
Efficient error-correcting data structures

Victor Chen∗ Elena Grigorescu† Ronald de Wolf‡

April 13, 2009

Abstract

We are interested in constructing efficient data structuresthat still work (most of the time) when hit
by a constant fraction of adversarial noise. Roughly speaking, by “efficient” we mean constructions that
are simultaneously close to the optimal time and space for the noiseless case. Recently, de Wolf [20]
introduced a model for this, called “error-correcting datastructures,” and studied the tradeoff between
data structure length and efficiency of query answering (as measured by the number of bit-probes).
Unfortunately, this tradeoff is quite bad in that model, andit is unlikely that one could construct error-
correcting data structures that are simultaneously efficient in time and space, unless significant progress
is made in improving this tradeoff for “locally decodable codes.” In this paper we relax the requirements
on error-correcting data structures: our model only requires thatmostqueries are answered correctly,
while for the remaining queries the decoder is allowed to claim ignorance. If there is no noise on the
data structure, it should answer all queries correctly. Using the “relaxed locally decodable codes” of
Ben-Sasson et al. [5] as a building block, we show that this relaxation allows us to construct efficient,
near-optimal data structures for a number of fundamental data structure problems, including versions of
the MEMBERSHIP, PREDECESSOR, and RANK problems.

∗MIT CSAIL, victor@csail.mit.edu. Supported by NSF award CCF-0829672
†MIT CSAIL, elena_g@mit.edu. This work started when this author was visiting CWI in Summer 2008. Supported by NSF

award CCF-0829672.
‡CWI Amsterdam, rdewolf@cwi.nl. Partially supported by a Vidi grant from the Netherlands Organization for Scientific Re-

search (NWO), and by the European Commission under the Integrated Project Qubit Applications (QAP) funded by the IST direc-
torate as Contract Number 015848.

0

1 Introduction

The area of data structures is one of the oldest and most basicparts of computer science, in theory as well as
in practice. The underlying question is a time-space tradeoff: we are given a piece of data, and we would like
to store it in a short, space-efficient data structure that atthe same time allows us to quickly answer specific
queries about the stored data. On one extreme, we could storethe data by just storing a list of the correct
answers to all possible queries. This is extremely time-efficient (you can immediately look up the correct
answer without doing any computation), but usually takes much more space than the information-theoretic
minimum. At the other extreme, we could just store a maximally compressed version of the data. This
is as space-efficient as it gets, but probably not very good for quickly answering queries, since we would
first have to undo the whole compression. A good data structure sits somewhere in the middle: it does not
use much more space than the information-theoretic minimum, but stores the data in a structured way that
enables efficient query-answering.

In general, a data structure problem is specified by a setD of data items, a setQ of queries, a setA of
answers, and a functionf : D×Q → A which specifies the correct answerf(x, q) of queryq to data itemx.
A typical example is thes-OUT-OF-n MEMBERSHIP problem. Consider a universe[n] = {1, . . . , n} and
somes ≪ n. Given a setS ⊆ [n] of at mosts elements, we would like to store it in a compact representation
that can answer “membership queries” efficiently, i.e., tell us whether or noti ∈ S for a giveni ∈ [n].
Formally D = {S : S ⊆ [n], |S| ≤ s}, Q = [n], andA = {0, 1}. The function is MEMn,s(S, i) = 1
if i ∈ S, and MEMn,s(S, i) = 0 if i 6∈ S. Since there are

(

n
s

)

subsets of the universe of sizes, and we
need a different instantiation of the data structure for each such set, clearlylog

(

n
s

)

≈ s log n bits is the
information-theoretic lower bound on the space our data structure needs (our logs are always to base 2). An
easy way to achieve this is to storeS in sorted order. If each number is stored in its ownlog n-bit “cell”, this
data structure takess cells, which iss log n bits. To answer a membership query we can do binary search on
the list, which enables us to determine whetheri ∈ S in aboutlog s “cell-probes” orlog s · log n bit-probes.
The length of this data structure is essentially optimal, but its number of probes is not. Fredman, Komlós,
and Szemerédi [11] developed a famous hashing-based data structure that has lengthO(s) cells (which
is O(s log n) bits), but that only needs aconstantnumber of cell-probes (which isO(log n) bit-probes).
Buhrman, Miltersen, Radhakrishnan, and Venkatesh [7] tookthe final step, designing a data structure of
lengthO(s log n) bits that answers queries withonly one bit-probe. This is simultaneously optimal in terms
of time (clearly, 1 bit-probe cannot be improved upon), and space (up to a constant factor). Unlike the
earlier data structures, theirs has a randomized decoder and a small error probability (which they show is
unavoidable). Many more data structure problems have been studied, and often their optimal time-space
tradeoff is known. We refer to Miltersen’s survey [16] for more details.

It is reasonable to assume that most practical implementations of data storage are susceptible tonoise:
over time some of the bits in the data structure may be flipped or erased by various accidental or malicious
causes. This buildup of errors may cause the data structure to deteriorate to the point that most queries are
not answered correctly any more. Accordingly, it is a natural task to design data structures that are not only
efficient in space and time, but also continue to work when subjected to a certain amount of noise. Some
efficient data structures have indeed been designed that cancope with noise in certain special cases, for
instance for pointer-based data structures [1] and for models where a small amount of incorruptible memory
is available [10, 12, 9, 6].

