations of hard optimization problems.

The more pertinent aspect of Theorem 3.2 to us is the role of the degree-d pseudo-
density D. Note that, once we fix the degree of the pseudo-density, the bound only depends
on the ratio Ex[D(x)f(x)]/‖D‖∞. The largest such ratio that a degree-d pseudo-density can
achieve is closely related to the best `1-approximation of f by degree-d/2 sos polynomials.
The following claim follows from strong duality of semidefinite programming.
I Claim 3.3. Let f : {0, 1}n → R. Then sos-degδ2n(f, `1) > d if and only if there exists a
“witness” function ψ : {0, 1}n → R satisfying Ex[f(x)ψ(x)] > δ, and Ex[p2(x)ψ(x)] ≤ 0 for
all polynomials p of degree at most d, and ‖ψ‖∞ = 1.
For n odd and k = bn/2c Lee et al. [19], building on work of Grigoriev [12], show that there
is a degree-(n − 1) pseudo-density D such that Ex[D(x)fbn/2c]/‖D‖∞ < − 1

4
√
n
. Plugging

f = fbn/2c/n
2 (with this normalization the range is in [0, 1]) into Theorem 3.2 gives a lower

bound of 2Ω̃(N2/11) on the psd rank of Mf
N for N = Õ(n11/2). As Mf

N is a submatrix of the
slack matrix of the correlation polytope, this gives the desired lower bound on the semidefinite
extension complexity of the correlation polytope.

In light of Claim 3.3, if sos-degδ2n(f, `1) ≤ d, then there can be no degree-2d pseudo-
density with Ex[D(x)f(x)]/‖D‖∞ < −δ. The `1-approximate sos degree upper bounds of
Theorem 3.1 therefore imply the non-existence of pseudo-densities with good properties for
Theorem 3.2. It can be verified that 2Ω̃(N2/11) is in fact the best quantitative bound that
Theorem 3.2 can show on rkpsd(Mfk

N ) over all the functions fk and tradeoffs between δ and
sos-degδ2n(fk, `1).

3.2 Proof of Theorem 3.1
Throughout this proof we set f = fbn/2c. The main idea of the proof of Theorem 3.1 is
to construct a univariate polynomial p such that h(z) = (z − bn/2c)(z − dn/2e) + p(z) is
globally nonnegative (and therefore sos) and

∑n
i=0
(
n
i

)
|p(i)|, which is the `1-error of h(|x|)

in approximating f , is reasonably small. We will construct p using Chebyshev polynomials.
Similar constructions to what we need have been done before, see for example [28]; as our
requirements are somewhat specific, however, we do the construction from scratch.

Let Td be the Chebyshev polynomial of degree d. We first recall some basic facts about
Chebyshev polynomials [27].
I Fact 3.4. Let Td(z) be the Chebyshev polynomial of degree d. Then
1. |Td(z)| ≤ 1 for z ∈ [−1, 1].
2. Td(z) = 1

2
(
(z −

√
z2 − 1)d + (z +

√
z2 − 1)d

)
.

3. Td+1(z) = 2zTd(z)− Td−1(z).
4. Td(z) is monotonically increasing for z ≥ 1, and if d is even Td(z) ≥ 1 for z ∈ R \ [−1, 1].

I Theorem 3.5. Let n ≥ 1 be an integer, ε ∈ (0, 1/4] an error parameter, and let a ∈ R
satisfy 1/

√
2 ≤ a ≤

√
n/8. There is a polynomial p of degree at most⌈

3n
4
√

2 a
ln
(

1
2ε

)⌉
+ 1
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with the following properties:
1. p(z) ≥ 1

4 − z
2 for all z.

2. |p(z)| ≤ ε for z ∈ [−n2 ,−a] ∪ [a, n2 ].
3. |p(z)| ≤ 2 for z ∈ [−n2 ,−

1
2 ] ∪ [ 1

2 ,
n
2 ].

Proof. Note that we require in particular that p(0) ≥ 1/4. Roughly speaking, p should have
a ‘peak’ around 0 and then quickly calm down and be bounded on either side of this peak
once |z| ≥ a. The difficulty in constructing p is that its peak is in between the intervals on
which is bounded. To get around this, we note that is suffices to let p(z) = εq(z2), where q
has the properties
1. q(z) ≥ 1

4ε −
z
ε for z ≥ 0.

2. |q(z)| ≤ 1 for z ∈ [a2, n
2

4 ].
3. |q(z)| ≤ 2

ε for z ∈ [ 1
4 ,

n2

4 ].

Now q(z) is ripe for a construction with Chebyshev polynomials, and this is what we do.
For notational convenience, let L = n/2. Define the mapping s(z) = −2(z−a2)/(L2−a2) + 1
that takes the interval [a2, L2] to [−1, 1]. Note that this mapping takes L2 to −1 and a2 to
1. Let Td be the Chebyshev polynomial of even degree d (to be chosen later) and define

q(z) = Td(s(z)) .

As |Td(z)| ≤ 1 for z ∈ [−1, 1] by Fact 3.4 item (1), it follows that q(z) satisfies condition (2).
We now turn to item (1) and handle the easy cases first. For z ≥ 1

4 we have 1
4ε −

z
ε ≤ 0,

so in this region we just need to check that q(z) is not too negative. If z ∈ [ 1
4 , a

2], then
s(z) ≥ 1 and therefore q(z) ≥ 1. Likewise, as we take d to be even, q(z) ≥ 1 for z ≥ L2.
For z ∈ [a2, L2], we have |q(z)| ≤ 1. Thus item (1) will be satisfied in this region so long as
a2 ≥ 1

4 + ε. This holds as in the theorem statement ε ≤ 1/4 and a ≥ 1/
√

2.
With these easy cases taken care of, we turn to verify the first item for z ∈ [0, 1

4 ]. To
do this it suffices to choose d such that q(1/4) ≥ 1

4ε as q(z) is monotonically decreasing in
the interval [0, 1/4], since Td(y) is monotonically increasing for y ≥ 1 by Fact 3.4 item (4).
This condition is at odds with item (3). As the maximum of q(z) in the interval [1/4, L2] is
attained at z = 1/4, we can simultaneously satisfy item (3) by ensuring q(1/4) ≤ 2

ε . Thus
we choose d = d∗ to be the least even number such that

q(1/4) = Td∗

(
1 + 2(a2 − 1/4)

L2 − a2

)
≥ 1

4ε .

