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Preface

What is learning? Learning is what makes us adapt to changes and threats, and
what allows us to cope with a world in flux. In short, learning is what keeps
us alive. Learning has strong links to almost any other topic in philosophy:
scientific inference, knowledge, truth, reasoning (logic), language, anthropology,
behaviour (ethics), good taste (aesthetics), and so on. Accordingly, it can be
seen as one of the quintessential philosophical topics—an appropriate topic for
a graduation thesis! Much can be said about learning, too much to fit in a
single thesis. Therefore this thesis is restricted in scope, dealing only with
computational learning theory (often abbreviated to COLT).

Learning seems so simple: we do it every day, often without noticing it.
Nevertheless, it is obvious that some fairly complex mechanisms must be at work
when we learn. COLT is the branch of Artificial Intelligence that deals with the
computational properties and limitations of such mechanisms. The field can be
seen as the intersection of Machine Learning and complexity theory. COLT is a
very young field—the publication of Valiant’s seminal paper in 1984 may be seen
as its birth—and it appears that virtually none of its many interesting results
are known to philosophers. Some philosophical work has referred to complexity
theory (for instance [Che86]) and some has referred to Machine Learning (for
instance [Tha90]), but as far as I know, thus far no philosophical use has been
made of the results that have sprung from COLT. For instance, at the time of
writing of this thesis, the Philosopher’s Index, a database containing most major
publications in philosophical journals or books, contains no entries whatsoever
that refer to COLT or to its main model, the model of PAC learning; there is
hardly any reference to Kolmogorov complexity, either. Stuart Russell devotes
two pages to PAC learning [Rus91, pp. 43-44] and James McAllister devotes one
page to Kolmogorov complexity as a quantitative measure of simplicity [McA96,
pp. 119-120], but both do not provide more than a sketchy and superficial
explanation.

As its title already indicates, the present thesis tries to make contact be-
tween COLT and philosophy. The aim of the thesis is threefold. The first and
most shallow goal is to obtain a degree in philosophy for its author. The second
goal is to take a number of recent results from computational learning theory,
insert them in their appropriate philosophical context, and see how they bear on
various ongoing philosophical discussions. The third and most ambitious goal
is to draw the attention of philosophers to computational learning theory in
general. Unfortunately, the traditional reluctance of philosophers (in particular
those of a non-analytical strand) to use formal methods, as well as their inapt-
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ness with formal methods once they have outgrown that reluctance, makes this
goal rather hard to attain. Nevertheless, it is my opinion that computational
learning theory—or, for that matter, complexity theory as a whole—has much
to offer to philosophy. Accordingly, this thesis may be seen as a plea for the
philosophical relevance of computational learning theory as a whole.

The thesis is organized as follows. In the first chapter, we will give an
overview of the main learning setting used in COLT. We will stick to the rig-
orous formal definitions as used in COLT, but supplement them with a lot of
informal and intuitive comment in order to make them accessible and readable
for philosophers. After that introductory chapter, the second chapter applies
results from COLT to Noam Chomsky’s ideas about language learning and the
innateness of linguistic biases. The third chapter gives an introduction to the
theory of Kolmogorov complexity, which provides us with a fundamental mea-
sure of simplicity. Kolmogorov complexity does not belong to computational
learning theory proper (its invention in fact pre-dates COLT), but its main
application for us lies in Occam’s Razor. This fundamental maxim tells us to
go for the simplest theories consistent with the data, and is highly relevant in
the context of learning in general, and scientific theory construction in partic-
ular. The fourth chapter provides different formal settings in which some form
of the razor can be mathematically justified, using Kolmogorov complexity to
quantitatively measure simplicity. Finally, we end with a brief chapter that
summarizes the thesis in non-technical terms.

Let me end this preface by expressing my gratitude to a number of peo-
ple who contributed considerably to the contents of this thesis. First of all,
I would of course like to thank my thesis advisor Gert-Jan Lokhorst—one of
those philosophers who, like myself, do not hesitate to invoke formal defini-
tions and results whenever these might be useful—for his many comments and
suggestions. Secondly, many thanks should go to Shan-Hwei Nienhuys-Cheng,
who put me on the track of inductive learning in the first place, by inviting me
to join her in writing a book on inductive logic programming [NW97]—a book
which eventually took us more than two and a half years to finish. Chapter 18
of that book actually provided the basis for a large part of the first chapter
of the present thesis. Finally, I would like to thank Jeroen van Rijen for his
many helpful comments, Peter Sas and Peter Griinwald for some references
on linguistics, and Paul Vitanyi for his course on learning and Kolmogorov
complexity.



Chapter 1

Introduction to
Computational Learning
Theory

1.1 Introduction

This thesis is about philosophical applications of “computational learning the-
ory”, and the present chapter provides an introduction to this field.

Why should we, as philosophers, be interested in something like a theory
of learning? The importance of learning can be illustrated on the basis of the
following quotation from Homer’s Iliad:

Him she found sweating with toil as he moved to and fro about his
bellows in eager haste; for he was fashioning tripods, twenty in all,
to stand around the wall of his well-builded hall, and golden wheels
had he set beneath the base of each that of themselves they might
enter the gathering of the gods at his wish and again return to his
house, a wonder to behold.

Iliad, XVIII, 372-377 (pp. 315-317 of [Hom24], second volume).

This quotation might well be the first ever reference to something like Artificial
Intelligence: man-made (or in this case, god-made) artifacts displaying intelli-
gent behaviour. As Thetis, Achilles’ mother, enters Hephaestus’ house in order
to fetch her son a new armour, she finds Hephaestus constructing something
we today would call robots. His twenty tripods are of themselves to serve the
gathering of the gods (bring them food, etc.), whenever Hephaestus so desires.

Let us consider for a moment the kind of behaviour such a tripod should
display. Obviously, it should be able to recognise Hephaestus’ voice, and to
extract his wishes from his words. But furthermore, when serving the gods, the
tripod should “know” and act upon many requirements, such as the following:

1. If there is roasted owl for dinner, don’t give any to Pallas Athena.
2. Don’t come too close to Hera if Zeus has committed adultery again.
3. Stop fetching wine for Dionysus when he is too drunk.
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It is clear that this list can be continued without end. Again and again, one
can think of new situations that the tripod should be able to adapt to properly.
It seems impossible to take all these requirements into account explicitly in the
construction of the intelligent tripod. The task of “coding” each of the infinite
number of requirements into the tripods may be considered too much, even for
Hephaestus, certainly one of the most industrious among the Greek gods.

One solution to this problem would be to initially endow the tripod with a
modest amount of general knowledge about what it should do, and to give it the
ability to learn from the way the environment reacts to its behaviour. That is, if
the tripod does something wrong, it can adjust its knowledge and its behaviour
accordingly, thus avoiding to make the same mistake in the future.! In that
way, the tripod need not know everything beforehand. Instead, it can build
up most of the required knowledge along the way. Thus the tripod’s ability to
learn would save Hephaestus a lot of trouble.

The importance of learning is not restricted to artifacts built to serve divine
wishes. Human beings, from birth till death, engage in an ongoing learning
process. After all, children are not born with their native language, polite
manners, the abilities to read and write, earn their living, make jokes, or to
do philosophy or science (or even philosophy of science). These things have
to be learned. In fact, if we take ‘learning’ in a sufficiently broad sense, any
kind of adaptive behaviour will fall under the term. Since learning is of crucial
importance to us, a theory of learning is of crucial importance to philosophy.

1.2 Algorithms that Learn Concepts from Exam-
ples

After the previous section, the importance of a theory of learning should be
clear. But why computational learning theory? Well, a theory of learning
should be about the way we human beings learn, or, more generally, about the
way any kind of learning can be achieved. A description of “a way of learning”
will usually boil down to something like a “recipe”: learning amounts to doing
such-and-such things, taking such-and-such steps. Now, it seems that the only
precise way we have to specify this “such and such steps”—and of course we
should aim for precision—is by means of an algorithm. In general, an algorithm,
or a mechanical procedure, precisely prescribes the sequence of steps that have
to be taken in order to solve some problem. Hence it is obvious that learning
theory can (or perhaps even should) involve the study of algorithms that learn.?
Since algorithms perform computation, algorithmic theory of learning is usually
called computational learning theory.

In this thesis, we will mainly be concerned with learning a concept from

LOf course, for this scheme to work, we have to assume that the tripod “survives” its initial
failures. If Zeus immediately smashes the tripod into pieces for bringing him white instead of
red wine, the tripod won’t be able to learn from its experience.

2The notion of an algorithm includes neural networks, at least those that can be simulated
on an ordinary computer. In fact, the learnability of neural networks has been one of the most
prominent research areas in computational learning theory.



1.2. ALGORITHMS THAT LEARN CONCEPTS FROM EXAMPLES 3

examples. If we take the term ‘example’ in a sufficiently broad sense, almost
any kind of learning will be based on examples, so restricting attention to
learning from examples is not really a restriction. On the other hand, restricting
attention to learning a concept appears to be quite restrictive, since it excludes
learning “know-how” knowledge, for instance learning how to run a marathon.
However, many cases of “know-how” learning can actually quite well be modeled
or redescribed as cases of concept learning. For instance, learning a language
may at first sight appear to be a case of learning know-how (i.e., knowing how
to use words), but it can also be modeled as the learning of a grammar for
a language.? Accordingly, concept learning can be used to model any kind
of learning in which the learned “thing” can feasibly be represented by some
mathematical construct—a grammar, a logical formula, a neural network, and
what not. This includes a very wide range of topics, from language learning to
large parts of empirical science.

Induction, which is the usual name for learning from examples, has been a
topic of inquiry for centuries. The study of induction can be approached from
many angles. Like most other scientific disciplines, it started out as a part of
philosophy. Philosophers particularly focused on the role induction plays in
the empirical sciences. For instance, Aristotle characterized science roughly as
deduction from first principles, which were to be obtained by means of induction
from experience [Ari60]. (Though it should be noted that Aristotle’s notion of
induction was rather different from the modern one, involving the “seeing” of
the “essential forms” of examples.)

After the Middle Ages, Francis Bacon [Bac94] revived the importance of
induction from experience (in the modern sense) as the main scientific activity.
In later centuries, induction was taken up by many philosophers. David Hume
[Hum56, Hum61] formulated what is nowadays called the ‘problem of induction’,
or ‘Hume’s problem’: how can induction from a finite number of cases result in
knowledge about the infinity of cases to which an induced general rule applies?
What justifies inferring a general rule, or “law of nature”, from a finite number
of cases? Surprisingly, Hume’s answer was that there is no such justification.
In his view, it is simply a psychological fact about humans beings that when
we observe some particular pattern recur in different cases (without observing
counterexamples to the pattern), we tend to expect this pattern to appear
in all similar cases. In Hume’s view, this inductive expectation is a habit,
analogous to the habit of a dog who runs to the door after hearing his master
call, expecting to be let out. Later philosphers such as John Stuart Mill [Mil58]
tried to answer Hume’s problem by stating conditions under which an inductive
inference is justified. Other philosophers who made important comments on
induction were Stanley Jevons [Jev74] and Charles Sanders Peirce [Pei58].

In our century, induction was mainly discussed by philosophers and mathe-
maticians who were also involved in the development and application of formal
logic. Their treatment of induction was often in terms of the probability or
the “degree of confirmation” that a particular theory or hypothesis receives
from available empirical data. Some of the main contributors are Bertrand

3This is what the Chomskyan revolution in linguistics is all about, see the next chapter.
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Russell [Rus80, Rus48], Rudolf Carnap [Car52, Car50], Carl Hempel [Hem45a,
Hem45b, Hem66], Hans Reichenbach [Rei49], and Nelson Goodman [Goo83].
Particularly in Goodman’s work, an increasing number of unexpected concep-
tual problems appeared for induction. In the 1950s and 1960s, induction was
sworn off by philosophers of science such as Karl Popper [Pop59].*

However, in roughly those same years, it was recognised in the rapidly ex-
panding field of Artificial Intelligence that the knowledge an Al system needs
to perform its tasks, should not all be hand-coded into the system beforehand.
Instead, it is much more efficient to provide the system with a relatively small
amount of knowledge and with the ability to adapt itself to the situations it
encounters—to learn from its experience. Thus the study of induction switched
from philosophy to Artificial Intelligence. The branch of AI that studies learn-
ing is called Machine Learning. As Marvin Minsky, one of the founders of AI,
wrote: “Artificial Intelligence is the science of making machines do things that
would require intelligence if done by man” [Min68, p. v]. Given this view, the
study of induction is indeed part of Al, since learning from examples certainly
requires intelligence if done by man.

1.3 The PAC Model and Efficiency

Since Machine Learning is concerned with formal learning algorithms, it needs
formal models of what it means to learn something: what kinds of “examples”
and other resources does a learning algorithm have at its disposal, and what are
its goals? In general, a learning algorithm reads a number of examples for some
unknown target concept, and has to induce or learn some concept on the basis of
these examples. Initial analysis of learnability in Machine Learning was mainly
done in terms of Gold’s paradigm of identification in the limit [Gol67], but
nowadays Valiant’s paradigm of PAC learnability [Val84] is usually considered
to provide a better model of learnability. A PAC algorithm is an algorithm
that reads examples concerning some target concept, which is taken from some
class F of concepts. The algorithm knows from which class the target concept
is chosen, but it does not know which particular concept is the target, and its
only access to the target is through the examples it reads. These examples will
usually not provide complete knowledge of the target concept, so we cannot
expect our algorithm to learn the target exactly. Instead, we can only hope to
learn an approzimately correct concept: a concept which diverges only slightly
from the target. Moreover, since the given set of examples may be biased and
need not always be a good representative of the target concept as a whole, we
cannot even expect to learn approximately correctly every time. Accordingly,
the best our algorithm can do, is learn a concept which is probably approximately
correct (PAC) with respect to the target concept, whenever the target is drawn
from F. That is, a PAC algorithm should, with high probability, learn a concept
which diverges only slightly from the target concept.

Interestingly enough, Thomas Kuhn, Popper’s antipode in the philosophy of science,
later became involved in computer models of inductive concept learning from examples. See
pp- 474-482 of [Kuh77].
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In the PAC model, a class of concepts is only considered learnable if there is
an efficient PAC algorithm for that class.® Efficiency concerns two major com-
plexity issues: how many examples do we need to ensure that we will probably
find an approximately correct concept (sample complezity), and how many steps
do we need to take to find such a concept (time complezity)? An algorithm is
efficient if both its sample and its time complexity can be upper-bounded by a
polynomial function in the inputs of the algorithm.5

Before embarking on formal expositions of PAC algorithms and their sample
and time complexity, let us first say something about why we call an algorithm
with polynomially-bounded running time an efficient algorithm. Suppose we
want to solve some family of problems, and we can measure the size of each
particular problem (or instance) in that family by some integer n. For instance,
we might want to construct an algorithm for solving the traveling salesman
problem (TSP): given a road map and a number of cities on the map, find
the shortest route that leads past each city on the map. For simplicity, let
us define the size of a particular traveling salesman problem as the number n
of cities on the map. Suppose we have two algorithms for solving TSP: each
takes a particular TSP-instance as input, and finds the shortest route for us
in a finite number of steps. Now, suppose the first algorithm, when given a
problem of size n as input, gives the right answer after n’ steps, while the
second needs 2" steps.” Let us call the first the polynomial algorithm, and
the second the ezponential algorithm. Consider the number of steps needed by
these two algorithms for larger n:

Number of cities: 11 5 10 50 100
No. of steps (polynomial): | 1 | 25 | 100 2500 10000
No. of steps (exponential): | 2 | 32 | 1024 | 1.13 - 10" | 1.27-10%°

As can be seen from this table, the time required by the exponential algo-
rithm really explodes for larger n, while for the polynomial algorithm it grows
much more moderately. Both algorithms solve the same problem correctly, but
the polynomial algorithm needs much less time for this than the exponential
one.

