
Complexity Measures and Decision Tree Complexity:A SurveyHarry Buhrman� Ronald de WolfyDecember 13, 1999AbstractWe discuss several complexity measures for Boolean functions: certi�cate complexity, sen-sitivity, block sensitivity, and the degree of a representing or approximating polynomial. Wesurvey the relations and biggest gaps known between these measures, and show how they givebounds for the decision tree complexity of Boolean functions on deterministic, randomized, andquantum computers.1 IntroductionComputational Complexity is the �eld of Theoretical Computer Science that investigates the prop-erties of \computation". In particular it aims to understand how much computation is necessaryand su�cient to perform certain computational tasks. For example, given a computational problemit tries to establish tight upper and lower bounds on the length of the computation (or on otherresources, like space).Unfortunately, for many, practically relevant, computational problems no tight bounds areknown. An illustrative example is the well known P versus NP problem: for all NP-completeproblems the current upper and lower bounds lie exponentially far apart. That is, the best knownalgorithms for these problems need exponential time (in the size of the input) but the best lowerbounds are of a linear nature.One of the general approaches towards solving a hard problem is to set the goals a little bitlower and try to tackle a simpler problem �rst. The hope is that understanding of the simplerproblem will lead to a better understanding of the original, more di�cult, problem.This approach has been taken with respect to Computational Complexity: simpler and morelimited models of computation have been studied. Perhaps the simplest model of computation isthe decision tree. The goal here is to compute a Boolean function f : f0; 1gn ! f0; 1g using queriesto the input. In the most simple form the queries are of the form xi and the answer is the valueof xi. (The queries may be more complicated. In this survey we will only deal with this simpleform of queries.) The algorithm is adaptive, that is the kth query may depend on the answers ofthe k � 1 previous queries. The algorithm can therefore be described by a binary tree, whence itsname `decision tree'.For a boolean function f we de�ne its deterministic decision tree complexity, D(f), as theminimum number of queries that an optimal deterministic algorithm for f needs to make on any�CWI, P.O. Box 94709, Amsterdam, The Netherlands. E-mail: buhrman@cwi.nl.yCWI and University of Amsterdam. E-mail: rdewolf@cwi.nl.1

input. This measure corresponds to the depth of the tree that an optimal algorithm induces. Oncethe computational power of decision trees is better understood, one can extend this notion to morepowerful models of query algorithms. This results in randomized and even quantum decision trees.In order to get a handle on the computational power of decision trees (whether deterministic,randomized, or quantum), other measures of the complexity of Boolean functions have been de�nedand studied. Some prime examples are certi�cate complexity, sensitivity, block sensitivity, the degreeof a representing polynomial, and the degree of an approximating polynomial. We survey the knownrelations and biggest gaps between these complexity measures and show how they apply to decisiontree complexity, giving proofs of some of the central results. The main results say that all ofthese complexity measures (with the possible exception of sensitivity) are polynomially related toeach other and to the decision tree complexities in each of the classical, randomized, and quantumsettings. We also identify some of the main remaining open questions.The complexity measures discussed here also have interesting relations with circuit complex-ity [Weg87, Bei93, Bop97], parallel computing [CDR86, Sim83, Nis91, Weg87], communicationcomplexity [NW95, BW99], and the construction of oracles in complexity theory [BI87, Tar89,FFKL93, FR98].The paper is organized as follows. In Section 2 we introduce some notation concerning Booleanfunctions and multivariate polynomials. In Section 3 we de�ne the three main variants of decisiontrees that we discuss: deterministic decision trees, randomized decision trees, and quantum decisiontrees. In Section 4 we introduce certi�cate complexity, sensitivity, block sensitivity, and the degreeof a representing or approximating polynomial. We survey the main relations and known upperand lower bounds between these measures. In Section 5 we show how the complexity measures ofSection 4 imply upper and lower bounds on deterministic, randomized, and quantum decision treecomplexity. This section gives bounds that apply to all Boolean functions. Finally, in Section 6 weexamine some special subclasses of Boolean functions and tighten the general bounds of Section 5for these special cases.2 Boolean Functions and Polynomials2.1 Boolean functionsA Boolean function is a function f : f0; 1gn ! f0; 1g. Note that f is total, i.e. de�ned on all n-bitinputs. For an input x 2 f0; 1gn, we use xi to denote its ith bit, so x = x1 : : : xn. We use jxj todenote the Hamming weight of x (its number of 1s). If S is a set of (indices of) variables, then weuse xS to denote the input obtained by ipping the S-variables in x. We abbreviate xfig to xi. Forexample, if x = 0011, then xf2;3g = 0101 and x4 = 0010. We call f symmetric if f(x) only dependson jxj. Some common symmetric functions that we will refer to are:� OR(x) = 1 i� jxj � 1� AND(x) = 1 i� jxj = n� PARITY(x) = 1 i� jxj is odd� MAJ(x) = 1 i� jxj > n=2We call f monotone (increasing) if f(x) cannot decrease if we set more variables of x to 1. Afunction that we will refer to sometimes is the \address function". This is a function on n = k+2kvariables, where the �rst k bits of the input provide an index in the last 2k bits. The value of the2

indexed variable is the output of the function. Wegener [Weg85] gives a monotone version of theaddress function.2.2 Multilinear polynomialsIf S is a set of (indices of) variables, then the monomial XS is the product of variables XS =�i2Sxi. A multilinear polynomial on n variables is a function p : Rn ! C which can be written asp(x) =PS�[n] cSXS for some complex numbers cS . We call cS the coe�cient of the monomial XSin p. Note that if we restrict attention to the Boolean domain f0; 1gn, then xi = xki for all k > 1, soconsidering only multilinear polynomials is no restriction when dealing with Boolean inputs. Thenext lemma implies that if multilinear polynomials p and q are equal on all Boolean inputs, thenthey are identical:Lemma 1 Let p; q : Rn ! R be multilinear polynomials of degree at most d. If p(x) = q(x) for allx 2 f0; 1gn with jxj � d, then p = q.Proof De�ne r(x) = p(x) � q(x). Suppose r is not identically zero. Let V be a minimal-degreeterm in r with non-zero coe�cient c, and x be the input where xj = 1 i� xj occurs in V . Thenjxj � d, and hence p(x) = q(x). However, since all monomials in r except for V evaluate to 0 on x,we have r(x) = c 6= 0 = p(x) � q(x), which is a contradiction. It follows that r is identically zeroand p = q. 2Below we sketch the method of symmetrization, due to Minsky and Papert [MP68] (see also [Bei93,Section 4]). Let p : Rn ! R be a polynomial. If � is some permutation and x = x1 : : : xn, then�(x) = (x�(1); : : : ; x�(n)). Let Sn be the set of all n! permutations. The symmetrization psym of paverages over all permutations of the input, and is de�ned as:psym(x) = P�2Sn p(�(x))n! :Note that psym is a polynomial of degree at most the degree of p. Symmetrizing may actually lowerthe degree: if p = x1 � x2, then psym = 0. The following lemma allows us to reduce an n-variatepolynomial to a single-variate one.Lemma 2 (Minsky & Papert) If p : Rn ! R is a multilinear polynomial, then there exists asingle-variate polynomial q : R ! R, of degree at most the degree of p, such that psym(x) = q(jxj)for all x 2 f0; 1gn.Proof Let d be the degree of psym, which is at most the degree of p. Let Vj denote the sum of all�nj� products of j di�erent variables, so V1 = x1 + : : : + xn, V2 = x1x2 + x1x3 + : : : + xn�1xn, etc.Since psym is symmetrical, it is easily shown by induction that it can be written aspsym(x) = c0 + c1V1 + c2V2 + : : : + cdVd;with ci 2 R. Note that Vj assumes value �jxjj � = jxj(jxj � 1)(jxj � 2) : : : (jxj � j + 1)=j! on x, whichis a polynomial of degree j of jxj. Therefore the single-variate polynomial q de�ned byq(jxj) = c0 + c1 jxj1 !+ c2 jxj2 !+ : : : + cd jxjd !satis�es the lemma. 23

