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ERROR-CORRECTING DATA STRUCTURES∗

VICTOR CHEN† , ELENA GRIGORESCU‡ , AND RONALD DE WOLF§

Abstract. We study data structures in the presence of adversarial noise. We want to encode a
given object in a succinct data structure that enables us to efficiently answer specific queries about the
object, even if the data structure has been corrupted by a constant fraction of errors. We measure the
efficiency of a data structure in terms of its length (the number of bits in its representation) and query-
answering time, measured by the number of bit-probes to the (possibly corrupted) representation.
The main issue is the trade-off between these two. This new model is the common generalization of
(static) data structures and locally decodable error-correcting codes (LDCs). We prove a number of
upper and lower bounds on various natural error-correcting data structure problems. In particular, we
show that the optimal length of t-probe error-correcting data structures for the Membership problem
(where we want to store subsets of size s from a universe of size n such that membership queries can
be answered efficiently) is approximately the optimal length of t-probe LDCs that encode strings of
length s. It has been conjectured that LDCs with small t must be superpolynomially long. This
bad probes-versus-length trade-off carries over to error-correcting data structures for Membership

and many other data structure problems. We then circumvent this problem by defining so-called
relaxed error-correcting data structures, inspired by the notion of “relaxed locally decodable codes”
developed in the PCP literature. Here the decoder is required to answer most queries correctly
with high probability, and for the remaining queries the decoder with high probability either answers
correctly or declares “don’t know.” Furthermore, if there is no noise on the data structure, it answers
all queries correctly with high probability. We obtain positive results for the following two data
structure problems: (1) Membership. We construct a relaxed error-correcting data structure for this
problem with length nearly linear in s logn that answers membership queries with O(1) bit-probes.
This nearly matches the asymptotically optimal parameters for the noiseless case: length O(s logn)
and one bit-probe, due to Buhrman et al. (2) Univariate Polynomial Evaluation (namely, we
want to store a univariate polynomial g of degree deg(g) ≤ s over the integers modulo n such that
evaluation queries can be answered efficiently; i.e., we can evaluate the output of g on a given integer
modulo n). We construct a relaxed error-correcting data structure for this problem with length

nearly linear in s logn that answers evaluation queries with polylog(s) · log1+o(1)(n) bit-probes. This
nearly matches the parameters of the best known noiseless construction due to Kedlaya and Umans.
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1. Introduction.

1.1. Background. Data structures deal with one of the most fundamental ques-
tions of computer science: how can we store objects in a way that both is space-efficient
and that enables us to efficiently answer questions about the object? Thus, for in-
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stance, it makes sense to store a set as an ordered list or as a heap-structure, because
this is space-efficient and allows us to determine quickly (in time logarithmic in the
size of the set) whether a certain element is in the set or not.

From a complexity-theoretic point of view, the aim is usually to study the trade-
off between the two main resources of the data structure: the length/size of the data
structure (storage space) and the efficiency with which we can answer specific queries
about the stored object. To make this precise, we measure the length of the data
structure in bits, and measure the efficiency of query-answering in the number of
probes, i.e., the number of bit-positions in the data structure that we look at in order
to answer a query.

The following definition is adapted from Miltersen’s survey [31].
Definition 1 (data structure). Let X be a set of data items, Q be a set of

queries, A be a set of answers, and f : X × Q → A. Let t > 0 be an integer and
ε ∈ [0, 1/2]. A (t, ε)-data structure for f of length N is a map E : X → {0, 1}N
(the “encoding”) for which there is a randomized algorithm D (the “decoder”) with
the following properties: for every x ∈ X,

1. D makes at most t probes to its oracle for E(x),
2. Pr[DE(x)(q) = f(x, q)] ≥ 1− ε for every q ∈ Q.

HereDE(x)(q) denotes the random variable which is the decoder’s output on inputs
E(x) and q. The notation indicates that D accesses its two inputs in different ways:
while it has full access to the query q, it has only bit-probe access (or “oracle access”)
to the string E(x).

Most standard data structures taught in undergraduate computer science are
deterministic, and hence have error probability ε = 0. However, it is convenient for us
to already allow for some error probability in the above definition, as it will facilitate
generalizing this definition to the noisy case later. As mentioned, the main complexity
issue here is the trade-off between N and t.

Some data structure problems that we will consider are the following:
• Equality. X = Q = {0, 1}n, and f(x, y) = 1 if x = y, f(x, y) = 0 if x �= y.

This is not a terribly interesting data structure problem in itself, since for
every x there is only one query y for which the answer is “1”; we merely
mention it here because it will be used to illustrate some definitions later on.

• s-out-of-n Membership. X = {x ∈ {0, 1}n : Hamming weight |x| ≤ s},
Q = [n] := {1, . . . , n}, and f(x, i) = xi. In other words, x corresponds to a
set of size at most s from a universe of size n, and we want to store the set
in a way that easily allows us to make membership queries. This is probably
the most basic and widely studied data structure problem [19, 39, 10, 34].
Note that for s = 1 this is Equality on logn bits, while for s = n it is the
general Membership problem without constraints on the set.

• Polynomial Evaluation. Let Zn denote the set of integers modulo n, and
let s ≤ n be some nonnegative integer. Given a univariate polynomial g ∈
Zn[X ] of degree at most s, we would like to store g in a compact representation
so that for each evaluation query a ∈ Zn, g(a) can be computed efficiently.
Formally, X = {g ∈ Zn[X ] : deg(g) ≤ s}, Q = Zn, and A = Zn, and the
function is PolyEvaln,s(g, a) = g(a).

• Substring. X = {0, 1}n, Q = {y ∈ {0, 1}n : |y| ≤ r}, f(x, y) = xy, where
xy is the |y|-bit substring of x indexed by the 1-bits of y (e.g., 10100110 = 01).
For r = 1 this is Membership.

• Inner product (IPn,r). X = {0, 1}n, Q = {y ∈ {0, 1}n : |y| ≤ r}, and
f(x, y) = x · y mod 2. This problem is among the hardest Boolean problems,
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where the answer depends on at most r bits of x (again, for r = 1 it is
Membership).

Many other data structure problems (Rank, Predecessor, Nearest neighbor,
etc.) have also been studied widely (see, for example, [4, 21, 33, 1]), but we will not
consider them here.

In this work we extend Definition 1 to two natural settings: error-correcting data
structures and relaxed error-correcting data structures. We provide efficient construc-
tions of such data structures for the problems that we described here. We start
by introducing error-correcting data structures and then describe our results and
techniques employed in the proofs. We then further motivate the generalization to
relaxed error-correcting data structures and discuss our second set of results and tech-
niques.

1.2. Error-correcting data structures. One issue that Definition 1 ignores
is the issue of noise. Memory and storage devices are not perfect: the world is full of
cosmic rays, small earthquakes, random (quantum) events, bypassing trams, etc., that
can cause a few errors here and there. Another potential source of noise is transmission
of the data structure over some noisy channel. Of course, better hardware can partly
mitigate these effects, but in many situations it is realistic to expect a small fraction
of the bits in the storage space to become corrupted over time. Our goal in this paper
is to study error-correcting data structures. These still enable efficient computation
of f(x, q) from the stored data structure E(x), even if the latter has been corrupted
by a constant fraction of errors. In analogy with the usual setting for error-correcting
codes [28, 27], we will take a pessimistic, adversarial view of errors here: we want to
be able to deal with a constant fraction of errors no matter where they are placed.
We consider only bit-flip-errors here, not erasures. Since erasures are easier to handle
than bit-flips, for the purposes of upper bounds it suffices to design a data structure
dealing with bit-flips.

Formally, we define error-correcting data structures as follows.
Definition 2 (error-correcting data structure (ECDS)). Let X be a set of data

items, Q be a set of queries, A be a set of answers, and f : X × Q → A. Let
t > 0 be an integer, δ ∈ [0, 1], and ε ∈ [0, 1/2]. A (t, δ, ε) ECDS for f of length
N is a map E : X → {0, 1}N for which there is a randomized algorithm D with the
following properties: for every x ∈ X and every w ∈ {0, 1}N at Hamming distance
Δ(w, E(x)) ≤ δN from E(x),

1. D makes at most t probes to its oracle for w,
2. Pr[Dw(q) = f(x, q)] ≥ 1− ε for every q ∈ Q.

Definition 1 is the special case of Definition 2 where δ = 0.1 Note that if δ > 0,
then the adversary can always set the errors in a way that gives the decoder D a
nonzero error probability. Hence the setting with bounded error probability is the
natural one for ECDSs. This contrasts with the standard noiseless setting, where one
usually considers deterministic structures.

For the data structure problems considered in this paper, our decoding procedures
make only nonadaptive probes; i.e., the positions of the probes are determined all at
once and sent simultaneously to the oracle. For other data structure problems it may

1As [10, end of section 1.1] notes, a data structure can be viewed as a locally decodable source
code. With this information-theoretic point of view, an error-correcting data structure is a locally
decodable combined source-channel code, and our results for Membership show that one can some-
times do better than combining the best source code with the best channel code. We thank one of
the anonymous referees of [15] for pointing this out.



ERROR-CORRECTING DATA STRUCTURES 87

be natural for decoding procedures to be adaptive. Thus, we do not require D to be
nonadaptive in condition 1 of Definition 2.

To illustrate the definition, here is a simple yet efficient ECDS for Equality:
encode x with an error-correcting code E : {0, 1}n → {0, 1}N that has constant
rate and minimal distance close to N/2 (for instance, take a random linear code).
Then N = O(n), and we can decode by one probe: given query y, probe E(x)j for
uniformly chosen j ∈ [N ], compare it with E(y)j , and output 1 iff these two bits are
equal. Suppose up to a δ-fraction of the bits in E(x) are corrupted. If x = y, then
we will give the correct answer 1 with probability 1 − δ, and if x �= y, then we will
give the correct answer 0 with probability roughly 1/2 − δ. By outputting 0 with
probability 1/3 and running the above 1-probe procedure with probability 2/3, these
two error probabilities can be balanced to 2-sided error ε = 1/3 + O(δ). The error
can be reduced further by allowing more than one bit-probe.

We deal only with so-called static data structures here: we do not worry about
updating the x that we have encoded. What about dynamic data structures, which
allow efficient updates as well as efficient queries to the encoded object? Note that
if data items x and x′ are distinguishable in the sense that f(x, q) �= f(x′, q) for at
least one query q ∈ Q, then their respective encodings E(x) and E(x′) must have
distance greater than 2δN , for otherwise δN errors on E(x) and δN errors on E(x′)
could yield the same string w.2 Hence updating the encoded data from x to x′

will require Ω(N) changes in the data structure E(x), which shows that a dynamical
version of our model of error-correcting data structures with efficient updates is not
possible.