The relative efficiency of the polynomial algorithm can also be seen in an-
other way. According to Moore’s well known law, the speed of computers dou-
bles every one and a half years. Suppose that in Januari 1996 we can solve
TSP’s of length up to n; in one hour’s time using the polynomial algorithm,
and TSP’s of length up to no with the exponential algorithm. Now suppose
computing power doubles, and in July 1997 we have a computer which can make

®Note carefully that learnability is a property of classes of concepts, rather than of individ-
ual concepts. A class consisting of a single concept f is always learnable, because a learning
algorithm can already know in advance that the target concept has to be f in this case.

SA polynomial function with variables z,...,z, is a sum of terms of the form
cxitzs? ... x5, where ¢ is an arbitrary real constant, and the exponents ey, ..., e, are non-
negative real constants. For instance, z> + 3 and 3z1z» + 5z3 are polynomials.

"In fact, it is a big open question whether TSP can be solved by a polynomial-time algo-
rithm, because this problem, in a slightly different form, is known to be AN/P-complete. See
note 16 on p. 39 for more on N 'P-completeness.
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twice as many steps in one hour as the computer we used in Januari 1996. Then
it is easy to show that with this faster computer, we can solve TSP’s of length
up to V2 -n; ~ 1.41 - ny with the polynomial algorithm: an improvement of
about 41%, which is quite nice. However, with the exponential algorithm, we
can only solve problems of length up to no + 1 in one hour! Thus an increase
in computing power makes a great difference if we use the efficient polynomial
algorithm, but makes hardly any difference using the exponential algorithm.

1.4 PAC Algorithms

Let us first illustrate and motivate the definition of a PAC algorithm by means
of a metaphorical example. Suppose some biology student wants to learn from
examples to distinguish insects from other animals. That is, he wants to learn
the concept of an ‘insect’ within the domain of all animals. A teacher gives the
student examples: a positive example is an insect, a negative example is some
other animal. The student has to develop his own concept of what an insect is
on the basis of these examples. Now, the student will be said to have learned the
concept approzimately correctly, if, when afterwards tested, he classifies only a
small percentage of given test animals incorrectly as insect or non-insect. In
other words, his own developed concept should not diverge too far from the real
concept of an ‘insect’.

In the interest of fairness, we require that the animals given as examples
during the learning phase, and the animals given afterwards as test, are all
selected by the same teacher (or at least by teachers with the same inclinations).
For suppose the student learns from a teacher with a particular interest in
European animals, whose examples are mainly European animals. Then it
would be somewhat unfair if the animals that were given afterwards to test
the student, were selected by a different teacher having a decisive interest in
the very different set of African insects. In other words: the student should be
taught and tested by the same teacher.

Let us now formalize this setting. To my knowledge, three different text-
books for computational learning theory exist to date, respectively written
by Natarajan [Nat91], Anthony and Biggs [AB92], and Kearns and Vazirani
[KV94]. The formal definitions in this chapter will mostly follow Natarajan.

Definition 1.1 A domain X is a set of strings over some finite alphabet 3.
The length of some z € X is the string length of z. X[™ denotes the set of all
strings in X of length at most n.

A concept f is a subset of X, a concept class F is a set of concepts. An
example for f is a pair (z,y), where x € X, y is called the label of the example,
y=1if z € f and y = 0 otherwise. If y = 1 then the example is positive, if
y = 0 it is negative.

If f and g are two concepts, then fAg denotes the symmetric difference of
fand g: fAg=(f\g) U (g\f) <

In our metaphor, X would be the set of descriptions of all animals, the target
concept f € X would be the set of descriptions of all insects, and the student
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would develop his own concept ¢ C X on the basis of a number of positive
and negative examples (i.e., insects and non-insects). The symmetric difference
fAg would be the set of all animals which the student classifies incorrectly: all
insects that he takes to be non-insects and all non-insects he takes to be insects.

For technical reasons, we restrict the examples to those of length at most
some number n, so all examples are drawn from X[, Note that X" is a
finite set. We assume these examples are given according to some unknown
probability distribution P on X (] which reflects the particular interests of the
teacher. If § C X", we let P(S) denote the probability that a member of X"
that is drawn according to P, is a member of S (i.e., P(S) = > ,csP(s)). Now
suppose the student has developed a certain concept g. Then in the test phase,
he will misclassify some object z € X iff® z € fAg. Thus we can say that
g is approzimately correct if the probability that such a misclassified object is
given during the test phase, is small:

P(fAg) <k,

where £ € (0,1] is called the error parameter. For instance, if ¢ = 0.05, then
there is a chance of at most 5% that an arbitrary given test object from X []
will be classified incorrectly. Note that the set of examples that is given, as well
as the evaluation of approximate correctness of the learned concept g, depends
on the same probability distribution P. This formally reflects the fairness-
requirement that the student is taught and tested by the same teacher.

After all these preliminaries, we can now define a PAC algorithm as an
algorithm which, under some unknown distribution P and target concept f,
learns a concept g which is probably approximately correct. ‘Probably’ here
means with probability at least 1 — §, where ¢ € (0, 1] is called the confidence
parameter. For instance, if § = 0.1 and the algorithm would be run an infinite
number of times, at least 90% of these runs would output an approximately
correct concept. The constants ¢, 4, and n are given by the user as input to the
algorithm.

Definition 1.2 A learning algorithm L is a PAC algorithm for a concept class
F over domain X if

1. L takes as input real numbers €, > 0 and a natural number n € N,
where ¢ is the error parameter, § is the confidence parameter, and n is
the length parameter.

2. L may call the procedure EXAMPLE, each call of which returns an example
for some unknown target concept f € F according to an arbitrary and
unknown probability distribution P on X[,

3. For all concepts f € F and all probability distributions P on X, L
outputs a concept g, such that with probability at least 1—4§, P(fAg) < e.

O

A PAC algorithm may be randomized, which means, informally, that it may
“toss coins” and use the results in its computations. One further technicality:

8Iff* abbreviates ‘if, and only if’.
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a PAC algorithm should be admissible, meaning that for any input ¢, 0, n, for
any sequence of examples that EXAMPLE may return, and for any concept g,
the probability that L outputs g should be well defined.

1.5 Sample Complexity

Having a PAC algorithm for a concept class F is nice, but having an efficient
PAC algorithm for F is even nicer. In this section we analyze this efficiency in
terms of the number of ezamples the algorithm needs (the sample complezity),
while in the next section we treat the number of steps the algorithm needs to
take (time complexity).

The sample complexity of a learning algorithm can be seen as a function
from its inputs ¢, §, and n, to the maximum number of examples that the
algorithm reads when learning an unknown target concept under an unknown
probability distribution. Since the examples are drawn according to a proba-
bility distribution, different runs of the same algorithm with the same input
and the same target concept and distribution may still read different examples.
Thus different runs of the same algorithm with the same input may need a
different number of examples in order to find a satisfactory concept. There-
fore, the sample complexity as defined below relates to the maximum number
of examples over all runs of the algorithm with the same input.

Definition 1.3 Let L be a learning algorithm for concept class F. The sample
complezity of L is a function s, with parameters ¢, § and n. It returns the
maximum number of calls of EXAMPLE made by L, for all runs of L with
inputs €, 6, n, for all f € F and all P on X, If no finite maximum exists, we
let s(e,d,n) = oo. &

Of course, for the sake of efficiency we want this complexity to be as small as
possible. A concept class is usually considered to be efficiently PAC learnable—
as far as the required number of examples is concerned—if there is a PAC
algorithm for this class for which the sample complexity is bounded from above
by a polynomial function in 1/¢, 1/§, and n. Of course, even polynomials
may grow rather fast (consider n'%%), but still their growth rate is much more
moderate than, for instance, exponential functions.

Definition 1.4 A concept class F is called polynomial-sample PAC learnable,
if a PAC algorithm exists for f, which has a sample complexity bounded from
above by a polynomial in 1/e, 1/4, and n. O

Note that polynomial-sample PAC learnability has to do with the worst case:
if the worst case cannot be bounded by a polynomial, a concept class is not
polynomial-sample PAC learnable, even though there may be PAC algorithms
which take only a small polynomial number of examples on average.

A crucial notion in the study of sample complexity is the dimension named
after Vapnik and Chervonenkis [VCT71]:

Definition 1.5 Let F be a concept class on domain X. We say that F shatters
aset SC X,if {fnS|feF}=2% ie., if for every subset S’ of S, there is
an f € F such that fNS=29". O
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Definition 1.6 Let F be a concept class on domain X. The Vapnik-Chervo-
nenkis dimension (VC-dimension) of F, denoted by Dy ¢(F), is the greatest
integer d such that there exists a set S C X with |S| = d, that is shattered by
F. Dyc(F) = oo if no greatest d exists. &

Note that if F = 29, then F shatters S. Thus if F = 2° for some finite set
S, then F has |S| as VC-dimension.

Example 1.1 Let X = {1,2,3,4} and F = {{1}, {2}, {3}, {4}, {1,2},{2, 3},
{1,3,4},{1,2,3,4}} be a concept class. Then F shatters the set S = {1,2},
because {f NS | f € F} = {0,{1},{2},{1,2}} = 2°. Thus F’s “shattering” of
S intuitively means that F “breaks” S into all possible pieces.

F also shatters S’ = {1,2,3}, because {f NS" | f € F} = {0,{1},{2},
{3},{1,2},{2,3},{1,3},{1,2,3}} = 2%. F does not shatter S" = {1,2,3,4},
since there is for instance no f € F with f NS” = {1,4}. In general, there is
no set of four or more elements that is shattered by F, so we have Dy ¢(F) =
|S’| = 3. <

Since we are actually dealing with X (] rather than with X itself, we need
the following definitions, which “project” the VC-dimension on X .

Definition 1.7 The projection of a concept f on XM is fI"l = f 0 X" The
projection of a concept class F on XM is FIl = {f["l | f € F}. O

Definition 1.8 Let F be a concept class on domain X. F is of polynomial
VC-dimension if Dy ¢ (F™) is bounded from above by some polynomial in n.
O

The following fundamental result, due to Blumer, Ehrenfeucht, Haussler,
and Warmuth [BEHW89], states the relation between polynomial-sample PAC
learnability and the VC-dimension. For a proof we refer to Theorem 2.3
of [Nat91].

Theorem 1.1 Let F be a concept class on domain X. Then F is polynomial-
sample PAC learnable iff F is of polynomial VC-dimension.

In the proof of the theorem, the following important lemma is proved
(Lemma 2.1 of [Nat91]):

Lemma 1.1 Let F be a concept class on a finite domain X. If d = Dyc(F),
then
27 <|F| < (IX| + D)%

Let us use this to obtain bounds on \.7-"["}\. Suppose the length parameter n
is given, and the domain X is built from an alphabet 3 which contains s > 2
characters. Since we are only concerned with elements of the domain of length
at most n, and the number of strings of length i over ¥ is s’, we can upper
bound |X| as follows:

IX|<s¥+s' +.. 45" =" 1L
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Putting d = Dy ¢ (F™) and substituting our upper bound on | X| in the relation
of the lemma, we obtain the following relation:

2d < u:[n}‘ < S(n-l—l)d_

If we take logarithms (with base 2) on both sides, using that loga® = bloga
and log2 = 1, we obtain

d <log|FM™| < (n + 1)dlog s.

This implies that a concept class F is of polynomial VC-dimension (i.e., d is
bounded by a polynomial in n) iff log | F[/| can be bounded by some polynomial
p(n) iff |F| can be bounded by 2P("). Thus if we are able to show that |F™|
is bounded in this way, we have thereby shown it to be polynomial-sample PAC
learnable. And conversely, if | FI"l| grows faster than 2P("), for any polynomial
p(n), then F is not polynomial-sample PAC learnable.

1.6 Time Complexity

In outline, the analysis of time complexity is similar to the analysis of sample
complexity: the time complexity of a learning algorithm is a function from its
inputs to the maximum number of computational steps the algorithm takes on
these inputs. Here we assume that the procedure EXAMPLE takes at most some
fixed constant number of steps. Again, we are mainly interested in the existence
of algorithms which have a polynomially-bounded time complexity.

1.6.1 Representations

Unfortunately, things are somewhat more complicated than in the last section:
the “number of examples” that an algorithm needs is unambiguous, but what
about the “number of computational steps”? What counts as a computational
step? In order to make this notion precise, we have to turn to some precise
model of computation, where it is clear what a single step is. Usually Turing
machines are used for this.” We will not go into details, but will just note here
that a Turing machine programmed to learn some concept will often not be able
to output the learned concept g itself efficiently, because this concept may be
too large or even infinite. Therefore, instead of the concept g itself, the Turing
machine will have to output some finite representation of g, which we call a
name of g. Abstractly, a representation specifies the relation between concepts
and their names:

Definition 1.9 Let F be a concept class, and ¥ a set of symbols. ¥ denotes
the set of all finite non-empty strings over 3. A representation of F is a function
R:F — 2= where we require that for each f € F, R(f) # § and for every

See [HU79, BJ89] for an introduction into Turing machines. Since Turing machines cannot
represent arbitrary real numbers, we have to restrict the parameters 6 and ¢ somewhat, for
instance by only allowing them to be the inverses of integers.
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distinct f,g € F, R(f) N R(g) = 0. For each f € F, R(f) is the set of names of
fin R.

The length of a name r € R(f) is simply the string length of r, i.e., the
number of symbols in r. The size of f in R is the length of the shortest name
in R(f), denoted by lpin(f, R). &

The requirement that R(f) # () for each f € F means that each concept in
F has at least one name, while R(f) N R(g) = 0 for every distinct f,g means
that no two distinct concepts share the same name. Note the difference between
the string length of a string x € X and the size of a concept f € F in R: the
latter depends on R, the former does not.

The aim of the analysis of time complexity is to be able to bound by a
polynomial function the number of steps needed for learning. After all, we are
interested in efficient learning. However, if a learning algorithm provided us
with a name of an approximately correct concept in a polynomial number of
steps, but we were not able to decide in polynomial time whether that concept
actually contains a given xz € X, we still had a computational problem. There-
fore, a representation R should be polynomially evaluable: given an x € X and
a name 7 of a concept f, we should be able to find out, in polynomial time,
whether z € f. This is defined as follows.

Definition 1.10 Let R be a representation of a concept class F over domain
X. We say that R is evaluable if there exists an algorithm which, for any
f € F, takes any z € X and any name r € R(f) as input, and decides in
a finite number of steps whether z € f. R is polynomially evaluable if there
is such an algorithm, whose running time is bounded by a polynomial in the
lengths of x and r. O

In the sequel, whenever we write ‘representation’ we actually mean a poly-
nomially evaluable representation.

1.6.2 Polynomial-Time PAC Learnability

In order to be able to study time complexity, we need to change the definition of
a PAC learning algorithm somewhat to incorporate the representation: a PAC
algorithm for a concept class F in representation R should output the name of
a concept g, rather than g itself.

Now time complexity can be defined as follows, where we introduce a new
parameter [ that bounds the size of the concepts considered:

Definition 1.11 Let L be a learning algorithm for concept class F in repre-
sentation R. The time complezity of L is a function ¢, with parameters ¢, d, n,
and [. It returns the maximum number of computational steps made by L, for
all runs of L with inputs €, d, n, [, for all f € F such that l,,;,(f, R) <, and all
P on X", If no finite maximum exists, we define t(¢, §,n,1) = co. O

Definition 1.12 A concept class F is called polynomial-time PAC learnable
in a representation R, if a PAC algorithm exists for f in R, which has a time
complexity bounded from above by a polynomial in 1/e, 1/4, n, and [. <
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Let us suppose we have some concept class F of polynomial VC-dimension.
Then we know F is polynomial-sample PAC learnable, so we only need a poly-
nomial number of examples. Now, in order to achieve polynomial-time PAC
learnability of F, it is sufficient to have an algorithm that finds, in a polyno-
mial number of steps, a concept that is consistent with the given examples. A
concept is consistent if it contains all given positive examples and none of the
given negative examples.