Recently, de Wolf [20] came up with a general model of so-called error-correcting data structures, which
takes its treatment of errors from the area of error-correcting codes. The goal is to design a data structure,
ideally with both small length and small number of bit-probes for query-answering, that still gives correct

1

answers whenever the data structure is corrupted by noise. The data structure is viewed as a bitstring, and we
want to be able to deal with a (small) constant fractionδ of errors.1 As is usual in error-correcting codes, we
make a worst-case assumption: the noise is not probabilistic butadversarial, it could be placed in positions
that make life as hard as possible. Formally, the definition from [20] is as follows:

Definition 1 (ECD). Let f : D×Q → A be a data structure problem. Letp be a positive integer,δ ∈ [0, 1],
andε ∈ [0, 1/2]. A (p, δ, ε)-error-correcting data structure (ECD)for f of lengthN is a mapE : D →
{0, 1}N (the “encoder”) for which there is a randomized algorithmD (the “decoder”) with the following
properties: for everyx ∈ D, and everyw ∈ {0, 1}N at Hamming distance∆(w, E(x)) ≤ δN

1. D makes at mostp probes to its oracle (i.e., to bits ofw).

2. Pr[Dw(q) = f(x, q)] ≥ 1 − ε for everyq ∈ Q.

This model generalizes the usual noise-free data structures (whereδ = 0) as well as error-correcting
codes (where the data structure problem has only one possible query, namely to recover the encoded string).
The definition also incorporates so-calledlocally decodable codes(LDCs), which are error-correcting data
structures for the membership problem withs = n, i.e., where the possible data pieces are alln-bit strings
and a query asks for the value of theith bit of the encoded data.

This model of error-correcting data structures is fairly clean and general but has the severe drawback that
the optimal time-space tradeoffs are much worse than in the noise-free model. For instance, de Wolf [20]
shows that for the membership problem where the size of the set S is bounded by somes ≪ n, the optimal
length of ap-probe error-correcting data structure roughly equals (upto a log n factor) the length of the
shortestp-probe LDC that encodess-bit strings. All known constructions of LDCs with constantnumber
of probes have superpolynomial length [22, 8], and this has been conjectured to be inevitable.2 Hence it
is unlikely that error-correcting data structures can simultaneously be error-correcting and efficient in both
time and space. Since the membership problem is a special case of many other data structure problems,
those other problems are subject to the LDC lower bounds as well.

In this paper we overcome this drawback by relaxing the requirements of the data structure a bit. We take
our lead from therelaxedlocally decodable codes introduced by Ben-Sasson, Goldreich, Harsha, Sudan, and
Vadhan [5]. They relax the usual definition of an LDC by requiring the decoder to return the correct answer
on mostrather than all queriesi. For the remaining queries it is also allowed to claim ignorance, i.e., to
output a special symbol ‘⊥’ interpreted as “don’t know.” For none of the queries, however, is it allowed to
return an incorrect answer with large probability. Formally, their definition is as follows:

Definition 2 (RLDC). Let p be a positive integer,δ ∈ [0, 1], ε ∈ [0, 1/2], andρ ∈ [0, 1]. A (p, δ, ε, ρ)-
relaxed locally decodable code (RLDC), mappingn information bits into an encoding of lengthN , is a map
E : {0, 1}n → {0, 1}N for which there is a randomized algorithmD with the following properties: for every
x ∈ {0, 1}n, and everyw ∈ {0, 1}N at Hamming distance∆(w, E(x)) ≤ δN

1. D makes at mostp probes to its oracle.

2. Pr[Dw(i) ∈ {xi,⊥}] ≥ 1 − ε for everyi ∈ [n].

1We only consider bitflip-errors here, not erasures. Since the latter are easier to deal with than bit-flips, it suffices to design a
data structure dealing with bitflip-errors.

2However, the bestprovenlower bounds on the length ofp-probe LDCs (with fixed error-rateδ and error probabilityε) are
only of the slightly-superlinear formn1+Ω(1/p) [13, 15, 21] (only forp = 2 the tight bound2Θ(n) is known [15]). Efficient
error-correcting data structures are thus not excluded by what we know, though they seem unlikely.

2

3. The setG = {i : Pr[Dw(i) = xi] ≥ 1 − ε} has size at leastρn.

4. If w = E(x) thenG = [n].

In this definition ‘G’ refers to the “good” set, the set of queries that are answered correctly with high
probability. Note that incorrect answers have probabilityat mostε, no matter whetheri ∈ G or not. Also
note, by Condition 4, that if there is no noise then for every possiblei we get the correct answer (w.h.p.).
The special caseρ = 1 is the usual definition of a locally decodable code (LDC), which is due to Katz
and Trevisan [13]. Relaxing the LDC-definition like this suddenly allows for very efficient codes: while
all known constructions of LDCs withO(1) bit-probes have superpolynomial length, Ben-Sasson et al.[5]
managed to construct relaxed LDCs withO(1) bit-probes ofnearly-linear length. We remark that their
construction, based on PCPs of proximity, is quite involved.