3 Decision Tree Complexity on Various Machine ModelsBelow we de�ne decision tree complexity for three di�erent kinds of machine models: deterministic,randomized, and quantum.3.1 DeterministicA deterministic decision tree is a binary tree T . Each internal node of T is labeled with a variablexi and each leaf is labeled with a value 0 or 1. Given an input x 2 f0; 1gn, the tree is evaluatedas follows. Start at the root; if this is a leaf then stop. Otherwise, query the value of the variablexi. If xi = 0 then recursively evaluate the left subtree, if xi = 1 then recursively evaluate the rightsubtree. The output of the tree is the value (0 or 1) of the leaf that is reached eventually. Notethat an input x deterministically determines the leaf, and thus the output, that the procedure endsup in.We say a decision tree computes f if its output equals f(x), for all x 2 f0; 1gn. Clearly thereare many di�erent decision trees that compute the same f . The complexity of such a tree is itsdepth, i.e. the number of queries made on the worst-case input. We de�ne D(f), the decision treecomplexity of f , as the depth of an optimal (= minimal-depth) decision tree that computes f .3.2 RandomizedAs in many other models of computation, we can add the power of randomization to decision trees.There are two ways to view a randomized decision tree. Firstly, we can add (possibly biased) coinips as internal nodes to the tree. Now an input x no longer determines which leaf of the tree willbe reached, but induces a probability distribution over the set of all leaves. Thus the tree outputs0 or 1 with a certain probability. The complexity of the tree is the number of queries on the worst-case input and worst-case outcome of the coin ips. A second way to de�ne a randomized decisiontree is as a probability distribution � over deterministic decision trees. The tree is evaluated bychoosing a deterministic tree according to �, which is then evaluated as before. The complexity ofthe randomized tree in this second de�nition is the depth of the deepest T that has �(T) > 0. Itis not hard to see that these two de�nitions are equivalent.We say that a randomized decision tree computes f with bounded-error if its output equals f(x)with probability at least 2/3, for all x 2 f0; 1gn. R2(f) denotes the complexity of the optimalrandomized decision tree that computes f with bounded error.13.3 QuantumWe briey sketch the framework of quantum computing. An m-qubit state j�i is a superpositionof all classical m-bit strings: j�i = Xi2f0;1gm �ijii:Here �i is a complex number which is called the amplitude of basis state jii. We requirePi j�ij2 = 1.There are two things we can do to such a state: measure it or apply a unitary transformation toit. Quantum mechanics says that if we measure the m-qubit register j�i, then we will see the basisstate jii with probability j�ij2. Since Pi j�ij2 = 1, we thus have a valid probability distribution1We will not discuss zero-error (or Las Vegas) randomized decision trees here. See [SW86, Nis91, HNW93, HW91,Haj91, BCWZ99] for some results concerning such trees. 4

over the classicalm-bit strings. After the measurement, j�i has \collapsed" to the speci�c observedbasis state jii and all other information in the state will be lost.Apart from measuring j�i, we can also apply a unitary transformation to it. That is, viewingthe 2m amplitudes of j�i as a vector in C2m , we can obtain some new state j i = Pi2f0;1gm �ijiiby multiplying j�i with a unitary matrix U : j i = U j�i. A matrix U is unitary i� its inverse U�1equals the conjugate transpose matrix U�. Because unitarity is equivalent to preserving Euclideannorm, the new state j i will still have Pi j�ij2 = 1. There is an extensive literature on how suchlarge U can be obtained from small unitary transformations (\quantum gates") on few qubits at atime (see [Ber97, Cle99]).We formalize a query to an input x 2 f0; 1gn as a unitary transformation O which mapsji; b; zi to ji; b� xi; zi. Here � denotes exclusive-or and z denotes the \workspace" of the quantumcomputer, which is not a�ected by the query. This clearly generalizes the classical setting where aquery inputs an i into a black-box, which returns the bit xi: if we apply O to the basis state ji; 0; ziwe get ji; xi; zi, from which the ith bit of the input can be read. Because O has to be unitary, wespecify that it maps ji; 1; zi to ji; 1 � xi; zi. Note that a quantum computer can make queries insuperposition: applying O once to the state 1pnPni=1 ji; 0; zi gives 1pnPni=1 ji; xi; zi, which in somesense contains all bits of the input.A quantum decision tree has the following form: we start with an m-qubit state j~0i where everybit is 0. Then we apply a unitary transformation U0 to the state, then we apply a query O, thenanother unitary transformation U1, etc. A T -query quantum decision tree thus corresponds to a bigunitary transformation A = UTOUT�1 : : : OU1OU0. Here the Ui are �xed unitary transformations,independent of the input x. The �nal state Aj~0i depends on the input x only via the T applicationsof O. The output is obtained by measuring the �nal state and outputting the rightmost bitof the observed basis state (without loss of generality we can assume there are no intermediatemeasurements).We say that a quantum decision tree computes f exactly if the output equals f(x) with prob-ability 1, for all x 2 f0; 1gn. The tree computes f with bounded-error if the output equals f(x)with probability at least 2/3, for all x 2 f0; 1gn. QE(f) denotes the number of queries of an opti-mal quantum decision tree that computes f exactly, Q2(f) is the number of queries of an optimalquantum decision tree that computes f with bounded-error. Note that we just count the numberof queries, not the complexity of the Ui.Unlike the classical deterministic or randomized decision trees, the quantum algorithms arenot really trees anymore (the names `quantum query algorithm' or `quantum black-box algorithm'are also in use). Nevertheless we prefer the term `quantum decision tree', because such quantumalgorithms generalize classical trees in the sense that they can simulate them, as sketched below.Consider a T -query deterministic decision tree. It �rst determines which variable it will queryinitially; then it determines the next query depending upon its history, and so on for T queries.Eventually it outputs an output-bit depending on its total history. The basis states of the corre-sponding quantum algorithm have the form ji; b; h; ai, where i; b is the query-part, h ranges overall possible histories of the classical computation (this history includes all previous queries andtheir answers), and a is the rightmost qubit, which will eventually contain the output. Let U0map the initial state j~0; 0;~0; 0i to ji; 0;~0; 0i, where xi is the �rst variable that the classical treewould query. Now the quantum algorithm applies O, which turns the state into ji; xi;~0; 0i. Thenthe algorithm applies a transformation U1 which maps ji; xi;~0; 0i to jj; 0; h; 0i, where h is the newhistory (which includes i and xi) and xj is the variable that the classical tree would query given theoutcome of the previous query. Then the quantum tree applies O for the second time, it applies atransformation U2 which updates the workspace and determines the next query, etc. Finally, after5