By this choice, item (1) is now satisfied. To verify item (3), we use Fact 3.4 item (3) to see
the inequality Ts+2(z) ≤ 4z2Ts(z), valid for z ≥ 1. Applying this we have

Td∗

(
1 + 2(a2 − 1/4)

L2 − a2

)
≤ 1
ε

(
1 + 2(a2 − 1/4)

L2 − a2

)2

≤ 2
ε
,

as Td∗−2

(
1 + 2(a2−1/4)

L2−a2

)
< 1

4ε by definition, and a ≤
√
n/8.

Finally, we upper bound d∗. Let µ = 2(a2 − 1/4)/(L2 − a2). We want Td(1 + µ) ≥ 1
4ε .

Using the fact that Td(1 + µ) ≥ (1/2)(1 +
√

2µ)d for µ ≥ 0 by Fact 3.4 item (2), it suffices to
take d ≥ ln( 1

2ε )/ ln(1 +
√

2µ).
As ln(1 + y) ≥ 2y/(2 + y) for y ≥ 0 and

√
2µ ≤ 1, it suffices to take d ≥ 3 ln( 1

2ε )/(2
√

2µ).
Since a ≥ 1/

√
2, and therefore a2 − 1/4 ≥ a2/2, we have µ ≥ a2/L2 = 4a2/n2. Hence there

is a d such that Td(1 + µ) ≥ 1
4ε satisfying

d ≤
⌈

3n
4
√

2 a
ln
(

1
2ε

)⌉
.
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We add 1 in the theorem statement for the additional requirement that the degree is even. J

Proof of Theorem 3.1. Fix 8/
√

2n ≤ δ ≤ 1/4, and let ε = δ/2 and a = ε
√
n/4. Note that

1/
√

2 ≤ a ≤
√
n/8 with these choices. Thus by Theorem 3.5, there is a polynomial p of

degree at most d 6
√
n√

2δ ln( 1
δ )e+ 1 satisfying the three conditions of Theorem 3.5 with this value

of a, ε.
Let g(z) = (z − n/2)2 − 1/4 + p(z − n/2) be a univariate polynomial, and consider the

approximation to f given by g(|x|). By construction g is globally nonnegative and thus (as
it is univariate) is a sum of squares of polynomials of degree at most d 3

√
n√

2δ ln( 1
δ )e. Let us

examine the `1-error of the function g(|x|) in approximating f . We divide the error into two
cases: the error on strings whose Hamming weight is at most n/2 − a or at least n/2 + a

(type I), and those whose Hamming weight is in the interval [n/2− a, n/2 + a] (type II).
As p is bounded by ε for z ∈ [−n/2,−a]∪ [a, n/2] the `1-error over type I inputs is at most

ε · 2n. The number of type II inputs is at most (2a/
√
n)2n, and the error on each is at most 2

as p(z) ≤ 2 for z ∈ [−n/2, n/2]. Thus the total `1-error is 2n
(
ε+ 4a√

n

)
= 2n · 2ε = δ2n. J

4 Proof complexity: Positivstellensatz refutations

Say that we have a system of polynomial equalities

f1 = · · · = fm = 0, x2
1 − x1 = · · · = x2

n − xn = 0 (4)

where each fi ∈ R[x1, . . . , xn]. Because of the presence of the equalities x2
i − xi = 0 (which

force xi ∈ {0, 1}), this is referred to as the boolean setting.
The Positivstellensatz [32] implies that the system (4) has no common solutions in Rn if

and only if there are polynomials g1, . . . , gm+n ∈ R[x1, . . . , xn] and a sos polynomial h such
that

m∑
i=1

figi +
n∑
i=1

(x2
i − xi)gm+i = 1 + h . (5)

Grigoriev and Vorobjov [14] define a proof system based on this principle.
I Definition 4.1. A Positivstellensatz refutation of the system (4) is given by a set of
polynomials {g1, . . . , gm+n, h} which satisfy (5) and where h is a sum of squares. The degree
of this refutation is

max{deg(h),max
i∈[m]

deg(figi),max
i∈[n]

deg((x2
i − xi)gm+i)} .

By the Positivstellensatz, this proof system is sound and complete: a system is unsatisfiable
if and only if it has a refutation of a certain degree. One may view the degree of a refutation
as a measure of complexity.

4.1 Knapsack
The knapsack system is given by the equations

f =
∑
i

xi − r = 0, x2
j − xj = 0 for j = 1, . . . , n . (6)

If r is not an integer then this system has no solution: Grigoriev [12] shows the following
theorem.
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I Theorem 4.2 (Grigoriev [12]). Let 0 ≤ k ≤ (n− 3)/2 be an integer. If k < r < n− k, then
any Positivstellensatz refutation of the system (6) has degree at least 2k + 4.

We provide a simple proof of this in Appendix C using Blekherman’s theorem.
Note that the equations for non-integer r correspond to a trivially easy (and obviously

unsatisfiable) instance of the knapsack problem, where all items have weight 1. As mentioned
in the introduction, this shows the weakness of the Positivstellensatz-based proof system:
even to refute such easy instances it already needs polynomials of fairly high degree.

Grigoriev asked if this upper bound of 2k+ 4 was tight. Later work of Grigoriev et al. [13]
showed that the proof technique of [12] could not show a larger lower bound than 2k + 4.
We show that there actually exist Positivstellensatz refutations of (6) of degree 2k + 4.

I Theorem 4.3. Let 0 ≤ k ≤ n/2 be an integer. For k < r < k + 1, the system (6) has a
Positivstellensatz refutation of degree 2k + 4.

Let x = (x1, . . . , xn) and |x| =
∑n
i=1 xi. A key role in the proof will be played by the

polynomials

Ak(x) = |x|(|x| − 1)(|x| − 2) · · · (|x| − k + 1) .

The function Ak can be computed with k queries by a natural extension of the Sampling
Algorithm 1 and thus can be written as a sum-of-squares on the boolean cube of total degree
2k. We go ahead and record this formally in the next lemma. Recall that the kth elementary
symmetric polynomial is defined as

ek(x1, . . . , xn) =
∑

i1<i2<···<ik

xi1xi2 · · ·xik .