We can similarly relax the definition of an error-correctingdata structure to obtain the main concept of
this paper:relaxed error-correcting data structure, or RECD for short:

Definition 3 (RECD). Let f : D×Q → A be a data structure problem. Letp be a positive integer,δ ∈ [0, 1],
ε ∈ [0, 1/2], andρ ∈ [0, 1]. A (p, δ, ε, ρ)-relaxed error-correcting data structure (RECD)for f of lengthN
is a mapE : D → {0, 1}N for which there is a randomized algorithmD with the following properties: for
everyx ∈ D, and everyw ∈ {0, 1}N at Hamming distance∆(w, E(x)) ≤ δN

1. D makes at mostp probes to its oracle.

2. Pr[Dw(q) ∈ {f(x, q),⊥}] ≥ 1 − ε for everyq ∈ Q.

3. The setG = {q : Pr[Dw(q) = f(x, q)] ≥ 1 − ε} has size at leastρ|Q|.

4. If w = E(x) thenG = Q.

Note that an ECD is an RECD withρ = 1, while an RLDC is exactly an RECD for MEMBERSHIP.
The main contribution of this paper is to put forward this newdefinition and show that the relaxation

allows us to construct error-correcting data structures that are efficient. More specifically, for a number of
basic data structure problems, such as versions of MEMBERSHIP, PREDECESSOR, RANK , and NEAREST

NEIGHBOR, the time and space of our RECDs are quite close to the optimaltime and space tradeoff in the
noiselesscase. Accordingly, at a relatively small overhead in time and space, one can protect oneself against
a constant fraction of noise, while still answering all queries correctly (with high probability) in the noiseless
case. Our main theorems can be stated informally as follows.

Theorem 1 (Informal). There exists an RECD forMEMn,s that answers membership queries by probing
O(1) bits and that has lengthO(s1+η log n), whereη can be set arbitrarily small.

For arbitrary alphabet size we obtain a similar result.

Theorem 2 (Informal). Let f : D × Q → A be a data structure problem. Then there exists an RECD for
f that answers queries by probingO(log |A|) bit and that has lengthO(|Q|1+η log |A|), whereη can be set
arbitrarily small.

These results have immediate applications to constructingefficient relaxed error-correcting data struc-
tures for the versions of MEMBERSHIP, PREDECESSOR, RANK , and NEAREST NEIGHBOR.

3

2 Preliminaries

We use[n] to denote{1, . . . , n}, and often switch back and forth between subsets of[n] and then-bit strings
that are the characteristic vectors of those subsets. For instance, setsS ⊆ [n] of size at mosts correspond to
n-bit strings of Hamming weight at mosts.

We next list a few basic data structure problems for which we later obtain efficient RECDs.

Membership: This is the most basic data structure, studied from different perspectives in the literature.
Constructing an error-correcting data structure for membership is equivalent to constructing a locally de-
codable code (LDC). The construction of LDCs has received a lot of attention, and it has numerous appli-
cations and connections in various areas such as probabilistically checkable proofs [2], private information
retrieval [22], or hardness reductions [3].

⋆ MEMBERSHIP: Given a subset of a universe of sizen, determine if a given elementi is in that set.
D = {0, 1}n, Q = [n], A = {0, 1}, MEMn(x, i) = xi

⋆ s-OUT-OF-n MEMBERSHIP: This is the membership problem to sparse sets.
D = {x ∈ {0, 1}n : |x| ≤ s}, Q = [n], A = {0, 1}, MEMn,s(x, i) = xi

Predecessor: This is another common data structure problem, and very tight time/space trade-offs were
obtained in [18, 4] for the noiseless case. The problem has been considered in various models, including
cell-probe and RAM models, for both its static as well as dynamic variants. We also consider a weaker,
decision version of the problem, where the queries have binary answers.

⋆ PREDECESSOR SEARCH: Given a subset of an ordered universe of sizen, and a specific element, find
the closest predecessor of that element in the set.
D = {0, 1}n, Q = [n], A = {0, . . . , n}, PREDSEARCHn(x, i) = max{j : j < i, xj = 1} (where
max(∅) = 0)

⋆ PREDECESSOR DECISION: Given a subset of an ordered universe of sizen, and a specific element,
decide if there is a predecessor of that element in the set.
D = {0, 1}n, Q = [n], A = {0, 1}, PREDDECn(x, i) = x1 ∨ · · · ∨ xi−1

Rank: Optimal bounds for this were exhibited in [17] in the noiseless case. In this work we derive some
results for both the general problem, as well as for a restricted version.

⋆ RANK : Given a subset of an ordered universe of sizen, and a specific element, find the rank of this
element in the set.
D = {0, 1}n, Q = [n], A = {0, . . . , n}, RANK n(x, i) =

∑i
j=1 xi

⋆ RESTRICTED BOUNDED RANK: Given a subset of sizes of an ordered universe of sizen, and a
specific element, find the rank of this element if it is in the set.