ECDSs and locally decodable codes. Error-correcting data structures not only gen-
eralize the standard (static) data structures (Definition 1), but they also generalize
locally decodable codes, which are error-correcting data structures for Membership

with s = n. These are defined as follows:
Definition 3 (locally decodable code (LDC)). Let t > 0 be an integer, δ ∈ [0, 1],

and let ε ∈ [0, 1/2]. A (t, δ, ε)-LDC of length N is a map E : {0, 1}n → {0, 1}N
for which there is a randomized algorithm D with the following properties: for every
x ∈ {0, 1}n and every w ∈ {0, 1}N at Hamming distance Δ(w, E(x)) ≤ δN ,

1. D makes at most t probes to its oracle for w,
2. Pr[Dw(i) = xi] ≥ 1− ε for every i ∈ [n].

Much work has been done on LDCs, but their length-versus-probes trade-off is
still poorly understood. For t = 2 probes, the exponential-length Hadamard code
is essentially optimal.3 For t = 3 there are some beautiful constructions of LDCs

of length roughly 22
√

log n

[40, 16], which is much less than the Hadamard code’s
exponential length, but still far from polynomial length. For constant t we do not
know LDCs of polynomial length, and it seems reasonable to conjecture that none
exist (the best lower bounds for constant t > 2 are superlinear but not much stronger
than that [23, 25, 37]). Once we allow polylog queries to our LDC-decoder, the
length becomes very efficient. In particular, for fixed η > 0, there exist LDCs with

2Hence if all pairs x, x′ ∈ X are distinguishable (which is usually the case), then E is an error-
correcting code.

3The Hadamard code of x ∈ {0, 1}n is the codeword of length 2n obtained by concatenating the
bits x · y (mod 2) for all y ∈ {0, 1}n. It can be decoded by two probes, since for every y ∈ {0, 1}n we
have (x · y) ⊕ (x · (y ⊕ ei)) = xi. Picking y at random, decoding from a δ-corrupted codeword will
be correct with probability ≥ 1− 2δ, because both probes y and y⊕ ei are individually random and
hence probe a corrupted entry with probability ≤ δ. This exponential length is optimal for 2-probe
LDCs [25].
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t = (logn)O(1/η) probes and length n1+η; see, for instance, [41, section 2.3]. We refer
the reader to [36, 41] and the references therein for further context.4

LDCs address only a very simple type of data structure problem: we have an
n-bit “database” and want to be able to retrieve individual bits from it. In practice,
databases have more structure and complexity, and one usually asks more complicated
queries, such as retrieving all records within a certain range. Our more general notion
of error-correcting data structures enables a study of more practical data structure
problems in the presence of adversarial noise. If one subscribes to the approach
towards errors taken in the area of error-correcting codes, then our definition of error-
correcting data structures seems a very natural one. Yet, to our knowledge, this
definition is new and has not been studied before (see section 1.4 for other approaches).

Our results on ECDSs. Let us start with a useful general result. One obvious
way to construct error-correcting data structures is to take a good nonerror-correcting
data structure E for the problem at hand, say with t probes and length N , and encode
it with a good t′-probe LDC C : {0, 1}N → {0, 1}N ′

; i.e., define E ′(x) = C(E(x)). If
the LDC has error probability at most ε/t, then we can simulate each of the t probes
to E(x) by t′ probes to the LDC-encoding of E(x), and by a union bound, the overall
error probability will be at most ε + t · ε/t = 2ε. The resulting number of probes of
E ′ will be t · t′, and the length N will go up to the length N ′ of the LDC. Thus we
have proved the following.

Proposition 1. If data structure problem f : X × Q → A has a (t, ε)-data
structure of length N and there exists a (t′, δ, ε/t)-LDC that encodes N -bit strings
into N ′-bit strings, then f has a (t · t′, δ, 2ε)-error-correcting data structure of length
N ′.

In particular, suppose we use a t′ = (logN)O(1/η) log(t/ε)-probe LDC that en-
codes N bits into N1+η bits and has error probability ≤ ε/t. This results in an
error-correcting data structure E ′ for f of length N ′ = N1+η, which is only slightly
longer than the length of the nonerror-correcting starting point; the number of probes
used is tpolylog(N). If the original data structure already used t = polylog(N) probes,
then this blow-up in the number of probes may well be a price worth paying for the
error-correcting capacity.

Membership. General constructions such as Proposition 1 can yield very sub-
optimal results when the number of probes t of the original data structure is small.
For example for the s-out-of-nMembership problem, the optimal nonerror-correcting
data structure of Buhrman et al. [10] (explained below) uses only 1 probe andO(s log n)
bits. Encoding this with the best possible 2-probe LDC gives a (2, δ, ε)-error-correcting
data structure of length N ′ = 2O(s logn). Encoding it with the best known 3-probe

LDCs gives length N ′ ≈ 22
√

log s+log log n

. Fortunately, something substantially better
can be done. Fix some number of probes t, noise level δ, and allowed error proba-
bility ε, and consider the minimal length of t-probe error-correcting data structures

4The terminologies used in the data-structure and LDC literature conflict at various points,
and we needed to reconcile them somehow. To avoid confusion, let us repeat here the choices we
have made. We reserve the term “query” for the question q one asks about the encoded data x,
while accesses to bits of the data structure are called “probes” (in contrast, these are usually called
“queries” in the LDC literature). The number of probes is denoted by t. We use n for the number
of bits of the data item x (in contrast with the literature about Membership, which mostly uses
m for the size of the universe and n for the size of the set). We use N for the length of the data
structure (while the LDC literature often uses m). We use the term “decoder” for the algorithm D.
Another issue is that ε is sometimes used as the error probability (in which case one wants ε ≈ 0)
and sometimes as the bias away from 1/2 (in which case one wants ε ≈ 1/2). We use the former.



ERROR-CORRECTING DATA STRUCTURES 89

for s-out-of-n Membership. Let us call this minimal length MEM(t, s, n). A first
observation is that such a data structure includes a locally decodable code for s bits:
just restrict attention to n-bit strings whose last n − s bits are all 0. Hence, with
LDC(t, s) denoting the minimal length among all t-probe LDCs that encode s bits
(for our fixed ε, δ), we immediately get the lower bound

LDC(t, s) ≤ MEM(t, s, n).

This bound is close to optimal if s ≈ n. Another trivial lower bound comes from
the observation that our data structure for Membership is a map with domain of
size B(n, s) :=

∑s
i=0

(
n
i

)
and range of size 2N that has to be injective. Hence we get

another obvious lower bound,

Ω(s log(n/s)) ≤ logB(n, s) ≤ MEM(t, s, n).

What about upper bounds, beyond the above-mentioned consequences of Proposi-
tion 1? Our main positive result in section 2 (Theorem 7) says that the maximum
of the above two lower bounds is not far from optimal. Slightly simplifying,5 in
Theorem 7 we prove

(1) MEM(t, s, n) ≤ O(LDC(t, 1000s) logn).

In other words, if we have a decent t-probe LDC for encoding O(s)-bit strings, then
we can use this to encode sets of size s from a much larger universe [n], at the expense
of blowing up the length of our data structure by only a factor of logn.

For instance, for t = 2 probes we now get MEM(2, s, n) ≤ 2O(s) logn from the
Hadamard code, which is much better than the earlier 2O(s log n). For t = 3 probes, we

get MEM(3, s, n) ≤ 22
√

log s

logn, which is much better than the earlier 22
√

log s+log log n

if log s� log logn.
Techniques for building ECDSs for Membership. Our construction for the upper

bound of (1) relies heavily on the nonerror-correcting Membership construction of
Buhrman et al. [10]. Their structure is obtained using the probabilistic method. (Ex-
plicit but slightly less efficient structures were subsequently given by Ta-Shma [35].)
We sketch its main properties here.

The construction of Buhrman et al. [10] (BMRV-structure). The encoding can be
represented as a bipartite graph G = (L,R,E) with |L| = n left vertices, |R| = m :=
100
ε2 s logn right vertices, and regular left degree d = logn

ε . This G is an expander graph
in the following sense: for each set S ⊆ L with |S| ≤ 2s, its neighborhood Γ(S) ⊆ R
satisfies |Γ(S)| ≥ (

1− ε
2

) |S|d. For each assignment of bits to the left vertices with
at most s ones, the encoding specifies an assignment (not explained here) of bits to
the right vertices. In other words, each x ∈ {0, 1}n of weight |x| ≤ s corresponds
to an assignment to the left vertices, and the m-bit encoding of x corresponds to an
assignment to the right vertices. For each i ∈ [n] we write Γi := Γ({i}) to denote
the set of d neighbors of i. A crucial property of the encoding function Ebmrv is
that for every x of weight |x| ≤ s, for each i ∈ [n], if y = Ebmrv(x) ∈ {0, 1}m,
then Prj∈Γi [xi = yj ] ≥ 1 − ε. Hence the decoder for this data structure can just
probe a random index j ∈ Γi and return the resulting bit. For fixed ε, the length
m = O(s log n) of the BMRV-structure is optimal up to a constant factor, because
clearly log

(
n
s

)
is a lower bound.

5Our actual result, Theorem 7, is a bit weaker, with some deterioration in the error and noise
parameters.
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Note that this construction is not error-correcting at all, since |Γi| errors in the
data structure suffice to erase all information about the ith bit of the encoded x.
Our main idea to make it error-correcting is to randomly partition the m indices
of Ebmrv(x) into roughly logn blocks of O(s) indices each. For a typical i, most
blocks will intersect with Γi in one point. The error-correcting data structure now
encodes each of the logn blocks of O(s) separately, using an optimal t-probe LDC
that encodes O(s) bits. The resulting overall length is N = LDC(t, O(s)) log n. The
decoder chooses one of the logn blocks at random, decodes the Γi-index in that block
using the LDC-decoder for the encoding of that block, and outputs the resulting bit.
Since a randomly chosen block is expected to have the same fraction of errors as the
whole N -bit string, the fraction of noise in the chosen block is probably small enough
for the LDC-decoder to work. The details of the analysis are given in section 2. Note
that we did not need the expander properties of the encoding graph G for this; we
will, however, need those for later results.

Inner product. Another problem that we consider here is Inner product. We
show constructions for this problem where the error-correcting data structures are
not much longer than their nonerror-correcting counterparts—though that is mostly
because even the noiseless case already requires large length. Our main results are
the following comparable upper and lower bounds.

Theorem 2. Every (t, ε)-data structure for IPn,r needs length

N ≥ 1

2
2(log(B(n,r))−2 log(1/(1−2ε))−1)/t.

Theorem 3. For every p ≥ 2, there exists a (t, δ, tδ)-error-correcting data struc-

ture for IPn,r of length N ≤ p · 2r(t−1)2n1/(t−1)

.
Some of the techniques used in the proofs here draw on communication complexity

arguments as well as on previous literature on private information retrieval schemes.
We defer all proofs and further discussions on this problem to Appendix A.

1.3. Relaxed error-correcting data structures. The fact that (1) means
that progress (i.e., better upper and/or lower bounds) on LDCs for any constant
number of probes is equivalent to progress on error-correcting data structures for
s-out-of-n Membership. If we believe the conjecture that there are no polynomial-
length LDCs with a constant number of probes, then the same negative conclusion
also applies to error-correcting data structures for Membership, as well as for many
other data structure problems to which Membership can be reduced (that is, in fact,
most data structure problems). Accordingly, the length-versus-probes trade-offs for
error-correcting data structures seem to be much worse than in the noiseless model.
We thus ask the following question:

What is a clean model of data structures that allows efficient
representations and has error-correcting capabilities?

The model of Definition 2 imposes a rather stringent requirement on decoding: every
query must be answered correctly with high probability from the possibly corrupted
encoding. While this requirement is natural in the definition of LDCs due to their
connection to complexity theory and cryptography, for data structures it seems some-
what restrictive. The alternative models discussed in section 1.4 do not require this
either. Even in the noiseless model, some famous data structures such as Bloom
filters [7] allow incorrect answers on a small fraction of the possible queries.