I Lemma 4.4. There exist polynomials gi(x) of degree at most 2k − 2 such that

Ak(x) =
n∑
i=1

(x2
i − xi)gi(x) + (k!)ek(x2

1, . . . , x
2
n) .

We give the proof of this in Appendix A.

Proof of Theorem 4.3. Rearranging Equation (5), we are looking for functions g, g1, . . . , gn
of low degree and a low-degree sum-of-squares h such that

g(x)(|x| − r)− 1 = h+
∑
i

gi(x)(x2
i − xi) .

Notice that, for any g, the left-hand side will be negative when |x| = r. By Lemma 4.4, Ak+2
is of the form of the right-hand side. Since Ak+2 has degree 2k + 4, and is also negative
when |x| = r, we try to find a polynomial g(x) of degree at most 2k + 3 such that

g(x) (|x| − r)− b = Ak+2(x)

for a positive constant b. Dividing g and Ak+2 by b will then give us the required solution.
Let b = −r(r − 1) · · · (r − k)(r − k − 1) > 0. Then |x| − r divides Ak+2(x) + b and we can
write Ak+2(x) + b = g(x) (|x| − r) for some polynomial g of degree 2k + 3. J
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5 Future work

We list a few questions for future work:
Can we improve the lower bound of Theorem 1.1 for small ε? To match the upper bound
for all k, it would suffice to show that sos-degε(f1, `∞) = Ω(

√
n log(1/ε)), which is very

plausible by analogy with what is known for the n-bit OR function.
Can we extend our results to all symmetric quadratic functions, or to even larger classes
of symmetric functions?
Can we find more applications of Blekherman’s theorem (Theorem 2.3), in complexity
theory, in quantum computing, or in optimization? Kurpisz et al. [17, Section 5] used
their general reduction to univariate polynomials (already mentioned in Section 1.3.2),
to show that strengthening the knapsack polytope with Wolsey’s “Knapsack Covering
Inequalities” and applying nearly logn rounds of the Lasserre hierarchy does not produce
an SDP with integrality gap below 2− o(1) (which is the integrality gap of the natural
LP relaxation). Similar results may be obtainable using Blekherman’s theorem.
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A Proof of Lemma 4.4

Recall that

Ak(x1, . . . , xn) = |x|(|x| − 1) · · · (|x| − k + 1) .

We first prove two claims.

I Claim A.1. There exist polynomials gi(x) of degree at most k − 1 such that

Ak(x1, . . . , xn) =
n∑
i=1

(x2
i − xi)gi(x) + (k!)ek(x) .

Proof. We prove the claim by induction on k. When k = 1 then A1 = e1, and the claim
follows by setting all gi to be 0.

Now suppose the claim is true up to k. Then, using the induction hypothesis to rewrite
Ak,

Ak+1(x) = Ak(x) · (e1(x)− k) =
(

n∑
i=1

(x2
i − xi)gi(x) + k!ek(x)

)
(e1(x)− k)

=
n∑
i=1

(x2
i − xi)hi(x) + k!ek(x)(e1(x)− k) ,

where each hi(x) = gi(x) · (e1(x)− k) is of degree at most k. We now focus on

ek(x)(e1(x)− k) =
∑
S⊆[n]
|S|=k

∏
i∈S

xi · (e1(x)− k) .

A term in this sum corresponding to the subset S can be rewritten as

∏
i∈S

xi

∑
i∈S

xi +
∑
i6∈S

xi − k

 =
∑
i∈S

(x2
i − xi)

∏
j∈S,j 6=i

xj +
∑
i 6∈S

xi
∏
j∈S

xj

Summing over all terms of this form gives (k + 1)!ek+1(x) +
∑
i(x2

i − xi) · fi(x), where fi(x)
is of degree at most k − 1, proving the claim. J

To complete the proof, we now need to show that ed(x) is a sum of squares of total
degree 2d modulo the ideal 〈x2

1 − x1, . . . , x
2
n − xn〉. To do this, it suffices to show the same

for
∏d
i=1 xi, which we do in the next claim.

I Claim A.2. Fix a natural number d. Then there are polynomials gi ∈ R[x1, . . . , xd] for
i = 1, . . . , d such that

d∏
i=1

x2
i −

d∏
i=1

xi =
d∑
i=1

(x2
i − xi)gi(x1, . . . , xd) ,

and each gi is of degree at most 2d− 2.
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Proof. We write x2
1x

2
2 · · ·x2

d − x1x2 · · ·xd as a telescoping sum. We use the convention that
the product over the empty set is 1.

d∏
i=1

x2
i −

d∏
i=1

xi =
d∑
j=1

∏
i<j

xi
∏
i≥j

x2
i −

∏
i≤j

xi
∏
i>j

x2
i


=

d∑
j=1

(x2
j − xj)

∏
i<j

xi
∏
i>j

x2
i

This is of the desired form, and it can be seen that each multiplier of x2
j − xj is of degree at

most 2d− 2. J

We put these claims together to prove Lemma 4.4, which we restate here.

I Lemma A.3. There exist polynomials gi(x) of degree at most 2k − 2 such that

Ak(x) =
n∑
i=1

(x2
i − xi)gi(x) + (k!)ek(x2

1, . . . , x
2
n) .

Proof. By Claim A.1 we can write Ak(x1, . . . , xn) =
∑n
i=1(x2

i − xi)gi(x) + (k!)ek(x) where
each gi(x) is of degree at most k − 1. Now by Claim A.2

ek(x) = ek(x2
1, . . . , x

2
n) +

n∑
i=1

(x2
i − xi) · fi(x) ,

where each fi(x) is of degree at most 2k − 2. This proves the lemma. J

B Blekherman’s theorem

Blekherman and Riener [3] made a general study of the relationship between symmetric
nonnegative forms and symmetric sums of squares. Subsequently, Blekherman [2] considered
the special case of polynomials that are nonnegative on the hypercube, and gave a very useful
decomposition of such polynomials. We include a proof here of a special case of his theorem.