D = {0, 1}n, Q = [n], A = {0, . . . , s}, RRANK n,s(x, i) =

{

0 if xi = 0
∑i

j=1 xi if xi = 1.

4

Nearest neighbor: Given a collection of pointsX in the Hamming cube of dimensiond, and a specific
point y, find a/the point inX that is closest toy in terms of Hamming distance.

D = {0, 1}2d

, Q = {0, 1}d, A = {0, 1}d, NEARd(X , y) = arg minx∈X ∆(x, y)

Polynomial evaluation: Evaluate a univariate polynomial at a specified element overa finite field. Nearly-
optimal bounds for the noiseless POLYNOMIAL EVALUATION were recently obtained in [14].

The setD consists of allx ∈ {0, 1}n which are bit representations of polynomialsgx in F[X] with
F = {0, 1}m andn = m · (deg(gx) + 1). Q = A = F, and POLYEVAL n,m(x, α) = gx(α).

3 Queries with binary answers

In this section we consider the case where queries have binary answers, i.e.,A = {0, 1}. We provide
efficient RECDs for some commonly studied data structure problems.

3.1 The general MEMBERSHIP problem

Our basic building block is the relaxed LDC of Ben-Sasson et al. [5] of nearly-linear length. We already
mentioned this in the introduction and here state their result in more detail:

Theorem 3(BGHSV [5]). For everyε ∈ (0, 1/2) andη > 0, there exist an integerp and positive constants
c andτ , such that for everyn and everyδ ≤ τ , there exists a(p, δ, ε, 1 − cδ)-RLDC mappingn bits into an
encoding of lengthO(n1+η).

Equivalently, this is a(p, δ, ε, 1 − cδ)-RECD for MEMn. Choosingη > 0 to be very small, the length
O(n1+η) is close to optimal (clearly, at leastn is needed). By picking the error-rateδ a sufficiently small
constant, we can setρ = 1 − cδ (the fraction of queries in the good setG) very close to1.

For an arbitrary data structure problemf : D × Q → A with binary answer setA, we can construct an
RECD with length only slightly larger than|Q| and only a constant number of probes for each query. This
can be achieved by writing down the answers to all the possible queries inQ and encoding this|Q|-bit string
by the RLDC provided by Theorem 3.

Corollary 4. Letf : D×Q → {0, 1} be a data structure problem. For everyε ∈ (0, 1/2) andη > 0, there
exist an integerp and positive constantsc andτ , such that for everyδ ≤ τ , f has a(p, δ, ε, 1 − cδ)-RECD
of lengthO(|Q|1+η).

Corollary 4 implies the existence of good RECDs in the case whereQ = [n]. In particular, for the
MEMBERSHIPand PREDECESSORDECISION problems, we obtain nearly optimal RECDs.

Corollary 5 (MEMBERSHIPand PREDECESSOR DECISION). For everyn, MEMn andPREDn have RECDs
with p = O(1) bit-probes and nearly-linear lengthO(n1+η).

The parameters are optimal up to a constant factor in the number of bit-probes and optimal up to a
factornη in its length (clearly we need length at leastn bits, since the answers to all queries jointly allow to
reconstruct the datax ∈ {0, 1}n).

5

3.2 The sparse MEMBERSHIP problem

In many data structure applications the data is sparse. For instance ins-OUT-OF-n MEMBERSHIPwe only
care about storing sets of some sizes much smaller than the universe sizen. Since there at least

(

n
s

)

different data items to encode, any data structure will needspaceN ≥ log
(

n
s

)

≈ s log n. The RECD for
MEMBERSHIP from the end of the last section is of course also an RECD for the sparse version, but its
lengthn1+η ≫ s log n is far from optimal now. In this section we construct an RECD for s-OUT-OF-n
MEMBERSHIPthat is simultaneously close to optimal in time and space: itstill uses only a constant number
of bit-probes, but its length is onlyO(s1+η log n) bits.

We will use the following one-probe (non-error-correcting) data structure of Buhrman et al. [7] and its
properties, which we describe next.

Theorem 6(BMRV [7]) . For everyε ∈ (0, 1/2) and for every positive integerss ≤ n, there is an(1, 0, ε)-
ECD for MEMn,s of lengthm = 100

ε2 s log n bits.

Properties of the BMRV encoding:The encoding can be represented as a bipartite graphG = L × R
with |L| = n left vertices and|R| = m right vertices, and uniform left degreed = log n

ε
. G is an expander

graph: for each setS ⊆ L with |S| ≤ 2s, its neighborhood satisfies|N(S)| ≥
(

1 − ε
2

)

|S|d. For each
assignment of bits to the left vertices with at mosts 1s (i.e., eachx ∈ {0, 1}n of weight |x| ≤ s), the
encoding specifies an assignment of bits to the right vertices (which is them-bit encoding ofx). For each
i ∈ [n] let Pi = N({i}) ⊆ [m]. A crucial property of the encoding functionEbmrv is that for everyx of
weight |x| ≤ s, if y = Ebmrv(x) ∈ {0, 1}m thenPrj∈Pi [xi = yj] ≥ 1 − ε. Hence the decoder for this data
structure can just probe a random indexj ∈ Pi and return the resulting bityj. Note that this construction is
not error-correcting at all, since|Pi| errors in the data structure suffice to erase all informationabout theith
bit of the encodedx.