T queries the quantum tree sets the answer bit to 0 or 1 depending on its total history. All oper-ations Ui performed here are injective mappings from basis states to basis states, hence they canbe extended to permutations of basis states, which are unitary transformations. Thus a T -querydeterministic decision tree can be simulated by an exact T -query quantum algorithm. Similarly aT -query randomized decision tree can be simulated by a T -query quantum decision tree with thesame error probability (basically because a superposition can \simulate" a probability distribution).Accordingly, we have Q2(f) � R2(f) � D(f) and Q2(f) � QE(f) � D(f).4 Some Complexity MeasuresLet f : f0; 1gn ! f0; 1g be a Boolean function. We can associate several measures of complexitywith such functions, whose de�nitions and relations are surveyed below.4.1 Certi�cate complexityCerti�cate complexity measures how many of the n variables have to be given a value in order to�x the value of f .De�nition 1 Let C be an assignment C : S ! f0; 1g of values to some subset S of the n variables.We say that C is consistent with x 2 f0; 1gn if xi = C(i) for all i 2 S.For b 2 f0; 1g, a b-certi�cate for f is an assignment C such that f(x) = b whenever x isconsistent with C. The size of C is jSj.The certi�cate complexity Cx(f) of f on x is the size of a smallest f(x)-certi�cate that is con-sistent with x. The certi�cate complexity of f is C(f) = maxxCx(f). The 1-certi�cate complexityof f is C(1)(f) = maxfxjf(x)=1g Cx(f), and similarly we de�ne C(0)(f).For example, C(1)(OR) = 1 since it su�ces to set one variable xi = 1 to force the OR-functionto 1. On the other hand, C(OR) = C(0)(OR) = n.4.2 Sensitivity and block sensitivitySensitivity and block sensitivity measure how sensitive the value of f is to changes in the input.Sensitivity was introduced in [CDR86] (under the name of critical complexity) and block sensitivityin [Nis91].2De�nition 2 The sensitivity sx(f) of f on x is the number of variables xi for which f(x) 6= f(xi).The sensitivity of f is s(f) = maxx sx(f).The block sensitivity bsx(f) of f on x is the maximum number b such that there are disjointsets B1; : : : ; Bb for which f(x) 6= f(xBi). The block sensitivity of f is bs(f) = maxx bsx(f). (If fis constant, we de�ne s(f) = bs(f) = 0.)Note that sensitivity is just block sensitivity with the size of the blocks Bi restricted to 1.Simon [Sim83] gave a general lower bound on s(f):Theorem 1 (Simon) If f depends on all n variables, then s(f) � 12 logn� 12 log log n+ 12 .2There has also been some work on average (block) sensitivity [Ber96] and its applications [Bop97, Shi99, AW00].6

Wegener [Weg85] proved that this theorem is tight up to the O(log logn)-term by means of themonotone address function.We now prove some relations between C(f), s(f), and bs(f). Clearly, for all x we have sx(f) �bsx(f) and bsx(f) � Cx(f) (since a certi�cate for x will have to contain at least one variable ofeach sensitive block). Hence:Proposition 1 s(f) � bs(f) � C(f).The biggest gap known between s(f) and bs(f) is quadratic, as shown by Rubinstein [Rub95]:Example 1 Let n = 4k2. Divide the n variables in pn disjoint blocks of pn variables: the �rstblock B1 contains x1; : : : ; xpn, the second block B2 contains xpn+1; : : : ; x2pn, etc. De�ne f suchthat f(x) = 1 i� there is at least one block Bi where two consecutive variables have value 1 andthe other pn � 2 variables are 0. It is easy to see that s(f) = pn and bs(f) = n=2, so we havea quadratic gap between s(f) and bs(f). Since bs(f) � C(f), this is also a quadratic gap betweens(f) and C(f) (Wegener and Zadori give a di�erent function with a smaller gap between s(f) andC(f) [WZ89]).It has been open for quite a while whether bs(f) can be upper bounded by a polynomial ins(f). It may well be true that bs(f) 2 O(s(f)2).Open problem 1 Is bs(f) 2 O(s(f)k) for some k?We proceed to give Nisan's proof [Nis91] that C(f) can be upper bounded by bs(f)2.Lemma 3 If B is a minimal sensitive block for x, then jBj � s(f).Proof If we ip one of the B-variables in xB, then the function value must ip from f(xB) tof(x) (otherwise B would not be minimal), so every B-variable is sensitive for f on input xB . HencejBj � sxB(f) � s(f). 2Theorem 2 (Nisan) C(f) � s(f)bs(f).Proof Consider an input x 2 f0; 1gn and let B1; : : : ; Bb be disjoint minimal sets of variables thatachieve the block sensitivity b = bsx(f) � bs(f). We will show that C : [iBi ! f0; 1g which setsvariables according to x is a su�ciently small certi�cate for f(x).If C is not an f(x)-certi�cate, then let x0 be an input that is consistent with C, such thatf(x0) 6= f(x). De�ne Bb+1 by x0 = xBb+1 . Now f is sensitive to Bb+1 on x and Bb+1 is disjoint fromB1; : : : ; Bb, which contradicts b = bsx(f). Hence C is an f(x)-certi�cate. By the previous lemmawe have jBij � s(f) for all i, hence the size of this certi�cate is j [i Bij � s(f)bs(f). 2No quadratic gap between bs(f) and C(f) seems to be known. Some subquadratic gaps maybe found in [WZ89, Section 3].
7

