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Abstract

We are interested in constructing efficient data structtivasstill work (most of the time) when hit
by a constant fraction of adversarial noise. Roughly spegliy “efficient” we mean constructions that
are simultaneously close to the optimal time and space ®ntiseless case. Recently, de Wolf [20]
introduced a model for this, called “error-correcting dsttauctures,” and studied the tradeoff between
data structure length and efficiency of query answering (easured by the number of bit-probes).
Unfortunately, this tradeoff is quite bad in that model, dtrid unlikely that one could construct error-
correcting data structures that are simultaneously effidgietime and space, unless significant progress
is made in improving this tradeoff for “locally decodabledes.” In this paper we relax the requirements
on error-correcting data structures: our model only rezgithatmostqueries are answered correctly,
while for the remaining queries the decoder is allowed tintlignorance. If there is no noise on the
data structure, it should answer all queries correctly.nfyshe “relaxed locally decodable codes” of
Ben-Sasson et al. [5] as a building block, we show that tHesxedion allows us to construct efficient,
near-optimal data structures for a number of fundamental steucture problems, including versions of
the MEMBERSHIP, PREDECESSORand RaNK problems.
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1 Introduction

The area of data structures is one of the oldest and mostfasecof computer science, in theory as well as
in practice. The underlying question is a time-space triioe@ are given a piece of data, and we would like
to store it in a short, space-efficient data structure thdteasame time allows us to quickly answer specific
queries about the stored data. On one extreme, we couldteedata by just storing a list of the correct

answers to all possible queries. This is extremely timeiefit (you can immediately look up the correct

answer without doing any computation), but usually takesmmore space than the information-theoretic
minimum. At the other extreme, we could just store a maxiynatimpressed version of the data. This
is as space-efficient as it gets, but probably not very goodjdiackly answering queries, since we would

first have to undo the whole compression. A good data strecitls somewhere in the middle: it does not
use much more space than the information-theoretic minipfwnstores the data in a structured way that
enables efficient query-answering.

In general, a data structure problem is specified by dset data itemsa set() of queries a setA of
answersand a functiorf : D x Q — A which specifies the correct answgzr, ¢) of queryq to data iteme.

A typical example is the-ouT-OF-n MEMBERSHIP problem. Consider a universe] = {1,...,n} and
somes < n. Given asetS C [n] of at mosts elements, we would like to store it in a compact representati
that can answer “membership queries” efficiently, i.el, uslwhether or not € S for a giveni € [n].
FormallyD = {S : S C [n],|S| < s}, @ = [n], andA = {0,1}. The function is MM, 4(S,7) = 1

if i € S, and MEM,, 4(5,7) = 0if i ¢ S. Since there ar¢’}) subsets of the universe of sizeand we
need a different instantiation of the data structure fohesauch set, clearlj/og( ) ~ slogn bits is the
information-theoretic lower bound on the space our datagtre needs (our logs are always to base 2). An
easy way to achieve this is to sta¥an sorted order. If each number is stored in its degin-bit “cell”, this
data structure takescells, which iss log n bits. To answer a membership query we can do binary search on
the list, which enables us to determine whethersS in aboutlog s “cell-probes” orlog s - log n bit-probes.
The length of this data structure is essentially optimal,itsunumber of probes is not. Fredman, Komlés,
and Szemerédi [11] developed a famous hashing-based dattust that has lengtty(s) cells (which

is O(slogn) bits), but that only needs eonstantnumber of cell-probes (which i©(logn) bit-probes).
Buhrman, Miltersen, Radhakrishnan, and Venkatesh [7] thekfinal step, designing a data structure of
lengthO(s log n) bits that answers queries witimly one bit-probe This is simultaneously optimal in terms
of time (clearly, 1 bit-probe cannot be improved upon), apdce (up to a constant factor). Unlike the
earlier data structures, theirs has a randomized decodea amall error probability (which they show is
unavoidable). Many more data structure problems have bieeiied, and often their optimal time-space
tradeoff is known. We refer to Miltersen’s survey [16] for raeaetails.