The technique used for our proof is a novel decomposition of functions on the hypercube
using the kernels of certain differential operators. A similar decomposition was independently
discovered by Filmus and Mossel [8] who use it to prove an invariance principle for low-degree
functions on slices of the boolean hypercube.

Let [n] denote the set of integers {1, 2, . . . , n}. The ideal I := 〈x2
i −xi : i ∈ [n]〉 consists of

polynomials that are identically zero on the hypercube H = {0, 1}n. Let Lt = R[x]t/I be the
space of degree-t homogeneous multilinear polynomials on n variables. The

(
n
t

)
monomials

xS where S ⊆ [n], |S| = t, form a basis for Lt. The correspondence between set S and
monomial xS can be used to map degree-t polynomials to linear combinations of t-subsets of
[n]. Here polynomial p(x) corresponds to the

(
n
t

)
-dimensional vector of the coefficients of its

monomials, say in lexicographic order.
Let Mt = R[x]≤t/I denote the space of n-variate polynomials of degree at most t on the

hypercube. Given x ∈ Rn, the sum
∑
i∈[n] xi is denoted by |x|.

CCC’16
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B.1 Kernels of the operators Wt

For t ≥ 0, define the linear operator Wt that acts by summing over the partial derivatives of
a degree-t polynomial,

Wtp(x) =

∑
i∈[n]

∂

∂xi

 p(x) . (7)

For t ≥ 1 the operator Wt : Lt → Lt−1 is represented by a matrix with rows and columns
indexed by S, T ⊂ [n] with |S| = t − 1 and |T | = t respectively, and entry (Wt)S,T = 1 if
S ⊂ T and 0 otherwise. The adjoint operator WT

t : Lt−1 → Lt acts as multiplication by
|x| − t+ 1 on each degree-(t− 1) monomial (and by linear extension on all of Lt−1),

WT
t x

S =
∑
i6∈S

xS∪{i} = xS(|x| − t+ 1) . (8)

Note that we used the hypercube constraints x2
i = xi to derive the second equality in

Equation (8). Our goal in this section is to bound the dimension of Ker(Wt) and find an
explicit basis for these spaces.

We relate Ker(Wt) to the eigenspaces of the Johnson graphs. The Johnson graph J(n, t)
has

(
n
t

)
vertices corresponding to the t-subsets S ⊂ [n], |S| = t, with subsets S, T connected

by an edge if and only if |S ∩ T | = t − 1. The adjacency matrix of J(n, t) is denoted by
AJ (n, t). The following lemma computes the spectrum of AJ (n, t); it can be found in Godsil’s
notes [10], but we include a proof here as these notes are no longer online.

I Theorem B.1. The eigenvalues of AJ(n, t) are t(n − t) − i(n + 1 − i) with multiplicity(
n
i

)
−
(
n
i−1
)
for i = {0, 1, . . . , t} and t ≤ (n+ 1)/2.

Proof. We proceed by induction on n and t. For the base case, note that the Johnson graph
J(n, 1) is the complete graph on n vertices. The corresponding adjacency matrix AJ(n, 1)
has eigenvalue −1 with multiplicity (n− 1) and (n− 1) with multiplicity 1, thus the theorem
is true for n = 1.

We obtain the spectrum of AJ (n, t) in terms of the spectrum of AJ (n, t− 1). Computing
the entries of WT

t Wt and WtW
T
t it follows that,

WT
t Wt = tI +AJ(n, t)

WtW
T
t = (n− t+ 1)I +AJ(n, t− 1) . (9)

The non-zero eigenspaces of WT
t Wt correspond to those of WtW

T
t , so if v is an eigenvector

for AJ(n, t− 1) with eigenvalue λi then WT
t v is an eigenvector for AJ(n, t) with eigenvalue

λi + n− 2t+ 1. By the induction hypothesis, (t− 1)(n− t+ 1)− i(n+ 1− i) is an eigenvalue
for AJ(n, t − 1) with multiplicity

(
n
i

)
−
(
n
i−1
)
for i ∈ [t − 1]. Adding n − 2t + 1, it follows

that t(n− t)− i(n+ 1− i) is an eigenvalue for AJ(n, t) with the same multiplicity.
The induction hypothesis also implies that WtW

T
t = (n− t+ 1)I +AJ (n, t− 1) has rank(

n
t−1
)
as it is positive semidefinite and the smallest eigenvalue is n − 2t + 2 > 0. Hence

the
(
n
t

)
-dimensional matrix WT

t Wt has rank
(
n
t−1
)
, so its kernel has dimension

(
n
t

)
−
(
n
t−1
)
.

This implies that AJ(n, t) has an eigenspace of dimension
(
n
t

)
−
(
n
t−1
)
with eigenvalue

−t = t(n− t)− t(n+ 1− t). J

The following corollary computes the dimension of Ker(Wt).

I Lemma B.2. Dim(Ker(Wt)) =
(
n
t

)
−
(
n
t−1
)
for t ≤ (n+ 1)/2.
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Proof. Dim(Ker(Wt)) =
(
n
t

)
− rank(WT

t ) by definition, and from the above proof it follows
that rank(WT

t ) = rank(WtW
T
t ) =

(
n
t−1
)
for t ≤ (n+ 1)/2. J

We next compute an explicit basis for Ker(Wt), viewed as a subspace of Lt. We recall the
notion of a standard Young tableau of shape (n− t, t) to describe the basis.
I Definition B.3. A standard Young tableau U of shape (n− t, t) is an arrangement of [n] in
an array with two rows of size n− t and t respectively, such that each row and column is
sorted in ascending order.
The basis for Ker(Wt) described by the following theorem will be used for computations in
the following sections. Note that polynomials pU in this basis evaluate to 0 for all x ∈ {0, 1}n
with |x| ∈ {0, 1, . . . , t− 1} ∪ {n, n− 1, . . . , n− t+ 1}.

I Theorem B.4. For t ≤ n/2 and A = (a(1), a(2), . . . , a(2t)) an array of distinct elements
a(i) ∈ [n], define the polynomial pA(x) :=

∏
i∈[t](xa(2i−1) − xa(2i)).

The polynomials pU (x), where (u(2i − i), u(2i)) for i ∈ [t] are the entries of the i-th
column of a standard (n− t, t) Young tableau U , form a basis for Ker(Wt).