4.3 Degree of representing polynomialDe�nition 3 A polynomial p : Rn ! R represents f if p(x) = f(x) for all x 2 f0; 1gn.Note that since x2 = x for x 2 f0; 1g, we can restrict attention to multilinear polynomials forrepresenting f . It is easy to see that each f can be represented by a multilinear polynomial p.Lemma 1 implies that this polynomial is unique, which allows us to de�ne:De�nition 4 The degree deg(f) of f is the degree of the multilinear polynomial that represents f .For example, deg(AND) = n, because the representing polynomial is the monomial x1 : : : xn.The degree deg(f) may be signi�cantly larger than s(f), bs(f), and C(f):Example 2 Let f on n = k2 variables be the AND of k ORs of k variables each. Both AND andOR on k variables are represented by degree-k polynomials, so the representing polynomial of f hasdegree deg(f) = k2 = n. On the other hand, it is not hard to see that s(f) = bs(f) = C(f) = pn.Thus deg(f) is quadratically larger than s(f), bs(f), and C(f) in this case.3On the other hand, deg(f) may also be signi�cantly smaller than s(f) and bs(f), as the nextexample from Nisan and Szegedy [NS94] shows.Example 3 Consider the function E12 de�ned by E12(x1; x2; x3) = 1 i� jxj 2 f1; 2g. This functionis represented by the following degree-2 polynomial:E12(x1; x2; x3) = x1 + x2 + x3 � x1x2 � x1x3 � x2x3:De�ne Ek12 as the function on n = 3k variables obtained by building a complete recursive ternarytree of depth k, where the 3k leaves are the variables and each node is the E12-function of its threechildren. For k > 1, the representing polynomial for Ek12 is obtained by substituting independentcopies of the Ek�112 -polynomial in the above polynomial for E12. This shows that deg(f) = 2k =n1= log 3. On the other hand, it is easy to see that ipping any variable in the input ~0 ips thefunction value from 0 to 1, hence s(f) = bs(f) = C(f) = n = deg(f)log 3 (Kushilevitz has found aslightly bigger gap, based on the same technique with a slightly more complex polynomial, see [NW95,footnote 1 on p.560]).Below we give Nisan and Szegedy's proof that deg(f) can be no more than quadratically smallerthan bs(f) [NS94]. This shows that the gap of the last example is close to optimal. The proof usesthe following theorem from [EZ64, RC66]:Theorem 3 (Ehlich & Zeller; Rivlin & Cheney) Let p : R ! R be a polynomial such thatb1 � p(i) � b2 for every integer 0 � i � n, and its derivative has jp0(x)j � c for some real 0 � x � n.Then deg(p) � pcn=(c+ b2 � b1).Theorem 4 (Nisan & Szegedy) bs(f) � 2 deg(f)2.3It will follow from Theorem 10 and Corollary 2 that deg(f) � C(f)2, so this quadratic gap between deg(f) andC(f) is optimal. Theorem 10 and Corollary 1 will imply deg(f) � bs(f)3, but the quadratic gap between deg(f) andbs(f) of this example is the best we know of.
8

Proof Let polynomial p of degree d represent f . Let b = bs(f), and x and B1; : : : ; Bb be the inputand sets which achieve the block sensitivity. We assume without loss of generality that f(x) = 0.We de�ne a polynomial q : Rb ! R as follows. Given y = (y1; : : : ; yb) 2 Rb we de�nez(y) = (z1; : : : ; zn) 2 Rn as: zj = yi if xj = 0 and j 2 Bi, zj = 1 � yi if xj = 1 and j 2 Bi,and zj = xj if j 62 Bi. Now de�ne q(y) = p(z(y)). Note that the zj-variables are linear functionsof the yi-variables (because the xj are �xed), hence q is a multilinear polynomial of degree � d.Furthermore it is easy to see that q has the following properties:1. q(y) 2 f0; 1g for all y 2 f0; 1gb2. q(~0) = p(x) = f(x) = 03. q(ei) = p(xBi) = f(xBi) = 1 for all unit vectors ei 2 f0; 1gbLet r be the single-variate polynomial of degree � d obtained from symmetrizing q over f0; 1gb.Note that 0 � r(i) � 1 for every integer 0 � i � b, and for some x 2 [0; 1] we have r0(x) � 1because r(0) = 0 and r(1) = 1. Applying the previous theorem we get d � pb=2. 2The following two theorems give, respectively, a weak bound for all functions, and a strongbound for almost all functions. We state the �rst without proof (see [NS94]).Theorem 5 (Nisan & Szegedy) If f depends on all n variables, then deg(f) � log n�O(log logn).The address function on n = k+2k variables has deg(f) = k+1, which shows that the previoustheorem is tight up to the O(log logn)-term.For the second result, de�ne Xeven1 = fx j jxj is even and f(x) = 1g, similarly for Xodd1 . LetX1 = Xeven1 [Xodd1 . Let p = PS cSXS be the unique polynomial representing f , with cS thecoe�cient of the monomial XS = �i2Sxi. The Moebius inversion formula (see [Bei93]) says:cS = XT�S(�1)jSj�jT jf(T);where f(T) is the value of f on the input where exactly the variables in T are 1. We learned aboutthe next lemma via personal communication with Yaoyun Shi.Lemma 4 (Shi & Yao) deg(f) = n i� jXeven1 j 6= jXodd1 j.Proof Applying the Moebius formula with S = f1; : : : ; ng, we getcS = XT�S(�1)jSj�jT jf(T) = (�1)n Xx2X1(�1)jxj = (�1)n �jXeven1 j � jXodd1 j� :Since deg(f) = n i� the monomial x1 : : : xn has non-zero coe�cient, the lemma follows. 2As a consequence, we can exactly count the number of function that have less than full degree:Theorem 6 The number of total f that have deg(f) < n equals � 2n2n�1� for odd n and � 2n2n�1�2n=2�1�for even n. 9

Proof We will count the number E of f for which jXeven1 j = jXodd1 j; by Lemma 4 these are exactlythe f with deg(f) < n. If n is odd, then there are 2n�1 inputs x with jxj even and 2n�1 x withjxj odd. Suppose we want to assign f -value 1 to exactly i of the even x. There are �2n�1i � ways todo this. If we want jXeven1 j = jXodd1 j, there are then only �2n�1i � ways to choose the f -values of theodd x. Hence E = 2n�1Xi=0 2n�1i ! 2n�1i ! = 2n2n�1!:The second equality is Vandermonde's convolution [GKP89, p.174].For even n the proof is analogous but slightly more complicated. 2Note that � 2n2n�1� 2 O(22n=p2n) by Stirling's formula. Since there are 22n Boolean functions onn variables, we see that the fraction of functions with degree < n is o(1). Thus almost all functionshave full degree.4.4 Degree of approximating polynomialDe�nition 5 A polynomial p : Rn ! R approximates f if jp(x)� f(x)j � 1=3 for all x 2 f0; 1gn.The approximate degree gdeg(f) of f is the minimum degree among all multilinear polynomials thatapproximate f .As a simple example: 23x1+ 23x2 approximates OR on 2 variables, so gdeg(OR2) = 1. In contrast,deg(OR2) = 2.By the same technique as Theorem 4, Nisan and Szegedy [NS94] showedTheorem 7 (Nisan & Szegedy) bs(f) � 6 gdeg(f)2.Nisan and Szegedy also constructed a degree-O(pn) polynomial which approximates OR. Sincebs(OR) = n, the previous theorem implies that this degree is optimal. Since deg(OR) = n we havea quadratic gap between deg(f) and gdeg(f). This is the biggest gap known.Ambainis [Amb99] showed that almost all functions have high approximate degree:Theorem 8 (Ambainis) Almost all f have gdeg(f) � n=2�O(pn log n).5 Application to Decision Tree ComplexityThe complexity measures discussed above are intimately related to the decision tree complexity off in various models. In fact, D(f), R2(f), QE(f), Q2(f), bs(f), C(f), deg(f), and gdeg(f) are allpolynomially related.5.1 DeterministicHere we will show that D(f), bs(f), and deg(f) are polynomially related. We start with two simplelower bounds on D(f).Theorem 9 bs(f) � D(f). 10