We will relax our notion of error-correcting data structures as follows. For most
queries, the decoder still has to return the correct answer with high probability. How-
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ever, for the few remaining queries, the decoder may claim ignorance, i.e., declare the
data item unrecoverable from the (corrupted) data structure. Still, for every query,
the probability of an incorrect answer should be small. In fact, just as Definition 2 is a
generalization of LDCs, our relaxed model is a generalization of the “relaxed” locally
decodable codes (RLDCs) introduced by Ben-Sasson et al. [6]. They relax the usual
definition of an LDC by requiring the decoder to return the correct answer on most
rather than all queries. For the remaining queries it is allowed to claim ignorance, i.e.,
to output a special symbol “⊥” interpreted as “don’t know” or “unrecoverable.” As
shown in [6], relaxing the LDC definition like this allows for constructions of RLDCs
with O(1) bit-probes of nearly linear length.

Using RLDCs as building blocks, we construct error-correcting data structures
that are very efficient in terms of time as well as space: their length and number
of probes are not much bigger than in the noiseless setting. Before we describe our
results, let us formally define our model. In addition to the earlier parameters t, δ,
and ε, we now add a fourth parameter λ, which is an upper bound on the fraction
of queries in Q that are not answered correctly with high probability (the “λ” stands
for “lost”).

Definition 4 (relaxed error-correcting data structure (RECDS)). Let f : X ×
Q → A be a data structure problem. Let t > 0 be an integer, δ ∈ [0, 1], ε ∈ [0, 1/2],
and λ ∈ [0, 1]. A (t, δ, ε, λ)-RECDS for f of length N is a map E : X → {0, 1}N for
which there exists a randomized algorithm D with the following properties: for every
x ∈ X and every w ∈ {0, 1}N at Hamming distance Δ(w, E(x)) ≤ δN ,

1. D makes at most t bit-probes to w;
2. Pr[Dw(q) ∈ {f(x, q),⊥}] ≥ 1− ε for every q ∈ Q;
3. the set G := {q : Pr[Dw(q) = f(x, q)] ≥ 1 − ε} has size at least (1 − λ)|Q|

(“G” stands for “good”);
4. if w = E(x), then G = Q.

Just as an LDC is an error-correcting data structure for Membership (with
s = n), a (t, δ, ε, λ)-RLDC is a (t, δ, ε, λ)-RECDS for Membership.

Our results on RECDSs. We focus on two common data structure problems for
which we obtain almost optimal RECDS in terms of length and bit-probe complexity:
Membership and Polynomial Evaluation.

Membership. First, it is not hard to show that by composing the BMRV-
structure with an RLDC, one already obtains an error-correcting data structure of
length O((s log n)1+η), where η is an arbitrarily small constant. However, follow-
ing the approach sketched at the end of section 1.2, with RLDCs instead of LDCs,
we obtain a data structure of length O(s1+η logn), which is substantially shorter if
s = o(logn).

Theorem 4. For every ε ∈ (0, 1/2), η ∈ (0, 1), there exist an integer t > 0 and
real τ > 0 such that for all s and n, and every δ ≤ τ , s-out-of-n Membership has a
(t, δ, ε, s

2n )-RECDS of length O(s1+η logn).
We will prove Theorem 4 in section 3.1. Note that the size of the good set G is

at least n − s
2 . Hence corrupting a δ-fraction of the bits of the data structure may

cause a decoding failure for at most half of the positive queries (i where xi = 1) but
not for all or most positive queries. One may replace this factor 1

2 easily by another
constant (though the parameters t and τ will then change).

Polynomial evaluation. Since there are ns+1 polynomials of degree at most
s, with each polynomial requiring a different instantiation of the data structure, the
information-theoretic lower bound on the space of any data structure for this problem
is at least log(ns+1) ≈ s logn bits. Since each answer is an element of Zn and must be
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represented by �log n� + 1 bits, �logn� + 1 is the information-theoretic lower bound
on the bit-probe complexity.

Consider the following two naive ways to construct a data structure. On one
hand, one can simply record the evaluations of g in a table with n entries, each with
�logn� + 1 bits. The length of this data structure is O(n logn), and each query
requires reading only �log n�+ 1 bits. On the other hand, g can be stored as a table
of its s+1 coefficients. This gives a data structure of length and bit-probe complexity
(s+ 1)(�logn�+ 1).

A natural question is whether one can construct a data structure that is optimal
in terms of both space and time, i.e., has length O(s log n) and answers queries with
O(log n) bit-probes. No such constructions are known to exist. However, some lower
bounds are known in the weaker cell-probe model, where each cell is a sequence of
�logn� + 1 bits. For instance, as noted in [31], any data structure for Polynomial

Evaluation that stores O(s2) cells (which takes O(s2 log n) bits) requires reading at
least Ω(s) cells (Ω(s logn) bits). Moreover, by [30], if logn  s log s and the data
structure is constrained to store sO(1) cells, then its query complexity is Ω(s) cells.
This implies that the second trivial construction described above is essentially optimal
in the cell-probe model.

Recently, Kedlaya and Umans [24] obtained a data structure that has length

s1+η log1+o(1) n (where η is an arbitrarily small constant) that answers evaluation

queries with O(polylog(s) · log1+o(1)(n)) bit-probes. These parameters exhibit the
best trade-off between s and n known so far. When s = nη for some 0 < η < 1,
the data structure of Kedlaya and Umans [24] is far superior to the trivial solution:
its length is nearly optimal, and the query complexity drops from poly(n) to only
polylog(n) bit-probes.

Here we construct an error-correcting data structure for the polynomial evaluation
problem that works even in the presence of adversarial noise, with length nearly linear
in s logn and bit-probe complexity O(polylog(s) · log1+o(1)(n)). Formally, we have the
following.

Theorem 5. For every ε ∈ (0, 1/2), λ, η ∈ (0, 1), there exists τ ∈ (0, 1) such that
for all positive integers s ≤ n, for all δ ≤ τ , the data structure problem PolyEvaln,s

has a (polylog(s) · log1+o(1)(n), δ, ε, λ)-RECDS of length O((s log n)1+η).
Theorem 5 easily holds when s = (logn)o(1). As we discussed previously, one can

just store a table of the s+ 1 coefficients of g. To make this error-correcting, encode
the entire table by a standard error-correcting code. This has length and bit-probe
complexity O(s log n) = O(log1+o(1) n). Accordingly, the proof in section 3.2 will
focus on the case where s = (log n)Ω(1).

Time-complexity of decoding and encoding. In our results we have used the num-
ber of bit-probes as a proxy for the actual time the decoder needs for query-answering.
This is fairly standard and usually justified by the fact that the actual time-complexity
of decoding is not much worse than its number of bit-probes. This is also the case
for our constructions. For Membership, it can be shown that the decoder uses O(1)
probes and polylog(n) time (as do the RLDCs of [6]). For Polynomial Evaluation,

the decoder uses polylog(s) log1+o(1)(n) probes and polylog(sn) time.
The efficiency of encoding, i.e., the “preprocessing” of the data into the form of a

data structure, is more problematic. The problems are, first, that the BMRV-structure
is itself constructed using the probabilistic method, and, second, both of our relaxed
error-correcting data structures (for Membership and Polynomial Evaluation)
use the RLDC of [6]. Its encoding-efficiency is not addressed explicitly in [6] and
needs further study.
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Techniques for building RECDSs. At a high level, for both data structure prob-
lems we build our constructions by composing an RLDC with an appropriate noise-
less data structure. If the underlying probe-accessing scheme in the noiseless data
structure is “pseudorandom,” then the noiseless data structure can be made error-
correcting by appropriate compositions with other data structures. By pseudorandom,
we mean that if a query is chosen uniformly at random from Q, then the positions of
the probes selected also “behave” as if they are chosen uniformly at random. Such a
property allows us to analyze the error-tolerance of our constructions.

More specifically, for Membership we use the same idea as for nonrelaxed error-
correcting data structures, but using an RLDC instead of an LDC. In order to bound
λ in our new construction, we now use the above-mentioned expander properties of
the BMRV-structure. The left side of the expander represents the set of queries, and
a neighborhood of a query (a left node) represents the set of possible bit-probes that
can be chosen to answer this query. The expansion property of the graph essentially
implies that for a random query, the distribution of a bit-probe chosen to answer this
query is close to uniform.6 This property allows us to construct an efficient relaxed
error-correcting data structure for this problem.

For the polynomial evaluation problem, we rely on the noiseless data structure of
Kedlaya and Umans [24], which has a decoding procedure that uses the reconstructive
algorithm from the Chinese Remainder Theorem (CRT). The property that we need
is the simple fact that if a is chosen uniformly at random from Zn, then for any
m ≤ n, a modulo m is uniformly distributed in Zm. This implies that for a random
evaluation point a, the distribution of certain tuples of cell-probes used to answer
this evaluation point is close to uniform. This observation allows us to construct an
efficient, error-correcting data structure for polynomial evaluation. Our construction
follows fairly closely the nonerror-correcting one of [24]; the main new ingredient is
to add redundancy to their CRT-based reconstruction by using more primes, which
gives us the error-correcting features we need.

1.4. Related work. Much work has been done on LDCs, a.k.a. error-correcting
data structures for the Membership problem without constraints on the set size.
However, the error-correcting version of s-out-of-n Membership (“storing sparse ta-
bles”) or of other possible data structure problems has not been studied before.7 Here
we briefly describe a number of other approaches to data structures in the presence
of memory errors. There is also work on data structures with faulty processors, but
we will not discuss that here.

Fault-tolerant pointer-based data structures. Aumann and Bender [3] study fault-
tolerant versions of pointer-based data structures. They define a pointer-based data
structure as a directed graph where the edges are pointers, and the nodes come in
two types: information nodes carry real data, while auxiliary nodes carry auxiliary or
structural data. An error is the destruction of a node and its outgoing edges. They
assume such an error is detected when accessing the node. Even a few errors may
be very harmful to pointer-based data structures: for instance, losing one pointer in
the middle of a standard linked list means we lose the second half of the list. They

6We remark that this is different from the notion of smooth decoding in the LDC literature,
which requires that for every fixed query, each bit-probe by itself is chosen with probability close to
uniform (though not independent of the other bit-probes).

7Using the connection between information-theoretical private information retrieval and locally
decodable codes, one may derive some error-correcting data structures from the private information
retrieval (PIR) results of [13]. However, the resulting structures seem fairly weak.
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call a data structure (d, g)-fault-tolerant (where d is an integer that upper bounds the
number of errors and g is a function) if f ≤ d errors cause at most g(f) information
nodes to be lost.

Aumann and Bender present fault-tolerant stacks with g(f) = O(f), and fault-
tolerant linked lists and binary search trees with g(f) = O(f log d), with only a
constant-factor overhead in the size of the data structure, and small computational
overhead. Notice, however, that their error-correcting demands are much weaker
than the ones of Definition 2: we require that no part of the data be lost (every
query should be answered with a high probability of success), even in the presence of
a constant fraction of errors. Of course, we pay for that in terms of the length of the
data structure.

Faulty-memory RAM model. An alternative model of error-correcting data struc-
tures is the “faulty-memory RAM model,” introduced by Finocchi and Italiano [18].
In this model, one assumes there are O(1) incorruptible memory cells available. This
is justified by the fact that CPU registers are much more robust than other kinds
of memory. On the other hand, all other memory cells can be faulty—including the
ones used by the algorithm that is answering queries (something our model does not
consider). The model assumes an upper bound Δ on the number of errors.