By combining the BMRV encoding with the RLDC construction ofTheorem 3, one easily obtains an
(O(1), δ, ε, 1 − O(δ))-RECD for MEMn,s of lengthO((s log n)1+η). However, we can do better:

Theorem 7. For everyε ∈ (0, 1/2) andη > 0, there exist an integerp and positive constantsc andτ , such
that for all s andn, and everyδ ≤ τ , MEMn,s has a(p, δ, ε, 1 − s

2n
)-RECD of lengthO(s1+η log n).

Note that the size of the good setG is at leastρn = n − s
2 . Hence corrupting aδ-fraction of the bits of

the RECD could turn half of the correct 1-answers into “don’tknow,” but not all. This factor12 can easily be
reduced further.

Proof. We show the existence of such an RECD forε = .49. By standard amplification techniques (i.e.,
O(log(1/ε)) repetitions) we can reduce the error probability to any other ε. The idea is similar to the
approach of [20], which divides the BMRV data structure intoroughly log n disjoint blocks of roughlys
bits each, and encodes such block separately with ap-probe LDC. We do something similar, using an RLDC
instead of an LDC to encode each block, and need to use the expander property of the BMRV structure to
show thatρ is close to 1.

Encoding. We start with a BMRV structure for encodingn′ = 20n bits with error probability 1
10 . Let

Ebmrv be the encoder for a(1, 0, 1
10)-ECD for MEM20n,s of lengthm = 104s log(20n) (from Theorem 6).

Claim 8 (from Section 2.3 of [20]). We can partition them bits into b = 10 log(20n) disjoint sets
B1, . . . , Bb of s′ = 103s indices each, such that for each of the firstn indices, there are at leastb/4
setsk satisfying|Pi ∩ Bk| = 1.

6

We view an encodingy ∈ {0, 1}m as the concatenation ofb strings ofs′ bits each:y = yB1 · · · yBb
. If

there were no noise, it would suffice to pick a blockBk at random, and to probe and return one of thePi-bits
from yBk

. In order to deal with noise, we will encode each of the blockswith a (p, 105δ, 1
100 , 1− cδ)-RLDC

that encodess′ bits into O(s′1+η) bits. Forp = O(1) and sufficiently smallδ, such an RLDC exists by
Theorem 3. LetErldc andDrldc be its encoder and decoder, respectively. Forx ∈ {0, 1}n of weight|x| ≤ s,
the encoderE of our RECD for MEMn,s takesEbmrv(x019n) = yB1 · · · yBb

and encodes each block with the
RLDC:

E(x) = Erldc(yB1) · · · Erldc(yBb
).

The length ofE(x) is N = b · O(s′1+η) = O(s1+η log n).
Decoding. In order to recoverxi from a stringw ∈ {0, 1}N satisfying∆(w, E(x)) ≤ δN , the decoder

D does the following on inputi:

1. Pick a randomk ∈ [b] (i.e., a random setBk).

2. If |Pi ∩Bk| 6= 1 then output a random bit. Else, supposePi ∩Bk = {j} and run the decoderDrldc(j)
on the (possibly corrupted) encoding of thekth block. Output its answer.

Analysis. We now verify the 4 conditions of Definition 3. For Condition 1: sinceDrldc(j) makes at
mostp probes, so doesD(i).

For Condition 2, the intuition is that most blocks don’t havemuch higher error-rate than the average
(which is at mostδ), hence we can probably recoveryj for a more-or-less randomj ∈ Pi, which will
probably equalxi. To make this precise, by Markov’s inequality, a randomly chosen blockk has error-rate
> 105δ with probability at most 1

105 . If the block we chose indeed has error-rate≤ 105δ, andPi∩Bk = {j},
then with probability at least99100 , Drldc outputsyj or ⊥. Let β ≥ 1

4 be the fraction of blocks such that
|Pi ∩ Bk| = 1. Then we obtain Condition 2:

Pr[D(i) ∈ {xi,⊥}] ≥ (1 − β)
1

2
+ β

99

100
−

1

105
> 0.624. (1)

For Condition 3 we need to use the expander property of the BMRV structure. LetGk be the indices in
block Bk that are answered correctly with probability at least99

100 . We showed above that a(1 − 1
105)-

fraction of the blocks have error-rate at most105δ, and by the properties of the RLDC for suchk we have
|Gk| ≥ (1 − cδ)|Bk |. SetA = ∪k∈[b]Bk\Gk, then|A| ≤ cδm. Intuitively, A contains the queries to bits of
y where⊥ is a likely answer. Recall that the BMRV expander has left degreed = 10 log(20n). Takeδ small
enough that|A| < 1

40sd (this determines the valueτ of the theorem). For Condition 3, we need to show that
for any such small setA, most queriesi ∈ [n] are answered correctly with probability at least 0.51. It suffices
to show that for mosti, most of the setPi falls outside ofA. Let B(A) = {i ∈ [n] : |N({i}) ∩ A| ≥ d

10}
be the set of queries wherePi has a relatively large overlap withA. We show that ifA is small thenB(A)
is small:

Claim 9. For everyA with |A| < 1
40sd, it is the case that|B(A)| < s

2 .