Proof Consider an input x with maximal block sensitivity. It is easy to see that on input x, adeterministic decision tree must query at least one variable in each block, for otherwise we couldip that block (and hence the correct output) without the tree noticing it. Hence the tree mustmake at least bs(f) queries on input x. 2Theorem 10 deg(f) � D(f).Proof Consider a decision tree for f of depth D(f). Let L be a 1-leaf (i.e. a leaf with output1) and x1; : : : ; xr be the queries on the path to L, with values b1; : : : ; br. De�ne the polynomialpL(x) = �i:bi=1xi�i:bi=0(1�xi). Then pL has degree r � D(f). Furthermore, pL(x) = 1 if leaf L isreached on input x, and pL(x) = 0 otherwise. Let p =PL pL be the sum of all pL over all 1-leaves.Then p has degree � D(f), and p(x) = 1 i� a 1-leaf is reached on input x, so p represents f . 2Below we give some upper bounds on D(f) in terms of bs(f), C(f), deg(f), and gdeg(f). Bealset.al. [BBC+98] proveTheorem 11 D(f) � C(1)(f)bs(f).Proof The following describes an algorithm to compute f(x), querying at most C(1)(f)bs(f)variables of x (in the algorithm, by a \consistent" certi�cate C or input y at some point we meana C or y that agrees with the values of all variables queried up to that point).1. Repeat the following at most bs(f) times:Pick a consistent 1-certi�cate C and query those of its variables whose x-values arestill unknown (if there is no such C, then return 0 and stop); if the queried valuesagree with C then return 1 and stop.2. Pick a consistent y 2 f0; 1gn and return f(y).The nondeterministic \pick a C" and \pick a y" can easily be made deterministic by choosing the�rst C resp. y in some �xed order. Call this algorithm A. Since A runs for at most bs(f) stagesand each stage queries at most C(1)(f) variables, A queries at most C(1)(f)bs(f) variables.It remains to show that A always returns the right answer. If it returns an answer in step 1, thisis either because there are no consistent 1-certi�cates left (and hence f(x) must be 0) or becausex is found to agree with a particular 1-certi�cate C; in both cases A gives the right answer.Now consider the case where A returns an answer in step 2. We will show that all consistenty must have the same f -value. Suppose not. Then there are consistent y; y0 with f(y) = 0 andf(y0) = 1. A has queried b = bs(f) 1-certi�cates C1; C2; : : : ; Cb. Furthermore, y0 contains aconsistent 1-certi�cate Cb+1. We will derive from these Ci disjoint sets Bi such that f is sensitiveto each Bi on y. For every 1 � i � b+1, de�ne Bi as the set of variables on which y and Ci disagree.Clearly, each Bi is non-empty. Note that yBi agrees with Ci, so f(yBi) = 1 which shows that f issensitive to each Bi on y. Let v be a variable in some Bi (1 � i � b), then x(v) = y(v) 6= Ci(v). Nowfor j > i, Cj has been chosen consistent with all variables queried up to that point (including v),so we cannot have x(v) = y(v) 6= Cj(v), hence v 62 Bj. This shows that all Bi and Bj are disjoint.But then f is sensitive to bs(f) + 1 disjoint sets on y, which is a contradiction. Accordingly, allconsistent y in step 2 must have the same f -value, and A returns the right value f(y) = f(x) instep 2, because x is one of those consistent y. 2Combining with C(1) � C(f) � s(f)bs(f) (Theorem 2) we obtain:11

Corollary 1 D(f) � s(f)bs(f)2 � bs(f)3.It might be possible to improve this to D(f) � bs(f)2. This would be optimal, since the functionf of Example 2 has bs(f) = pn and D(f) = n.Open problem 2 Is D(f) 2 O(bs(f)2)?Of course, Theorem 11 also holds withC(0) instead of C(1). Since bs(f) � maxfC(0)(f); C(1)(f)g,we also obtain the following result, due to [BI87, HH87, Tar89].Corollary 2 D(f) � C(0)(f)C(1)(f).Now we will show that D(f) is upper bounded by deg(f)4 and gdeg(f)6. The �rst result is due toNisan and Smolensky, below we give their (previously unpublished) proof. It improves the earlierresult D(f) 2 O(deg(f)8) of Nisan and Szegedy [NS94]. Here a maxonomial of f is a monomialwith maximal degree in f 's representing polynomial p.Lemma 5 (Nisan & Smolensky) For any maxonomial M of f , there is a set B of variables inM such that f(~0B) 6= f(~0).Proof Obtain a restricted function g from f by setting all variables outside of M to 0. Thisg cannot be constant 0 or 1, because its unique polynomial representation (as obtained from p)contains M . Thus there is some subset B of the variables in M which makes g(~0B) 6= g(~0) andhence f(~0B) 6= f(~0). 2Lemma 6 (Nisan & Smolensky) There exists a set of deg(f)bs(f) variables that intersects eachmaxonomial of f .Proof Greedily take all variables in maxonomials of f , as long as there is a maxonomial that isstill disjoint from those taken so far. Since each such maxonomial will contain a sensitive block for~0, and there can be at most bs(f) disjoint sensitive blocks, this procedure can go on for at mostbs(f) maxonomials. Since each maxonomial contains deg(f) variables, the lemma follows. 2Theorem 12 (Nisan & Smolensky) D(f) � deg(f)2bs(f) � 2deg(f)4.Proof By the previous lemma, there is a set of deg(f)bs(f) variables that intersects each maxono-mial of f . Query all these variables. This induces a restriction g of f on the remaining variables,such that deg(g) < deg(f) (because the degree of each maxonomial in the representation of f dropsat least one) and bs(g) � bs(f). Repeating this inductively for at most deg(f) times, we reacha constant function and learn the value of f . This algorithm uses at most deg(f)2bs(f) queries,hence D(f) � deg(f)2bs(f). Theorem 4 gives the second inequality of the lemma. 2Combining Corollary 1 and Theorem 7 we obtain the following result from [BBC+98] (whichimproves the earlier D(f) 2 O(gdeg(f)8) result of Nisan and Szegedy [NS94]):Theorem 13 D(f) 2 O(gdeg(f)6). 12