It is reasonable to assume that most practical implementatf data storage are susceptiblendise
over time some of the bits in the data structure may be flippextased by various accidental or malicious
causes. This buildup of errors may cause the data strudwtetériorate to the point that most queries are
not answered correctly any more. Accordingly, it is a ndttask to design data structures that are not only
efficient in space and time, but also continue to work whenestied to a certain amount of noise. Some
efficient data structures have indeed been designed thata@with noise in certain special cases, for
instance for pointer-based data structures [1] and for tsadleere a small amount of incorruptible memory
is available [10, 12, 9, 6].

Recently, de Wolf [20] came up with a general model of soethérror-correcting data structures, which
takes its treatment of errors from the area of error-camgatodes. The goal is to design a data structure,
ideally with both small length and small number of bit-prelder query-answering, that still gives correct



answers whenever the data structure is corrupted by noleedata structure is viewed as a bitstring, and we
want to be able to deal with a (small) constant fractiaf errors! As is usual in error-correcting codes, we
make a worst-case assumption: the noise is not probabitigtiadversarial it could be placed in positions
that make life as hard as possible. Formally, the definitiomf[20] is as follows:

Definition 1 (ECD). Let f : D x @ — A be a data structure problem. Lebe a positive integef; € [0, 1],
ande € [0,1/2]. A (p,d,¢e)-error-correcting data structure (ECDfpr f of length N isa map& : D —
{0, 1}N (the “encoder”) for which there is a randomized algoritim(the “decoder”) with the following
properties: for every: € D, and everyw € {0,1}" at Hamming distancé\ (w, £(z)) < dN

1. D makes at most probes to its oracle (i.e., to bits af).
2. Pr[D%(q) = f(x,q)] > 1 — e for everyq € Q.

This model generalizes the usual noise-free data stric{wkered = 0) as well as error-correcting
codes (where the data structure problem has only one pesgiBry, namely to recover the encoded string).
The definition also incorporates so-callledally decodable code@.DCs), which are error-correcting data
structures for the membership problem with= n, i.e., where the possible data pieces arexdlit strings
and a query asks for the value of titk bit of the encoded data.

This model of error-correcting data structures is fairlyari and general but has the severe drawback that
the optimal time-space tradeoffs are much worse than in dise+free model. For instance, de Wolf [20]
shows that for the membership problem where the size of thg sebounded by some <« n, the optimal
length of ap-probe error-correcting data structure roughly equalstualog n factor) the length of the
shortestp-probe LDC that encodesbit strings. All known constructions of LDCs with constanimber
of probes have superpolynomial length [22, 8], and this leskconjectured to be inevitadleHence it
is unlikely that error-correcting data structures can $iameously be error-correcting and efficient in both
time and space. Since the membership problem is a specimlofasany other data structure problems,
those other problems are subject to the LDC lower bounds hs we

In this paper we overcome this drawback by relaxing the requénts of the data structure a bit. We take
our lead from theelaxedlocally decodable codes introduced by Ben-Sasson, Gohgreiarsha, Sudan, and
Vadhan [5]. They relax the usual definition of an LDC by reipgjrthe decoder to return the correct answer
on mostrather than all queries For the remaining queries it is also allowed to claim igno® i.e., to
output a special symboll” interpreted as “don’t know.” For none of the queries, hoarevs it allowed to
return an incorrect answer with large probability. Formaheir definition is as follows:

Definition 2 (RLDC). Let p be a positive intege € [0,1], ¢ € [0,1/2], andp € [0,1]. A (p,d,e,p)-
relaxed locally decodable code (RLD@)appingn information bits into an encoding of lengtk, is a map
& :{0,1}" — {0, 1}N for which there is a randomized algoritithwith the following properties: for every
z € {0,1}", and everyw € {0,1}" at Hamming distancé (w, £(z)) < 6N

1. D makes at most probes to its oracle.

2. Pr[D*(i) € {x;, L}] > 1 — e for everyi € [n].

IWe only consider bitflip-errors here, not erasures. Sineddtier are easier to deal with than bit-flips, it suffices¢sign a
data structure dealing with bitflip-errors.

2However, the besprovenlower bounds on the length gkprobe LDCs (with fixed error-raté and error probability:) are
only of the slightly-superlinear form' (/) [13, 15, 21] (only forp = 2 the tight bound2®™ is known [15]). Efficient
error-correcting data structures are thus not excludedtst we know, though they seem unlikely.