Proof. Suppose, by way of contradiction, thatB(A) contains a setS of sizes/2. S is a set of left vertices
in the underlying graphG, while A is a set of right vertices. Since|S| < 2s andG is an expander, its
neighborhood satisfies

|N(S)| ≥ (1 −
1

20
)d|S|.

7

By construction, each vertex inS has at most910d neighbors outsideA. We can therefore upper bound the
size ofN(S) as follows:

|N(S)| ≤ |A| +
9

10
d|S| <

1

40
ds +

9

10
d|S| =

1

20
d|S| +

9

10
d|S| = (1 −

1

20
)d|S|.

This is a contradiction, hence no suchS exists and|B(A)| < s/2.

DefineG = [n]\B(A) and notice that|G| > n − s/2. It remains to show that each queryi ∈ G is
answered correctly with probability> 0.51. We have

Pr[D(i) =⊥] ≤ Pr[D probes a block with noise-rate> 105δ] +

Pr[D probes aj ∈ A] + Pr[D(i) =⊥| D probes aj 6∈ A]

≤
1

105
+

1

10
+

1

100
< 0.111.

Combining with Eq. (1), we have Condition 3 for alli ∈ G:

Pr[D(i) = xi] = Pr[D(i) ∈ {xi,⊥}] − Pr[D(i) =⊥] ≥ 0.51.

Finally, Condition 4 follows from the corresponding condition of the RLDC.

4 Queries with non-binary answers

For many natural problems, the answer setA is not binary. For instance, the problem of searching for a
predecessor in an ordered list ofn elements can be reformulated asf : {0, 1}n ×[n] → [n] wheref(x, i)
is equal tomax{j : j < i, xj = 1} (where we definemax(∅) = 0 to cover the case wherei doesn’t have
a predecessor). Since the correct answers are strings of length ℓ ≈ log n, for information-theoretic reasons
the number of bit-probes isΩ(log n). Using Theorem 3, we show how to achieve an RECD withO(log n)
probes and length roughlyn1+η, for smallη > 0, which is simultaneously close to optimal in time as well
as space. More generally:

Theorem 10. Letf : D×Q → {0, 1}ℓ be a data structure problem. For everyε ∈ (0, 1/2) andη > 0, there
exist an integerp = O(ℓ) and positive constantsc andτ , such that for everyδ ≤ τ , f has a(p, δ, ε, 1− cδ)-
RECD of lengthO((ℓ|Q|)1+η).

To prove Theorem 10, one needs to extend the proof of Corollary 4 as follows. Suppose we simply
encode theℓ|Q|-bit string 〈f(x, q)〉q∈Q by an RLDC, and use the decoder of the RLDC to recover each of
theℓ bits of f(x, q). Now it is possible that for eachq ∈ Q, the decoder outputs some blank symbols⊥ for
some of the bits off(x, q), and no query could be answered correctly. To circumvent this, we first encode
eachℓ-bit stringf(x, q) with a good error-correcting code, then encode the entire string by the RLDC. Now
if the decoder does not output too many errors or blank symbols among the bits of the error-correcting code
for f(x, q), we can recover it. We need a family of error-correcting codes with the following property, see
e.g. page668 in [19] for a reference.

Fact 11 ([19], Theorem 2.10, pg. 668). For everyδ ∈ (0, 1/2) there existsR ∈ (0, 1) such that for alln,
there exists a binary linear code of block lengthn, information lengthRn, Hamming distanceδn, such that
the code can correct frome errors ands erasures, as long as2e + s < δn.

8

Proof of Theorem 10.Fix ε ∈ (0, 1/2).
Encoding. Let Eecc : {0, 1}ℓ → {0, 1}ℓ′ be an asymptotically good binary error-correcting code (from

Fact 11), withℓ′ = O(ℓ) and relative distanceδecc, and decoderDecc. By Theorem 3, for everyεrldc > 0
there existcrldc, τrldc > 0 such that for everyδ ≤ τrldc, there is a(O(1), δ, εrldc, 1 − crldcδ)-RLDC that
encodesℓ′|Q| bits in O((ℓ′|Q|)1+η) = O((ℓ|Q|)1+η) bits. Let Erldc andDrldc denote its encoder and
decoder, respectively. We construct an RECD forf as follows. Define the encoderE : D → {0, 1}N , where
N = O((ℓ′ · |Q|)1+η), as

E(x) = Erldc

(

〈 Eecc(f(x, q)) 〉q∈Q

)

.

Decoding.The decoderD, with inputq ∈ Q and oracle access tow ∈ {0, 1}N , is defined as

1. For eachj ∈ [ℓ′], let rj = Drldc ((q − 1)ℓ′ + j) and setr = r1 . . . rℓ′ ∈ {0, 1,⊥}ℓ′ .

2. If the number of blank symbols⊥ in r is at leastℓ
′

8 , then output⊥. Else, outputDecc(r).