Definition 1.13 Let g be a concept and S be a set of examples. We say ¢ is
consistent with S, if x € g for every (z,1) € S and z & g for every (z,0) € S.
O

An algorithm which returns a name of a concept that is consistent with
a set of examples S is called a fitting, since it “fits” a concept to the given
examples. As always, we want a fitting to work efficiently. The running time
of the fitting should be bounded by a polynomial in two variables. The first is
the length of S, which we define as the sum of the lengths of the various x € X
that S contains. The second is the size of the shortest consistent concept. For
this, we will extend the [,,,;, notation as follows. If S is a set of examples, then
Imin (S, R) is the size of the concept f € F with smallest size that is consistent
with S. If no such consistent f € F exists, then [, (S, R) = oo.

Definition 1.14 An algorithm () is said to be a fitting for a concept class F
in representation R if

1. @ takes as input a set S of examples.
2. If there exists a concept in F that is consistent with S, then ) outputs a
name of such a concept.

If @ is a deterministic algorithm such that the number of computational steps
of @ is bounded from above by a polynomial in the length of S and /,,;, (S, R),
then @ is called a polynomial-time fitting. O

As the next theorem (Theorem 3.1 of [Nat91]) shows, the existence of such a
fitting is indeed sufficient for the polynomial-time PAC learnability of a concept
class of polynomial VC-dimension.

Theorem 1.2 Let F be a concept class of polynomial VC-dimension, and R
be a representation of F. If there exists a polynomial-time fitting for F in R,
then F is polynomial-time PAC learnable in R.

Conversely, it is also possible to give a necessary condition for polynomial-
time PAC learnability in terms of so-called randomized polynomial-time fittings.
We will not go into that here (see Theorem 3.2 of [Nat91]), but just mention
that it can be used to establish negative results: if no such fitting for F in R
exists, F is not polynomial-time PAC learnable in R.

Example 1.2 Consider an infinite sequence of properties pi,ps,... For con-
creteness, suppose the first properties of this sequence are the following:
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p1: “is a mammal”
po: “is green”

p3: “is grey”

pq: “is large”

ps: “is small”

pg: “has a trunk”

p7: “smells awful”

Let us identify an animal with the set of its properties. Then we can roughly
represent an animal (that is, an individual animal, not a species) by a finite
binary string, i.e., a finite sequence of Os and 1s, where the i¢th bit is 1 iff
the animal has property p;. Here we assume that a binary string of length n
tells us whether the animal does or does not have the properties p1,...,pn,
while it tells us nothing about the further properties pn11,pp+t2, ... Thus, for
instance, some particular small, green, awfully smelling, trunk-less mammal
could be represented by the string 1100101. Note that not every binary string
can represent an animal. For instance, 111 would be an (impossible) mammal
which is both green and grey at the same time. Similarly, since an animal
cannot be large and small at the same time, a binary string cannot have 1 at
both the 4th and the 5th bit.

Let us suppose our domain X is a set of binary strings, each of which
represents some particular animal. Then, simplifying matters somewhat, we can
identify a species with the set of animals that have the “essential” characteristics
of that species. Thus, for instance, the concept ‘elephant’ would be the set of all
large, grey, mammals with a trunk: all strings in X that have (possibly among
others) properties pi, ps, p4 and pg.

How could an algorithm learn the target concept ‘elephant’? Well, it would
receive positive and negative examples for this concept: strings from X together
with a label indicating whether the animal represented by the string is an
elephant or not. Hopefully, it would find out after a number of examples that
a string is an elephant iff it has (possibly among others) properties p1, p3, p4
and pg. Consider the following representation: a conjunction of p;’s is a name
of the concept consisting of all strings which have (possibly among others) the
properties in the conjunction. Then the conjunction p; A ps A psy A pg would be
a name of the concept ‘elephant’, and the learning algorithm could output this
conjunction as a name of the concept it has learned.

It turns out that the concept class that consists of concepts representable by
a conjunction of properties is polynomial-time PAC learnable (see Example 2.5
of [Nat91]). Thus, if F is a concept class, each member of which is a species
of animals that can be represented by some finite conjunction of properties,
then a polynomially-bounded number of examples and a polynomially-bounded
number of steps suffices to learn some target concept (species) approximately
correctly. In fact, much more complex concept classes are polynomial-time
PAC learnable as well. For an overview of positive and negative results, see
[Nat91, AB92, KV94]. <
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1.7 Some Related Settings

The standard PAC setting of the previous sections may be varied somewhat.
In this section, we will mention some alternatives.

1.7.1 Polynomial-Time PAC Predictability

In the ordinary PAC setting, a PAC algorithm for a concept class F reads
examples from an unknown target concept f from F, and has to construct a
concept g, also from F, which is approximately correct. This may lead to a
seemingly paradoxical situation: we would expect that learning a superset of
F is at least as hard as learning F itself, but this need not be the case in the
ordinary PAC setting. Namely, it may be that there is no polynomial-time PAC
algorithm for some concept class F in some representation R, while for some
larger concept class G O F there is such a polynomial-time PAC algorithm.
The latter algorithm, when given examples for some target concept f € F,
always constructs a name of a probably approximately correct concept g € G in
polynomial time. Still, F itself may be hard to learn, because the requirement
that the output concept should be a member of F may be very hard to meet.

We can take this into account by loosening the requirement on g somewhat,
and allow it to be a member of a broader concept class G, of which F is a
subset. This gives the learning algorithm more freedom, which may facilitate
the learning task. Suppose we have a concept class F, a broader concept class
G O F, and a representation R of G (which is of course also a representation
of F). Suppose, furthermore, that there exists a learning algorithm L for F
in R, which is just like a PAC algorithm for F in R, except that it outputs a
name of a concept g such that g € G but not necessarily g € F. In this case,
we say that L is a PAC prediction algorithm for F in R in terms of G and F
is PAC predictable in R in terms of G. If, furthermore, the time complexity of
algorithm L is bounded by a polynomial in 1/¢, 1/4, n, and [, we say that F
is polynomial-time PAC predictable in R in terms of G. If some G exists such
that F is polynomial-time PAC predictable in R in terms of G, we will simply
say that F is polynomial-time PAC predictable in R.

Clearly, if some concept class F is polynomial-time PAC learnable in some
R, it is also polynomial-time PAC predictable in R: simply put G = F. Hence
the setting of polynomial-time PAC predictability may be used to establish
negative results: if we can prove that some concept class F is not polynomial-
time PAC predictable in R in terms of any G, we have thereby also shown that
F—as well as any superset of F—is not polynomial-time PAC learnable in R.
The converse need not hold: some classes are polynomial-time PAC predictable,
but not polynomial-time PAC learnable (see Sections 1.4 and 1.5 of [KV94] for
an example). Hence polynomial-time PAC predictability is strictly weaker than
polynomial-time PAC learnability.
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1.7.2 Membership Queries

We may facilitate the learning task by allowing a PAC algorithm to make use of
various kinds of oracles. An oracle is a device which returns answers to certain
questions, which are called queries. For the PAC algorithm that uses an oracle,
the oracle is like a black box: you pose a question and get an answer, but do
not know how the oracle constructs it answer. Like the EXAMPLE procedure,
oracles are assumed to run in at most some fixed constant number of steps.
The most straightforward kind are the membership queries. Here the oracle
takes some x € X as input, and returns ‘yes’ if x is a member of the target
concept, and ‘no’ if not. Clearly, the oracle somehow has to have knowledge
about the domain. Two justifications for assuming an oracle can be given:

1. Induction can be compared with a simplified picture of the work of a
scientist. Consider a particle physicist. The physicist may not know the
general laws that characterize the objects in his domain of inquiry, but he
can obtain knowledge about certain specific instances of those concepts
by doing experiments. Posing a membership query to an oracle is similar
to doing an experiment in science, which is like “posing a question to
nature”.

2. When learning, a student may have a teacher who can answer questions
about whether some object has a certain property or not. It need not be
the case here that the student only learns what the teacher already knows.
We only assume the teacher has sufficient knowledge of individual objects
of the concepts. The teacher may know all about the particular instances
of the concepts, and yet be pleasantly surprised by the concept that a
smart student comes up with. Translating this analogy to induction, the
oracle acts as the teacher, while the learning algorithm is the student.

If a concept class F is polynomial-time PAC learnable in some R by an
algorithm which makes membership queries, we will say that F is polynomial-
time PAC learnable in R with membership queries. Analogously, we can define
PAC predictability with membership queries. Note that if an algorithm makes
membership queries, it in a way “creates its own examples.” Note also that a
polynomial-time algorithm can make at most a polynomial number of queries,
since each query counts for at least one computational step.

Equivalence queries need a more fancy oracle, which is discussed in the next
subsection. For an overview of other kinds of queries, we refer to [Ang88].

1.7.3 Identification from Equivalence Queries

While polynomial-time PAC predictability is strictly weaker than polynomial-
time PAC learnability, polynomial-time identification from equivalence queries,
introduced by Angluin [Ang87b], is strictly stronger. In this setting, we have
an oracle which takes a name of a concept g as input, and answers ‘yes’ if g
equals the target concept f, and ‘no’ otherwise. In case of a ‘no’, it also returns
a randomly chosen counterexample x € fAg. There is no need for the oracle to
provide the correct label of the counterexample x, because the algorithm can
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find this out for itself: if x € g then ¢ & f, and if x &€ g then £ € f. When
equivalence queries are available, the requirement that an algorithm outputs a
name of an approximately correct concept is replaced by the requirement that
the target concept is identified exactly: an algorithm that is allowed to make
equivalence queries should output a name of the target concept.

Consider a concept class F and a representation R of F. Let L be an algo-
rithm which uses equivalence queries in order to learn some unknown concept
f € F under some unknown probability distribution P, and which takes as
input an upper bound [ on l,,;,(f, R) and an upper bound n on the length of
the counterexamples from the oracle. If this algorithm always outputs a name
of the target concept, we say F is identifiable from equivalence queries in R. If
the running time of the algorithm L is bounded by a polynomial in its inputs [
and n, then F is polynomial-time identifiable from equivalence queries in R. As
in the case of membership queries, an algorithm with a polynomially-bounded
running time can make only a polynomially-bounded number of equivalence
queries.

It is shown in Section 2.4 of [Ang88] that if a concept class is polynomial-time
identifiable from equivalence queries in some R, then it is also polynomial-time
PAC learnable in R. The converse does not hold. Thus, while PAC predictabil-
ity can be used to establish negative results, identification from equivalence
queries may be used for positive results: if we can prove that some concept class
F is polynomial-time identifiable from equivalence queries, we have thereby also
shown that F, as well as any subset of F, is polynomial-time PAC learnable in
R.

We may also allow an algorithm to make both equivalence queries and
membership queries. Angluin [Ang87b] calls this combination a “minimally
adequate teacher”: if a teacher wants to teach some target concept to his stu-
dent, he should be able to answer student’s questions about whether some
object is in the target concept (membership queries), and he should be able
to judge whether some concept the student comes up with, is really the target
concept, and give a counterexample if not (equivalence queries). If polynomial-
time identification of F from equivalence queries is done by an algorithm which
makes use of equivalence queries as well as membership queries, then we say F
is polynomial-time identifiable from equivalence and membership queries in R.
This implies polynomial-time PAC learnability with membership queries.

1.7.4 Learning with Noise

In many real-world learning tasks, examples may contain errors (noise), which
may for instance be due to inaccurate measurements. There are various ways in
which the analysis of noise may be modelled in the theoretical setting for PAC
learnability. We will discuss only two kinds of noise here: Valiant’s malicious
noise [Val85], also sometimes called adversarial noise, and Angluin and Laird’s
random classification noise [AL88]. For other kinds of noise, see [Lai88, Slo95].

Firstly, in the malicious noise model, a malicious adversary of the learning
algorithm tinkers with the examples: for each example that the learning algo-
rithm reads, there is a fixed, unknown probability 0 < 7 that the adversary has
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changed the original, correct example (z,y) to any other (z',4')-pair he chooses.
Since 3’ may not be the correct label for z’, the adversary may introduce noise
in this way. The adversary is assumed to be omnipotent and omniscient—in
particular, he has knowledge of the learning algorithm he is trying to deceive.
This means that the learning algorithm should be able to cope even with the
worst possible changes in the examples.

Secondly, in the random classification noise model, the EXAMPLE procedure
is replaced by a procedure EXAMPLE", and there is a fixed, unknown probability
0 <17 < 0.5 that the label of an example provided by this procedure is incorrect.
For instance, suppose n = 0.1. If a learning algorithm receives an example (z,y)
from EXAMPLE", then there is a probability of 10% that y is incorrect.

In both models, the actual noise rate n is unknown to the learning algo-
rithm. However, an upper bound 7, on the noise rate is given as an additional
input parameter to a PAC algorithm, where 0 < n < n, < 0.5. This n is
added as a parameter to the time complexity function as well. If there is a
PAC algorithm for a concept class F in some representation R, working in the
presence of malicious (resp. random classification) noise, with time complexity
bounded by a polynomial in 1/¢, 1/§, n, [, and 1/(1 — 2n;), then F is said to
be polynomial-time PAC learnable in R with malicious (resp. random classi-
fication) noise. Similarly, we can define PAC predictability with malicious or
random classification noise.

1.8 Summary

This thesis is concerned with computational learning theory: the study of algo-
rithmic ways to learn from examples. The dominant formal model of learnability
in Artificial Intelligence is Valiant’s model of approzimately correct learning. In
this model, a concept is simply a subset of a domain X, and a concept class
is a set of concepts. A PAC algorithm reads examples for an unknown target
concept (taken from some concept class), drawn according to an unknown prob-
ability distribution, and learns, with tunably high probability, a tunably good
approximation of the target concept. A concept class F is polynomial-sample
PAC learnable if a PAC algorithm exists for F that uses only a polynomially-
bounded number of examples, and is polynomial-time PAC learnable if the al-
gorithm uses only a polynomially-bounded number of steps. In the latter case,
the algorithm should output a name of the learned concept in some polynomi-
ally evaluable representation. An oracle for membership queries can inform
the learner whether a specific object is in the target or not. Polynomial-
time PAC predictability is weaker than polynomial-time PAC learnability, while
polynomial-time identification from equivalence queries is stronger. When noise
is involved, the examples may sometimes be incorrect.
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Chapter 2

Application to Language
Learning

2.1 Introduction

In the course of the 20th century, language has become the focal interest of phi-
losophy. Many of the central philosophical problems—Iogical, epistemological,
anthropological, ethical, and even metaphysical—are bound up with the intri-
cacies of human language. Investigating how human beings learn languages,
and which languages can be learned by human beings may tell us a lot about
those intricacies, and should therefore be of great importance to philosophy.

Seeking knowledge about language, where better to turn than to linguistics,
the science of language? And within linguistics, whom better to turn to than
Noam Chomsky, the man who made linguistics the most scientific of all hu-
manities? One of Chomsky’s most interesting claims concerns the innateness
of important aspects of our natural languages. For this claim, he has been
severely attacked by various empiricist philosophers, among them Putnam and
Quine. While Chomsky argues that children can only acquire language in virtue
of having specific innate language acquisition mechanisms, Putnam and Quine
argue that general (not language-specific) learning mechanisms may suffice for
language acquisition.

This chapter is an attempt to settle this issue in Chomsky’s favour by means
of a mathematical argument: we will use results from computational learning
theory to establish that children would not be able to learn their native language
if they started without any pre-knowledge of the language they have to learn.
In other words, we provide a formal “proof” that general learning mechanisms
cannot explain why children acquire language as successfully as they in fact do:
language acquisition must be based on certain propensities and biases which
direct the child towards certain kinds of languages and away from others. Where
do these biases come from? The most plausible answer is that they are innate.

The chapter is organized as follows. We start by sketching some background
concerning Chomskyan linguistics and the innateness of language. In order to
be able to state formal results about language learnability, we need to pro-
vide two things: a formal model of learning, and a formal model of languages
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and grammar. The first has been dealt with in the previous chapter, while
Section 2.3 provides formal counterparts to the notions of a language and a
grammar. One of the main self-imposed goals of philosophers is to bring out
presuppositions. In Section 2.4, we follow this laudable practice, making ex-
plicit the main assumptions and presuppositions of our analysis of language
learnability. Sections 2.5 to 2.11 form the main part of the chapter. Here we
show that the set of languages a child can learn must be severely constrained
in order to enable efficient learning to take place. Finally, in Section 2.12 we
extrapolate this argument to other kinds of learning.