3. The seG = {i : Pr[D¥(i) = ;] > 1 — ¢} has size at leagin.
4. If w = &(x) thenG = [n].

In this definition G” refers to the “good” set, the set of queries that are ansiveeogrectly with high
probability. Note that incorrect answers have probabditynosts, no matter whethei € G or not. Also
note, by Condition 4, that if there is no noise then for evarggiblei we get the correct answer (w.h.p.).
The special casp = 1 is the usual definition of a locally decodable code (LDC), ahhis due to Katz
and Trevisan [13]. Relaxing the LDC-definition like this sledly allows for very efficient codes: while
all known constructions of LDCs witty(1) bit-probes have superpolynomial length, Ben-Sasson g]al.
managed to construct relaxed LDCs witl{1) bit-probes ofnearly-linear length. We remark that their
construction, based on PCPs of proximity, is quite involved

We can similarly relax the definition of an error-correctidgta structure to obtain the main concept of
this paperrelaxed error-correcting data structur@r RECD for short:

Definition 3 (RECD). Let f : D x @ — A be a data structure problem. Lebe a positive integed, € [0, 1],
e €[0,1/2],andp € [0,1]. A (p, 4, &, p)-relaxed error-correcting data structure (RECEy f of length v
isamapE : D — {0, I}N for which there is a randomized algoritithwith the following properties: for
everyz € D, and everyw € {0,1}" at Hamming distancé\ (w, £(z)) < 6N

1. D makes at most probes to its oracle.

2. Pr[D%(q) € {f(z,q), L}] > 1 — e foreveryq € Q.

3. TheseG = {q: Pr[D"¥(q) = f(x,q)] > 1 — ¢} has size at leagtQ)|.
4. If w = &(z) thenG = Q.

Note that an ECD is an RECD wiih= 1, while an RLDC is exactly an RECD for EMBERSHIP.

The main contribution of this paper is to put forward this naésfinition and show that the relaxation
allows us to construct error-correcting data structures dine efficient. More specifically, for a number of
basic data structure problems, such as versions B¥IBERSHIP, PREDECESSOR RANK, and NEAREST
NEIGHBOR, the time and space of our RECDs are quite close to the optimaland space tradeoff in the
noiselesase. Accordingly, at a relatively small overhead in timé space, one can protect oneself against
a constant fraction of noise, while still answering all desicorrectly (with high probability) in the noiseless
case. Our main theorems can be stated informally as follows.

Theorem 1 (Informal). There exists an RECD fdvlEm,, , that answers membership queries by probing
O(1) bits and that has length (s ™" log n), wheren can be set arbitrarily small.

For arbitrary alphabet size we obtain a similar result.

Theorem 2(Informal). Let f : D x Q — A be a data structure problem. Then there exists an RECD for
f that answers queries by probir@(log | A|) bit and that has lengti®(|Q|**" log | A|), wheren can be set
arbitrarily small.

These results have immediate applications to construetificient relaxed error-correcting data struc-
tures for the versions of EMBERSHIP, PREDECESSOR RANK, and NEAREST NEIGHBOR



2 Preliminaries

We useln| to denote({1, ..., n}, and often switch back and forth between subsets|and then-bit strings
that are the characteristic vectors of those subsets. Btamoe, set§' C [n] of size at mosk correspond to
n-bit strings of Hamming weight at most

We next list a few basic data structure problems for whichaterlobtain efficient RECDs.

Membership: This is the most basic data structure, studied from diffiepemspectives in the literature.

Constructing an error-correcting data structure for mastip is equivalent to constructing a locally de-
codable code (LDC). The construction of LDCs has receivemt aflattention, and it has numerous appli-
cations and connections in various areas such as prolighilis checkable proofs [2], private information

retrieval [22], or hardness reductions [3].

+ MEMBERSHIP. Given a subset of a universe of sizedetermine if a given elemenis in that set.
D ={0,1}",Q = [n], A = {0,1}, MEM,,(z,1) = x;

* $-OUT-OF-n MEMBERSHIP. This is the membership problem to sparse sets.
D ={xe{0,1}": |z| <s},Q = [n], A= {0,1}, MEM,, 5(z,i) = z;

Predecessor: This is another common data structure problem, and very tigie/space trade-offs were

obtained in [18, 4] for the noiseless case. The problem has bensidered in various models, including
cell-probe and RAM models, for both its static as well as dyitavariants. We also consider a weaker,
decision version of the problem, where the queries havaareswers.