Finocchi, Grandoni, and Italiano [17] described essentially optimal resilient al-
gorithms for sorting that work in O(n log n + Δ2) time with Δ up to about

√
n,

and for searching in Θ(logn + Δ) time. There is a lot of fairly recent work in this
model: Jørgenson, Moruz, and Mølhave [22] study resilient priority queues, Finocchi,
Grandoni, and Italiano [17] study resilient search trees, Caminiti, Finocchi, and Fusco
[12] study dynamic programming, Brodal et al. [8] study resilient dictionaries, and
Brodal et al. [9] study counting. This interesting model allows for more efficient data
structures than our model, but its disadvantages are also clear: it assumes a small
number of incorruptible cells, which may not be available in many practical situations
(for instance, when the whole data structure is stored on a hard disk), and the con-
structions mentioned above cannot deal well with a constant noise rate. Furthermore,
correctness can only be guaranteed for keys that are not affected by noise.

1.5. Organization. In section 2 we construct our ECDS for the Membership

problem (Theorem 7). Our further results and discussions regarding the Inner prod-

uct problem are deferred to Appendix A. In section 3.1 we construct our efficient
RECDSs for Membership (Theorem 4) and for Polynomial Evaluation (Theo-
rem 5). In section 4 we describe a few interesting open problems that emerge from
this work.

2. Error-correcting data structures.

2.1. Membership: 1 probe. We start by commenting on the known data struc-
tures for the Membership problem with 1 probe. For the noiseless case, the BMRV-
structure sketched at the end of section 1.2 has information-theoretically optimal
length m = O(s log n) and decodes with the minimal number of probes (one). This
can also be achieved in the error-correcting case if s = 1; then we just have the
Equality problem (for this see the remark following Definition 2). For larger s, one
can observe that the BMRV-structure still works with high probability if δ � 1/s:
in that case the total number of errors is δm � logn, so for each i, most bits in the
Θ(logn)-set Γi are uncorrupted.

Theorem 6 (see [10]). There exist (1,Ω(1/s), 1/4)-error-correcting data struc-
tures for Membership of length N = O(s log n).
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This works only if δ � 1/s, which is actually close to optimal, as follows. An s-bit
LDC can be embedded in an error-correcting data structure for Membership, and
hence it follows from Katz and Trevisan [23, Theorem 3] that there are no 1-probe
error-correcting data structures for Membership if s > 1/(δ(1−H(ε))) (where H(·)
denotes binary entropy). In sum, there are 1-probe error-correcting data structures
for Membership of information-theoretically optimal length if δ � 1/s. In contrast,
if δ  1/s, then there are no 1-probe error-correcting data structures at all, not even
of exponential length.

2.2. Membership: t > 1 probes. As we argued in section 1.2, for fixed ε
and δ there is an easy lower bound on the length N of t-probe error-correcting data
structures for s-out-of-n Membership:

N ≥ max

(
LDC(t, s), log

s∑
i=0

(
n

i

))
.

Our nearly matching upper bound N = O(LDC(t, 1000s) logn), described below, uses
the BMRV-structure for a small fixed error, combined with an LDC.

Theorem 7. If there is a (t, 100δ, 1/100)-LDC of length � that encodes 1000s
bits, then there is a (t, δ, 49/100)-error-correcting data structure of length O(� log n)
for the s-out-of-n Membership problem.

In this section we prove Theorem 7. We start by showing a useful property of the
BMRV-structure.

Proposition 8. For all positive integers s, n with s ≤ n, the BMRV bipartite
graph G = ([20n], [10000 · s log(20n)], E) for s-out-of-20n Membership with error
parameter 1

10 has the following property: there exists a partition of [10000s log(20n)]
into b = 10 log(20n) disjoint sets B1, . . . , Bb of 1000s vertices each, such that for each
i ∈ [n], there are at least b

4 sets Bk satisfying |Γi ∩Bk| = 1.
Proof. We use the probabilistic method. Apply a random permutation π to the

indices of y = Ebmrv(x) (we show below that π can be fixed to a specific permutation).
The intuition is as follows. Thanks to the random permutation and the fact that |Γi|
equals the number of blocks b, the expected intersection between Γi and a block is
exactly 1. Hence for many i ∈ [20n], many blocks will contain exactly one index
j ∈ Γi.

To make this precise, call k ∈ [b] “good for i” if block k contains exactly one j ∈ Γi,
and let Xik be the indicator random variable for this event. Call i ∈ [20n] “good” if
at least b/4 of the blocks are good for i (i.e.,

∑
k∈[b]Xik ≥ b/4), and let Xi be the

indicator random variable for this event. The expected value (over uniformly random
π) of each Xik is the probability that if we randomly place b balls into ab positions
(a is the block-size 1000s), then there is exactly one ball among the a positions of the
first block, and the other b− 1 balls are in the last ab− a positions. This is

a
(
ab−a
b−1

)
(
ab
b

) =
ab− a

ab− 1
· ab− a− 1

ab− 2
· . . . · ab− a− b+ 2

ab− b+ 1
=

b−2∏
i=0

(
1− a− 1

ab− 1− i

)

≥
(
1− a− 1

ab− b+ 1

)b−1

≥
(
1− 1

b− 1

)b−1

≥ 3

10

for b ≥ 5.
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Then, using linearity of expectation we obtain

20n·b· 3
10

≤ Exp

⎡
⎣ ∑
i∈[20n],k∈[b]

Xik

⎤
⎦ ≤ b·Exp

⎡
⎣ ∑
i∈[20n]

Xi

⎤
⎦+ b

4

⎛
⎝20n− Exp

⎡
⎣ ∑
i∈[20n]

Xi

⎤
⎦
⎞
⎠ ,

which implies

Exp

⎡
⎣ ∑
i∈[20n]

Xi

⎤
⎦ ≥ n.

Hence we can fix one permutation π such that at least n of the indices i are good. By
renaming we can assume that the first n indices are good.

Proof of Theorem 7. To construct an error-correcting data structure, we proceed
as follows. Let δ � 1/100 be a small constant; this is the noise level that we want
our final data structure for Membership to protect against. Consider the BMRV-
structure for s-out-of-20n Membership, with error probability at most 1/10. Then
m = 10000s log(20n) is its length, and b = 10 log(20n) is the size of each of the sets
Γi. Using Proposition 8, we will treat this as consisting of roughly logn blocks of
O(s) bits each.

Encoding. Let m = 10000s log(20n) and B1, . . . , Bb be a partition of [m] as
guaranteed by Proposition 8. For a string y ∈ {0, 1}m, we abuse notation and write
y = y(1) · · · y(b), where y(k) denotes the 1000s-bit string corresponding to the indices
in Bk. Let Ebmrv be the encoder of the BMRV-structure. Let C : {0, 1}1000s → {0, 1}�
be a (t, 100δ, 1/100)-LDC, and let DC be its decoder. On input x ∈ {0, 1}n, |x| ≤ s,
the encoder E does the following:

1. Let Ebmrv

(
x019n

)
= y = y(1) · · · y(b).

2. Output the concatenation E(x) = C(y(1)) . . . C(y(b)).
The length of E(x) is N = b · � = O(� logn).

Decoding. Given a string w ∈ {0, 1}N , we write w = w(1) . . . w(b), where the
�-bit strings w(k) correspond to the (possibly corrupted) LDC-encoding C(y(k)) of
y(k). Given input i and oracle access to w, the decoder D does the following:

1. Pick a random k ∈ [b].
2. If |Γi ∩Bk| �= 1, then output a random bit.

Else, let Γi ∩Bk = {j} and output Dw(k)

C (j).
For every index i, at least 90% of all j ∈ Γi satisfy yj = xi. Hence for a good index i,
with probability at least 1/4− 1/10 we will pick a k such that the kth block is good
for i and the unique j ∈ Γi in the kth block satisfies yj = xi. By Markov’s inequality,
the probability that the block that we picked has more than a 100δ-fraction of errors
is less than 1/100. If the fraction of errors is at most 100δ, then our LDC-decoder
recovers the relevant bit yj with probability 99/100. Hence the overall probability of
outputting the correct value xi is at least

3

4
· 1
2
+

(
1

4
− 1

10
− 1

100

)
· 99

100
>

51

100
.

3. Relaxed error-correcting data structures.

3.1. RECDs for Membership. In this section we construct a relaxed error-
correcting data structure for Membership, overcoming the main drawback of the
above construction: the fact that we don’t know short LDCs with few probes. To
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prove Theorem 4 we use the relaxed LDC of Ben-Sasson et al. [6], which has nearly
linear length.

Theorem 9 (see [6]). For every ε ∈ (0, 1/2) and η > 0, there exist an integer
t > 0 and reals c > 0 and τ > 0 such that for every n and every δ ≤ τ , there is a
(t, δ, ε, cδ)-RLDC encoding n bits of length O(n1+η).

Note that by picking the error-rate δ to be a sufficiently small constant, one can
set λ = cδ (the fraction of unrecoverable queries) to be very close to 0.

Proof of Theorem 4. By Theorem 9, for every ε ∈ (0, 1/2), η > 0, for some
t = O(1), and τ0 > 0, for every δ < τ0, there is a (t, 105δ, 1

100 , c
′δ)-RLDC encoding

1000s bits with length � = O(s1+η), where c′ = 105c. Let Ebghsv and Dbghsv be its
encoder and decoder, respectively. The encoding and decoding procedure will be the
same as in the proof of Theorem 7, except that Ebghsv and Dbghsv replace the LDC-
encoder C and decoder DC , respectively. The resulting length is O(� logn). We will
use the same notation as defined in the proof of Theorem 7.

Analysis of correctness. Fix x ∈ X and w ∈ {0, 1}N such that Δ(w, E(x)) ≤
δN , where δ is less than some small constant τ to be specified later. Recall that
y = Ebmrv(x0

19n) = y(1) · · · y(b). We now verify the four conditions of Definition 4.
For condition 1, the number of probes the decoder D makes is the number of probes
the decoder Dbghsv makes, which is at most t, a fixed integer.

We now examine condition 2. Fix i ∈ [n]. By Markov’s inequality, for a random
k ∈ [b], the probability that the relative Hamming distance between E (yBk

) and w(k)

is greater than 105δ is at most 10−5. If k is chosen such that the fraction of errors in
w(k) is at most 105δ and Γi ∩ Bk = {j}, then with probability at least 0.99, Dbghsv

outputs yj or ⊥. Let β ≥ 1
4 be the fraction of k ∈ [b] such that |Γi ∩Bk| = 1. Then

(2) Pr[D(i) ∈ {xi,⊥}] ≥ (1− β)
1

2
+ β

99

100
− 1

105
> 0.624.

To prove condition 3, we need the expansion property of the BMRV-structure. For

k ∈ [b], define Gk ⊆ Bk so that j ∈ Gk if Pr[Dw(k)

bghsv(j) = yj ] ≥ 0.99. In other words,
Gk consists of indices in block Bk that are answered correctly by Dbghsv with high
probability. By Theorem 9, if the fraction of errors in w(k) is at most 105δ, then
|Gk| ≥ (1 − c′δ)|Bk| for fixed constant c′. Set A = ∪k∈[b]Bk\Gk. Since we showed

above that for a (1− 10−5)-fraction of k ∈ [b], the fraction of errors in w(k) is at most
105δ, we have |A| ≤ c′δm+ 10−5m.