2.2 A Brief History of the Chomskyan Revolutions

In this section we will give a brief and incomplete overview of the revolution
caused in linguistics by the work of Noam Chomsky.! Actually, we may distin-
guish between two revolutions: the first replaced the behavioristic paradigm by
the paradigm of transformational-generative grammar; the second involved im-
portant changes in the transformational-generative framework, yielding Chom-
sky’s current principles-and-parameters framework.

2.2.1 Against Behaviorism

Linguistics BC, Before Chomsky, was dominated by behaviorism. Accordingly,
a good place to start our story is Chomsky’s review of Verbal Behavior, a book
by the leading behaviorist B. F. Skinner. In his book, Skinner attempted to
extend the behaviorist approach to the study of language use by human beings.
The behaviorist picture of science amounts to the following: you have some
object, for instance an animal, which reacts or responds in certain ways to
certain stimuli from the environment. The task of the scientist is to find laws
which describe the relations between stimulus and response, on the basis of
experiments where you vary the stimulus and observe how the response changes.
Previously, that approach had mainly been restricted to very small contexts, for
instance rats in mazes, where behaviorist concepts like “stimulus”, “response”,
“reinforcement” could be precisely defined by reference to simple measuring
apparatus.

Chomsky’s critique of Skinner’s book was simple, yet effective: the extrap-
olation of the behaviorist approach to the area of human language use leaves
the key behaviorist concepts empty. The problem for the behaviorist is: what
are the stimulus and the response in case of linguistic behavior? In order to
give results, the behaviorist approach requires a precise definition of things like
stimulus and response, as well as the ability to somehow measure or determine
those things. In a simple laboratory experiment with animals, this can indeed
be done. However, if we supplant the laboratory terminology to the much more
complex case of language learning, it either becomes non-applicable (if we take
the terminology literally) or empty (if we take it metaphorically). Skinner’s

!This summary is mainly based on a number of recent linguistic texts [Bot89, New91,
Har93, Pin94], to which we refer the reader for more detail.
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attempt to extend the behaviorist approach to human language use failed, and
so have later attempts. In fact, it seems plausible that the precise definitions
and ways of measuring that the behaviorist requires, are simply unavailable in
the complex area of linguistic behavior.

2.2.2 Transformational-Generative Grammar

If language use and learning cannot be described behavioristically, then what?
A few years before his Skinner-review, Chomsky had himself put forward a
radically different linguistic theory. He distinguishes between linguistic perfor-
mance and competence. Performance is the way a person actually or potentially
uses language; competence is what he, perhaps unconsciously, knows about that
language. The distinction is crucial: natural languages contain an infinite set
of sentences which have never been used before (and hence are not amenable to
behavioristic analysis), yet which would easily be recognized as grammatical by
any competent native speaker. Because performance varies too much with the
contingencies of context, it is not well suited for scientific inquiry; competence is
the appropriate target for linguistics. Thus we need a model which specifies the
knowledge native speakers have of the set of all syntactically correct sentences,
rather than the ones that have actually been used or uttered.

Throughout his career, Chomsky’s linguistic research has been motivated
by the following problem: what makes it possible that almost all children ac-
quire near-perfect competence of their native language, despite the poverty of
the stimulus they receive? When children learn their first language, the only
“input” they receive are the sentences they hear from their parents and others.
This set of sentences does not uniquely determine a language: many different
languages are consistent with the input the child receives. Nevertheless, it is
an empirical fact that children all fill in the gaps in more or less the same way,
learning approximately the same language. From this Chomsky concludes that
children must be born with a strong linguistic bias, consisting of constraints on
the set of possible languages. These constraints, Universal Grammar, lead chil-
dren to learn only very specific languages from the input they receive, ignoring
the infinite number of other languages compatible with the input.

Universal Grammar is incarnated in what Chomsky calls the language facul-
ty?, and what others sometimes call the language organ or the language instinct,
which is supposed to be a more or less separate module in the mind/brain.
(Chomsky often uses the term “mind/brain” in order to forestall discussions of
the “dualism vs. monism” type.) In Chomsky’s view, the main task of linguistics
is to investigate the properties of Universal Grammar. Thus linguistics would
give us information about the workings of our mind/brain. In fact, Chomsky
has stated at several places that he is mainly interested in linguistics not for its
own sake, but because it is a way to gain knowledge about the mind [Har93,
p. 11]. This is in sharp contrast to the earlier behaviorist approach, which
eschewed anything mental.

>The term Universal Grammar is used with systematic ambiguity, referring both to the
initial, innate state of the language faculty at birth, and to the properties shared by all natural
languages. For the latter, see [Haw88].
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Chomsky’s initial broad model of language competence, first described in
his groundbreaking work [Cho57] and elaborated in more painstaking detail
in [Cho65], roughly amounts to the following. Having competence of some lan-
guage amounts to “having”, in some sense, a transformational-generative gram-
mar for that language “in your head”. A transformational-generative grammar
for a language determines the set of syntactically correct sentences of that lan-
guage. It consists of two parts: a base part and a transformational part. The
first part generates deep structures of sentences, the second part transforms
these into the surface structures that we normally would call sentences. Further
operations on deep structure were to yield the interpreted form (or meaning)
of a sentence, while further operations on surface structures would yield the
phonological form of a sentence. However, in this chapter we will ignore such
further linguistic issues, restricting attention to syntax.

The base part is a generative grammar, which consists of a set of phrase
structure rules and a lezicon. The phrase structure rules recursively specify the
forms a sentence may have. For example, such rules might state “a sentence
can consist of a noun phrase followed by a verb phrase” and “a noun phrase can
consist of a determiner followed by a noun.” The lexicon is like a dictionary:
it contains the words that may be plugged into those forms. One entry might
for instance be “dog: singular animate noun”. Inserting words into a sentence
form yields a deep structure. The base part of a grammar thus generates a set
of deep structures. An example of such a deep structure might be the following
tree, which gives a structural description of the sentence “The dog bites the

man.”

Sentence
Noun phrase Verb phrase
VAN
Determiner Noun Verb Noun phrase
VN
the dog bites Determiner Noun
o
the man

Figure 2.1: Deep structure of the sentence “The dog bites the man”

The transformations that make up the second part of a transformational-
generative grammar map deep structures to surface structures. For example,
two transformations may take the above deep structure into the following sur-
face structures, respectively:

1. The dog bites the man. (the identity transformation)
2. The man was bitten by the dog. (a “passivizing” transformation)
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The relationship between sentences 1 and 2 is brought out by the way they have
been constructed: both stem from the same deep structure.

The base part of a transformational-generative grammar—pbhrase structure
rules plus lexicon—was intended to be fairly restricted in power, hopefully only
context-free (see Section 2.3 for the definition of this term). Unfortunately,
the transformational part of a grammar is potentially too expressive: it can be
shown that any grammatically describable language can be generated by means
of a transformational-generative grammar [PR73, BC74], even if we choose a
very simple, fixed base part. This means that the transformational-generative
framework by itself, including the choice of the base part, does not seem to
make any substantive claims about Universal Grammar. Accordingly, claims
about Universal Grammar had to be phrased in terms of constraints on the
allowed base part and, particularly, transformations. Eventually, the problems
in formulating adequate constraints led up to a second revolution in linguistics.

2.2.3 Principles-and-Parameters

Chomsky’s current principles-and-parameters model does away with phrase
structure rules altogether, and with most of the transformations as well [Cho81,
Cho86].% Instead, much more emphasis is placed on the information in the lexi-
con than in the earlier model. Sentences are generated directly from the lexicon
by means of the interaction of a number of subsystems, each consisting of vari-
ous general principles. In this new model, the principles are innate—and hence
the same for all natural languages—except for some parameterized variation.
Thus innate Universal Grammar specifies “schemes” of principles, which have
certain open parameters, and it specifies the range of possible values those pa-
rameters may take. Fixing the parameters in the principle schemes yields the
principles that govern particular natural languages. Therefore, apart from the
lexicon, each natural language can be characterized by the particular values of
the parameters for that language. Accordingly, for a child, learning a language
now amounts to two things: (1) determining the particular values of the pa-
rameters that yield the principles of its native language, and (2) acquiring the
lexicon.

2.2.4 The Innateness of Universal Grammar

The above pages briefly mentioned the philosophically most interesting of Chom-
sky’s claims: the innateness of Universal Grammar. Innateness has of course
been a topic for philosophical discussion for years. Particularly in the 17th
and 18th century the debate was on. The “rationalists” Descartes and Leibniz
are commonly considered to be on the innate side, the “empiricists” Locke and
Hume on the other. Thus for instance Descartes (as cited on p. 48 of [Cho65])
takes the ideas of figures, pain, colour and sound to be innate, while Book I of

31t should be (foot)noted that nowadays Chomsky’s work is much less dominant than it
was in, say, the 1960s. In present-day linguistics, Chomsky’s approach is one among several
alternative approaches. Other are based on, for instance, neural networks or various kinds of
constraints (see [Sei97, PS97] and the references therein).
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Locke’s Essay [Loc93] argues against all innate notions and principles. As far as
the Anglo-American philosophical world is concerned, it seems fair to say that
the empiricist side of the discussion has been dominant. It has long been the
guiding principle of empiricist philosophy that most (possibly all) knowledge
derives from the senses—a principle which would be seriously undermined if
important aspects of knowledge of language turned out to be innate.

Chomsky’s work has revived the old debate on innateness in an updated
guise: the discussion has shifted from innate ideas to innate mechanisms. As
far as language learning is concerned, Chomsky explicitly sides with the ratio-
nalists:

“In general, then, it seems to me correct to say that empiricist theo-
ries about language acquisition are refutable wherever they are clear,
and that further empiricist speculations have been quite empty and
uninformative. On the other hand, the rationalist approach exempli-
fied by recent work in the theory of transformational grammar seems
to have proved fairly productive, to be fully in accord with what is
known about language, and to offer at least some hope of providing
a hypothesis about the intrinsic structure of a language-acquisition
system that will meet the condition of adequacy-in-principle and do
so in a sufficiently narrow and interesting way so that the question
of feasibility can, for the first time, be seriously raised.” [Cho65,
pp. 54-55]

Thus it is not surprising to find that he has been attacked by various con-
temporary philosophers of a more empiricist bent, such as Putnam and Quine.*
Unfortunately, the discussion has been hampered by mutual misunderstandings
(see for instance [Cho75, Qui75]°.) Both positions are not as extreme as their
respective opponents sometimes take them to be. As Rosemont [Ros78] notes,
the Chomskyans certainly acknowledge that a child develops language from ex-
periental data (though they would perhaps prefer to say that language grows
in a child, triggered by experience, rather than that is being learned from ex-
perience). On the other hand, most present-day empiricists have watered down
their empiricism somewhat, and would agree that we are not born as a tabula
rasa, but have various innate capacities and biases. An example of the latter
would be a general innate measure of “similarity” used for induction [Qui69].
Perhaps the best way to state the debate is as follows. While Quine and
other empiricists are willing to admit innate biases and learning mechanisms,
these are general-purpose mechanisms. Chomsky, on the other hand, postulates
innate mechanisms which are specific for language. In other words, while em-
piricists still hang on to the idea that children acquire language by means of
the same general-purpose learning mechanisms that enable them to learn, e.g.,

‘Putnam certainly was an empiricist at the time he wrote his critique of Chomsky [Put7l,
Put83], but seems harder to classify now. Quine is still as empiricist as he ever was.

"However, it is interesting to note that of the fifteen replies that Quine wrote in [DH75], the
one to Chomsky is the longest and most detailed. This suggests that Quine took Chomsky’s
criticisms more seriously than those made by other philosophers.
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to recognize faces or to wash their hands after dinner, Chomsky dispelled with
this idea.

In the remainder of this chapter, we will see that results from computational
learning theory indicate that Chomsky is in the right here. In particular, some
pre-knowledge of the language that is to be learned is required in order to enable
efficient language acquisition, and this pre-knowledge is most likely innate. It
is perhaps surprising that this conclusion can be established by means of a
mathematical argument. To be sure, Chomsky himself writes the following
about the innateness of particular linguistic mechanisms:

“You can’t demonstratively prove it is innate—that is because we
are dealing with science and not mathematics; even if you look at the
genes you couldn’t prove that. In science you don’t have demonstra-
tive inferences; in science you can accumulate evidence that makes
certain hypotheses seem reasonable, and that is all you can do—
otherwise you are doing mathematics.”

[Cho83, p. 80], as cited in [Bot89, p. 199].

Indeed, we cannot formally prove that certain specific grammatical principles
must be innate. Still, what we can prove—given the presuppositions outlined
in Section 2.4—is that some bias must be present in order to make language
learning feasible, and this bias is probably innate, since there is no plausible
alternative source where it might have come from.

2.3 Formalizing Languages and Grammars

Since the aim of this chapter is to give a formal “proof” of the necessity of innate
grammatical biases in language learning, we need to formalize the notions of
language and grammar. This is the job of the next three subsections.

2.3.1 Formal Languages

Let us consider some fixed alphabet X, for instance the set consisting of the
26 letters ‘a’,...,'z" (in lower as well as upper case), the 10 digits ‘0’,...,‘9’,
and some interpunction symbols like ‘.’, :’, ‘7", and blank space. For any set
of symbols S, we use S* to denote the set of all finite strings (concatenations)
of symbols from S, and ST to denote the set of all finite non-empty strings.
A sentence will simply be a member of X7, i.e., a finite non-empty string of
symbols from X.

We can only speak of grammatically correct or incorrect sentences relative
to a language. We will take a language to be simply a (possibly infinite) set L of
sentences: any subset of ¥ is a language. A sentence s is grammatically correct
for L if s € L, and grammatically incorrect otherwise.’ Thus, for instance, the
English language is simply the set E of all English sentences. The sentence “The
dog ate my homework” would be grammatically correct in English (it would be

This is similar to making grammatical correctness relative to a grammar: given a grammar
G for a language L, a sentence s is grammatically correct iff G generates s.



26 CHAPTER 2. APPLICATION TO LANGUAGE LEARNING

a member of E), while the sentences “dog the blab” and “De hond heeft mijn
huiswerk opgegeten” would not. Of course, for natural languages the boundaries
between grammatically correct and incorrect sentences are not that sharp. In
fact, Chomsky [Cho65] has suggested that grammaticality may be a matter of
degree, though he has not added much subsequent flesh to this suggestion. In
this chapter, we will assume grammaticality to be a sharp boundary.

2.3.2 Formal Grammars

A common way to specify a language is by giving its grammar. We will define
a grammar as a set of rules, called productions. Using productions, a grammar
generates sentences starting from an initial symbol S (for ‘sentence’). Let N
be a finite set of symbols called non-terminals. N should at least contain the
symbol S. The symbols in the alphabet X are called terminals, and we will
assume Y and N to be disjoint. In order to distinguish typographically non-
terminals from terminals, we will write down non-terminals in a bold facetype.

A production is something of the form A — B, where A and B are finite
strings over XU N, and A contains at least one non-terminal. 4 will be referred
to as the left-hand side of the production, and B as the right-hand side. A gram-
mar G is a finite set of productions, such that at least one of the productions
in G has S as left-hand side.”

How does a grammar relate to a language? The productions in a grammar
G function as rewriting rules, which allow you to replace, in some string, the
left-hand side of a production by the right-hand side of that production. G can
generate a sentence (a string of terminals) as follows:

1. Start with the string S = S.
2. Repeat the following:

1. Find a production A — B € G such that A occurs somewhere in the
string S.

2. Apply the production: replace one occurrence of A in S by B.
until S is a sentence (i.e., contains only terminals).

The language generated by a grammar G, denoted by L(G), is the set of all
sentences which can be generated in this way.