+ PREDECESSOR SEARCHGIven a subset of an ordered universe of sizand a specific element, find
the closest predecessor of that element in the set.
D ={0,1}",Q = [n], A = {0,...,n}, PREDSEARCH,(z,i) = max{j : j < i,z; = 1} (where
max(()) = 0)

+ PREDECESSOR DECISION Given a subset of an ordered universe of sizeand a specific element,
decide if there is a predecessor of that element in the set.
D ={0,1}",Q = [n], A ={0,1}, PREDDEC,(z,i) =z, V -+ V ;1

Rank: Optimal bounds for this were exhibited in [17] in the noisslease. In this work we derive some
results for both the general problem, as well as for a résttigersion.

* RANK: Given a subset of an ordered universe of sizand a specific element, find the rank of this
element in the set. ‘
D ={0,1}",Q = [n], A={0,...,n}, RANK,(z,7) = 2321 T

* RESTRICTED BOUNDED RANK Given a subset of size of an ordered universe of size¢ and a
specific element, find the rank of this element if it is in the se

0 if ; =0
D ={0,1}",Q = [n], A={0,...,s}, RRANK,, s(z,1) = i | T
Zj:l Z; if x; = 1.



Nearest neighbor: Given a collection of pointst’ in the Hamming cube of dimensiafy and a specific
pointy, find a/the point inX’ that is closest tg in terms of Hamming distance.

D=1{0,1}*,Q = {0,1}% A = {0,1}%, NEARy(X, y) = arg mingex Az, y)

Polynomial evaluation: Evaluate a univariate polynomial at a specified element afieite field. Nearly-
optimal bounds for the noiseles®BYNOMIAL EVALUATION were recently obtained in [14].

The setD consists of alle € {0,1}" which are bit representations of polynomiaisin F[X] with
F={0,1}""andn = m - (deg(g9;) + 1). @ = A =TF, and ROLYEVAL , . (z, ) = gz(c).

3 Queries with binary answers

In this section we consider the case where queries haveybarawers, i.e.A = {0,1}. We provide
efficient RECDs for some commonly studied data structurélpros.

3.1 The general MEMBERSHIP problem

Our basic building block is the relaxed LDC of Ben-Sassonl.gibhof nearly-linear length. We already
mentioned this in the introduction and here state theirlr@smore detail:

Theorem 3(BGHSV [5]). For everye € (0,1/2) andn > 0, there exist an integer and positive constants
c andr, such that for every. and everyy < 7, there exists &p, J, e, 1 — ¢d)-RLDC mapping: bits into an
encoding of lengt® (n!*7).

Equivalently, this is dp, d,,1 — ¢§)-RECD for MEM,,. Choosingn > 0 to be very small, the length
O(n'*1) is close to optimal (clearly, at leastis needed). By picking the error-ragea sufficiently small
constant, we can set= 1 — ¢é (the fraction of queries in the good s&} very close tal.

For an arbitrary data structure problein D x Q — A with binary answer sefi, we can construct an
RECD with length only slightly larger thajg)| and only a constant number of probes for each query. This
can be achieved by writing down the answers to all the passjibéries i) and encoding thig|-bit string
by the RLDC provided by Theorem 3.

Corollary 4. Letf : D x @ — {0,1} be a data structure problem. For everye (0,1/2) andn > 0, there
exist an integep and positive constantsand r, such that for every < 7, f has a(p, d,¢,1 — ¢§)-RECD
of lengthO(|Q|**+").

Corollary 4 implies the existence of good RECDs in the casera) = [n]. In particular, for the
MEMBERSHIPand RREDECESSORDECISION problems, we obtain nearly optimal RECDs.

Corollary 5 (MEMBERSHIPand FREDECESSOR DECISION For everyn, MEM,, and PRED,, have RECDs
with p = O(1) bit-probes and nearly-linear lengt (n!*7").

The parameters are optimal up to a constant factor in the aumibbit-probes and optimal up to a
factorn™ in its length (clearly we need length at leasbits, since the answers to all queries jointly allow to
reconstruct the data € {0,1}").