Recall that the BMRV expander has left degree d = 10 log(20n). Take δ small
enough that |A| < 1

40sd. This determines the value of τ of the theorem: say, τ =

min{τ0, sd−10−5m
45c′m }. Note that this is a positive constant since m = 10000s log(20n) =

1000sd. We need to show that for any such small set A, most queries i ∈ [n] are
answered correctly with probability at least 0.51. It suffices to show that for most i,
most of the set Γi falls outside of A. To this end, let B(A) = {i ∈ [n] : |Γi∩A| ≥ d

10}.
We show that if A is small, then B(A) is small.

Claim 10. For every A ⊆ [m] with |A| < sd
40 , it is the case that |B(A)| < s

2 .
Proof. Suppose, by way of contradiction, that B(A) contains a set W of size

s/2. This W is a set of left vertices in the underlying expander graph G, and since
|W | < 2s, we must have

|Γ(W )| ≥
(
1− 1

20

)
d|W |.
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By construction, each vertex in W has at most 9
10d neighbors outside A. Thus, we

can bound the size of Γ(W ) from above as follows:

|Γ(W )| ≤ |A|+ 9

10
d|W |

<
1

40
ds+

9

10
d|W |

=
1

20
d|W |+ 9

10
d|W |

=

(
1− 1

20

)
d|W |.

This is a contradiction. Hence no such W exists, and |B(A)| < s
2 .

Define G = [n]\B(A) and notice that |G| > n− s
2 . It remains to show that each

query i ∈ G is answered correctly with probability > 0.51. To this end, we have

Pr[D(i) =⊥] ≤ Pr[D probes a block with noise-rate > 105δ]

+ Pr[D probes a j ∈ A] + Pr[D(i) =⊥| D probes a j �∈ A]

≤ 1

105
+

1

10
+

1

100
< 0.111.

Combining with (2), for all i ∈ G we have

Pr[D(i) = xi] = Pr[D(i) ∈ {xi,⊥}]− Pr[D(i) =⊥] ≥ 0.51.

Finally, condition 4 follows from the corresponding condition of the RLDC.

3.2. RECDs for polynomial evaluation. In this section we prove Theorem 5.
Given a polynomial g of degree s over Zn, our goal is to write down a data structure of
length roughly linear in s logn so that for each a ∈ Zn, the value g(a) can be computed
with approximately polylog(s) · log(n) bit-probes. Our data structure is built on the
work of Kedlaya and Umans [24]. Since we cannot quite use their construction as
a black-box, we first give a high-level overview of our proof, motivating each of the
proof ingredients that we need.

Encoding based on reduced polynomials. The most naive construction, by
recording g(a) for each a ∈ Zn, has length n logn and answers an evaluation query
with logn bit-probes. As explained in [24], one can reduce the length by using the
CRT: if P1 is a collection of distinct primes, then a nonnegative integer m <

∏
p∈P1

p
is uniquely specified by (and can be reconstructed efficiently from) the values [m]p for
each p ∈ P1, where [m]p denotes m mod p.

Consider the value g(a) over Z, which can be bounded above by ns+2, for a ∈
Zn. Let P1 consist of the first log(ns+2) primes. For each p ∈ P1, compute the
reduced polynomial gp ∈ Zp[X ], defined as gp := g mod p (i.e., gp is obtained from
g by reducing the coefficients modulo p,) and write down gp(b) for each b ∈ Zp.
Consider the data structure that simply concatenates the evaluation table of every
reduced polynomial. This data structure has length |P1|(maxp∈P1 p)

1+o(1), which is

s2+o(1) log2+o(1) n by the Prime Number Theorem. Note that g(a) <
∏

p∈P1
p. So to

compute [g(a)]n, it suffices to apply CRT to reconstruct g(a) over Z from the values
[g(a)]p = gp([a]p) for each p ∈ P1. The number of bit-probes is |P1| log(maxp∈P1 p),

which is s1+o(1) log1+o(1) n.
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Error-correction with reduced polynomials. The above CRT-based con-
struction has terrible parameters, but it serves as an important building block from
which we can obtain a data structure with better parameters. For now, we explain
how the above CRT-based encoding can be made error-correcting. One can protect
the bits of the evaluation tables of each reduced polynomial by an RLDC as provided
by Theorem 9. However, the evaluation tables can have nonbinary alphabets, and a
bit-flip in just one “entry” of an evaluation table can destroy the decoding process. To
remedy this, one can first encode each entry by a standard error-correcting code and
then encode the concatenation of all the tables by an RLDC. This is encapsulated in
Lemma 11, which can be viewed as a version of Theorem 9 over a nonbinary alphabet.
We prove Lemma 11 in Appendix B.

Lemma 11. Let f : X × Q → {0, 1}� be a data structure problem. For every
ε ∈ (0, 1/2), η, λ ∈ (0, 1), there exists τ ∈ (0, 1) such that for every δ ≤ τ , f has an

(O(�), δ, ε, λ)-relaxed error-correcting data structure of length O((�|Q|)1+η
).

We use the following instantiation in Lemma 11: let X be the set of degree-
s polynomials over Zn, let Q be the set of all evaluation points of all the reduced
polynomials of g (each specified by a pair (a, p)), and the data structure problem f
outputs evaluations of some reduced polynomial of g (i.e., f(g, (a, p)) = [g(a)]p).

By itself, Lemma 11 cannot guarantee resilience against noise. In order to apply
the CRT to reconstruct g(a), all the values {[g(a)]p : p ∈ P1} must be correct, which
is not guaranteed by Lemma 11. To fix this, we add redundancy, taking a larger
set of primes than necessary so that the reconstruction via CRT can be made error-
correcting. Specifically, we apply a CRT code to the encoding process.

Definition 5 (CRT code). Let p1 < p2 < · · · < pN be distinct primes, K < N ,

and T =
∏K

i=1 pi. The CRT code with basis p1, . . . , pN and rate K
N over message

space ZT encodes m ∈ ZT as 〈[m]p1 , [m]p2 , . . . , [m]pN 〉.
By the CRT, for distinct m1,m2 ∈ ZT , their encodings agree on at most K − 1

coordinates. Hence the CRT code with basis p1 < · · · < pN and rate K
N has distance

N −K + 1.
It is known that good families of CRT codes exist and that unique decoding

algorithms for CRT codes can correct up to almost half of the distance of the code
(see, e.g., [20]). The following statement can be easily derived from known facts, and
we include a proof in Appendix C.

Theorem 12. For every positive integer T , there exists a set P consisting of
distinct primes, with (1) |P | = O(log T ), and (2) for all p ∈ P, logT < p < 500 logT
such that a CRT code with basis P and message space ZT has rate 1

2 and relative
distance 1

2 , and can correct up to a (14 −O( 1
log log T ))-fraction of errors.

We apply Theorem 12 to a message space of size ns+2 to obtain a set of primes
P1 with the properties described above. Note that these primes are all within a
constant factor of one another, and in particular, the evaluation table of each reduced
polynomial has the same length, up to a constant factor. This fact and Lemma 11
will ensure that our CRT-based encoding is error-correcting.

Reducing the bit-probe complexity. We now explain how to reduce the bit-
probe complexity of the CRT-based encoding, using an idea from [24]. Write s = dm,
where d = (log s)C , m = log s

C log log s , and C > 1 is a sufficiently large constant. Consider

the following multivariate extension map ψd,m : Zn[X ] → Zn[X0, . . . , Xm−1] that
sends a univariate polynomial of degree at most s to an m-variate polynomial of
degree less than d in each variable. For every i ∈ [s], write i =

∑m−1
j=0 ijd

j in base d.
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Define ψd,m which sends the monomial X i to X i0
1 · · ·X im−1

m and extends linearly to
polynomials in Zn[X ].

To simplify our notation we write g̃ to denote the multivariate polynomial ψd,m(g).

For every a ∈ Zn, define ã ∈ Z
m
n to be ([a]n, [a

d]n, [a
d2

]n, . . . , [a
dm−1

]n). Note that for
every a ∈ Zn, g(a) = g̃(ã) (mod n). Now the trick is to observe that the total degree
of the multivariate polynomial g̃ is less than the degree of the univariate polynomial
g, and hence its maximal value over the integers is much reduced. In particular, for
every a ∈ Z

m
n , the value g̃(a) over the integers is bounded above by dmndm+1.

We now work with the reduced polynomials of g̃ for our encoding. Let P1 be the
collection of primes guaranteed by Theorem 12 when T1 = dmndm+1. Then both |P1|
and maxp∈P1 p are O(log T1) = O(dm log n). For a, p ∈ Z, define [a]n,p = [a]n mod p.

For p ∈ P1, let g̃p denote g̃ mod p and ãp denote point ([a]n,p, [a
d]n,p, . . . , [a

dm−1

]n,p).
Consider the data structure that concatenates the evaluation table of g̃p for each
p ∈ P1. For each a ∈ Zn, to compute g(a), it suffices to compute g̃(ã) over Z, which
by Theorem 12 can be reconstructed (even with noise) from the set {g̃p(ãp) : p ∈ P1}.

Since the maximum value of g̃ is at most T1 = dmndm+1 (whereas the maximum
value of g is at most dmndm+1), the number of primes we now use is significantly
less. This effectively reduces the bit-probe complexity. In particular, each evaluation
query can be answered with |P1| ·maxp∈P1 log p = (dm log n)1+o(1) bit-probes, which

by our choice of d and m is equal to polylog(s) · log1+o(1)(n). However, the length of
this encoding, which is at most

|P1|max
p∈P1

pm log p = O(dm log n)
m+1

log p = O
(
s1+1/C(log n)

log s
log log s

)
,

is still far from the information-theoretically optimal s logn bits. We shall explain how
to reduce the length, but since encoding with multivariate reduced polynomials intro-
duces potential complications in error-correction, we first explain how to circumvent
these complications.

Error-correction with reduced multivariate polynomials. There are two
complications that arise from encoding with reduced multivariate polynomials. The
first is that not all the points in the evaluation tables are used in the reconstructive
CRT algorithm. Lemma 11 only guarantees that most of the entries of the table can
be decoded, not all of them. So if the entries that are used in the reconstruction via
CRT are not decoded by Lemma 11, then the whole decoding procedure fails.

More specifically, to reconstruct g̃(ã) over Zn, it suffices to query the point ãp
in the evaluation table of g̃p for each p ∈ P1. Typically the set {ãp : a ∈ Zn} will
be much smaller than Z

m
p , so not all the points in Z

m
p are used. To circumvent this

issue, we store only the query points that are used in the CRT reconstruction. Let
Bp = {ãp : a ∈ Zn}. For each p ∈ P1, the encoding stores only the evaluation of g̃p at
the points Bp instead of the entire domain Z

m
p . The disadvantage of computing the

evaluation at the points in Bp is that the encoding stage takes time proportional to n.
We thus give up on encoding efficiency (which was one of the main goals of Kedlaya
and Umans) in order to guarantee error-correction.

The second complication is that the sizes of the evaluation tables may no longer
be within a constant factor of each other. (This is true even if the evaluation points
come from all of Zm

p .) If one of the tables has length significantly longer than the
others, then a constant fraction of noise may completely corrupt the entries of all the
other small tables, rendering decoding via CRT impossible. This potential problem is
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easy to fix; we apply a repetition code to each evaluation table so that all the tables
have essentially equal length.