An example will make this clearer. Consider a set N consisting of the three
non-terminals S (for Sentence), N (for Name), and V (for Verb phrase). Let G
be the grammar consisting of the following five productions:

1.S—- NV
2. N — John
3. N — Paul

TA grammar is often defined more formally as a 4-tuple G = (N, X, P, S), where N is the
set of non-terminals, ¥ is the set of terminals, P is the set of productions, and S is the starting
symbol. We have simplified this to G = P, because our starting symbol will always be S, and
the sets NV and ¥ can be read off from the set of productions.
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4. V — hates N
5. V — thinks that S

We do not make a formal distinction between the phrase structure rules of a
grammar and its lexicon; both are represented by means of productions. The
first production states that a sentence consists of a name followed by a verb
phrase. The names can be either ‘John’ or ‘Paul’. The last two productions
show how the verb phrase V can be expanded. Note that the second of these
two productions introduces the non-terminal S again. This grammar can for
instance generate the sentence “John hates Paul” as follows:

S :1> NV :2> John V :4> John hates N :3> John hates Paul

We start with S and apply productions until we end up with a string without

non-terminals. The application of production 4 is denoted above by =. Such a
sequence of applications of productions is called a derivation of the string from
the grammar. Note that a derivation corresponds to the kind of structural
description that is embodied in the tree on p. 22.

Similarly, G can generate the sentences “John hates John”, “Paul hates
John”, and “Paul hates Paul”. We can also use G generate the more complex
sentence “Paul thinks that John hates Paul”, the derivation of which is:

S 2 NV 2 Paul V 2 Paul thinks that S = Paul thinks that N
V 2 Paul thinks that N hates N = Paul thinks that John hates
N :3> Paul thinks that John hates Paul

L(G), the language generated by G, is the set of all sentences which can be
generated in this way. Note that L(G) is infinite, due to the reintroduction of S
in the fifth production: the language contains the sentences “John thinks that
Paul hates John”, “John thinks that Paul thinks that John hates Paul”, etc. It
should be clear that the language generated in this way is only a tiny subset of
a natural language (e.g., English). On the other hand, the example shows that
small—and yet infinite!—fragments of language can already be generated with
very simple grammars. This holds out the hope that larger parts of natural
languages can be generated by larger grammars, and perhaps it is even possible
to give a complete grammar for a natural language.

2.3.3 The Chomsky Hierarchy

Clearly, some languages are more complex than others. The complexity of a
language is related to the complexity of the simplest grammar which generates
that language. Below we define the Chomsky hierarchy, consisting of the classes
of Type 3, Type 2, Type 1, and Type 0 languages, with increasing grammatical
complexity.

e A Type 3 (or regular) grammar contains only productions in which the left-
hand side is a non-terminal, and the right-hand side is either a terminal
or the concatenation of a terminal and a non-terminal.
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e A Type 2 (or context-free) grammar contains only productions in which the
left-hand side is a non-terminal, while the right-hand side is an arbitrary
non-empty string of terminals and non-terminals.

e A Type 1 (or context-sensitive) grammar contains only productions in
which the right-hand side is at least as long as the left-hand side.®

e A Type 0 grammar may contain any kind of productions.

A language is of Type i (¢ = 0,1,2,3) if it can be generated by a grammar
of Type i. For instance, the John/Paul-grammar is a Type 2 (context-free)
grammar, and hence generates a Type 2 (context-free) language. Of what Type
are full natural languages? This is a question to which we will return later.

We will now informally state some important results from the theory of
formal languages (for technical details and proofs, see [HU79]). Firstly, it can be
shown that the class of Type 3 languages is a proper subset of the class of Type 2
languages. Similarly, Type 2 is a proper subset of Type 1 and Type 1 is a proper
subset of Type 0. Type 1 languages are recursive: there exists an algorithm for
deciding whether a given sentence is a member of the language generated by
a given Type 1 grammar. Type 0 languages are recursively enumerable: there
exists an algorithm which enumerates the (possibly infinite) set of sentences in
the language generated by a given Type 0 grammar. Membership of a sentence
in a language is semi-decidable, but not always decidable for a given Type 0
language. Type 0 grammars are equivalent to Turing machines, in the sense
that a language is of Type 0 iff it is accepted by some Turing machine. Finally,
even though the class of Type 0 languages is the broadest class in the hierarchy,
it still does not comprise all possible languages: some languages are not Type 0
languages.’

2.4 Simplifying Assumptions for the Formal Anal-
ysis

In the next sections, we will give a formal analysis of language learning from
example sentences in the PAC setting. The main objective there is to show
that unbiased language learning is just too hard—and hence cannot be what
children actually do. From this it would follow that children must have some
biases which influence the language they learn and the way they learn it.

It will be clear to all but the most naive readers that the real world is simply
too big to model completely. Inevitably, a formal analysis involves a number of

8 A context-sensitive grammar may equivalently be defined as a set of productions of the
form A— B/a__ (3. Here A— B is simply a context-free production which, however, may
only be applied as a rewriting rule in case A is surrounded by « on the left and 8 on the
right. That is, a__ (3 specifies the contezt in which the rule may be applied (o and/or 3 may
be empty).

%A very quick proof of this: (1) ¥, the set of all sentences, is denumerably infinite; (2)
the set of all languages is the power set of X7 (i.e., the set of all sets of sentences), and is
therefore uncountable; (3) the set of all grammars is only denumerably infinite; (4) thus there
are more languages than there are grammars, which implies (5) that some languages cannot
be generated by any grammar, and hence are not Type 0 languages.
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simplifications, which have the disadvantage of making the analysis less “real-
istic” and correspondingly less plausible. On the other hand, simplifying away
a number of the contingencies and noise of the real world may bring out more
clearly what really matters for language learning. Let us state and defend right
at the outset the main simplifying assumptions we will make here.

2.4.1 Language Learning Is Algorithmic Grammar Learning

A first assumption is that the process by which a child learns a language can
be described by an algorithm. This algorithm takes sentences from some target
language (i.e., what is to become the child’s native language) as input and
learns a grammar for those sentences. The sources of those input sentences
may be very diverse: parental speech, dialogue from television series, and so
on. Actually, two distinct assumptions are at work here: (1) that language
learning is algorithmic, and (2) that it involves learning a grammar. We will
clarify these two assumptions separately.

Firstly, the algorithmic aspect. To say that a child’s learning can be de-
scribed by an algorithm does not imply that children consciously enact the
steps of some algorithm when they are learning. It does, however, mean that
there is an algorithm which, whenever it is given the same input as the child,
learns the same grammar. In other words, there should be an algorithm whose
input-output behaviour is equivalent (or, if you will, isomorphic) to the child’s.

With this assumption, we are squarely within the tradition of cognitive
science. Here all intelligent behaviour (which includes learning) is taken to
be describable as some form of algorithmic information processing. A very
fundamental theoretical justification for this may be found in the Church- Turing
thesis. Informally, this thesis says that everything that can be accomplished by
certain systematic means, whatever these may be, can also be accomplished by
an algorithm as implemented in a Turing machine (see Chapter 17 of [Hof79]
for more on this). If the Church-Turing thesis holds, then it seems that the
process of language acquisition should indeed be describable by an algorithm.

Secondly, what does it mean to say that children learn a grammar? It is a
well known fact that people are usually not able to state explicitly the grammar
of their native language: they follow the rules of that grammar without con-
sciously knowing those rules. That is, people may have “know-how” knowledge
of language (i.e., they know how to use language), without having “know that”
knowledge. Thus we have to be a bit careful when we say that children acquire
a grammar. In the sequel, we will say that a child has learned a grammar G
if the child, by and large, consistently follows that grammar: it only utters
(or writes) sentences from L(G). In other words, we will say that a child has
learned a grammar if that grammar appropriately describes the child’s linguis-
tic behaviour—even though the child itself may be unaware of the rules of the
grammar it follows. In this way a grammar provides an appropriate description
of “know-how” knowledge of language.'®

1ONote that it is no easy matter to find out whether a child’s linguistic behaviour is in
accordance with some grammar G. Finding this out will usually be a matter of induction
itself: if we have observed a child’s linguistic utterances for quite a while, and all utterances
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One further caveat has to be entered. Namely, the way we have formalized
grammars (as finite sets of productions) in the previous sections is rather dif-
ferent from either Chomsky’s transformational-generative grammar or his later
principles-and-parameters model. Actually, a set of productions formalizes only
the base part of a transformational-generative grammar, ignoring the transfor-
mations. Furthermore, we only focus on the set of sentences that a grammar
generates, mainly ignoring the way the sentence is parsed by the grammar; that
is, the only part of trees like Figure 2.1 that we are interested in, is the sentence
constituted by the words at the leaves of the tree. However, any language with
a transformational-generative or a principles-with-fixed-parameters grammar is
a Type 0 language, and hence representable by a finite set of productions. Ac-
cordingly, restricting attention to the learnability of sets of productions does
not really invalidate our analysis.

This caveat also bars invoking semantical considerations to argue against
the present purely syntax-oriented analysis. Though a full grammar would
probably let semantical issues influence the syntax, the resulting system would
still be equivalent to some Turing machine (assuming the Church-Turing the-
sis), and hence could be redescribed in purely syntactical terms as a Type 0
grammar. Again, restricting attention to the learnability of syntax (i.e., sets of
productions) does not invalidate our analysis.

2.4.2 All Children Have the Same Learning Algorithm

Furthermore, we will assume that all children can be described by the same
learning algorithm. This is certainly a false presupposition: no two children are
the same, so no doubt some children will process sentences in a different way
and will learn a different grammar from the same input. Nevertheless, since the
brains of children all over the world have roughly the same structure, it does
seem fair to say that they probably have approzimately the same mechanisms
for acquiring language. Therefore we take this presupposition to be at least
approximately true.

2.4.3 No Noise in the Input

In addition, we will assume all input sentences that the child receives to be
grammatically correct: all input does indeed conform to one single grammar
for the target language. Again, this is an obviously false assumption. For
instance, parents of very young children are notorious for the ungrammatical
“g00-goo-gaa-gaa”-like way they talk to their infant. This is not a problem for
us, however, since our objective here is to show that unbiased language learning
is computationally intractable. Since learning with noise is at least as hard as
learning without noise, it will be sufficient for us to show that noiseless unbiased
learning is already too hard.

belong to the language generated by G, we may tentatively assume that the child has acquired
the grammar G. §4 of Chapter 1 of [Cho65] has more on this.
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2.4.4 PAC Learnability Is the Right Analysis

The final assumption is that polynomial-time PAC learnability (or, somewhat
more liberally, polynomial-time PAC predictability) provides an appropriate
analysis of learnability. That is, we will take it that a concept class is learnable
for a child if and only if the child “has” an efficient (polynomial-time) PAC
learning algorithm for that class. For language learning, this means that a class
of possible languages is learnable if and only if the child’s language acquisition
mechanism is a polynomial-time PAC learning algorithm for that class.

Some readers may feel this to be too strong a requirement. After all, PAC
learnability is a worst-case analysis over all possible probability distributions on
the domain. Do we really require that a child be able to learn a language with all
possible distributions over the examples (some distributions are pretty weird)?
Maybe not. Maybe the child’s language acquisition algorithm only works for
certain probability distributions, for instance those under which the most often
used sentences are also more probable to appear as input. But that would mean
that the child’s learning algorithm is already biased to particular probabability
distributions, and that it would not be able to learn its native language under
some other distributions. FEither way, whether PAC learnability is the right
analysis or not, we have established the main objective of this chapter: a child
must have a certain bias which directs the way it acquires language.

Another feature of PAC learnability which may seem too strong, is the use of
the confidence parameter ¢ and the error parameter . Can we really set § and ¢
to arbitrarily small values, and be sure that a child will, with probability at least
1—4, learn a language (actually, a grammar for that language) which has error
less than € compared to the target language? Again, maybe not. Maybe this is
indeed too much to ask. Nevertheless, it seems fair to assume that giving a child
more example sentences, as well as more time to think those sentences over, will
increase the probability that it learns an approximately correct language and
will decrease the number of errors the child makes. From this I conclude that
the requirements of PAC learnability are at least right in spirit, even though
the technical details of those requirements might be somewhat too strong.

2.5 Formal Analysis of Language Learnability

2.5.1 The PAC Setting for Language Learning

We will now tune the PAC setting of the previous chapter to language learning.
Let us take as our domain X all possible sentences, i.e., all finite sequences using
symbols from some fixed alphabet ¥. A language is then a concept over X, and
a concept class (or language class) is a set of languages. Note that grammars
can be used to represent languages, in the sense of Section 1.6.1, as follows. A
grammar G represents (or is a name of) a language L if L equals the set of
sentences generated by G: the grammar G is a name of the language L(G). We
will call this representation the grammatical representation. Note that since a
language can usually be generated by more than one grammar, most languages
will have more than one name in this representation.
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2.5.2 A Conjecture

In Section 2.4, we have made the assumption that all children have the same
algorithm for learning their native language from input sentences. Let us call
this algorithm C' (for Child). No doubt C' is extremely complex, and no one
knows exactly what it looks like.!! However, this need not detain us here—
the abstract assumption of the existence of this algorithm is sufficient for our
purposes.

The algorithm C' is an algorithm for learning languages from example sen-
tences. Since children all over the world are able to learn their native language,
C must be an algorithm that can learn at least all existing natural languages.
Moreover, it is well known that most children, when provided with sufficiently
many example sentences of what will become their native language, learn that
language almost perfectly. Thus, when a child is presented with example sen-
tences from some natural language, it will probably learn that language approz-
imately correctly. 1 will take this as strong evidence for the conjecture that
C is a PAC learning algorithm for the class of all existing natural languages.
Furthermore, children learn their language quite fast and without much visible
effort, usually within only a few years—children certainly outperform present-
day language-processing computers when it comes to language learning. This is
particularly fast when compared to the time and effort humans generally need
to acquire competence in other complex areas (for instance, learning mathemat-
ics, or learning how to play the piano) to the same level of perfection. Thus it
appears that children not only learn language probably approximately correctly,
but that they do so quite efficiently as well. Therefore, we will strengthen our
conjecture by assuming that C is an efficient (i.e., polynomial-time) PAC learn-
ing algorithm for the class of all existing natural languages. Finally, there is no
need to assume that the existing natural languages are the only languages that
our algorithm C' can learn efficiently: any language sufficiently similar to the
existing natural languages will be learnable by children as well.'? Accordingly,
we will make the following claim:

There exists a language class £, containing (probably among others)
all existing natural languages, such that C is a polynomial-time PAC
algorithm for L.

Our aim in the following sections is to find constraints on £, using arguments
from computational learning theory. Specifically, it will be shown that £ cannot
be the set of all context-sensitive languages.

2.6 The Learnability of Type 4 Languages

In this and the following sections, we will investigate the learnability of the
different levels in the Chomsky hierarchy. Actually, it will turn out that without

"Steven Pinker’s [Pin84] contains a very elaborate and ambitious proposal as to the actual
learning mechanisms used.

128 pecifying what “sufficiently similar to the existing natural languages” means is more or
less the same as specifying Universal Grammar.
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additional help (e.g., the ability to make membership queries), even the simplest
class in the Chomsky hierarchy, the class of Type 3 languages, is not efficiently
learnable.

In fact, we can define an even simpler type “on top of” the Chomsky hierar-
chy, which is still not efficiently learnable. Recall that a language is of Type 3,
or reqular, if it can be generated by a grammar containing only productions of
the following forms:

A— a
A— aB

Such a grammar may be circular or recursive, in the sense that, for instance,
it contains productions A — aB, B — bC, and C — cA. We can restrict
the regular languages by banning such recursion. Formally, this is defined as
follows:

Definition 2.1 Let G be a Type 3 (regular) grammar, and N be the set of
non-terminals in G. We say there is a chain in G from A € N to B € N, if one
of the following holds:

1. G contains a production of the form A — aB.
2. There exists a chain from A to some C € N, and G contains a production
of the form C — aB. o

Definition 2.2 A Type 3 grammar G, with set of non-terminals N, is of Type 4
(or non-recursive), if there does not exist a chain in G from any A € N to A.
A language is of Type 4 if it can be generated by a Type 4 grammar. O

As the next theorem shows, the class of Type 4 languages is fairly simple
indeed:

Theorem 2.1 A language L is of Type 4 iff L is finite.