3.2 The sparse MEMBERSHIP problem

In many data structure applications the data is sparse.nstarice ins-OUT-OF-n MEMBERSHIPwWe only
care about storing sets of some sizenuch smaller than the universe size Since there at leadf!)
different data items to encode, any data structure will rgeteN > log (;‘) ~ slogn. The RECD for
MEMBERSHIP from the end of the last section is of course also an RECD fersgiarse version, but its
lengthn!*" > slogn is far from optimal now. In this section we construct an REQ@D §-0UT-OF-n
MEMBERSHIPthat is simultaneously close to optimal in time and spacgtilituses only a constant number
of bit-probes, but its length is onk§(s' 7 log n) bits.

We will use the following one-probe (non-error-correclimata structure of Buhrman et al. [7] and its
properties, which we describe next.

Theorem 6(BMRV [7]). For everye € (0,1/2) and for every positive integeks< n, there is an(1, 0, ¢)-
ECD for MEM,, ; of lengthim = 1% slog n bits.

Properties of the BMRYV encodin@he encoding can be represented as a bipartite gvaphL x R
with |L| = n left vertices andR| = m right vertices, and uniform left degrele= “’%. G is an expander
graph: for each se$ C L with S| < 2s, its neighborhood satisfigsV(S)| > (1 — §) |S|d. For each
assignment of bits to the left vertices with at mests (i.e., eachr € {0,1}" of weight|z| < s), the
encoding specifies an assignment of bits to the right vertjadnich is them-bit encoding ofz). For each
i € [n]let P, = N({i}) C [m]. A crucial property of the encoding functid,,,., is that for everyx of
weight|z| < s, if y = Epro(x) € {0,1}™ thenPrjcp,[z; = y;] > 1 — . Hence the decoder for this data
structure can just probe a random ingex P; and return the resulting bit;. Note that this construction is
not error-correcting at all, sindgé; | errors in the data structure suffice to erase all informadioout theith

bit of the encoded..

By combining the BMRV encoding with the RLDC constructionTdfeorem 3, one easily obtains an
(O(1),6,e,1 — O(5))-RECD for MEM,, 5 of lengthO((s logn)**"). However, we can do better:

Theorem 7. For everye € (0,1/2) andn > 0, there exist an integey and positive constantsandr, such
that for all s andn, and eveny < 7, MEM,, ; has a(p, ¢, 1 — 5=)-RECD of lengthO(s'*" log n).

Note that the size of the good s@tis at leasipn = n — 5. Hence corrupting a-fraction of the bits of
the RECD could turn half of the correct 1-answers into “démow,” but not all. This facto% can easily be
reduced further.

Proof. We show the existence of such an RECD fo& .49. By standard amplification techniques (i.e.,
O(log(1/¢)) repetitions) we can reduce the error probability to any othe The idea is similar to the
approach of [20], which divides the BMRV data structure imaghly log n disjoint blocks of roughlys
bits each, and encodes such block separately witprmbe LDC. We do something similar, using an RLDC
instead of an LDC to encode each block, and need to use thadsmpproperty of the BMRV structure to
show thatp is close to 1.

Encoding. We start with a BMRV structure for encoding = 20n bits with error probabilityl—lo. Let

Evmry b€ the encoder for @, 0, llo)-ECD for MEMag,, s of lengthm = 10%slog(20n) (from Theorem 6).

Claim 8 (from Section 2.3 of [20]) We can partition them bits into b = 10log(20n) disjoint sets
Bi,...,B, of & = 103s indices each, such that for each of the firsindices, there are at least/4
setsk satisfying|P; N By | = 1.