Reducing the length. Now we explain how to reduce the length of the data
structure to nearly s logn, along the lines of Kedlaya and Umans [24]. To reduce the
length, we need to reduce the magnitude of the primes used by the CRT reconstruc-
tion. We can effectively achieve that by applying the CRT twice. Instead of storing
the evaluation table of g̃p, we apply CRT again and store evaluation tables of the
reduced polynomials of g̃p instead. Whenever an entry of g̃p is needed, we can apply
the CRT reconstruction to the reduced polynomials of g̃p.

Fix m and d as before. Note that for p1 ∈ P1, the maximum value of g̃p1 (over the
integers rather than mod n) is at most T2 = dmpdm+1

1 . Now apply Theorem 12 with
T2 the size of the message space to obtain a collection of primes P2. Recall that each
p1 ∈ P1 is at most O(dm log n). So each p2 ∈ P2 is at most O((dm)1+o(1) log logn),
which also bounds the cardinality of P2 from above.

For each query, the number of bit-probes made is at most |P1||P2|maxp2∈P2 log p2,

which is at most (dm)2+o(1) log1+o(1) n. Recall that by our choice of d and m,

dm = (log s)C+1

C log log s . Thus, the bit-probe complexity is polylog(s) · log1+o(1)(n). Now, by

Lemma 11, the length of the encoding is nearly linear in |P1||P2|maxp2∈P2 p
m
2 log p2,

which is at most polylog(s) · log1+o(1)(n) · maxp2∈P2 p
m
2 . So it suffices to bound

maxp2∈P2 p
m
2 from above. To this end, recall that by the remark following Theorem 5,

we may assume without loss of generality that s = Ω((logn)ζ) for some 0 < ζ < 1.
This implies that log log logn ≤ log log s− log ζ. Then for each p2 ∈ P2,

pm2 ≤
(
O
(
(dm)1+o(1) log logn

))m
≤ (dm)(1+o(1))m · s 1

C +o(1).

It is easy to see that (dm)(1+o(1))m can be bounded above by s(1+o(1))(1+ 1
C −o(1)). Thus,

pm2 = s1+
2
C +o(1). Putting everything together and choosing C sufficiently large, the

length of the encoding can be made O(s1+η logn) bits for any constant η > 0 of our
choice.

Below we give the rather technical formal proof that all this works.
Proof of Theorem 5. We construct only an error-correcting data structure with

error probability ε = 1
4 . By a standard amplification technique (i.e., O(log(1/ε′))

repetitions) we can reduce the error probability to any other positive constant ε′. We
now give a formal description of the encoding and decoding algorithms.

Encoding. Apply Theorem 12 with T = dmndm+1 to obtain a collection of primes
P1. Apply Theorem 12 with T = dm(maxp∈P1 p)

dm+1 to obtain a collection of primes
P2. Set pmax = maxp2∈P2 p2.

Now, for each p1 ∈ P1, p2 ∈ P2, define a collection of evaluation points Bp1,p2 =
{ãp1,p2 : a ∈ Zn}. Fix a univariate polynomial g ∈ Zn[x] of degree at most s. For every
p1 ∈ P1, p2 ∈ P2, view each evaluation of the reduced multivariate polynomial g̃p1,p2

as a bit-string of length exactly �log pmax�. Let L = maxp1∈P1,p2∈P2 |Bp1,p2 |, and for
each p1 ∈ P1, p2 ∈ P2, set r

p1,p2 = � L
|Bp1,p2 |�. Define fp1,p2 to be the concatenation

of rp1,p2 copies of the string 〈g̃(q)〉q∈Bp1 ,p2 . Define the string f = 〈fp1,p2〉p1∈P1,p2∈P2 .
We want to apply Lemma 11 to protect the string f , which we can do since f

may be viewed as a data structure problem, as follows. The set of data items is the
set of polynomials g as above. The set of queries Q is the disjoint union of the sets
Bp1,p2 × [rp1,p2 ] over all p1 ∈ P1, p2 ∈ P2. The answer to query (qp1,p2 , ip1,p2) is the
ip1,p2th copy of g̃p1,p2(q

p1,p2).
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Fix λ ∈ (0, 1). By Lemma 11, for every η > 0, there exists τ0 ∈ (0, 1) such that for
every δ ≤ τ0, there is a (O(log pmax), δ, 2

−10, λ32−36)-RECDS for the data structure
problem corresponding to f . Let E0,D0 be its encoder and decoder, respectively.
Finally, the encoding of the polynomial g is simply

E(g) = E0(f).
Note that the length of E(g) is at most (|P1||P2|maxp2∈P2 p

m
2 log p2)

1+η, which as
we computed earlier is bounded above by O((s log n)1+ζ) for some arbitrarily small
constant ζ.

Decoding. We may assume, without loss of generality, that the CRT-decoder
Dcrt from Theorem 11 outputs ⊥ when more than a 1

16 -fraction of its input are
erasures (i.e., ⊥ symbols).

The decoder D, with input a ∈ Zn and oracle access to w, does the following:
1. Compute ã = (a, ad, . . . , ad

m−1

) ∈ Z
m
n , and for every p1 ∈ P1, p2 ∈ P2,

compute the reduced evaluation points ãp1,p2 .
2. For every p1 ∈ P1, p2 ∈ P2, pick j ∈ [rp1,p2 ] uniformly at random and

run the decoder D0 with oracle access to w to obtain the answers v
(a)
p1,p2 =

D0(ãp1,p2 , j).

3. For every p1 ∈ P1 obtain v(a)p1
= Dcrt((v

(a)
p1,p2

)p2∈P2).

4. Output v(a) = Dcrt((v
(a)
p1 )p1∈P1).

Analysis. Fix a polynomial g with degree at most s. Fix a bit-string w at
relative Hamming distance at most δ from E(g), where δ is at most τ0. We proceed
to verify that the above encoding and decoding satisfy the conditions of Definition 4.
Conditions 1 and 4 are easily verified.

Condition 1: Observe that for each p1 ∈ P1, p2 ∈ P2, D0 makes at most
O(log pmax) bit-probes. So D makes at most O(|P1||P2| log pmax) bit-probes, which,

as we calculated earlier, is at most polylog(s) · log1+o(1)(n).

Condition 4: Note that since D0 decodes correctly when no noise is present, v
(a)
p1,p2

equals g̃p1,p2(ãp1,p2). By our choice of P1 and P2, after two applications of the CRT,
it is easy to see that D outputs v = g̃(ã), which equals g(a).

Condition 2: Fix a ∈ Zn. We want to show that with oracle access to w, with
probability at least 3

4 , the decoder D on input a outputs either g(a) or ⊥. For

π ∈ P1 ∪ (P1 × P2), we say that a point v
(a)
π is incorrect if v

(a)
π /∈ {g̃π(ãπ),⊥}.

By Lemma 11, for each p1 ∈ P1 and p2 ∈ P2, v
(a)
p1,p2 is incorrect with probability

at most 2−10. Now fix p1 ∈ P1. On expectation (over the decoder’s randomness),

at most a 2−10-fraction of the points in the set {v(a)p1,p2 : p2 ∈ P2} are incorrect. By
Markov’s inequality, with probability at least 1− 2−6, the fraction of points in the set

{v(a)p1,p2 : p2 ∈ P2} that are incorrect is at most 1
16 . If the fraction of blank symbols

in the set {v(a)p1,p2 : p2 ∈ P2} is at least 1
16 , then Dcrt outputs ⊥, which is acceptable.

Otherwise, the fraction of errors and erasures (i.e., ⊥ symbols) in the set {v(a)p1,p2 : p2 ∈
P2} is at most 1

8 . By Theorem 12, the decoder Dcrt will output an incorrect v
(a)
p1 with

probability at most 2−6. Thus, on expectation, at most a 2−6-fraction of the points

in {v(a)p1 : p1 ∈ P1} are incorrect. By Markov’s inequality again, with probability at

least 3
4 , at most a 1

16 -fraction of the points in {v(a)p1 : p1 ∈ P1} are incorrect, which by
Theorem 12 implies that Dw(a) is either ⊥ or g(a). This establishes condition 2.

Condition 3: We show the existence of a set G ⊆ Zn such that |G| ≥ (1 −
λ)n, and for each a ∈ G we have Pr[D(a) = g(a)] ≥ 3

4 . Our proof relies on the
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following observation: for any p1 ∈ P1 and p2 ∈ P2, if a ∈ Zn is chosen uniformly
at random, then the evaluation point ãp1,p2 is like a uniformly chosen element from
q ∈ Bp1,p2 . This observation implies that if a few entries in the evaluation tables of
the multivariate reduced polynomials are corrupted, then for most a ∈ Zn, the output
of the decoder D on input a remains unaffected. We now formalize this observation.

Claim 13. Fix p1 ∈ P1, p2 ∈ P2, and a point q ∈ Bp1,p2 . Then

Pr
a∈Zn

[ãp1,p2 ≡ q] ≤ 4

p2
.

Proof. It is not hard to see that for a fixed q1 ∈ Bp1 , the number of integers
a ∈ Zn such that ãp1 ≡ q1 is at most � n

p1
�+ 1. Furthermore, for a fixed q2 ∈ Bp1,p2 ,

the number of points in Bp1 that are congruent to q2 mod p2 is at most �p1

p2
� + 1.

Thus, for a fixed q ∈ Bp1,p2 , the number of integers a ∈ Zn such that ãp1,p2 ≡ q is at
most (� n

p1
�+ 1)(�p1

p2
�+ 1), which is at most 4 n

p2
since n ≥ p1 ≥ p2.

Now, for every p1 ∈ P1 and p2 ∈ P2, we say that a query (q, j) ∈ Bp1,p2×[rp1,p2 ] is
bad if the probability that Dw

0 (q, j) �= g̃(p1,p2)(q) is greater than 2−10. By Lemma 11,
the fraction of bad queries in ∪p1,p2B

p1,p2 × [rp1,p2 ] is at most λ0 := λ32−36. We say
that a tuple of primes (p1, p2) ∈ P1 × P2 is bad if more than a 211λ0λ

−1-fraction of
queries in Bp1,p2×[rp1,p2 ] are bad (below, good always denotes not bad). By averaging,
the fraction of bad tuples (p1, p2) is at most 2−11λ.

For a fixed good tuple (p1, p2), we say that an index ip1,p2 is bad if more than
a 2−11λ-fraction of queries in the copy Bp1,p2 × {ip1,p2} are bad. Since (p1, p2) is
good, by averaging, at most a 222λ0λ

−2-fraction of [rp1,p2 ] are bad. Recall that in
step 2 of the decoder D, the indices {jp1,p2 : p1 ∈ P1, p2 ∈ P2} are chosen uniformly
at random. So on expectation, the set of indices {jp1,p2 : (p1, p2) is good} has at
most a 222λ0λ

−2-fraction of bad indices. By Markov’s inequality, with probability
at least 7

8 , the fraction of bad indices in the set {jp1,p2 : (p1, p2) is good} is at most
225λ0λ

−2. We condition on this event occurring and fix the indices jp1,p2 for each
p1 ∈ P1, p2 ∈ P2.