Analysis. Fix anx ∈ D andw ∈ {0, 1}N such that∆(w, E(x)) ≤ δN , whereδ ≤ τrldc. We need to
argue the above encoding and decoding satisfies the four conditions of Definition 3. For the first condition,
sinceDrldc makesO(1) probes andD runs thisℓ′ times,D makesO(ℓ′) = O(ℓ) probes intow.

We now showD satisfies Condition 2. Fixq ∈ Q. We want to showPr[Dw(q) ∈ {f(x, q),⊥}] ≥ 1− ε.
By Theorem 3, for eachj ∈ [ℓ′], with probability at mostεrldc, rj = f(x, q)j ⊕ 1. So on expectation, for at
most aεrldc-fraction of the indicesj, rj = f(x, q)j ⊕ 1. By Markov’s inequality, with probability at least
1− ε, the number of indicesj such thatrj = f(x, q)j ⊕ 1 is at mostεrldc

ε
· ℓ′. If the number of⊥ symbols in

r is at leastℓ
′

8 thenD outputs⊥, so assume the number of⊥ symbols is less thanℓ8 . Those⊥’s are viewed
as erasures in the codewordEecc(f(x, q)). So if 2εrldc

ε
+ 1

8 ≤ δecc, then by Fact 11,Decc will correct these
errors and erasures and outputf(x, q).

For Condition 3, we show there exists a large subsetG of q’s satisfyingPr[Dw(q) = f(x, q)] ≥ 1 − ε.
Let y = 〈 Eecc(f(x, q)) 〉q∈Q, which is aℓ′|Q|-bit string. Call an indexi in y “bad” if it does not satisfy the
inequality in Condition 3 of the RLDC, i.e.,Pr[Dw

rldc(i) = yi] < 1 − ε. By Theorem 3, at most acrldcδ-
fraction of the indices iny are bad. Letα be a positive constant, to be chosen later. Callq ∈ Q “bad” if more
than anα-fraction of the bits inEecc(f(x, q)) are bad. By Markov’s inequality, at most acrldcδ

α
-fraction of

all Q are bad. DefineG to be the set ofq’s that are not bad, then|G| ≥ (1 − crldcδ
α

)|Q|.
We now show that eachq ∈ G satisfies the inequality in Condition 3 of Definition 3. On expectation,

for at most a(α + (1 − α)εrldc)-fraction of theℓ′ indices inr, we haverj 6= f(x, q)j . Hence by Markov’s
inequality, with probability at least1 − ε, for at most a1

ε
(α + (1 − α)εrldc)-fraction of the indices inr, we

haverj 6= f(x, q)j . If 2
ε
(α + (1 − α)εrldc) ≤ δecc, then by Fact 11,Decc(r) will output f(x, q).

Condition 4 follows using the corresponding condition in the definition of an RLDC. Hence, we can
conclude there existsτ > 0 such that for everyδ ≤ τ , E andD form an(O(ℓ), δ, ε, 1 − crldcδ/α)-RECD.
To finish the proof, one can set for instanceεrldc = ε

8 , α = ε
14 , andδecc > 3

8 to satisfy the previous
constraints.

Applying Theorem 10, we obtain efficient constructions for several data structure problems. As men-
tioned before, these parameters are close to optimal in timeand space, even in the noiseless case.

Corollary 12 (PREDECESSOR SEARCH, RANK , NEAREST NEIGHBOR, POLYNOMIAL EVALUATION). For
everyη > 0, the data structure problemsPREDSEARCHn and RANK have RECDs of lengthO(n1+η) and
O(log n) bit-probes,NEARd has an RECD of lengthO(2d(1+η)) andO(d) bit-probes, andPOLYEVAL n,log n

has an RECD of lengthO(n1+η) with O(log n) bit-probes.

9

Theorem 10 can be improved when the set of non-zero answers iso(n).

Theorem 13. Let f : D × Q → {0, 1}ℓ be a data structure problem. Lets = max
x∈D

| {q : f(x, q) 6= 0} |.

If s = o(n), then for everyε ∈ (0, 1
2) andη > 0, there exist an integerp = O(ℓ) andτ > 0, such that for

everyδ ≤ τ , f has a(p, δ, ε, 1 − s
2|Q|)-RECD of lengthO((ℓs)1+η log ℓ|Q|).

Proof sketch.Use an MEMO(ℓ|Q|),O(ℓs) encoder (from Theorem 7) instead ofErldc in the proof of Theo-
rem 10.

Applying Theorem 13, we obtain an efficient construction forRESTRICTED BOUNDED RANK.

Corollary 14 (RESTRICTED BOUNDED RANK). For everyη > 0, every positive integern, ands = o(n),
the data structure problemRRANK n,s has an RECD of lengthO(s1+η log n) andO(log s) bit-probes. This
is close to optimal.

5 Conclusion

We presented a relaxation of the notion of error-correctingdata structures recently proposed in [20]. While
the earlier definition does not allow data structures that are both error-correcting and efficient in time and
space (unless an unexpected breakthrough for constant-probe LDCs happens), the present relaxed definition
does allow this. We pay for that in permitting the decoder to claim ignorance on a small fraction of the
possible queries, but that seems a reasonable price to pay.