We view an encoding € {0,1}™ as the concatenation éfstrings ofs’ bits each:y = yp, - - yp,. If
there were no noise, it would suffice to pick a blagk at random, and to probe and return one of fhits
fromyp, . In order to deal with noise, we will encode each of the blogkh a (p, 10°4, Wlo, 1—¢d0)-RLDC
that encodes’ bits into O(s"'*") bits. Forp = O(1) and sufficiently smalb, such an RLDC exists by
Theorem 3. Let, ;4. andD, 4. be its encoder and decoder, respectively. #ar{0,1}" of weight|z| < s,
the encode€ of our RECD for MEM,, s takesEy ., (709") = yp, - - - y, and encodes each block with the

RLDC:
E(x) = Erae(yny) -+ Ertac(yby)-

The length of€(z) is N = b - O(s"*) = O(s' T logn).
Decoding. In order to recover:; from a stringw € {0, 1} satisfyingA(w, £(z)) < 6N, the decoder
D does the following on input

1. Pick arandonk € [b] (i.e., a random seBy,).

2. If |P,N By| # 1 then output a random bit. Else, suppd3e) By, = {;} and run the decodép,;,.(j)
on the (possibly corrupted) encoding of thtl block. Output its answer.

Analysis. We now verify the 4 conditions of Definition 3. For Condition dinceD,4.(j) makes at
mostp probes, so doeB(i).

For Condition 2, the intuition is that most blocks don’t haweich higher error-rate than the average
(which is at most)), hence we can probably recovgy for a more-or-less random € F;, which will
probably equak;. To make this precise, by Markov’s inequality, a randomlgs#n blockk has error-rate
> 10°6 with probability at mos (1] If the block we chose indeed has error-rate0°s, andP; N By, = {j},
then with probability at leasfks, D4 Outputsy; or L. Let 3 > % be the fraction of blocks such that
|P; N By| = 1. Then we obtain Condition 2:

Pr[D(i) € {x;, L} > (1 — 5)l + 5£ L > 0.624. 1)

vl = 2 7100 10°

For Condition 3 we need to use the expander property of the BgtiRucture. LetGj be the indices in
block B, that are answered correctly with probability at leg§f. We showed above that@ — 135)-
fraction of the blocks have error-rate at magts, and by the properties of the RLDC for suklwe have
|Gl > (1 — cd)|B|. SetA = Uy Br\Gr, then|A| < com. Intuitively, A contains the queries to bits of
y where L is a likely answer. Recall that the BMRV expander has lefrded = 101og(20n). Taked small
enough thatA| < %sd (this determines the valueof the theorem). For Condition 3, we need to show that
for any such small set, most queries € [n] are answered correctly with probability at least 0.51. fiises
to show that for most, most of the sef’, falls outside ofA. Let B(A) = {i € [n] : [N({i}) N A| > &

be the set of queries wheré has a relatively large overlap with. We show that ifA is small thenB(A)

is small:

Claim 9. For everyA with |[A| < 4 sd, itis the case thatB(4)| < 5.

Proof. Suppose, by way of contradiction, thB{ A) contains a se$ of sizes/2. S is a set of left vertices
in the underlying grapl$, while A is a set of right vertices. Sindé&| < 2s andG is an expander, its
neighborhood satisfies

IN(S)| = ( )d|S|.

1
1— —
20



By construction, each vertex ifi has at mos%d neighbors outsidel. We can therefore upper bound the
size of N(S) as follows:

9 1.9 1 9 1
< — — — = — =(1-— .
IN(S)| < 4|+ 15dIS| < 35ds + 15| = 55dIS| + 5dIS| = (1 = 55)dIS)

This is a contradiction, hence no sustexists andB(A4)| < s/2. O

DefineG = [n]\B(A) and notice that{G| > n — s/2. It remains to show that each quernge G is
answered correctly with probability 0.51. We have

Pr[D(i) =1] < Pr[D probes a block with noise-rate 10°5] +
Pr[D probes g € A] + Pr[D(i) =L| D probes g ¢ A]
1 1

1
+ — + — < 0.111.

<
— 105 10 100

Combining with Eqg. (1), we have Condition 3 for alE G-
Pr[D(i) = z;] = Pr[D(¢) € {z;, L}] — Pr[D(i) =L] > 0.51.

Finally, Condition 4 follows from the corresponding coralit of the RLDC. O

4 Queries with non-binary answers

For many natural problems, the answer deis not binary. For instance, the problem of searching for a
predecessor in an ordered listiofelements can be reformulated As {0,1}" x[n] — [n] where f(z, 1)

is equal tomax{j : j < i,z; = 1} (where we definenax(0)) = 0 to cover the case whetedoesn’'t have

a predecessor). Since the correct answers are stringsgthlén: log n, for information-theoretic reasons
the number of bit-probes &(log n). Using Theorem 3, we show how to achieve an RECD witlog n)
probes and length roughly'*", for smalln > 0, which is simultaneously close to optimal in time as well
as space. More generally:

Theorem 10.Let f : D xQ — {0,1}" be a data structure problem. For evene (0,1/2) andy > 0, there
exist an integep = O(¢) and positive constantsandr, such that for every < 7, f has a(p, d,e,1 — ¢d)-
RECD of lengthO((£|Q])* ).