Fix a good tuple (p1, p2) and a good index jp1,p2 . By Claim 13, for a uniformly
random a ∈ Zn, the query (ãp1,p2 , j

p1,p2) is bad with probability at most 2−9λ. By
linearity of expectation, for a random a ∈ Zn, the expected fraction of bad queries in
the set Sa = {(ãp1,p2 , j

p1,p2) : p1 ∈ P1, p2 ∈ P2} is at most 2−11λ+ 225λ0λ
−2 + 2−9λ,

which is at most 2−8λ by definition of λ0. Thus, by Markov’s inequality, for a random
a ∈ Zn, with probability at least 1− λ, the fraction of bad queries in the set Sa is at
most 2−8. By linearity of expectation, there exists some subset G ⊆ Zn with |G| ≥
(1− λ)n such that for every a ∈ G, the fraction of bad queries in Sa is at most 2−8.

Now fix a ∈ G. By definition, the fraction of bad queries in Sa is at most 2−8, and
furthermore, each of the good queries in Sa is incorrect with probability at most 2−10.
So on expectation, the fraction of errors and erasures in Sa is at most 2−8+2−10. By
Markov’s inequality, with probability at least 7

8 , the fraction of errors and erasures

in the set {v(a)p1,p2 : p1 ∈ P1, p2 ∈ P2} is at most 2−5 + 2−7, which is at most 1
25 . We

condition on this event occurring. By averaging, for more than a 4
5 -fraction of the

primes p1 ∈ P1, the set {v(a)p1,p2 : p2 ∈ P2} has at most a 1
5 -fraction of errors and

erasures, which can be corrected by the CRT-decoder Dcrt. Thus, after step 3 of the

decoder D, the set {v(a)p1 } has at most a 1
5 -fraction of errors and erasures, which again

will be corrected by the CRT-decoder Dcrt. Hence, by the union bound, the two
events that we conditioned on earlier occur simultaneously with probability at least
3
4 , and Dw(a) will be g(a).
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4. Future work. Many questions are opened up by our model of error-correcting
data structures. We mention a few:

• There are plenty of other natural data structure problems, such as Rank,
Predecessor, versions of Nearest neighbor, etc. [31]. What about the
length-versus-probes trade-offs for their error-correcting versions? The ob-
vious approach is to put the best known LDC on top of the best known
nonerror-correcting data structures (Proposition 1). This is not always opti-
mal, though; for instance, in the case of s-out-of-n Membership one can do
significantly better, as we showed here.
The problem of computing Rank within a sparse ordered set is a good target.
Suppose we are given a universe [n], some nonnegative integer s ≤ n, and a
subset S ⊆ [n] of size at most s. The rank problem is to store S compactly so
that on input i ∈ [n], the value |{j ∈ S : j ≤ i}| can be computed efficiently.
For obvious information-theoretic reasons, any data structure for this problem
needs length at least log

(
n
s

) ≥ s log(n/s) and makes Ω(log s) bit-probes for
each query. If s = O(log n), one can trivially obtain an error-correcting data
structure of optimal length O(s logn) with O(log2 n) bit-probes, which is only
quadratically worse than optimal: write down S as a string of s logn bits, en-
code it with a good error-correcting code, and read the entire encoding when
an index is queried. However, it may be possible to do something smarter.

• It is often natural to assume that a memory cell contains not a bit, but some
number from, say, a polynomial-size universe. This is called the cell-probe
model [39], in contrast to the bit-probe model we considered here. Probing a
cell gives O(log n) bits at the same time, which can significantly improve the
length-versus-probes trade-off and is worth studying. Still, we view the bit-
probe approach taken here as more fundamental than the cell-probe model:
a t-probe cell-probe structure is an O(t logn)-probe bit-probe structure, but
not vice versa. Also, the way memory is addressed in actual computers in con-
stant chunks of, say, 8 or 16 bits at a time, is closer in spirit to the bit-probe
model than to the cell-probe model.

• Zvi Lotker suggested to us the following connection with distributed comput-
ing, which deserves further study. Suppose the data structure is distributed
over N processors, each holding one bit. Interpreted in this setting, an error-
correcting data structure allows an honest party to answer queries about the
encoded object while communicating with at most t processors. The answer
will be correct with probability 1 − ε, even if up to a δ-fraction of the N
processors are faulty or even malicious (the querier need not know where the
faulty/malicious sites are).

Appendix A. Constructions for the Inner product problem.

A.1. Inner product: Noiseless case. Here we show bounds for Inner prod-

uct, first for the case where there is no noise (δ = 0).
Upper bound. Consider all strings z of weight at most �r/t�. The number of such

z is B(n, �r/t�) =∑�r/t�
i=0

(
n
i

) ≤ (etn/r)r/t. We define our codeword by writing down,
for all z in lexicographic order, the inner product x · z mod 2. If we want to recover
the inner product x · y for some y of weight at most r, we write y = z1 ⊕ · · · ⊕ zt for
zj ’s of weight at most �r/t� and recover x · zj for each j ∈ [t], using one probe for
each. Summing the results of the t probes gives x · y (mod 2). In particular, for t = 1
probes, the length is B(n, r).
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Lower bound. To prove a nearly matching lower bound, we use Miltersen’s tech-
nique of relating a data structure to a two-party communication game [29]. We refer
to [26] for a general introduction to communication complexity. Suppose Alice gets
string x ∈ {0, 1}n, Bob gets string y ∈ {0, 1}n of weight ≤ r, and they need to
compute x · y (mod 2) with bounded error probability and minimal communication
between them. Call this communication problem IPn,r. Let B(n, r) =

∑r
i=0

(
n
i

)
be

the size of Q, i.e., the number of possible queries y. The proof of our communication
complexity lower bound below uses a fairly standard discrepancy argument, but we
have not found this specific result anywhere.

Theorem 14. Every communication protocol for IPn,r with worst-case (or even
average-case) success probability ≥ 1/2 + β needs at least log(B(n, r)) − 2 log(1/2β)
bits of communication.

Proof. Let μ be the uniform input distribution: each x has probability 1/2n

and each y of weight ≤ r has probability 1/B(n, r). We show a lower bound on the
communication c of deterministic protocols that compute IPn,r with μ-probability at
least 1/2 + β. By Yao’s principle [38], this lower bound then also applies to (public-
coin) randomized protocols.

Consider a deterministic c-bit protocol. Assume the last bit communicated is
the output bit. It is well known that this partitions the input space into rectangles
R1, . . . , R2c , where Ri = Ai × Bi, and the protocol gives the same output bit ai for
each (x, y) ∈ Ri.

8 The discrepancy of rectangle R = A× B under μ is the difference
between the weight of the 0’s and the 1’s in that rectangle:

δμ(R) =
∣∣μ(R ∩ IP−1

n,r(1))− μ(R ∩ IP−1
n,r(0))

∣∣ .
We can show for every rectangle that its discrepancy is not very large.

Lemma 15. δμ(R) ≤ (
√|R|)/(√2nB(n, r)).

Proof. Let M be the 2n × B(n, r) matrix whose (x, y)-entry is (−1)IPn,r(x,y) =
(−1)x·y. It is easy to see that MTM = 2nI, where I is the B(n, r)×B(n, r) identity
matrix. This implies, for every v ∈ R

B(n,r),

‖Mv ‖2 = (Mv)T · (Mv) = vTMTMv = 2nvT v = 2n‖ v ‖2.

Let R = A × B, and let vA ∈ {0, 1}2n and vB ∈ {0, 1}B(n,r) be the characteristic
(column) vectors of the sets A and B. Note that ‖ vA ‖ =

√|A| and ‖ vB ‖ =
√|B|.

The sum of M -entries in R is
∑

a∈A,b∈B Mab = vTAMvB. We can bound this by using
the Cauchy–Schwarz inequality:

|vTAMvB| ≤ ‖ vA ‖ · ‖MvB ‖ = ‖ vA ‖ · √2n‖ vB ‖ =
√
|A| · |B| · 2n.

Observing that δμ(R) = |vTAMvB|/(2nB(n, r)) and |R| = |A| · |B| concludes the
proof.

Define the success and failure probabilities (under μ) of the protocol as

Ps =
2c∑
i=1

μ(Ri ∩ IP−1
n,r(ai)) and Pf =

2c∑
i=1

μ(Ri ∩ IP−1
n,r(1− ai)).

8See [26, section 1.2]. The number of rectangles may be smaller than 2c, but we can always add
empty ones.
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Then

2β ≤ Ps − Pf

=
∑
i

μ(Ri ∩ IP−1
n,r(ai))− μ(Ri ∩ IP−1

n,r(1− ai))

≤
∑
i

∣∣μ(Ri ∩ IP−1
n,r(ai))− μ(Ri ∩ IP−1

n,r(1 − ai))
∣∣

=
∑
i

δμ(Ri) ≤
∑

i

√|Ri|√
2nB(n, r)

≤
√
2c
√∑

i |Ri|√
2nB(n, r)

=
√
2c/B(n, r),

where the last inequality is an application of the Cauchy–Schwarz inequality, and the
last equality holds because

∑
i |Ri| is the total number of inputs, which is 2nB(n, r).

Rearranging gives 2c ≥ (2β)2B(n, r); hence c ≥ log(B(n, r))− 2 log(1/2β).
Armed with this communication complexity bound we can prove Theorem 2:

every (t, ε)-data structure for IPn,r needs lengthN ≥ 1
22

(log(B(n,r))−2 log(1/(1−2ε))−1)/t.
Proof of Theorem 2. Consider a data structure E of length N . We will use this

to obtain a communication protocol for IPn,r that uses t(log(N) + 1) + 1 bits of
communication, and then we will invoke Theorem 14 to obtain the lower bound.

Alice holds x, and hence E(x), while Bob simulates the decoder. Bob starts the
communication. He picks his first probe to the data structure and sends it over in
logN bits. Alice sends back the 1-bit answer. After t rounds of communication, all t
probes have been simulated and Bob can give the same output as the decoder would
have given. Bob’s output will be the last bit of the communication. Theorem 14 now
implies

t(log(N) + 1) + 1 ≥ log(B(n, r)) − 2 log(1/(1− 2ε)).

Rearranging gives the bound on N .
For fixed ε, the lower bound is N = Ω

(
B(n, r)1/t

)
. This is Ω((n/r)r/t), which

(at least for small t) is not too far from the upper bound of approximately (etn/r)r/t

mentioned above. Note that in general our bound on N is superpolynomial in n
whenever t = o(r). For instance, when r = αn for some constant α ∈ (0, 1/2),
N = Ω(2nH(α)/t), which is nontrivial whenever t = o(n). Finally, note that the
proof also works if Alice’s messages are longer than 1 bit (i.e., if the code is over a
larger-than-binary alphabet).

A.2. Inner product: Noisy case.

A.2.1. Constructions for Substring. It is easy to construct error-correcting
data structures for Substring, which also suffice for Inner product. Note that
since we are recovering r bits, and each probe gives at most one bit of information,
by information theory we need at least roughly r probes to the data structure. Our
solutions below will use O(r log r) probes. View x as a concatenation x = x(1) . . . x(r)

of r strings of n/r bits each (we ignore rounding for simplicity), and define E(x) as
the concatenation of the Hadamard codes of these r pieces. Then E(x) has length
N = r · 2n/r.

If δ ≥ 1/4r, then the adversary could corrupt one of the r Hadamard codes by
25% noise, ensuring that some of the bits of x are irrevocably lost even when we
allow the full N probes. However, if δ � 1/r, then we can recover each bit xi with
small constant error probability by 2 probes in the Hadamard codeword where i sits,
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and with error probability � 1/r using O(log r) probes. Hence we can compute
f(x, y) = xy with error close to 0 using t = O(r log r) probes (or with 2r probes
if δ � 1/r2).9 This also implies that any data structure problem where f(x, q)
depends on at most some fixed constant r bits of x, has an error-correcting data
structure of length N = r · 2n/r and t = O(r log r) probes, and that works if δ � 1/r.