The efficient data structures we presented followed quite easily from the (highly non-trivial) relaxed
locally decodable codes of Ben-Sasson et al. [5]. We feel thecontribution of the present paper lies not so
much in its technical content, but in giving a more practicalversion of the definition of [20]. This opens
up many questions: there are many data structure problems inthe literature for which we would like to find
efficient (relaxed) error-correcting data structures.

In particular, consider the problems RANK and PREDECESSORin the sparse case, encoding ans-element
setS of a universe of sizen. If s = O(log n), one can trivially obtain a RECD of sizeO(s log n) with
O(log2 n) bit-probes: just write downS as a string ofs log n bits and encode it with a good error-correcting
code, and read the entire encoding when queried for an index.A very interesting open question is to exhibit
an RECD of almost optimal length, sayO(s1+η log n) bits, that answers queries with the optimal number of
bit-probes (which isO(log s) for RANK andO(log n) for PREDECESSOR).

At some point we might even start to care about the various constant factors hidden in our results,
with a view to actual implementations and applications—both data structures and error-correcting codes are
eminently practical areas, so it would not be surprising if their common generalization eventually turned out
to be of practical importance as well.

References

[1] Y. Aumann and M. Bender. Fault-tolerant data structures. In Proceedings of 37th IEEE FOCS, pages
580–589, 1996.

[2] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in polylogarithmic time. In
Proceedings of 23rd ACM STOC, pages 21–31, 1991.

10

[3] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time simulations unless
EXPTIME has publishable proofs.Computational Complexity, 3(4):307–318, 1993.

[4] P. Beame and F. E. Fich. Optimal bounds for the predecessor problem. InProceedings of 31st ACM
STOC, pages 295–304, 1999.

[5] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust PCPs of proximity, shorter
PCPs and applications to coding.SIAM Journal on Computing, 36(4):889–974, 2006. Earlier version
in STOC’04.

[6] G. Brodal, R. Fagerberg, I. Finocchi, F. Grandoni, G. Italiano, A. Jørgenson, G. Moruz, and T. Møl-
have. Optimal resilient dynamic dictionaries. InProceedings of 15th European Symposium on Algo-
rithms (ESA), pages 347–358, 2007.

[7] H. Buhrman, P. B. Miltersen, J. Radhakrishnan, and S. Venkatesh. Are bitvectors optimal?SIAM
Journal on Computing, 31(6):1723–1744, 2002. Earlier version in STOC’00.

[8] K. Efremenko. 3-query locally decodable codes of subexponential length. InProceedings of 41st ACM
STOC, 2009.

[9] I. Finocchi, F. Grandoni, and G. Italiano. Resilient search trees. InProceedings of 18th ACM-SIAM
SODA, pages 547–553, 2007.

[10] I. Finocchi and G. Italiano. Sorting and searching in the presence of memory faults (without redun-
dancy). InProceedings of 36th ACM STOC, pages 101–110, 2004.

[11] M. Fredman, M. Komlós, and E. Szemerédi. Storing a sparse table withO(1) worst case access time.
Journal of the ACM, 31(3):538–544, 1984.

[12] A. G. Jørgenson, G. Moruz, and T. Mølhave. Resilient priority queues. InProceedings of 10th In-
ternational Workshop on Algorithms and Data Structures (WADS), volume 4619 ofLecture Notes in
Computer Science, 2007.

[13] J. Katz and L. Trevisan. On the efficiency of local decoding procedures for error-correcting codes. In
Proceedings of 32nd ACM STOC, pages 80–86, 2000.

[14] K. S. Kedlaya and C. Umans. Fast modular composition in any characteristic. InProceedings of 49th
IEEE FOCS, pages 146–155, 2008.

[15] I. Kerenidis and R. de Wolf. Exponential lower bound for2-query locally decodable codes via a
quantum argument.Journal of Computer and System Sciences, 69(3):395–420, 2004. Earlier version
in STOC’03. quant-ph/0208062.

[16] P. B. Miltersen. Cell probe complexity - a survey. Invited paper atAdvances in Data Structureswork-
shop. Available at Miltersen’s homepage, 1999.

[17] M. Pǎtraşcu. Succincter. InProceedings of 49th IEEE FOCS, pages 305–313, 2008.

[18] M. Pǎtraşcu and M. Thorup. Time-space trade-offs for predecessor search. InProceedings of 38th
ACM STOC, pages 232–240, 2006. See also arXiv:0603043.

11

[19] V. S. Pless, W. C. Huffman, and R. A. Brualdi, editors.Handbook of Coding Theory, Vol.1. Elsevier
Science, New York, NY, USA, 1998.

[20] R. de Wolf. Error-correcting data structures. InProceedings of 26th Annual Symposium on Theoretical
Aspects of Computer Science (STACS’2009), pages 313–324, 2009. cs.DS/0802.1471.

[21] D. Woodruff. New lower bounds for general locally decodable codes. Technical report, ECCC Report
TR07–006, 2006.

[22] S. Yekhanin. Towards 3-query locally decodable codes of subexponential length.Journal of the ACM,
55(1), 2008. Earlier version in STOC’07.

12