Proof. We first show that for all |A| = 2t, the degree-t polynomial pA(x) belongs to the
kernel of Wt. Computing the partial derivatives of pA(x),

∂

∂xj
pA(x) =


pA(x)/(xa(2i−1) − xa(2i)) if j = a(2i− 1)
−pA(x)/(xa(2i−1) − xa(2i)) if j = a(2i)
0 otherwise

(10)

Summing over the partial derivatives and using Equation (7) it follows that WtpA(x) = 0.
The set of polynomials {pA(x) : |A| = 2t} is not linearly independent. The straightening

algorithm for Young tableaux (see for example Section 10.5 in [6]) shows that the polynomials
pU (x) where (u(2i− i), u(2i)) for i ∈ [t] are entries of the i-th column of a standard (n− t, t)
Young tableau U form a basis for Span{pA(x) : |A| = 2t}. A simple counting argument
or the hook length formula [6] shows that the number of such U is

(
n
t

)
−
(
n
t−1
)
. These pU

together thus span a space of dimension
(
n
t

)
−
(
n
t−1
)
, which is Dim(Ker(Wt)) by Lemma B.2.

Hence the pU form a basis for Ker(Wt). J

B.2 Polynomial decompositions
The action of the operators Wt yields the decomposition Lt = Ker(Wt)⊕ Im(WT

t ). Applying
this decomposition iteratively we obtain the following theorem,

I Theorem B.5. A polynomial p(x) ∈ Lt can be decomposed as

p(x) = pt(x) + (|x| − t+ 1)pt−1(x) + · · ·+ (|x| − t+ 1) · · · (|x| − 1)|x|p0(x)

= pt(x) +
t∑
i=1

pt−i(x)
i∏

j=1
(|x| − t+ j) (11)

where pt−i(x) ∈ Ker(Wt−i).

Proof. We proceed by induction on t. For the base case t = 0, observe that a degree-0
polynomial belongs to Ker(W0). For the inductive step, a polynomial p(x) ∈ Lt can be
written as pt(x) + q(x) where pt(x) ∈ Ker(Wt) and q(x) ∈ Im(WT

t ). The action of WT
t on

polynomials in Lt−1 is described by Equation (8): for all g(x) ∈ Lt−1 we have

WT
t g(x) = (|x| − t+ 1)g(x) . (12)
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As q(x) ∈ Im(WT
t ), it can be factored as q(x) = (|x| − t+ 1)h(x) where h(x) ∈ Lt−1. The

result follows using the induction hypothesis for g(x). J

Applying the above theorem to the subspaces Lj (j ∈ {0, . . . , t}) that are contained in Mt

and collecting the terms corresponding to Ker(Wj), we obtain the following decomposition
for polynomials in Mt.

I Corollary B.6. A polynomial p(x) ∈Mt can be decomposed as p(x) =
∑t
j=0 qj(x), where

qj(x) =
∑

0≤i≤t−j
|x|ipij(x) (13)

such that each pij(x) ∈ Ker(Wj).

Proof. A polynomial p(x) ∈Mt can be written as p(x) =
∑t
i=0 pi(x) where pi(x) ∈ Li is the

homogeneous degree-i component of p. Applying Theorem B.5 to each pi(x) and collecting
all the terms over the Equations (11) with prefactors in Ker(Wj), we obtain a decomposition
p(x) =

∑
j∈[t] q

′
j(x) such that

q′j(x) = p′jj(x) + p′j+1,j(x)(|x| − j) + p′j+2,j(x)(|x| − j)(|x| − j + 1) + · · ·
· · ·+ p′t,j(x)(|x| − j)(|x| − j + 1) · · · (|x| − t+ 1) . (14)

Note that the indices in the above equation increase, because Ker(Wj) occurs in the de-
compositions of pi(x) for i ≥ j. Let pij(x) be the coefficient of |x|i for 0 ≤ i ≤ t− j in the
above expression. This pij(x) is a linear combination of polynomials p′ij(x) ∈ Ker(Wj) and
therefore also lies in Ker(Wj). The decomposition in Equation (13) follows. J

B.3 Symmetrization and Blekherman’s theorem
The symmetric group Sn acts on the polynomial ring Mn by permuting the indices of the
monomials. The subspace of symmetric polynomials in Mn that are invariant under the
action of Sn is denoted by Λn. The operator Sym : Mn → Λn maps a polynomial to its
symmetrization,

Sym(p)(x) := 1
n!
∑
σ∈Sn

p(σx) . (15)

The symmetrization of degree k monomials evaluates to a univariate polynomial in |x| over
Mn.

I Lemma B.7. Let mk(x) = x1x2 · · ·xk be a degree-k monomial, then the following identity
is true in the ring Mn,

Sym(mk)(x) = |x|(|x| − 1) · · · (|x| − k + 1)
n(n− 1) · · · (n− k + 1) . (16)

Proof. We proceed by induction on k, for k = 1 the result is clearly true. Let xS be
an arbitrary degree k monomial. There are k!(n − k)! permutations σ ∈ Sn such that
σ(x1x2 · · ·xk) = xS , thus Sym(mk)(x) evaluates to

Sym(mk)(x) = 1(
n
k

) ∑
|S|=k

xS . (17)
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In order to to express Sym(mk)(x) in terms of Sym(mk−1)(x), we write the above equation
in terms of the operator W t

k from Section B.1,

Sym(mk)(x) = 1(
n
k

)WT
k

1
k

∑
|U |=k−1

xU

 = (|x| − k + 1)
(n− k + 1) Sym(mk−1)(x) . (18)

The second equality follows from Equation (8) and the expression for Sym(mk−1) in Equa-
tion (17). The result follows from the induction hypothesis. J

The above lemma shows that Sym(p) for polynomials p ∈Mn can be viewed as a univariate
polynomial in |x| by extending the mapping given by Lemma B.7 to all p ∈Mn. We denote
the univariate polynomial thus obtained by Symuni(p) to disambiguate from the multivariate
polynomial in Equation (15).