Alternatively, we can take Efremenko’s 3-probe LDC [16] of length N ≈ 22
√

log n

, and
just decode each of the r bits separately. Using O(log r) probes to recover a bit with
error probability � 1/r, we recover the r-bit string xy using t = O(r log r) probes
even if δ is a constant independent of r.

A.2.2. Constructions for Inner product. Going through the proof of [16],
one can see that it allows us to compute the parity of any set of r bits from x using
at most 3r probes with error ε, if the noise rate δ is at most ε/(3r) (just add the
results of the 3 probes one would make for each bit in the parity). To get error-
correcting data structures even for small constant t (independent of r), we can adapt
the polynomial schemes from [5] to prove Theorem 3: for every p ≥ 2, there exists a

(t, δ, tδ)-error-correcting data structure for IPn,r of length N ≤ p · 2r(t−1)2n1/(t−1)

.
Proof of Theorem 3. Here we construct t-probe error-correcting data structures

for the inner product problem, inspired by the approach to LDCs of [5]. Let d be an
integer to be determined later. Pick m = �dn1/d�. Then

(
m
d

) ≥ n, so there exist n
distinct sets S1, . . . , Sn ⊆ [m], each of size d. For each x ∈ {0, 1}n, define anm-variate
polynomial px of degree d over F2 by

px(z1, . . . , zm) =
n∑

i=1

xi
∏
j∈Si

zj .

Note that if we identify Si with its m-bit characteristic vector, then px(Si) = xi. For
z(1), . . . , z(r) ∈ {0, 1}m, define an rm-variate polynomial px,r over F2 by

px,r(z
(1), . . . , z(r)) =

r∑
j=1

px(z
(j)).

This polynomial px,r(z) has rm variables and degree d, and allows us to evaluate
parities of any set of r of the variables of x: if y ∈ {0, 1}n (of weight r) has its 1-bits
at positions i1, . . . , ir, then

px,r(Si1 , . . . , Sir ) =
r∑

j=1

xij = x · y (mod 2).

To construct an error-correcting data structure for IPn,r, it thus suffices to give a
structure that enables us to evaluate px,r at any point w of our choice.10

Let w ∈ {0, 1}rm. Suppose we “secret-share” this into t pieces w(1), . . . , w(t) ∈
{0, 1}rm which are uniformly random subject to the constraint w = w(1) + · · ·+w(t).
Now consider the trm-variate polynomial qx,r defined by

(3) qx,r(w
(1), . . . , w(t)) = px,r(w

(1) + · · ·+ w(t)).

9It follows from Buhrman et al. [11] that if we allow a quantum decoder, the factor of log r is
not needed.

10If we want to be able to compute x · y (mod 2) for |y| < r, we can just add a dummy 0 as
(n+ 1)st variable to x, and use its index r − |y| times as inputs to px,r.
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Each monomial M in this polynomial has at most d variables. If we pick d = t − 1,
then for every M there will be a j ∈ [t] such that M does not contain variables from

w(j). Assign all such monomials to a new polynomial q
(j)
x,r, which is independent of

w(j). This allows us to write

(4) qx,r(w
(1), . . . , w(t)) = q(1)x,r(w

(2), . . . , w(t)) + · · ·+ q(t)x,r(w
(1), . . . , w(t−1)).

Note that each q
(j)
x,r has domain of size 2(t−1)rm. The data structure is defined as the

concatenation, for all j ∈ [t], of the values of q
(j)
x,r on all possible inputs. This has

length

N = t · 2(t−1)rm ≤ t · 2r(t−1)2n1/(t−1)

.

This length is 2O(rn1/(t−1)) for t = O(1).
Answering a query works as follows: the decoder would like to evaluate px,r on

some point w ∈ {0, 1}rm. He picks w(1), . . . , w(t) as above, and for all j ∈ [t], in
the jth block of the code probes the point w(1), . . . , w(j−1), w(j+1), . . . , w(t). This, if

uncorrupted, returns the value of q
(j)
x,r at that point. The decoder outputs the sum

of his t probes (mod 2). If none of the probed bits were corrupted, then the output
is px,r(w) by (3) and (4). Note that the probe within the jth block is uniformly
random in that block, so its error probability is exactly the fraction δj of errors in
the jth block. Hence by the union bound, the total error probability is at most∑t

j=1 δj. If the overall fraction of errors in the data structure is at most δ, then we

have 1
t

∑t
j=1 δj ≤ δ, and hence the total error probability is at most tδ.

For the t = 2 case, we get something simpler and better from the Hadamard code.
This code, of length 2n, actually allows us to compute x ·y (mod 2) for any y ∈ {0, 1}n
of our choice, with 2 probes and error probability at most 2δ (just probe z and y ⊕ z
for uniformly random z ∈ {0, 1}n and observe that (x · z)⊕ (x · (z⊕ y)) = x · y). Note
that for r = Θ(n) and t = O(1), even nonerror-correcting data structures need length
2Θ(n) (Theorem 2). This is an example where error-correcting data structures are not
significantly longer than the nonerror-correcting kind.

Appendix B. Nonbinary answer set. We prove Lemma 11, a version of
Theorem 9 when the answer set A is nonbinary. We first encode the �|Q|-bit string
〈f(x, q)〉q∈Q by an RLDC and use the decoder of the RLDC to recover each of the
� bits of f(x, q). Now it is possible that for each q ∈ Q, the decoder outputs some blank
symbols⊥ for some of the bits of f(x, q), and no query could be answered correctly. To
circumvent this, we first encode each �-bit string f(x, q) with a good error-correcting
code, then encode the entire string by the RLDC. Now if the decoder does not output
too many errors or blank symbols among the bits of the error-correcting code for
f(x, q), we can recover it. We need a family of error-correcting codes with the following
property; see, e.g., page 668 in [32].

Fact 16. For every δ ∈ (0, 1/2) there exists R ∈ (0, 1) such that for all n, there
exists a binary linear code of block length n, information length Rn, and Hamming
distance δn such that the code can correct from e errors and s erasures, as long as
2e+ s < δn.

Proof of Lemma 11. We construct only a relaxed error-correcting data structure
with error probability ε = 1

4 . By a standard amplification technique (i.e., O(log(1/ε′))
repetitions) we can reduce the error probability to any other positive constant ε′. Let
Eecc : {0, 1}� → {0, 1}�′ be an asymptotically good binary error-correcting code (from
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Fact 16), with �′ = O(�) and relative distance 3
8 , and decoder Decc. By Theorem 9,

there exist c0, τ0 > 0 such that for every δ ≤ τ0, there is an (O(1), δ, 1
32 , c0δ)-RLDC.

Let E0 and D0 denote its encoder and decoder, respectively.
Encoding. We construct a data structure for f as follows. Without loss of

generality, we may impose an ordering on the set Q and identify each q ∈ Q with
an integer in [Q]. Define the encoder E : X → {0, 1}N , where N = O((�′ · |Q|)1+η

), as

E(x) = E0
(
〈 Eecc(f(x, q)) 〉q∈Q

)
.

Decoding. With input q ∈ Q and oracle access to w ∈ {0, 1}N , the decoder D
does the following:

1. For each j ∈ [�′], let rj = Dw
0 ((q − 1)�′ + j) and set r = r1 . . . r�′ ∈ {0, 1,⊥}�′.

2. If the number of blank symbols ⊥ in r is at least �′
8 , then output ⊥. Else,

output Decc(r).
Analysis. Fix x ∈ X and w ∈ {0, 1}N such that Δ(w, E(x)) ≤ δN , and δ ≤ τ ,

where τ is the minimum of τ0 and λ/(64c0). We need to argue that the above encoding
and decoding satisfy the four conditions of Definition 4. For condition 1, since D0

makes O(1) bit-probes and D runs this �′ times, D makes O(�′) = O(�) bit-probes
into w.

We now show D satisfies condition 2. Fix q ∈ Q. We want to show Pr[Dw(q) ∈
{f(x, q),⊥}] ≥ 3

4 . By Theorem 9, for each j ∈ [�′], with probability at most 1
32 ,

rj = f(x, q)j ⊕ 1. So on expectation, for at most a 1
32 -fraction of the indices j,

rj = f(x, q)j ⊕ 1. By Markov’s inequality, with probability at least 3
4 , the number of

indices j such that rj = f(x, q)j ⊕ 1 is at most �′
8 . If the number of ⊥ symbols in r

is at least �′
8 , then D outputs ⊥, so assume the number of ⊥ symbols is less than �′

8 .
Those ⊥’s are viewed as erasures in the codeword Eecc(f(x, q)). Since Eecc has relative
distance 3

8 , by Fact 16, Decc will correct these errors and erasures and output f(x, q).
For condition 3, we show there exists a large subset G of q’s satisfying Pr[Dw(q) =

f(x, q)] ≥ 3
4 . Let y = 〈 Eecc(f(x, q)) 〉q∈Q, which is an �′|Q|-bit string. Call an index i

in y bad if Pr[Dw
0 (i) = yi] <

3
4 . By Theorem 9, at most a c0δ-fraction of the indices in

y are bad. We say that a query q ∈ Q is bad if more than a 1
64 -fraction of the bits in

Eecc(f(x, q)) are bad. By averaging, the fraction of bad queries in Q is at most 64c0δ,
which is at most λ by our choice of τ . We define G to be the set of q ∈ Q that are
not bad. Clearly |G| ≥ (1− λ)|Q|.

Fix q ∈ G. On expectation, the fraction of indices j in r such that rj �= f(x, q)j
is at most 1

64 + 1
32 . Hence by Markov’s inequality, with probability at least 3

4 , the
fraction of indices in r such that rj �= f(x, q)j is at most 3

16 . Thus, by Fact 16, Decc(r)
will recover from these errors and erasures, and output f(x, q).

Finally, condition 4 follows since the pair (E0,D0) satisfies Condition 4, finishing
the proof.

Appendix C. CRT codes. In this section we explain how Theorem 12 follows
from known facts. In [20], Goldreich, Ron, and Sudan designed a unique decoding
algorithm for the CRT code.

Theorem 17 (from [20]). Given a CRT code with basis p1 < · · · < pN and rate
K/N , there exists a polynomial-time algorithm that can correct up to log p1

log p1+log pN
(N−

K) errors.
By choosing the primes appropriately, we can establish Theorem 12. In particular,

the following well-known estimate, essentially a consequence of the Prime Number
Theorem, is useful. See, for instance, Theorem 4.7 in [2] for more details.



110 VICTOR CHEN, ELENA GRIGORESCU, AND RONALD DE WOLF

Fact 18. For an integer � > 0, the �th prime (denoted q�) satisfies 1
6� log � <

q� < 13� log �.
Proof of Theorem 12. LetK = � 12 log T

log log T � and q� denote the �th prime. By Fact 18,

qK > 1
6K logK > logT and q3K−1 < 39K log 3K < 500 logT . Also, notice that∏2K−1

i=K qi > qKK > (log T )
log T

log log T = T. Thus, the CRT code with basis qK , . . . , q3K−1

has message space ZT , rate
1
2 , and relative distance 1

2 . Lastly, by Theorem 17, the
code can correct a fraction 1

4 −O( 1
log log T ) of errors.
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