To prove Theorem 10, one needs to extend the proof of Coyodlaas follows. Suppose we simply
encode the|Q|-bit string (f(x, q)) ,co by an RLDC, and use the decoder of the RLDC to recover each of
the ¢ bits of f(x, ¢). Now it is possible that for each € @, the decoder outputs some blank symhaolfor
some of the bits of (x, ¢), and no query could be answered correctly. To circumvest theé first encode
each?-bit string f (z, ¢) with a good error-correcting code, then encode the entiiregsby the RLDC. Now
if the decoder does not output too many errors or blank sysdomlong the bits of the error-correcting code
for f(x,q), we can recover it. We need a family of error-correcting sodéh the following property, see
e.g. page6s in [19] for a reference.

Fact 11 ([19], Theorem 2.10, pg. 668)or everyd € (0,1/2) there existsR € (0, 1) such that for alln,
there exists a binary linear code of block lengthinformation lengthRn, Hamming distancén, such that
the code can correct fromerrors ands erasures, as long &« + s < dn.



Proof of Theorem 10Fix ¢ € (0,1/2).

Encoding. Let & : {0, 1}5 — {0, 1}” be an asymptotically good binary error-correcting coden(ir
Fact 11), with¢/ = O(¢) and relative distancé..., and decodeD,... By Theorem 3, for every, ;4. > 0
there existe,4c, 714. > 0 such that for every < 7,44, there is aO(1), 9, ,14¢, 1 — ¢14.0)-RLDC that
encodes’|Q| bits in O((¢|Q)**") = O((¢|Q|)'*™) bits. Let&,.1q. and D,;4. denote its encoder and
decoder, respectively. We construct an RECDffas follows. Define the encodér: D — {0, 1}N , where
N=0((-1Q)"™™), as

E(@) = Ende ({Eeee F(2,0) Vgeq) -
Decoding. The decodeD, with inputq € @ and oracle access o € {0, 1}N, is defined as
1. Foreacly € [¢'], letr; = Dya. ((g — 1)¢' + j) and setr = ry ...7p € {0,1, L}
2. If the number of blank symbols in r is at Ieast%', then outputL. Else, outpuDe..(r).

Analysis. Fix anz € D andw € {0,1}" such thatA (w, (z)) < 6N, wheres < 7,44.. We need to
argue the above encoding and decoding satisfies the fouitiomsdof Definition 3. For the first condition,
sinceD, 4. makesO(1) probes and runs thist’ times,D makesO(¢') = O(¢) probes intow.

We now showD satisfies Condition 2. Fiy € Q. We want to showr[D*(q) € {f(z,q), L}] > 1—e.
By Theorem 3, for each € [¢'], with probability at most, 4., ; = f(z,¢); ® 1. So on expectation, for at
most as,q.-fraction of the indiceg, r; = f(z,q); ® 1. By Markov's inequality, with probability at least
1 — ¢, the number of indiceg such that; = f(z,q); ® 1 is at most=le . /', If the number ofL symbols in
ris at Ieast%' thenD outputs_L, so assume the number ofsymbols is less thaé. Those_’s are viewed
as erasures in the codewafd..(f(z, q)). So ifQQ% + % < dece, then by Fact 11D, will correct these
errors and erasures and outgt, q).

For Condition 3, we show there exists a large sulssef ¢’s satisfyingPr[D"(q) = f(z,q)] > 1 —e.
Lety = (Eece(f(7,9)) ) 4eqr Which is a’|Q|-bit string. Call an index in y “bad” if it does not satisfy the
inequality in Condition 3 of the RLDC, i.eBr[D},.(i) = y;] < 1 — e. By Theorem 3, at most &.4.9-
fraction of the indices iy are bad. Letv be a positive constant, to be chosen later. €&l “bad” if more
than ana-fraction of the bits inf...(f(z,q)) are bad. By Markov’s inequality, at mostfao%‘;-fraction of
all Q are bad. Definé& to be the set of’s that are not bad, thejd| > (1 — CT'ITM)]Q\.