We can define an inner product on polynomials p, q ∈ Lt by treating them as vectors of
coefficients: if p(x) =

∑
|S|=t pSx

S and q(x) =
∑
|S|=t qSx

S then

〈p|q〉 :=
∑

S⊆[n],|S|=t

pSqS . (19)

The symmetrization of the product of polynomials in Ker(Wt) can be expressed in terms of
this inner product.

I Lemma B.8. If p, q ∈ Ker(Wt) for some t ≤ n/2, then:

Sym(pq)(x) = 〈p|q〉 (n− 2t)!
n!

∏
0≤i<t

(|x| − i)(n− |x| − i) . (20)

Proof. Theorem B.4 shows that Ker(Wt) has a basis consisting of polynomials pU (x) such
that pU (x) = 0 for all x ∈ {0, 1}n with |x| ∈ {0, 1, . . . , t − 1} ∪ {n, n − 1, . . . , n − t + 1}.
Consider such an x. Evaluating Sym(pq) at x using Equation (15) by expanding p and q in
the basis given by Theorem B.4, it follows that Symuni(pq)(α) = 0 for all α ∈ {0, 1, . . . , t−
1} ∪ {n, n− 1, . . . , n− t+ 1}. Lemma B.7 shows that Sym(pq)(x) is a univariate polynomial
Symuni in |x| of degree at most 2t, hence

Sym(pq)(x) = λ
∏

0≤i<t
(|x| − i)(n− |x| − i) . (21)

for some λ ∈ R. Below we determine λ by evaluating Sym(pq) for x ∈ {0, 1}n such that
|x| = t.

We compute Sym(pq)(x) by evaluating the sum
∑
σ∈Sn

p(σx)q(σx) in Equation (15). As
p, q are homogeneous degree-t polynomials, for each x with |x| = t there is a unique S ⊂ [n],
|S| = t, such that p(x) = pS and q(x) = qS . In other words, x sets exactly one degree-t
monomial xS to 1 and all others to 0. There are t!(n− t)! different σ ∈ Sn such that σ(x)
sets the same monomial to 1. The symmetrization Sym(pq)(x) therefore evaluates to

Sym(pq)(x) = 1
n!
∑
σ∈Sn

p(σx)q(σx) = t!(n− t)!
n!

∑
|S|=t

pSqS . (22)

Sym(pq)(x) also evaluates to λ
∏

0≤i<t(t − i)(n − t − i). Equating the two expressions we
have:

λt!
∏

0≤i<t
(n− t− i) = 〈p|q〉t!(n− t)!

n! (23)

which implies λ = 〈p|q〉(n−2t)!
n! , and the theorem follows. J
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We next show that the symmetrization of the product of polynomials p ∈ Ker(Wt), q ∈
Ker(Wt′) evaluates to 0 if t 6= t′. The following lemma is used for the proof in Lemma B.10.

I Lemma B.9. If p(x) =
∏
i∈[k](xi − xi+1)q(x) for some odd k, and q(x) is a polynomial

that does not depend on variables x1, . . . , xk+1, then Sym(p) = 0.

Proof. It suffices to show that Sym(p)(x) = 0 for all x ∈ {0, 1}n, because a multilinear
polynomial that is 0 on the hypercube is identically equal to 0. Define the involution σ → σ

on Sn by setting σ(i) = σ(i+ 1) if i ∈ [k + 1] is odd, σ(i) = σ(i− 1) if i ∈ [k + 1] is even,
and σ(i) = σ(i) for i > k + 1. It follows that σ is an involution as k + 1 is even and it acts
by swapping the pairs (σ(2i − 1), σ(2i)) for i ∈ [(k + 1)/2]. This involution partitions Sn
into pairs (σ, σ), and hence

Sym(p)(x) = 1
n!
∑
(σ,σ)

(p(σx) + p(σx)) = 0. (24)

The second equality follows as p(σx) = −p(σx) for all x ∈ {0, 1}n and σ ∈ Sn. J

I Lemma B.10. If p ∈ Ker(Wt) and q ∈ Ker(Wt′) for n/2 ≥ t > t′, then Sym(pq) = 0.

Proof. It suffices to prove the statement for polynomials p = pU and q = qV belonging to
the bases for Ker(Wt) and Ker(Wt′) constructed in Theorem B.4. The arrays U ,V define
matchings M(U) =

⋃
i∈[t](u(2i − 1), u(2i)) and M(V) =

⋃
i∈[t′](v(2i − 1), v(2i)) on [n] of

size t and t′ respectively. The product pUqV =
∏

(a,b)∈M(U)∪M(V)(xa − xb). If M(U) ∪M(V)
contains an odd-length path as an induced subgraph, then we can use Lemma B.9 to conclude
that Sym(pUqV) = 0.

It suffices to show that the union of two matchings of different sizes contains an odd-length
path as an induced subgraph. The connected components of a union of two distinct matchings
on [n] either form even-length cycles or paths. Color the edges in M(U) red and the edges in
M(V) blue. The number of red edges t is greater than blue edges t′, so there must be at
least one connected component that is an odd-length path, as even-length paths and cycles
have an equal number of red and blue edges. J

The preceding lemmas allow us to give a proof of Blekherman’s result [2] on the sym-
metrization of sum-of-squares polynomials on the hypercube.

I Theorem B.11 (Blekherman). The symmetrization of the square of polynomial p ∈Mt for
t ≤ n/2 can be decomposed as

Sym(p2)(x) =
t∑

j=0
pt−j(|x|)

 ∏
0≤i<j

(|x| − i)(n− |x| − i)

 (25)

where pt−j is a univariate polynomial that is the sum of squares of polynomials of degree at
most t− j.