Proof

=-: Suppose L is generated by Type 4 grammar G. Note that if there is a
derivation of a sentence s = ay ... a; from G, then G contains productions S —
a1Aq, A1 = asAs, ..., Ap_o > ap_1Ax_1, Ay_1 — a;. Then there is a chain
from S to any A;, and a chain from A; to A; whenever 7 < j. Now, assume
L is infinite. Then there is a sentence s € L, such that s cannot be generated
without using some production A — aB more than once. But then there would
be a chain from A to A, contradicting the assumption that G is of Type 4.

<: Suppose L = {s1,...,8;} is finite. It is easy to see that L can be
generated by a Type 4 grammar, using a separate set of non-terminals for each
S;. O

The reader may wonder why we have not used a more general definition
of non-recursive languages. After all, a similar definition of ‘chain’ and ‘non-
recursive’ may be given for grammars of arbitrary type. However, it can in
fact easily be shown that if we generalize the definition, then it still holds that
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any non-recursive grammar, even one of Type 0, can generate only a finite (and
hence Type 4) language. Thus it is no real restriction to define non-recursiveness
for Type 3 languages only.

Alternatively, we might have defined Type 4 languages more generally by
limiting the number of recursive applications of productions to some number
k, instead of banning recursion altogether. That is, we might have defined
a k-recursive language as a language generated by a Type 3 grammar under
the constraint that for any A € N, a derivation of a sentence uses at most
k productions that have A as left-hand side. (Note that this would not be a
restriction on the grammar, but on the way the grammar is used to generate
sentences.) But again, this is no real restriction, for it can be easily shown
that such a k-recursive language will be finite, and hence already in the class
of Type 4 languages as formally defined above.

Since some regular grammars generate infinite languages, for instance G =
{A — a, A — aA}, it follows that the class of non-recursive languages is a
proper subset of the class of regular languages.

Unfortunately, even the very simple class of all non-recursive languages is
not efficiently learnable:

Lemma 2.1 The class of non-recursive languages is not of polynomial VC-
dimension.

Proof Let F be the concept class of all non-recursive languages, over some
fixed alphabet 3 which contains s characters. Then the number of sentences of
length 7 is s, and the number of sentences of length at most n is

st s+ . 4" "> 6",

FInl is the set of all finite sets of such sentences, so
|FInl| > 25",

This implies that |F[")| cannot be upper-bounded by a polynomial in n. Hence,
by the remarks following Lemma 1.1 in the last chapter, we have that F is not
of polynomial VC-dimension. O

Thus, using Theorem 1.1:

Theorem 2.2 The class of non-recursive languages is not polynomial-sample
PAC learnable.

Learning languages seems to be very hard indeed! FEven the class of all
finite languages is not efficiently learnable—there are simply too many such
languages. In the next section, we will see how membership queries may help
to solve this problem.
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2.7 The Learnability of Type 3 Languages

In this section we will investigate the learnability of the class of regular (Type 3)
languages. Firstly, since the class of Type 4 languages is a proper subset of the
class of Type 3 languages, the negative result of the previous section carries
over immediately to Type 3 languages:

Corollary 2.1 The class of reqular languages is not polynomial-sample PAC
learnable.

Furthermore, in Theorem 7.6 of [KV94], it is shown that the class of lan-
guages which can be recognized by a deterministic finite automaton (DFA) is
not efficiently PAC predictable in any polynomially evaluable representation
(under a common complexity theoretic assumption, for which see Section 6.2
of [KV94]). The details of such DFAs need not detain us here. What is impor-
tant, is that a language is regular if and only if it can be recognized by such
a DFA [HU79, Chapter 2]. Hence it follows that the class of regular languages
is not efficiently PAC predictable (if membership queries are not available).
Since this result holds for any polynomially evaluable representation, it holds
in particular when we use grammars to represent languages. '

Theorem 2.3 The class of reqular languages is not polynomial-time PAC pre-
dictable in the grammatical representation.

However, in the stronger setting where both equivalence and membership
queries are available, the class of languages representable by DFAs is effi-
ciently exactly learnable (Theorem 8.1 of [KV94]). This result is due to An-
gluin [Ang87b]. Since learning with equivalence queries implies PAC learning
(see Section 1.7.3), and a DFA can easily be converted into a regular grammar,
we have the following result:

Theorem 2.4 The class of reqular languages is polynomial-time PAC learnable
with membership queries in the grammatical representation.

Let us take a step back to the real world for a moment. After all, we are
analyzing the learnability of languages by human beings, in particular by young
children. What would membership queries be for a child? A membership query
is the question whether some particular sentence is a member of the target lan-
guage. To the extent that a child can ask questions like “Mummy, is this a good
sentence?”, we can assume it has access to membership queries (also assuming,
of course, that mummy gives correct answers). Moreover, young children often
implicitly “test” sentences by saying something to see what happens, and to
see how its parents react. Such tests may also be seen as a kind of member-
ship queries. Now it is clear that in the initial phase of language learning, a
child cannot ask such questions, since the ability to even pose those questions

13For context-free grammars, the grammatical representation is polynomially evaluable:
the problem whether the language generated by some context-free grammar contains some
sentence is solvable in polynomial time [HU79, pp. 139-141].
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or pronounce the test-sentences already presupposes at least some linguistic
competence. On the other hand, it seems fair to assume that in more advanced
stages of language learning, the child is able to ask such questions. In sum,
we may assume that membership queries are not available to the child early in
the learning process, but are available as soon as the child has acquired some
of its native language. Thus the child’s algorithm C might be an efficient PAC
algorithm for the class of regular languages.

2.8 The Learnability of Type 2 Languages

2.8.1 Of What Type Are Natural Languages?

In the last section, we saw that C' might be an efficient PAC algorithm for
the class of regular languages—there are no computational barriers for this, if
we allow membership queries. But, however this may be, it should be clear
that the regular languages are far too simple: full natural languages are much
more complex than that.!* Where in the Chomsky hierarchy should we look
for natural language?

It appears that most linguists would agree that a natural language can
be described by a context-sensitive (Type 1) grammar. As Allport [All192,
p. 107] writes: “...one is not asserting anything particularly remarkable if
one claims that all the structures of natural language can be described by a
context-sensitive grammar; grammars with great formal power can describe a
vast variety of structures, and so it is unsurprising if natural language structures
are all members of such an unrestricted set.” Whether or not natural languages
can be described by context-free (Type 2) grammars seems to be a matter of
dispute. On the one hand we have Postal, who claims to prove that the Mo-
hawk language is not context-free, and who provides fairly strong arguments for
the claim that the English language is not context-free either [Pos64]. Brandt
Corstius disagrees with Postal’s proof, but provides his own proof (in Dutch)
that Dutch is not context-free [BC74, Stelling 4.9]. His idea applies to English
as well. Consider the sentence scheme “These physicists, philosophers,. .., from,
respectively, the U.S., Holland,..., are, respectively, super-smart, smart,...”.
The point is that an instance of this scheme is grammatical only if the se-
quences filled in on the three dotted parts agree in the number of terms. For

4 Certain rash claims by the supervisor of the present thesis notwithstanding: in [Lok91] it
is claimed that human beings are deterministic finite automata, which suggests that human
natural languages are regular (Type 3). This claim is based on the obviously true assumption
that humans have a limited processing capacity (lifetime and memory), and hence cannot
comprehend sentences of more than, say, one billion words. In fact, assuming such a maximal
length of sentences renders natural languages finite, and hence only of Type 4! (Moreover, such
a length-bound would make the class of possible languages learnable as well, see Section 2.10.)

However, we should distinguish between the sentences human beings can actually compre-
hend or process (which is part of performance), and those that they would consider gram-
matical (part of competence). It might well be that the set of sentences any human being
can process is finite, and hence of Type 4. Still, most native English speakers would consider
the infinite class of “respectively”-sentences considered below to be acceptable (we can query
the whole set in a single question to a native speaker: “Do you consider all such sentences
acceptable?”), which would make natural language at least context-sensitive.
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instance, “These physicists, philosophers, sociologists, from, respectively, the
U.S., Holland, Belgium, are, respectively, super-smart, smart, not too dumb” is
grammatical, but “These physicists, philosophers, from, respectively, the U.S.,
Holland, and Belgium, are, respectively, super-smart, smart, not too dumb,
and totally silly” is not. It can be shown that a language containing such a
fragment is not context-free (abstractly, the language {a™b"c" | n > 1} is not
context-free).

On the other hand, more recently Gazdar et. al. [GKPS85] have conjec-
tured that English can in fact be described by so-called generalized phrase
structure grammars, which are actually equivalent to context-free languages:
a language can be generated by a generalized phrase structure grammar iff
it can be generated by a context-free grammar. Thus it is not quite clear if
we need context-sensitive (Type 1) grammars for natural language, or whether
context-free (Type 2) grammars suffice.

However this may be, it is clear that we have to investigate the learnability
of languages more complex than Type 3. In this section we look at Type 2
languages, in the next at Type 1.

2.8.2 A Negative Result

Because the class of Type 2 languages is a superset of the class of Type 3
languages, Theorem 2.3 immediately carries over to Type 2:

Corollary 2.2 The class of context-free (Type 2) languages is not polynomial-
time PAC predictable in the grammatical representation.

What happens if we allow membership queries? Will this make these classes
efficiently learnable? To my knowledge, no answer to this question has appeared
in the literature, and neither have I been able to prove it myself. However, my
conjecture would be that the class of context-free languages is not polynomial-
time PAC predictable, even given an oracle for membership queries.

2.8.3 k-Bounded Context-Free Languages Are Learnable

Angluin [Ang87a] has proved a positive result for so-called k-bounded context-
free languages. A context-free grammar is k-bounded if each of its productions
has at most k& non-terminals (and any number of terminals) in its right-hand
side. A context-free language is k-bounded if it can be generated by a k-bounded
context-free grammar. For example, the toy grammar from Section 2.3.2 is 2-
bounded.

Angluin’s result assumes that there is not only a target language L, but
also a particular target grammar G for that language. The result depends on
the presence of an oracle for non-terminal membership queries. Such an oracle
takes a string z and a non-terminal A as input, and anwers ‘yes’ if x can
be generated from the productions in G using A as starting symbol, and ‘no’
otherwise. Note that an ordinary membership query for the target language is a
non-terminal membership query with A=S. For fixed k, the class of k-bounded
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context-free languages is polynomial-time identifiable from equivalence and non-
terminal membership queries, and hence polynomial-time PAC learnable from
non-terminal membership queries alone.

Angluin’s result depends on a fized k: in order to function properly, the
algorithm that learns k-bounded context-free languages has to know in advance
what k is. Actually, since any context-free grammar can be put in Chomsky
normal form [HU79, pp. 92-94], where each production has the form A — a
or A — B C, any context-free language is 2-bounded. Thus there exists a
polynomial-time PAC algorithm for the class of all context-free languages, if
(and this is a very unrealistic “if”) the target grammar is always in Chomsky
normal form and the algorithm can make non-terminal membership queries
with regard to this grammar.

How realistic are non-terminal membership queries, from the point of view
of a young child? In the previous section, we saw that ordinary membership
queries correspond to questions like “Mummy, is this a good sentence?” Non-
terminal membership queries are similar, except that the child may now pose
questions about any grammatical category. That is, it may pose questions like
“Mummy, is this a noun?”, “Is this a prepositional phrase?”, “Is this an aux-
iliary verb?”, etc. The ability to pose sensible questions about nouns, prepo-
sitional phrases and what not, presupposes quite sophisticated grammatical
knowledge on the part of the child, and the ability to answer such questions
presupposes even more sophisticated grammatical knowledge on the part of
mummy. Therefore, it seems to be rather unrealistic to attribute the ability to
make such non-terminal membership queries to young children.

2.8.4 Simple Deterministic Languages are Learnable

Another positive result for a subset of the context-free languages has been
established by Ishizaka. It is known that any context-free language can be
generated by a context-free grammar in Greibach normal form. Here each
production has the form A— a N, where ‘a’ is a terminal and A is a string
of zero or more non-terminals [HU79, Theorem 4.6]. A simple deterministic
grammar (SDG) G is a grammar in Greibach normal form, such that for any
terminal ‘a’ and any non-terminal A, G contains at most one production of the
form A— a N. A simple deterministic language (SDL) is a language generated
by an SDG. The class of SDLs is a proper subset of the class of context-free
languages, and properly includes the class of regular languages.

Ishizaka [Ish90] provides a polynomial-time algorithm which exactly iden-
tifies any SDL from membership queries and extended equivalence queries.'®
However, it should be noted that even though the grammar that Ishizaka’s al-
gorithm learns does indeed generate the target SDL, that grammar will not
always be an SDG.

'5When we are learning a class of languages £, with an associated class of grammars G
representing those languages, an ordinary equivalence query may only query the correctness
of a grammar from G. An eztended equivalence query may query the correctness of any
grammar.
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2.9 The Learnability of Type 1 Languages

Here we will look into the learnability of the class of context-sensitive (Type 1)
languages, where negative results abound. Firstly, as before, Theorem 2.3 car-
ries over immediately to lower types:

Corollary 2.3 The class of context-sensitive (Type 1) languages is not poly-
nomial-time PAC predictable in the grammatical representation.

Furthermore, in this case membership queries will no longer help us. The
reason for this is actually quite simple. Efficient learning can only be done in a
polynomially evaluable representation, and for context-sensitive languages, the
grammatical representation is not polynomially evaluable: in general, the prob-
lem of deciding whether a language generated by a context-sensitive grammar
contains a particular sentence is N'P-complete, and therefore (in all likelihood)
not solvable in polynomial time.' Thus we have the following result:

Theorem 2.5 If P # NP, then the class of context-sensitive languages is not
polynomial-time PAC predictable with membership queries in the grammatical
representation.

This result may be strengthened somewhat, since even for certain restricted
kinds of context-sensitive grammars, the problem of deciding whether a a gram-
mar generates some sentence remains N'P-complete. In particular, Aarts proves
this for so-called acyclic context-sensitive grammars, which lie properly between
context-sensitive (Type 1) and context-free (Type 2) grammars. For the details
of such acyclic grammars and the proof of the N'P-completeness result, see
Chapter 4 of [Aar95]. Aarts’ result implies that the class of acyclic context-
sensitive languages is not polynomial-time PAC predictable with membership
queries in the grammatical representation either (assuming P # NP).

2.10 Finite Classes Are Learnable

Finally, let us end our investigations of formal language learnability with a
positive result:

16Very briefly and informally: P is the class of all problems solvable in polynomial time
(more precisely, solvable in time polynomial in the size of the problem instance), and NP is
the class of all problems for which the correctness of a solution can be verified in polynomial
time. A problem II is N'P-complete if IT is a member of the class NP, and if every other
problem in /P can be “translated” to IT in polynomial time. A particular NP-complete
problem is polynomially solvable iff all N"P-complete problems are polynomially solvable. It
is known that P C NP, and if P # NP, then the N'P-complete problems are not solvable
in polynomial time. The inequality of P and NP has been (and still is) the main open
question in complexity theory, but it is conjectured by virtually everyone that the inequality
holds. It is in fact a common working assumption that the inequality holds, and, hence that
the N'P-complete problems are not solvable in polynomial time. It would have momentous
consequences (for instance on encryption methods) if this turned out otherwise.

See [GJ79] for an introduction into N P-completeness, and p. 271 of that book for the
particular N/P-completeness result about context-sensitive grammars mentioned here.
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Theorem 2.6 Any finite class of Type 0 languages is polynomial-time PAC
learnable in the grammatical representation.