Finally, since deg(f) may be polynomially larger or smaller than bs(f), the following theoremmay be weaker or stronger than Theorem 11. The proof uses an idea similar to the above Nisan-Smolensky proof.Theorem 14 D(f) � C(1)(f)deg(f).Proof Let p be the representing polynomial for f . Choose some certi�cate C : S ! f0; 1g of size� C(1)(f). If we �ll in the S-variables according to C, then p must reduce to a constant function(constant 0 if C is a 0-certi�cate, constant 1 if C is a 1-certi�cate). Hence the certi�cate has tointersect each maxonomial of p. Accordingly, querying all variables in S reduces the polynomialdegree of the function by at least 1. Repeating this deg(f) times, we end up with a constantfunction and hence know f(x). In all, this algorithm takes at most C(1)(f)deg(f) queries. 25.2 RandomizedHere we will show that D(f), R2(f), bs(f), and gdeg(f) are all polynomially related.We �rst give the bounded-error analogues of Theorems 10 and 9:Theorem 15 gdeg(f) � R2(f).Proof Consider a randomized decision tree for f of depth R2(f), viewed as a probability dis-tribution � over di�erent deterministic decision trees T , each of depth at most R2(f). Using thetechnique of Theorem 10, we can write each of those T as a 0/1-valued polynomial pT of degree atmost R2(f). De�ne p = PT �(T)pT , which has degree at most R2(f). Then it is easy to see thatp gives the acceptance probability of R, so p approximates f . 2Nisan [Nis91] provedTheorem 16 (Nisan) bs(f) � 3 R2(f).Proof Consider an algorithm with R2(f) queries, and an input x which achieves the block sensi-tivity. For every set S such that f(x) 6= f(xS), the probability that the algorithm queries a variablein S must be � 1=3, otherwise the algorithm could not \see" the di�erence between x and xS withsu�cient probability. Hence on input x the algorithm has to make an expected number of at least1=3 queries in each of the bs(f) sensitive blocks, so the total expected number of queries on inputx must be at least bs(f)=3. Since the worst-case number of queries on input x is at the least theexpected number of queries on x, the theorem follows. 2Combined with Corollary 1 we see that the gap between D(f) and R2(f) can be at mostcubic [Nis91]:Corollary 3 (Nisan) D(f) � 27 R2(f)3.There may be some room for improvement here, because the biggest gap known between D(f)and R2(f) is much less than cubic: 13

Example 4 Let f on n = 2k variables be the complete binary AND-OR-tree of depth k. Forinstance, for k = 2 we have f(x) = (x1 _ x2) ^ (x3 _ x4). It is easy to see that deg(f) = n andhence D(f) = n. There is a simple randomized algorithm for f [Sni85, SW86]: randomly chooseone of the two subtrees of the root and recursively compute the value of that subtree; if its valueis 0 then output 0, otherwise compute the other subtree and output its value. It can be shownthat this algorithm always gives the correct answer with expected number of queries O(n�), where� = log((1 +p33)=4) � 0:7537 : : :. Saks and Wigderson [SW86] showed that this is asymptoticallyoptimal for zero-error algorithms for this function, and Santha [San91] proved the same for bounded-error algorithms. Thus we have D(f) = n = �(R2(f)1:3:::).Open problem 3 What is the biggest gap between D(f) and R2(f)?5.3 QuantumAs in the classical case, deg(f) and gdeg(f) give lower bounds on quantum query complexity. Thenext lemma from [BBC+98] is also implicit in the combination of some proofs in [FFKL93, FR98].Lemma 7 Let A be a quantum decision tree that makes T queries. Then there exist complex-valuedn-variate multilinear polynomials �i of degree at most T , such that the �nal state of A isXi2f0;1gm �i(x)jii;for every input x 2 f0; 1gn.Proof Let j�ki be the state of quantum decision tree (on some input x) just before the kth query.Note that j�k+1i = UkOj�ki. The amplitudes in j�0i depend on the initial state and on U0 but noton x, so they are polynomials of x of degree 0. A query maps basis state ji; b; zi to ji; b � xi; zi.Hence if the amplitude of ji; 0; zi in j�0i is � and the amplitude of ji; 1; zi is �, then the amplitude ofji; 0; zi after the query becomes (1�xi)�+xi� and the amplitude of ji; 1; zi becomes xi�+(1�xi)�,which are polynomials of degree 1. (In general, if the amplitudes before a query are polynomials ofdegree � j, then the amplitudes after the query will be polynomials of degree � j + 1.) Betweenthe �rst and the second query lies the unitary transformation U1. However, the amplitudes afterapplying U1 are just linear combinations of the amplitudes before applying U1, so the amplitudesin j�1i are polynomials of degree at most 1. Continuing inductively, the amplitudes of the �nalstate are found to be polynomials of degree at most T . We can make these polynomials multilinearwithout a�ecting their values on x 2 f0; 1gn, by replacing all xmi by xi. 2Theorem 17 deg(f) � 2 QE(f).Proof Consider an exact quantum algorithm for f with QE(f) queries. Let S be the set of basisstates corresponding to a 1-output. Then the acceptance probability is P (x) =Pk2S j�k(x)j2. Bythe previous lemma, the �k are polynomials of degree � QE(f), so P (x) is a polynomial of degree� 2QE(f). But P represents f , so it has degree deg(f) and hence deg(f) � 2QE(f). 2By a similar proof:Theorem 18 gdeg(f) � 2 Q2(f). 14

Both theorems are tight: deg(PARITY) = gdeg(PARITY) = n [MP68] and QE(PARITY) =Q2(PARITY) = dn=2e [BBC+98, FGGS98]. No f is known with QE(f) > deg(f) or Q2(f) >gdeg(f), so the following question presents itselfOpen problem 4 Are QE(f) 2 O(deg(f)) and Q2(f) 2 O(gdeg(f))?Note that the degree lower bounds of Theorems 6 and 8 now imply strong lower bounds onthe quantum decision tree complexities of almost all f . Combining Theorems 17 and 18 withTheorems 12 and 13 we obtain the polynomial relations between classical and quantum complexitiesof [BBC+98]:Corollary 4 D(f) 2 O(QE(f)4) and D(f) 2 O(Q2(f)6).Some other quantum lower bounds via degree lower bounds may be found in [BBC+98, Amb99,NW99, FGGS99, BCWZ99].The biggest gap known between D(f) and QE(f) is only a factor of 2: D(PARITY) = n andQE(PARITY) = dn=2e. The biggest gap we know between D(f) and Q2(f) is quadratic: D(OR) =n and Q2(OR) 2 �(pn) [Gro96]. Also, R2(OR) 2 �(n), deg(OR) = n, gdeg(OR) 2 �(pn).Open problem 5 What are the biggest gaps between the classical D(f), R2(f) and their quantumanalogues QE(f), Q2(f)?The previous two open problems are connected via the function f = Ek12 on n = 3k variables(Example 3): this has D(f) = s(f) = n but deg(f) = n1= log 3. The complexity QE(f) is unknown;it must lie between n1= log 3=2 and n. However, it must either show a gap between D(f) and QE(f)(partly answering the last question) or between deg(f) and QE(f) (answering the penultimatequestion).6 Some Special Classes of FunctionsHere we look more closely at several special classes of Boolean functions.6.1 Symmetric functionsRecall that a function is symmetric if f(x) only depends on jxj, so permuting the input doesnot change the value of the function. Thus a symmetric f is fully described by giving a vector(f0; f1; : : : ; fn) 2 f0; 1gn+1, where fk is the value of f(x) for jxj = k. Because of this and Lemma 2,there is a close relationship between polynomials that represent symmetric functions, and single-variate polynomials that assume values 0 or 1 on f0; 1; : : : ; ng. Using this relationship, von zurGathen and Roche [GR97] prove deg(f) = (1� o(1))n for all symmetric f :Theorem 19 (von zur Gathen & Roche) If f is non-constant and symmetric, then deg(f) =n�O(n0:548). If, furthermore, n+ 1 is prime, then deg(f) = n.In fact, von zur Gathen and Roche conjecture that deg(f) = n�O(1) for all symmetric f . Thebiggest gap they found is deg(f) = n� 3 for some speci�c f and n. Via Theorems 10 and 17, theabove degree lower bounds give strong lower bounds on D(f) and QE(f).For the case of approximate degrees of symmetric f , Paturi [Pat92] gave the following tightcharacterization. De�ne �(f) = minfj2k � n+ 1j : fk 6= fk+1g. Informally, this quantity measuresthe length of the interval around Hamming weight n=2 where fk is constant.15