Proof. Consider the representation of the polynomial p(x) =
∑t
j=0 qj(x) given by Corol-

lary B.6,

qj(x) =
∑

0≤k≤t−j
|x|kpkj(x) (26)
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where the polynomials pkj(x) ∈ Ker(Wj). Lemma B.10 shows that Sym(pkjpk′j′) = 0 if
j 6= j′, hence Sym(p2) can be decomposed as

Sym(p2) =
t∑

j=0
Sym

(
q2
j

)
. (27)

Expanding the term Sym
(
q2
j

)
using Lemma B.8, we have

∑
0≤k,l≤t−j

Sym(|x|k+lpkjplj) = c

 ∏
0≤i<j

(|x| − i)(n− |x| − i)

 ∑
0≤k,l≤t−j

〈pkj |plj〉|x|k+l

= c

 ∏
0≤i<j

(|x| − i)(n− |x| − i)

xTPx (28)

where c is a constant independent of |x|, P ∈ R(t−j+1)×(t−j+1) is the matrix with entries
Pkl = 〈pkj |plj〉, and x ∈ Rt−j+1 is the vector with entries (1, |x|, |x|2, . . . , |x|t−j). The matrix
P is positive semidefinite, hence the polynomial pt−j(|x|) corresponding to the quadratic
form xtPx is a sum of squares of polynomials in |x| of degree at most t− j. The theorem
follows. J

Note that the proof is constructive, as it provides a way to compute the terms in the
decomposition by projecting onto the eigenspaces Wt of the Johnson scheme. For example,
the first term pt(|x|) in (25) is in fact Symuni(p)2 as the Sym operator maps Ker(Wj) to 0
for all j > 0.

I Corollary B.12. The polynomial pt(|x|) in Theorem B.11 is Symuni(p)2.

A symmetric function f that is the sum of squares of polynomials of degree d ≤ n/2 is a sum
of terms Sym(p2) for n-variate polynomials p of degree d ≤ n/2. Applying Theorem B.11 for
t = d we obtain Blekherman’s result as stated in Theorem 2.3.

Note that Theorem B.11 applies to the setting where deg(p(x)) ≤ n/2, this suffices for
our applications. Blekherman’s theorem in [2] is valid for all degrees modulo the ideal
I = 〈

∏
0≤i≤n(|x| − i)〉.

C Grigoriev’s knapsack lower bound

We now see how Blekherman’s theorem can be easily used to reprove Grigoriev’s lower bound
on the degree of Positivstellensatz refutations of knapsack (Theorem 4.2). A Positivstellensatz
refutation of the knapsack system of equations (1) with parameter r consists of polynomials
g, g1, . . . , gn and a sos polynomial h such that

g(x) ·
(

n∑
i=1

xi − r

)
+

n∑
i=1

gi(x) · (x2
i − xi) = 1 + h(x) . (29)

I Theorem C.1 (Grigoriev [12]). Let 0 ≤ k ≤ (n− 3)/2 be an integer. If k < r < n− k, then
any Positivstellensatz refutation of the knapsack system of equations with parameter r, as
in Equation (29), has degree at least 2k + 4.

Proof. Grigoriev constructs a functional Gr : R[x1, . . . , xn] → R such that: when Gr is
applied to the left-hand side of Equation (29) it evaluates to 0, provided that the total
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degree of the left-hand side is at most n; and when Gr is applied to the right-hand side
of Equation (29) it is at least 1, provided the total degree of the right-hand side is at most
2k + 2. This leads to a contradiction, hence constructing such a functional Gr suffices to
prove that a Positivstellensatz refutation must have degree at least min{n, 2k + 4}. The
theorem then follows, with the additional observation that if min{n, 2k+ 4} = n is odd, then
we can actually obtain a lower bound of n+ 1 (since any sum-of-squares polynomial must
have even degree).

The functional Gr is first defined on the quotient ring A = R[x1, . . . , xn]/〈x2
1−x1, . . . , x

2
n−

xn〉. For p ∈ A define
Gr(p) = Symuni(p)(r).

In other words, Gr looks at the univariate polynomial formed from the symmetrization of
p over the symmetric group, and evaluates it at the point r. Explicitly, for a monomial
xS =

∏
i∈S xi with |S| = t we see by Lemma B.7 that Gr(xS) = Bt where

Bt = r(r − 1) · · · (r − t+ 1)
n(n− 1) · · · (n− t+ 1) . (30)

For p ∈ R[x1, . . . , xn] let p̄ be its canonical multilinear representative in A. The definition
of the functional Gr is extended from A to the polynomial ring by letting Gr(p) := Gr(p̄) for
p ∈ R[x1, . . . , xn].

Grigoriev’s theorem now follows from the following four observations about Gr:
1. Gr (g(x) · (

∑
i xi − r)) = 0 for all polynomials g with deg(g) < n. It suffices to show this

for g(x) = xS =
∏
i∈S xi for some S ( [n] with |S| = t < n. In this case, by Equation (30),

Gr(xS(
∑
i xi − r)) = (n− t)Bt+1 + (t− r)Bt = 0.

2. Gr
(
gi(x)(x2

i − xi)
)

= 0 for all polynomials gi. This is because the canonical multilinear
representative of gi(x)(x2

i − xi) in the quotient ring A is the constant-0 polynomial, and
Symuni(0)(r) = 0.

3. Gr(1) = 1 for all values of r. The symmetrization of the constant-1 polynomial is itself,
and the constant-1 polynomial always evaluates to 1.

4. Gr
(
p2(x)

)
≥ 0 if p is a polynomial of degree at most k+1. By Blekherman’s Theorem 2.3,

if p ∈ A and d = deg(p) then

Symuni(p2)(x) = qd(x) + x(n− x)qd−1(x) + x(x− 1)(n− x)(n− 1− x)qd−2(x) + · · ·
+x(x− 1) · · · (x− d+ 1)(n− x)(n− 1− x) · · · (n− d+ 1− x)q0(r) .

(31)

It follows that Symuni(p2)(x) ≥ 0 for x ∈ [d− 1, n− d+ 1]. Thus if k < r < n− k, then
Gr(p2) ≥ 0 for any p of degree ≤ k + 1. By linearity this extends to any h that is a sum
of squares of polynomials of degree ≤ k + 1.

The first two observations imply that the left-hand side of Equation (29) evaluates to 0
under Gr (provided the total degree of the left-hand side is at most n), while the last two
observations imply that the right-hand side evaluates to at least 1 (provided the total degree
on the right is at most 2k + 2). J

D Application of Grigoriev’s bound to `∞-error sos degree

Let n be odd and let f = fbn/2c, that is f(x) = (|x| − n/2)2 − 1/4. Our Theorem 1.1 gives
that any sos polynomial approximating f with `∞-error at most 1/50, needs degree Ω(n).
The functional Gr defined by Grigoriev (see discussion above Equation (30)) can be used
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to show an incomparable result: any sos polynomial of degree (n− 1)/2 has error at least
Ω(1/ logn) in approximating f in `∞-norm.