Proof Let F = {Ly,...,Li} be a finite class of Type 0 languages, and let
G1,...,G be Type 0 grammars for those languages, respectively. This class is
easily seen to be identifiable from at most k equivalence queries: an algorithm
that makes an equivalence query for each Gj;, ignoring the returned counterex-
amples, will do the job. As soon as the oracle answers ‘yes’ on some G;, we
have identified L; as the target language. Since k is fixed, it follows that F is
polynomial-time identifiable from equivalence queries. This implies that F is
polynomial-time PAC learnable as well. O

In some respects, this is a very interesting result, because if we ignore vari-
ation in the lexicon, then Chomsky’s current principles-and-parameters theory
only allows a finite number of distinct natural languages: there are only finitely
many parameters, each of which can take on only a finite number of distinct
values, so the number of allowed sets of principles is finite (see [Cho86, p. 146]
and [Cho91, p. 26]). If we could somehow limit the set of allowed lexicons,
it would follow that the class of natural languages is polynomial-time PAC
learnable.

Note, however, that the polynomial-time PAC learning algorithm for F =
{L1,..., Ly} must “know” in advance grammars G1, ..., G} that generate the
languages in F. Thus if the child’s algorithm C' is such an algorithm for a finite
class of languages, the main claim of this chapter is vindicated: human language
learning needs bias (in this case, pre-knowledge of the & possible languages).

Note also that putting an upper bound on the length of sentences makes
the set of possible sentences finite, which in turn makes the set of all possible
languages finite, and hence polynomial-time PAC learnable. There may actually
be some biological truth in an upper bound on the length of sentences that can
be processed, since any sentence-processing human being will have a limited
memory and lifetime (see also footnote 14). However, the positive learnability
result in case of such a length-limitation is an artefact of our definitions rather
than a positive result about learnability in practice. The result follows from the
fact that a constant-bounded number of computational steps is polynomially-
bounded, and therefore considered efficient by our definitions, no matter how
large the constant bound actually is.

For instance, if we use the simple binary alphabet {0, 1} and limit the length
of a sentence to a 1000 characters, there are 2'°09 — 1 sentences, and hence
92177 -1 possible languages. This class is learnable according to our defini-
tions, because an algorithm needs at most a constant—and hence obviously
polynomially-bounded—number of equivalence queries to identify a language
from this set. Unfortunately, this constant (221000_1 ~ 1010300) may be consid-
ered infinite for all practical purposes, since it is slightly larger than the number
of particles in the universe.
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2.11 What Does All This Mean?

Let us now take stock. We have seen a whole bunch of formal theorems about
the learnability and non-learnability of various classes of formal languages.
What does all this mean for language acquisition by children? Well, it fol-
lows from the previous results that whatever the child’s learning algorithm C
is, it cannot be an efficient learning algorithm for all context-sensitive languages
(not even for all acyclic ones), let alone for all possible Type 0 languages. Ac-
cordingly, the class £ of languages mentioned in the conjecture of Section 2.5.2
must necessarily be a very restricted class of languages. Furthermore, learning
algorithms for such restricted classes will only work if they “know” in advance
what they are looking for, that is, if they know the class of languages that the
target language comes from. In other words, our algorithm C needs to know
in advance which class of languages are possible target languages—general-
purpose learning mechanisms, which do not have such pre-knowledge, will not
work. This means that children must have a certain linguistic bias which enables
them to learn certain languages efficiently.

This bias must largely be present “in” the child at the age when language
learning commences. Where does it come from? There seem to be only two
possible sources for this bias: it can he hard-wired in the brain of the new-
born child, and hence innate, or it can be learned in, say, the first year of
the child’s life, before the process of language learning starts. Probably both
sources contribute something to linguistic bias.!” However, since language does
not play a large role in the environment of a very young child, it seems unlikely
that the second, non-innate source of bias contributes very much. After all,
rattles and mother’s milk have very little to do with passivizing transformations
and sundry lexical features. From this I conclude that the linguistic bias that
children must have is probably for a very large part innate—as Chomsky has
argued all along.

Let us call the languages in £ the Natural Languages (this includes all
existing natural languages), and let us call the set G of grammars that generate
the languages in £ the Natural Grammars. Since L cannot contain all possible
Type 0 languages, G cannot contain all possible grammars. What exactly are
the characteristics of the grammars that G does contain? As the quotation from
Chomsky on p. 25 indicated, this question is an empirical one, which cannot be
fully answered by the mathematical approach of the present thesis. By formal
means we can find restrictions on G, such as that it cannot contain all context-
sensitive grammars, but these formal tools will not tell us which grammars G
actually does contain.

Computational learning theory may provide suggestions as to the class L,
but not proofs about its contents. For example, Angluin’s positive result for
k-bounded context-free grammars might suggest the possibility that G is the set
of all k-bounded context-free grammars, for some fixed & (assuming the child
can somehow make non-terminal membership queries). If natural languages

17 Actually, it has been suggested that language learning already commences in utero, which
would rule out this second possibility.
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are context-free, as some linguists have argued, then this is a significant result.
Unfortunately, the formal approach used here will not tell us which fixed k is
involved here.!® This k£ can only be determined from empirical work: write
context-free grammars for all existing natural languages, and see by which &
they are all bounded. Similarly, the result of the previous section might suggest
that G is some finite set, but no merely mathematical work will tell us which
finite set of grammars G actually is.

The restriction of our language acquisition procedures (i.e., algorithm C)
to languages with some Natural Grammar enables human beings to acquire
their native language quite efficiently. However, there is one disadvantage with
possibly far-reaching consequences. Namely, learning a language that does not
conform to Natural Grammar might be exceedingly hard for us humans. This
suggests that languages of beings whose “hard-wiring” or “cognitive structure”
is quite different from our own (e.g., martians and possibly some animals),
would not be learnable for us—and hence we would not be able to understand
and communicate with those beings.!?

2.12 Wider Learning Issues

The previous sections applied computational learning theory to the acquisition
of languages by children. To sum up the argument:

1. The class of natural languages must be efficiently learnable, because most
children successfully acquire one or more languages.

2. Computational learning theory shows that only very restricted classes of
grammars are efficiently learnable. In particular, the classes of all Type 0
or even Type 1 languages are not efficiently learnable.

3. Hence the class of natural languages cannot be the class of all languages;
it must be some very restricted class.

4. Children must have some pre-knowledge (or bias) of these restrictions
upon the class of natural languages in order to be able to learn. This bias
is probably largely innate.

However, language learning is just one example where learning from exam-
ples takes place. Young children are exceedingly good at learning many other
things besides language as well, such as learning to recognize faces, learning how
objects usually fall, how people walk, which species of animals are dangerous,
and so on. Thus far, not much research has been devoted to the PAC learnabil-
ity of faces or pictures, or of the behaviour of every-day objects. However, a

'8Since any context-free language can be generated by a 2-bounded grammar in Chomsky
normal form, we might argue that £ = 2. However, this would make the assumption that
children can make non-terminal membership queries even more unrealistic, since grammars in
Chomsky normal form look very unnatural. It is not very plausible to assume that parents
can answer non-membership queries for a “natural” context-free grammar of their language
(involving familiar categories like nouns and verbs), let alone if this grammar is transformed
into an artificial Chomsky normal form.

9This also sheds new light on Wittgenstein’s famous dictum “Wenn ein Léwe sprechen
konnte, wir konnten ihn nicht verstehen” [Wit53, IL.xi, p. 568]: if the lion’s language does not
conform to our human Natural Grammar, we are probably not able to learn it.
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number of general negative results on the learnability of formulas from proposi-
tional logic (boolean functions) have appeared.?® Since propositional logic is a
relatively simple system, we may also expect many negative learnability results
for the kinds of learning that children engage in every day. On the other hand,
children achieve these learning tasks quite efficiently and effortlessly. Thus we
are again led to an explanation in terms of innate structures: apparently chil-
dren are born with a certain bias or pre-knowledge (‘knowledge’ here taken in
a very broad sense) that helps them to learn to deal with the kinds of objects,
animals and humans that they are likely to encounter in the early phases of
their lives.

There are in fact many empirical results that point in this direction, see
for example Steven Pinker’s discussion of the innateness of “intuitive mechan-
ics” and “intuitive biology” [Pin94, pp. 420-426]. In Pinker’s words: “We
all get away with induction because we are not open-minded logicians but
happily blinkered humans, innately constrained to make only certain kinds of
guesses—the probably correct kinds—about how the world and its occupants
work” [Pin94, pp. 153-154].

2.13 Summary

The main conclusion of this chapter: without a strong linguistic bias, children
would not be able to learn a language from examples efficiently. Since it is
evident that they do learn their native language quite fast and approximately
correctly, it follows that children must have such a bias. Because it is not very
plausible to assume that a child acquires this bias in the short period before
the process of language learning starts, it is probably for a very large part
innate. This vindicates one of the main tenets of Chomskyan linguistics. Similar
arguments apply to many other kinds of learning that people in general—and
young children in particular—engage in.

*0See for instance [KV94, Theorem 6.3].
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Chapter 3

Kolmogorov Complexity and
Simplicity

3.1 Introduction

There is an interesting paradox about words that do or do not apply to them-
selves (Grelling’s paradox). Let us call a word that applies to itself or that
is true of itself autological. Examples are ‘English’, which is itself an English
word, and ‘old’, a word which has been in use for many centuries now. Call
a word that does not apply to itself heterological, such as the clearly non-red
word ‘red’, or the non-German word ‘German’. Now the question is: is the
word ‘heterological’ itself heterological? If it is, then it isn’t; if it isn’t, then it
is—a puzzling paradox indeed.

A clear example of a heterological word is ‘simplicity’, which is exceedingly
complex and hard to explain [Bun62]. Of course, we can teach this notion
to someone (that is, to a human being with biases similar to ours) simply by
giving some examples, which will usually suffice in practice, but it is very hard
to state explicitly and generally what simplicity amounts to. Since the notion
of simplicity is a rather important one in philosophy, we are obliged to devote
a lot of effort at making it more perspicious: “What the problem of simplicity
needs is a lot of hard work” [Goo72c, p. 282]. Fortunately, most of the really
hard work has already been done for us in mathematics and computer science,
though most philosophers appear to be unacquainted with this work. The
fundamental measure of complexity or simplicity that has been developed is
called Kolmogorov complezity and is the topic of the present chapter.

The basic question to start with is:

Can we objectively measure the complexity of an object?

A first stab at an answer might be that the complexity of an object is propor-
tonial to the number of its parts. This would require us to be able to identify
and count the parts of an object. However, what we recognize as a part of an
object is relative to our interests. Thus a car driver would describe a car as
consisting of four tires, a steering-wheel, windows etc., while a physicist would
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consider it to be built up from particles like protons, neutrons, and electrons.’

Moreover, it would be rather pointless to call the physicist’s description the
“more fundamental” or “better” description in general, since this physical de-
scription will be quite useless to the ordinary car driver. Therefore, the level of
descriptions is a more suitable level of analysis of complexity than the level of
objects. Accordingly, we will redirect our basic question towards the complexity
of descriptions, or, more generally, of strings of characters:?

Can we objectively measure the complexity of a string?

At first sight, the complexity of a string appears to be simply its length, i.e.,
the number of character-tokens it contains, which is not very interesting from a
philosophical point of view. However, from simple examples it can already be
seen that strings of equal length may diverge widely in complexity. Consider
z1, which is a string of 10,000 1s, and z9, which gives the results of 10,000
random coin flips (where the ith character of z5 is 1 if the ith coin flip comes
up ‘heads’, and the ith character is 0 in case of ‘tails’). The string z;, despite
being 10,000 characters in length, is actually fairly simple: the string “10,000
1s” fully describes z; using only 9 characters. On the other hand, as each coin
flip is independent of the others, the shortest description of x5 will probably be
T9 itself. Thus the complexity of x; is much lower than the complexity of xs.

The thing is, of course, that a string can be represented in many ways,
and very “regular” or “simple” strings can be represented very economically.
Thus, as we saw, the short string “10,000 1s” can represent the long string
1. In this vein, we could identify the complexity of a string with the length
of its shortest representation. However, the notion of a ‘representation’ still
requires clarification. What does it mean for one string to represent another?
Clearly, infinitely many representation-schemes are possible. We could simply
write down a representation explicitly as a two-column table, where the strings
in the first column line-by-line represent the strings in the second column. This
table, however, will grow to infinite length if we want to be able to represent
an infinite number of strings.

Ideally, a string would itself give something like a “recipe” to generate the
string it represents; this would allow us to dispel with the two-column table.
For example, the string “10,000 1s” tells us that putting 10,000 1s in a sequence
gives us the string x; that it represents. Now, the most basic idea of a recipe
that we have, is the notion of an algorithm; and every algorithm is a Turing
machine; and every Turing machine can be encoded as a binary string. This
gives us the following explication of what it means for one string to represent
another:

String y represents string z if y is the encoding of a Turing machine
that generates z (and then halts).

Now we can identify the Kolmogorov complexity of a string = with its shortest
representation:

!Compare [Wit53, §47].
2Similarly, Bunge [Bun62] directs his attention at what he calls semiotic simplicity, not at
ontological simplicity.
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The Kolmogorov complezity of a string x is the length of a shortest
y such that y represents zx.

We use the phrase “a shortest y” rather than “the shortest y”, since in general
there may be several distinct Turing machines of the same length that each
produce .

The main aim of this chapter is to extract from the—often highly technical—
literature on Kolmogorov complexity those aspects which are of interest to phi-
losophy. Except for the selection of topics and their presentation, no originality
is claimed here. The chapter is organized as follows. We start with a precise
definition of Kolmogorov complexity in the next section, and state some of its
main properties, notably its objectivity up to a constant, its non-computability,
and its relation to information theory. After that, we will discuss various philo-
sophical issues where Kolmogorov complexity is relevant. The main application,
as the title of this chapter already indicated, lies in a formalization of the notion
of simplicity, which is omnipresent in philosophy in general and in the philos-
ophy of science in particular. Secondly, Kolmogorov complexity also allows
us to clarify the notion of randomness, which will be taken up in Section 3.4.
Thirdly and finally, the definition of Kolmogorov complexity allows us to give
a proof of Godel’s fundamental incompleteness theorem which does not make
us of self-referring sentences.

As the reader will notice, the present chapter contains virtually nothing
on learning theory, despite the title of this thesis. However, one of the most
important applications of Kolmogorov complexity lies in inductive learning.
We will defer this till the next chapter. There Kolmogorov complexity will be
used to formalize Occam’s Razor, which says that simple hypotheses are to be
preferred over more complex ones.

3.2 Definition and Properties

In this section we will define Kolmogorov complexity and state some of its main
properties. The idea to define the complexity of a string as the length of a
shortest Turing machine that produces the string was developed independently
and for different purposes in the 1960s by three different persons:

e Ray Solomonoff [Sol64] used it in order to define a universal probability
distribution, which can be used for prediction.

e Andrei Kolmogorov [Kol65, Kol68] primarily introduced the complexity
measure named after him in order to study randomness.

e Gregory Chaitin [Cha66, Cha69] defined Kolmogorov complexity for study-
ing complexity as well as randomness.

Though ‘Solomonoff-Kolmogorov-Chaitin complexity’ might be somewhat more
appropriate, the name ‘Kolmogorov complexity’ appears to have stuck.
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3.2.1 Turing Machines and Computability

In the introduction, we came up with the following definition:

The Kolmogorov complezity of a string x is the length of a shortest
y such that y represents x.

Here y represents z if it encodes a Turing machine that generates z.

In the next subsection we will make this definition precise. Here we will first
explain in some more detail what a Turing machine is, what it does, and what it
can do. Turing machines were introduced by Alan Turing [Tur36]. Informally,
a Turing machine consists of a table of instructions, which describe how the
machine manipulates the symbols on one or more infinite tapes of cells. Each
instruction tells what the machine should do, given the particular state it is
currently in and the contents of the tape cell it is currently scanning. Given
a state and tape contents, the instruction tells the machine which symbol to
write in its current cell, in which direction to move its tape head, and in which
state to go next. All the machine does, is follow these instructions step-by-step,
until (if ever) it reaches a point where none of its instructions is applicable, and
then it halts.

We will restrict the alphabet of symbols allowed on the tapes to 0, 1, and
‘blank’. Since anything that can be stated in some language can be encoded
in binary, this is not a real restriction. In particular, we can set up a corre-
spondence between the natural numbers and binary strings, for instance the
following;:

(0,¢),(1,0),(2,1),(3,00), (4,01), (5,10), (6,11), (7,000), ...