Theorem 20 (Paturi) If f is non-constant and symmetric, then gdeg(f) = �(pn(n� �(f))).Paturi's result implies lower bounds on R(f) and Q2(f). For Q2(f) these bounds are in facttight (a matching upper bound was shown in [BBC+98]), but for R2(f) a stronger bound can beobtained from Theorem 15 and the following result [Tur84]:Proposition 2 (Tur�an) If f is non-constant and symmetric, then s(f) � dn+12 e.Proof Let k be such that fk 6= fk+1, and jxj = k. Without loss of generality assume k �b(n� 1)=2c (otherwise give the same argument with 0s and 1s reversed). Note that ipping any ofthe n� k 0-variables in x ips the function value. Hence s(f) � sx(f) � n� k � d(n+ 1)=2e. 2This lemma is tight, since s(MAJ) = d(n+ 1)=2e.Collecting the previous results, we have tight characterizations of the various decision treecomplexities of all symmetric f :Theorem 21 If f is non-constant and symmetric, then� D(f) = (1� o(1))n� R(f) = �(n)� QE(f) = �(n)� Q2(f) = �(pn(n� �(f)))6.2 Monotone functionsOne nice property of monotone functions was shown in [Nis91]:Proposition 3 (Nisan) C(f) = s(f) = bs(f) for monotone f .Proof Since s(f) � bs(f) � C(f) for all f , we only have to prove C(f) � s(f). Let C : S ! f0; 1gbe a minimal certi�cate for some x with jSj = C(f). All variables in S must be assigned value0 by C (for otherwise a simple argument shows that these variables could be dropped from thecerti�cate, contradicting minimality). Thus each variable in S is sensitive, hence C(f) � s(f). 2Theorem 11 now implies:Corollary 5 D(f) � s(f)2 for monotone f .This corollary is exactly tight, since the function f of Example 2 has D(f) = n and s(f) = pnand is monotone.Also, the lower bound of Theorem 4 can be improved toProposition 4 s(f) � deg(f) for monotone f .
16

Proof Let x be an input on which the sensitivity of f equals s(f). Assume without loss ofgenerality that f(x) = 0. All sensitive variables must be 0 in x, and setting one or more of them to1 changes the value of f from 0 to 1. Hence by �xing all variables in x except for the s(f) sensitivevariables, we obtain the OR function on s(f) variables, which has degree s(f). Therefore deg(f)must be at least s(f). 2The above two results strengthen some of the previous bounds for monotone functions:Corollary 6 D(f) 2 O(R2(f)2), D(f) 2 O(QE(f)2), and D(f) 2 O(Q2(f)4) for monotone f .For the special case where f is both monotone and symmetric, we have:Proposition 5 If f is non-constant, symmetric and monotone, then deg(f) = n.Proof Note that f is simply a threshold function: f(x) = 1 i� jxj � t for some t. Let p : R! Rbe the non-constant single-variate polynomial obtained from symmetrizing f . This has degree� deg(f) � n and p(i) = 0 for i 2 f0; : : : ; t� 1g, p(i) = 1 for i 2 ft; : : : ; ng. Then the derivative p0must have zeroes in each of the n� 1 intervals (0; 1); (1; 2); : : : ; (t� 2; t� 1); (t; t+1); : : : ; (n� 1; n).Hence p0 has degree at least n� 1, which implies that p has degree n and deg(f) = n. 26.3 Monotone graph propertiesAn interesting and well studied subclass of the monotone functions are the monotone graph prop-erties. Consider an undirected graph on n vertices. There are N = �n2� possible edges, each ofwhich may be present or absent, so we can pair up the set of all graphs with the set of all N -bitstrings. A graph property P is a set of graphs which is closed under permutation of the edges (soisomorphic graphs have the same properties). The property is monotone if it is closed under theaddition of edges. We are now interested in the question: At how many edges must we look inorder to determine if a graph has the property P ? This is just the decision-tree complexity of P ifwe view P as a total Boolean function on N bits.A property P is called evasive if D(P) = N , so if we have to look at all edges in the worst case.The evasiveness conjecture (also sometimes called Aanderaa-Karp-Rosenberg conjecture) says thatall non-constant monotone graph properties P are evasive. This conjecture is still open; see [LY94]for an overview. The conjecture has been proved for graphs where the number of vertices is a primepower [KSS84], but the best known general bound is D(P) 2
(N) [RV76, KSS84, Kin88]. Thisbound also follows from a degree-bound by Dodis and Khanna [DK99]:Theorem 22 (Dodis & Khanna) deg(P) 2
(N) for all non-constant monotone graph proper-ties P .Corollary 7 D(P) 2
(N) and QE(P) 2
(N) for all non-constant monotone graph propertiesP . Thus the evasiveness conjecture holds up to a constant factor for both deterministic and ex-act quantum algorithms. D(P) = N may actually hold for all monotone graph properties P ,but [BCWZ99] exhibit a monotone P with QE(P) < N . Only much weaker lower bounds areknown for the bounded-error complexity of such properties [Kin88, Haj91, BCWZ99].17

Open problem 6 Are D(P) = N and R2(P) 2
(N) for all P?There is no P known with R2(P) 2 o(N), but the OR-problem can trivially be turned into amonotone graph property P with Q2(P) 2 o(N), in fact Q2(P) 2 �(n) [BCWZ99].Finally we mention a result about sensitivity from [Weg85]:Theorem 23 (Wegener) s(P) � n� 1 for all non-constant monotone graph properties P .This theorem is tight, as witnessed by the property \No vertex is isolated" [Tur84].AcknowledgmentsWe thank Noam Nisan for permitting us to include his and Roman Smolensky's proof of Theorem 12.References[Amb99] A. Ambainis. A note on quantum black-box complexity of almost all Boolean functions.Information Processing Letters, 71(1):5{7, 1999. quant-ph/9811080.[AW00] A. Ambainis and R. de Wolf. Average-case quantum query complexity. In Proceedingsof 17th Annual Symposium on Theoretical Aspects of Computer Science (STACS'2000),Lecture Notes in Computer Science. Springer, 2000. To appear. Also quant-ph/9904079.[BBC+98] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds bypolynomials. In Proceedings of 39th FOCS, pages 352{361, 1998. quant-ph/9802049.[BCWZ99] H. Buhrman, R. Cleve, R. de Wolf, and Ch. Zalka. Bounds for small-error andzero-error quantum algorithms. In Proceedings of 40th FOCS, pages 358{368, 1999.cs.CC/9904019.[Bei93] R. Beigel. The polynomial method in circuit complexity. In Proceedings of the 8thIEEE Structure in Complexity Theory Conference, pages 82{95, 1993.[Ber96] A. Bernasconi. Sensitivity vs. block sensitivity (an average-case study). InformationProcessing Letters, 59(3):151{157, 1996.[Ber97] A. Berthiaume. Quantum computation. In A. Selman and L. Hemaspaandra, editors,Complexity Theory Retrospective II, pages 23{51. Springer, 1997.[BI87] M. Blum and R. Impagliazzo. Generic oracles and oracle classes (extended abstract).In Proceedings of 28th FOCS, pages 118{126, 1987.[Bop97] R. B. Boppana. The average sensitivity of bounded-depth circuits. Information Pro-cessing Letters, 63(5):257{261, 1997.[BW99] H. Buhrman and R. de Wolf. Communication complexity lower bounds by polynomials.Submitted. Also cs.CC/9910010, 1999.[CDR86] S. Cook, C. Dwork, and R. Reischuk. Upper and lower time bounds for parallel randomaccess machines without simultaneous writes. SIAM Journal on Computing, 15:87{97,1986. 18