We now show that each € G satisfies the inequality in Condition 3 of Definition 3. On egfation,
for at most &« + (1 — a)e,40)-fraction of the? indices inr, we haver; # f(z,q),;. Hence by Markov’s
inequality, with probability at least — &, for at most a (a + (1 — a)e,44.)-fraction of the indices in, we
haver; # f(z,q);. If g(a + (1 — @)epge) < dece, then by Fact 11D,...(r) will output f(z, q).

Condition 4 follows using the corresponding condition ie thefinition of an RLDC. Hence, we can
conclude there exists > 0 such that for every < 7, £ andD form an(O(¢),0,e,1 — ¢;14.0/)-RECD.
To finish the proof, one can set for instance;. = g, o = ﬁ, and d... > % to satisfy the previous
constraints. O

Applying Theorem 10, we obtain efficient constructions feveral data structure problems. As men-
tioned before, these parameters are close to optimal inaimdespace, even in the noiseless case.

Corollary 12 (PREDECESSOR SEARCHRANK, NEAREST NEIGHBOR POLYNOMIAL EVALUATION ). For
everyn > 0, the data structure problenBREDSEARCH,, and RANK have RECDs of lengtty(n!'*") and
O(log n) bit-probes,NEAR, has an RECD of lengt®(2711+7)) and O(d) bit-probes, andPoLY EVAL ,, 1og 1,
has an RECD of lengtty(n!*") with O(log n) bit-probes.
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Theorem 10 can be improved when the set of non-zero answe(s)is

Theorem 13. Let f : D x Q — {0,1}" be a data structure problem. Let= mag\ {q: f(z,q) # 0} |.
Te

If s = o(n), then for every € (0, 1) andn > 0, there exist an integes = O(¢) and > 0, such that for

everys < 7, f has a(p,é,e, 1 — g2;)-RECD of lengthO((¢s)' " log £|Q)).

Proof sketch.Use an MEMgg),0(¢s) €ncoder (from Theorem 7) instead &fy4. in the proof of Theo-
rem 10. O

Applying Theorem 13, we obtain an efficient constructionRESTRICTED BOUNDED RANK

Corollary 14 (RESTRICTED BOUNDED RANK. For everyn > 0, every positive integet, ands = o(n),
the data structure problerRRANK,, s has an RECD of lengtth(s! ™" log n) and O(log s) bit-probes. This
is close to optimal.

5 Conclusion

We presented a relaxation of the notion of error-correctiata structures recently proposed in [20]. While
the earlier definition does not allow data structures thatbath error-correcting and efficient in time and
space (unless an unexpected breakthrough for constam-pioCs happens), the present relaxed definition
does allow this. We pay for that in permitting the decoderl&int ignorance on a small fraction of the
possible queries, but that seems a reasonable price to pay.

The efficient data structures we presented followed quisdyefrom the (highly non-trivial) relaxed
locally decodable codes of Ben-Sasson et al. [5]. We feettméribution of the present paper lies not so
much in its technical content, but in giving a more practieaision of the definition of [20]. This opens
up many questions: there are many data structure probleths literature for which we would like to find
efficient (relaxed) error-correcting data structures.

In particular, consider the problem#\Rk and RREDECESSORN the sparse case, encodingsaelement
setS of a universe of sizex. If s = O(logn), one can trivially obtain a RECD of siz@(slogn) with
O(log? n) bit-probes: just write dows$ as a string of log n bits and encode it with a good error-correcting
code, and read the entire encoding when queried for an ifdlegry interesting open question is to exhibit
an RECD of almost optimal length, sé(s' ™" log n) bits, that answers queries with the optimal number of
bit-probes (which i€ (log s) for RANK andO(log n) for PREDECESSOR

At some point we might even start to care about the variousteoh factors hidden in our results,
with a view to actual implementations and applications—hlitdta structures and error-correcting codes are
eminently practical areas, so it would not be surprisin@éfit common generalization eventually turned out
to be of practical importance as well.
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