I Theorem D.1. Let n be odd and f : {0, 1}n → R be defined as f(x) = (|x| − n/2)2 − 1/4.
Any sos polynomial of degree (n− 1)/2 has error at least

(1−O(1/n)) π4
1

ln((n+ 1)/2) + γ + ln(16)

in approximating f in `∞ norm. Here γ ≈ 0.577 is the Euler-Mascheroni constant.

Proof. Let h : {0, 1}n → R be a sos polynomial of degree (n− 1)/2 approximating f with
`∞-error ε. Write h(x) = f(x) + e(x) where e is the function of “errors” satisfying |e(x)| ≤ ε
for all x ∈ {0, 1}n. Let δy : {0, 1}n → {0, 1} be the delta function on the boolean cube, where
δy(x) = 1 if and only if x = y. Recall that Gn/2(f) = Symuni(f)(n/2) = (n/2−n/2)2−1/4 =
−1/4. By linearity of Gn/2 we have

Gn/2(f + e) = −1/4 + Gn/2(e) = −1/4 + Gn/2

 ∑
y∈{0,1}n

e(y)δy


≤ −1/4 + ε

∑
y∈{0,1}n

|Gn/2(δy)| .

On the other hand, Gn/2(f + e) ≥ 0 as f + e is a sum-of-squares of polynomials of degree at
most (n− 1)/2 (property 4 in the proof of Theorem C.1). Thus

ε ≥

4
∑

y∈{0,1}n

|Gn/2(δy)|

−1

. (32)

The main part of the proof will be to evaluate this sum.
Let Li : R→ R be the degree-n polynomial uniquely defined by

Li(z) =
{

1 z = i

0 z ∈ {0, 1, 2, . . . , n} \ {i}
.

Then we see that Gn/2(δy) = L|y|(n/2)/
(
n
|y|
)
, and so

∑
y∈{0,1}n

|Gn/2(δy)| =
n∑
k=0
|Lk(n/2)| .

To do this sum, let us first simplify the summand

|Lk(n/2)| =
∏n
a=0,a 6=k |n/2− a|∏n
a=0,a 6=k |k − a|

=
∏n
a=0 |n/2− a|

k!(n− k)!|n/2− k|

= 1
2n+1

n!!n!!
k!(n− k)!|n/2− k|

= n!
22n−1

(
n−1

2
)
!2

(
n

k

)
1

|n− 2k|

= n

22n−1

(
n− 1

(n− 1)/2

)(
n

k

)
1

|n− 2k| ,
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where n!! is defined as
∏dn/2e−1
j=0 (n − 2j), and we used n! = n!! · 2(n−1)/2 · ((n − 1)/2)! for

odd n in the penultimate equality.
For what comes next, it will be more convenient to express |Lk(n/2)| in terms of m =

(n− 1)/2. In this way, we obtain an expression defined for all m, rather than just odd n.

|Lk(m+ 1/2)| = 2m+ 1
24m+1

(
2m
m

)(
2m+ 1
k

)
1

|2m− 2k + 1|

Let A(m) denote the sum over k = 0, . . . , n = 2m+ 1, which is

A(m) = 2m+ 1
24m+1

(
2m
m

) 2m+1∑
k=0

1
|2m− 2k + 1|

(
2m+ 1
k

)
.

By symmetry of the binomial coefficients we can multiply by 2 and sum over only half of
them, thereby removing the absolute values.

A(m) = 2m+ 1
42m

(
2m
m

) m∑
`=0

1
2`+ 1

(
2m+ 1
`+m+ 1

)
Now we look at the difference between consecutive A(m):
I Claim D.2.

A(m+ 1)−A(m) =
((2(m+1)

m+1
)

4m+1

)2

Proof. It is somewhat cumbersome to verify this claim directly. We take the following
approach. Let A(m) = B(m)C(m), where

B(m) = 2m+ 1
42m

(
2m
m

)
, C(m) =

m∑
k=0

1
2k + 1

(
2m+ 1
k +m+ 1

)
.

Note that
B(m+ 1)
B(m) = 2m+ 3

8(m+ 1) .

Since B(0) = 1, this resolves to

B(m+ 1) = (2m+ 3)!!
8m+1(m+ 1)! = 2m+ 3

42(m+1)

(
2(m+ 1)
m+ 1

)
.

By Zeilberger’s algorithm [26] we find a recurrence satisfied by the summand of C(m).

2m+ 3
2k + 1

(
2m+ 3
k +m+ 2

)
− 8(m+ 1)

2k + 1

(
2m+ 1
k +m+ 1

)
=
(

2(m+ 1)
m+ k + 1

)
−
(

2(m+ 1)
m+ k + 2

)
.

Summing this recurrence over k = 0, . . . ,m+ 1 we find

(2m+ 3)C(m+ 1)− 8(m+ 1)C(m) =
(

2(m+ 1)
m+ 1

)
.

This means that

A(m+ 1)− 8(m+ 1)
2m+ 3 B(m+ 1)︸ ︷︷ ︸

B(m)

C(m) = B(m+ 1)
2m+ 3

(
2(m+ 1)
m+ 1

)
,



T. Lee and A. Prakash and R. de Wolf and H. Yuen 31

and in turn

A(m+ 1)−A(m) = 1
42(m+1)

(
2(m+ 1)
m+ 1

)2
.

J

As A(0) = 1 this gives

A(m) =
m∑
i=0

((2i
i

)
4i

)2

.

Luckily, the latter sum has already been asymptotically evaluated in the study of the
quantum adversary bound for the ordered search problem [7]. There it is shown that

N∑
i=0

((2i
i

)
4i

)2

= 1
π

(ln(N + 1) + γ + ln(16)) +O(1/N) ,

where γ ≈ 0.577 is the Euler-Mascheroni constant.
This gives

∑
y∈{0,1}n

|Gn/2(δy)| = A((n− 1)/2) =
(n−1)/2∑
i=0

((2i
i

)
4i

)2

= 1
π

(ln((n+ 1)/2) + γ + ln(16)) +O(1/n) .

Plugging this into Equation (32) gives the theorem. J
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