[Cle99] R. Cleve. An introduction to quantum complexity theory. quant-ph/9906111, 28 Jun1999.[DK99] Y. Dodis and S. Khanna. Space-time tradeo�s for graph prop-erties. In Proceedings of 26th ICALP, 1999. Available athttp://theory.lcs.mit.edu/~yevgen/academic.html.[EZ64] H. Ehlich and K. Zeller. Schwankung von Polynomen zwischen Gitterpunkten. Mathe-matische Zeitschrift, 86:41{44, 1964.[FFKL93] S. Fenner, L. Fortnow, S. Kurtz, and L. Li. An oracle builder's toolkit. In Proceedingsof the 8th IEEE Structure in Complexity Theory Conference, pages 120{131, 1993.[FGGS98] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. A limit on the speed of quantumcomputation in determining parity. quant-ph/9802045, 16 Feb 1998.[FGGS99] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. How many functions can bedistinguished with k quantum queries? quant-ph/9901012, 7 Jan 1999.[FR98] L. Fortnow and J. Rogers. Complexity limitations on quantum computation. In Pro-ceedings of the 13th IEEE Conference on Computational Complexity, pages 202{209,1998. cs.CC/9811023.[GKP89] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A Foundationfor Computer Science. Addison-Wesley, 1989.[GR97] J. von zur Gathen and J. R. Roche. Polynomials with two values. Combinatorica,17(3):345{362, 1997.[Gro96] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedingsof 28th STOC, pages 212{219, 1996. quant-ph/9605043.[Haj91] P. Hajnal. An n4=3 lower bound on the randomized complexity of graph properties.Combinatorica, 11:131{143, 1991. Earlier version in Structures'90.[HH87] J. Hartmanis and L.A. Hemachandra. One-way functions, robustness and the non-isomorphism of NP-complete sets. In Proceedings of the 2nd IEEE Structure in Com-plexity Theory Conference, pages 160{174, 1987.[HNW93] R. Heiman, I. Newman, and A. Wigderson. On read-once threshold formulae and theirrandomized decision tree complexity. Theoretical Computer Science, 107(1):63{76, 1993.Earlier version in Structures'90.[HW91] R. Heiman and A. Wigderson. Randomized vs. deterministic decision tree complexityfor read-once Boolean functions. Computational Complexity, 1:311{329, 1991. Earlierversion in Structures'91.[Kin88] V. King. Lower bounds on the complexity of graph properties. In Proceedings of 20thSTOC, pages 468{476, 1988.[KKL88] J. Kahn, G. Kalai, and N. Linial. The inuence of variables on Boolean functions. InProceedings of 29th FOCS, pages 68{80, 1988.19

[KSS84] J. Kahn, M. Saks, and D. Sturtevant. A topological approach to evasiveness. Combi-natorica, 4:297{306, 1984. Earlier version in FOCS'83.[LY94] L. Lov�asz and N. Young. Lecture notes on evasiveness of graph prop-erties. Technical report, Princeton University, 1994. Available athttp://www.uni-paderborn.de/fachbereich/AG/agmadh/WWW/english/scripts.html.[MP68] M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, MA, 1968. Second,expanded edition 1988.[Nis91] N. Nisan. CREW PRAMs and decision trees. SIAM Journal on Computing, 20(6):999{1007, 1991. Earlier version in STOC'89.[NS94] N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials.Computational Complexity, 4(4):301{313, 1994. Earlier version in STOC'92.[NW95] N. Nisan and A. Wigderson. On rank vs. communication complexity. Combinatorica,15(4):557{565, 1995. Earlier version in FOCS'94.[NW99] A. Nayak and F. Wu. The quantum query complexity of approximating the medianand related statistics. In Proceedings of 31th STOC, pages 384{393, 1999. quant-ph/9804066.[Pat92] R. Paturi. On the degree of polynomials that approximate symmetric Boolean functions(preliminary version). In Proceedings of 24th STOC, pages 468{474, 1992.[RC66] T. J. Rivlin and E. W. Cheney. A comparison of uniform approximations on an intervaland a �nite subset thereof. SIAM Journal on Numerical Analysis, 3(2):311{320, 1966.[Rub95] D. Rubinstein. Sensitivity vs. block sensitivity of Boolean functions. Combinatorica,15(2):297{299, 1995.[RV76] R. Rivest and S. Vuillemin. On recognizing graph properties from adjacency matrices.Theoretical Computer Science, 3:371{384, 1976.[San91] M. Santha. On the Monte Carlo decision tree complexity of read-once formulae. InProceedings of the 6th IEEE Structure in Complexity Theory Conference, pages 180{187, 1991.[Shi99] Y. Shi. Lower bounds of quantum black-box complexity and degree of approximationpolynomials by inuence of Boolean variables. quant-ph/9904107, 29 Apr 1999.[Sim83] H. U. Simon. A tight
(log log n)-bound on the time for parallel RAM's to compute non-degenerate Boolean functions. In Symposium on Foundations of Computation Theory,volume 158 of Lecture Notes in Computer Science, pages 439{444. Springer, 1983.[Sni85] M. Snir. Lower bounds for probabilistic linear decision trees. Theoretical ComputerScience, 38:69{82, 1985.[SW86] M. Saks and A. Wigderson. Probabilistic Boolean decision trees and the complexity ofevaluating game trees. In Proceedings of 27th FOCS, pages 29{38, 1986.20

[Tar89] G. Tardos. Query complexity, or why is it di�cult to separate NPA\ coNPA from PAby random oracles A? Combinatorica, 9(4):385{392, 1989.[Tur84] G. Turan. The critical complexity of graph properties. Information Processing Letters,18:151{153, 1984.[Weg85] I. Wegener. The critical complexity of all (monotone) Boolean functions and monotonegraph properties. Information and Control, 67:212{222, 1985.[Weg87] I. Wegener. The Complexity of Boolean Functions. Wiley-Teubner Series in ComputerScience, 1987.[WZ89] I. Wegener and L. Z�adori. A note on the relations between critical and sensitive com-plexity. Journal of Information Processing and Cybernetics (EIK), 25(8/9):417{421,1989.

21