Here € is the empty string. Note that the binary representation of a number n
has approximately length logn bits (here we use logarithms with base 2). We
will be a bit informal about the distinction between numbers and the corre-
sponding binary strings, switching back and forth whenever this is convenient;
when we speak of some number z, it will be clear from the context whether we
mean that number itself, or the corresponding binary string.

A Turing machine T' computes a function f from the natural numbers to
the natural numbers, as follows. Suppose we start executing 7' in some initial
state, with an initial tape that contains only one binary string, corresponding
to the natural number n. If T’s execution terminates with some natural number
m (in binary) on its tape, we define f(n) = m; otherwise, f(n) is undefined. A
function is called total if it is defined on each element of its domain, so f is a
total function if T' halts on all natural numbers.

Definition 3.1 A function f from N to N that is computed by some Turing
machine T is called partially recursive or computable. If f is total and T halts
on all inputs, then f is called total recursive or recursive. <

By the Church-Turing thesis, any intuitively “mechanically computable”
function is partially recursive.
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Definition 3.2 A set A of natural numbers is recursive or decidable if there is
a recursive function f, such that f(n) =1ifn € A, and f(n) =0ifn ¢ A.
A is recursively enumerable if there is a partial recursive function f such

that f(n) =1ifn € A, and f(n) =0 or f(n) is undefined if n ¢ A. O

The intuition behind the latter notion is that a set A is recursively enumer-
able if there is a Turing machine which outputs a (possibly infinite) sequence
containing all and only members of A. We can also define recursiveness and
recursive enumerability for sets of other objects, as long as we can encode these
as natural numbers. For example, the set of Turing machines that halt is not
recursive: there is no algorithm that takes a binary encoding of an arbitrary
Turing machine as input, and determines whether this machine halts after a
finite number of steps. This is the well-known undecidability of the halting
problem, due to Turing.

We can also compute functions that have two or more natural numbers as
input, and/or two or more numbers as output, by letting the initial or final
tape contain two or more natural numbers, separated in some suitable way. An
n-tuple of numbers will be denoted by (z1,...,z,). Using functions with two
natural numbers as output, we can also define functions that range over the
set of rational numbers Q: a (partial) recursive function f from N to N2 can
also be seen as a (partial) recursive function g from N to Q, where g(n) = p/q
for f(n) = (p,q). Using this, we can also compute—or at least approximate—
functions ranging over the set of real numbers R:

Definition 3.3 A function f from N to R is called enumerable if there is a
recursive function ¢ from N? to Q, such that g(z, k) < g(z, k + 1) for all z, k,
and limg_, o g(z,k) = f(z) (¢ approximates f from below). Analogously, the
function f is co-enumerable if it can be approximated from above. Finally, f is
recursive if there is a recursive g from N? to Q such that |f(z) — g(z, k)| < 1/k
for every z and k. O

Let Ty,T5,... be a list of all Turing machines. Each of these computes a
partial recursive function, so there is a corresponding list f1, fo,... of (all and
only) partial recursive functions. A very fundamental concept is the universal
Turing machine. This is a Turing machine U that can “simulate” all other
Turing machines: for every i, there exists a number (or binary string) ¢; such
that given inputs ¢; and a number n, U computes the same function as T; on
n, i.e., U(t;,n) = fi(n) for all n. Such a ¢; can be called an encoded Turing
machine or a program for U. It is a fundamental result that such universal
Turing machines can actually be constructed (there are in fact infinitely many
of them). If T; is a Turing machine and ¢; is its shortest binary encoding
(relative to U), then the length of T; (relative to U) will be I(T;) = I(t;), the
string length of ;.

3.2.2 Definition

Let us fix some particular universal Turing machine 7T,, and let f, be the
function from N? to N that T, computes. If f;(y) = , then T}, produces & when
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its initial input tape contains program ¢; and vy, i.e., f,(t;,y) = z. If y is empty,
we simply write f,(¢;) = x. Then we can define the Kolmogorov complexity
of a string z as the length of a shortest Turing machine that computes x:
K(z) = min{l(t) | fu(t) = z}. However, for technical reasons we have to make
one important addition, namely that we encode the Turing machines in a prefiz-
free way. That is, if 1 and ¢y are encodings of Turing machines (programs for
T,) then ¢; is a prefix of 5 only if t; = to (z is a prefix of y if y = zz for some
z). For instance, it cannot be the case that 110 and 1101 are both encodings of
Turing machines, since the former is a prefix of the latter.> With this condition
in place, we can define:

Definition 3.4 Let T, be some fixed universal Turing machine whose set of
programs is prefix-free, and let f, be the function from N2 to N that T}, com-
putes. The Kolmogorov complexity of a binary string x is

K(z) = min{l(t) | fu(t) = ).
O

Thus, as promised, the Kolmogorov complexity of a string z is indeed the length
of a shortest Turing machine that computes z (starting from an initially empty
tape). The Kolmogorov complexity of a natural number n is the Kolmogorov
complexity of the binary representation of n.

It is fairly easy to show that there exists a constant ¢ such that for every z,
K(z) <l(z) 4 c. Informally, a simple computer program like print x suffices
to generate x. The length of this program will be the length of print, which
is a constant independent of x, plus the length of z. Thus the Kolmogorov
complexity of a string cannot be much larger than its own length. This is how
it should be, since a string is a complete description of itself.

3.2.3 Objectivity up to a Constant

In the introduction to this chapter we claimed Kolmogorov complexity to be
objective. But doesn’t it depend on the particular universal Turing machine
T, we use? Would not a different choice of T, lead to different complexities?
Indeed it would. But still Kolmogorov complexity can be called objective, due
to the following Invariance Theorem:

Theorem 3.1 (Invariance) Let T, and T, be universal Turing machines, let
K, (z) denote the Kolmogorov complezity of = relative to T,, and K,(x) be
the Kolmogorov complexity of x relative to T,,. Then there exists a constant c,
depending on u and v but not on x, such that for every x:

K,(z) < Ky(z) +c.

3There also exists a version of Kolmogorov complexity without this requirement. This
C(z), discussed in Chapter 2 of [LV97], has some undesirable properties which make it less
interesting than the prefix-free version.
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This result is a fairly obvious consequence of the fact that any two universal
Turing machines can simulate each other. Let T}, and T, be two universal Turing
machines. Since Ty, is a universal Turing machine, there exists a Ty-program
s which computes the same function as T;,. This s can be called a simulation
of T,, on T,,. Suppose T, with encoding ¢, is a shortest Turing machine that
computes z relative to T, (so Ky(x) = I(t)). If we want to compute z relative to
T., then we can take the simulation-program s, feed ¢ into it, and the program
s will execute ¢ for us (and hence generate ) on T,. Thus K,(z) is at most
K,(z) = I(t) plus a constant ¢ which accounts for the length of the simulation
program s and some overhead.

The theorem implies that there is a constant ¢, such that for every z

Ko (2) - Ko (2)| < c.

Thus, though Kolmogorov complexity depends on the particular universal Tur-
ing machine Ty, we choose, for larger x and y the relative influence of the choice
of T,, becomes negligible. For instance, if ¢ = 1,000 and we are dealing with
objects of Kolmogorov complexity more than 1,000,000, then the relative dif-
ference |K,(z) — K,(z)|/Ku(z) is less than 0.001. This makes Kolmogorov
complexity sufficiently objective.

3.2.4 Non-Computability

In general, we can discern two distinct desirable goals in formal analysis. Firstly,
it should provide us with a more clear insight in the analyzed topic. We will see
in the next section how Kolmogorov complexity allows us to supply clear and
precise meanings to notions like simplicity and randomness. The second goal
of formal analysis is to provide us with useful, practically applicable tools. In
order for Kolmogorov complexity to be fully applicable, we should be able to
find out what the Kolmogorov complexity of a given string is. Unfortunately,
this is beyond us (at least, beyond algorithmic means): Kolmogorov complexity
is not computable. For a proof, we refer to Theorem 2.3.2 of [LV97].

Theorem 3.2 (Non-computability) The function K(z) is not recursive.

However, we are able to approximate K (z). There exists a particular recur-
sive function g(x, k) such that if we successively compute ¢(z,1), g(z, 2), g(=, 3),
..., then the sequence of numbers we obtain will converge to K(z) from above.
For instance, given z and k, g might simulate the first k& steps of the first &
Turing machines, and output the length of a shortest of these k& machines that
produces z (if none of the first k£ machines produces z, let g be some huge, prac-
tically infinite number). It is clear that g(z, k) decreases when k grows. Fur-
thermore, if the 1th Turing machine is a shortest Turing machine that produces
x, say after j steps, then g(z, max{i,j}) = K(z), so limg_, g(z, k) = K(x).

Theorem 3.3 (Approximation) The function K(x) is co-enumerable.

This result makes “approximate application” of Kolmogorov complexity at
least possible in principle (of course, computability of an approximation does
not imply efficient or practical computability of an approximation).
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3.2.5 Relation to Shannon’s Information Theory

The complexity K(z) of £ may be seen as a measure of the amount of in-
formation inherent in z, since we need a program of at least K(z) bits to
reconstruct . In this subsection we will see how Kolmogorov complexity re-
lates to the older and more famous definition of information given by Claude
Shannon [Sha48, CT91]. (We will not use this in the remainder of the thesis,
so the reader may wish to skip this section on a first reading.)

Briefly, in Shannon’s framework a message is a finite sequence of words. We
will assume each word is a binary string. Each of the possible words wy, ..., wy
has a definite probability (frequency) of appearing. Let P be the probability
distribution over these words. The entropy of P is defined by

k

H(P) = — " P(w;) log P (wy).
i=1

For example, consider a simple language of three words: ‘0001°, ‘0011°, and
‘01117, with P-probabilities 1/2, 1/4, and 1/4, respectively. A message in this
language is simply a finite sequence of these words, drawn according to P. The
entropy is

H(P) = —(%log% + i log% + ilog i) = 1.5 bits.
H(P) is the information content, in bits, of a message of one word. A message
of n words then contains nH (P) bits of information.

We can encode messages in this language by assigning each word w; a par-
ticular codeword ¢; (another binary string), and by encoding each sequence of
words as the corresponding sequence of codewords (this can be done in such
a way that a bitstring which is a sequence of codewords can always uniquely
be decomposed into those codewords again). If we do this in a smart way,
assigning short codewords to high-probability words, we can achieve a much
more efficient and economical representation than if we represent words simply
by themselves. By a fundamental theorem of Shannon’s, H(P) is an (almost)
reachable lower bound for the length of binary encodings of messages: we can
assign each word a codeword in such a way that if we draw a word according to
P, then the expected length of its codeword equals H(P) to within one bit (see
[CT91, Theorem 5.4.1] or [LV97, Theorem 1.11.2]). Thus, for an optimal en-
coding of the language above, the expected codelength of an arbitrary message
of n words is approximately 1.5n bits, whereas if we use each of the three words
(‘00017, ‘0011’, ‘0111’) simply as its own codeword, the expected codelength is
4n.

Now, (sequences of) words are simply binary strings, and hence have a
Kolmogorov complexity. If we draw a word according to P, then the expected
Kolmogorov complexity of this word is S°¥_, P(w;) K (w;). Surprisingly, this
expected Kolmogorov complexity is asymptotically equal to the entropy [LV97,
p. 525], provided P is recursive:
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Theorem 3.4 IfP is a recursive probability distribution over words wy, . .., Wk,
then .
lim i=1 P (w;) K (w;) -1
H(P)—o00 H(P)

What does this mean? It means that if P is sufficiently complex (i.e.,
H(P) is sufficiently large) and we draw a word w according to P, then on
average K (w) will be approximately equal to H(P). Consequently, for a long
message v1 ... v, of n words, we can expect K(v;...v,) to approximately equal
the information content nH (P) of the message, and we can use the shortest
programs that generate strings as approximately optimal codewords for those
strings. Nevertheless, despite the fact that the Kolmogorov complexity of a
message converges to its Shannon-information content, we agree with Cover
and Thomas [CT91, p. 3] that Kolmogorov complexity is more fundamental
than Shannon entropy, because it does not depend on a particular probability
distribution P.4

3.3 Simplicity

From a philosophical point of view, the most important contribution of the
theory of Kolmogorov complexity has been to provide us with a precise def-
inition of the simplicity of individual strings. Particularly in the 1950s and
1960s, many unsuccessful attempts were made to measure the complexity of
theories, especially when formulated in first-order logic. One of the most strik-
ing of these was Popper’s proposal to identify degree of simplicity with degree
of falsifiability (or strength) [Pop59, p. 140]. However, the following example
by Goodman [Goo72b, p. 335] shows that simplicity can neither be identified
with strength (as Popper wants) nor with safety:

1. All maples, except perhaps those in Eagleville, are deciduous.
2. All maples are deciduous.
3. All maples whatsoever, and all sassafras trees in Eagleville, are deciduous.

Clearly, the second of these hypotheses is the simplest, and is preferable to the
others if consistent with the data. However, 3 is stronger than 2, while 1 is
safer (i.e., more likely to be true) than 2. Thus neither the strongest nor the
safest hypothesis need be the simplest.”

Kolmogorov complexity does give us a sound and objective quantitative
measure for complexity /simplicity. That is:

A string = (a description, a theory, etc.) is simple to the extent that
it has low Kolmogorov complexity.

“Some relations between Shannon information, Kolmogorov complexity, and information
and entropy in physics are described in Chapter 8 of [LV97].

®See [Hes67] for an overview of some other approaches at measuring simplicity, and their
problems. More recently, Elliott Sober [Sob75] has attempted to equate simplicity with in-
formativeness relative to given questions (a theory is more informative to the extent that it
needs less additional information in order to be able to answer a given question).
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Not surprisingly, simplicity shows up as a gradual notion here: things are not
simple per se, but they can be more simple or less simple. Because, as we
have seen, the Kolmogorov complexity of z is objective (to within a constant
independent of z), this definition of simplicity is objective as well. The only
subjectivity lies in the choice of the particular universal Turing machine we
use, but the influence of this choice becomes negligible for larger z. Actually,
many philosophers have claimed that simplicity is too subjective and context-
dependent to be objectively definable at all. For instance, Lakatos writes

“No doubt, simplicity can always be defined for any pair of theories
Ty and Ty in such a way that the simplicity of 77 is greater than
that of Ty.” [Lak71, p. 131, note 106]

To be sure, this also holds for Kolmogorov complexity. If we want to give a
particular string x a very low Kolmogorov complexity, we can achieve this by
tinkering with some ordinary universal Turing machine 7}, in such a way that
it outputs z if it is given the string 1 as input. Thus the new machine would
have x somehow hardwired in its program. Then relative to this new machine,
we will have K (x) = 1, so we can tinker in such a way that any particular string
gets a very low complexity. However, if we choose some reasonable universal
Turing machine, where no information about particular strings is hardwired,
this problem will not arise, and we can stick to the objectivity of Kolmogorov
complexity.

Why should we bother about simplicity? Because it is one of the guiding
principles of science: simplicity of a theory is generally regarded as a virtue.
Scientists generally follow the maxim that simple or elegant theories are to be
favoured, both in their practice and in their own theorizing about science. As
Quine writes:

“Consciously the quest [the “sifting of evidence”] seems to be for the
simplest story. [...] Simplicity is not a desideratum on a par with
conformity to observation. Observation serves to test hypotheses
after adoption; simplicity promps their adoption for testing. Still,
decisive observation is commonly long delayed or impossible; and,
insofar at least, simplicity is final arbiter.

Whatever simplicity is, it is no casual hobby. As a guide of inference
it is implicit in unconscious steps as well as half explicit in deliberate
ones. The neurological mechanism of the drive for simplicity is
undoubtedly fundamental though unknown, and its survival value
is overwhelming.” [Qui60, pp. 19-20]

Or in Goodman’s words:

“...simplification is the heart of science. Science consists not of
collecting particular truths but of relating, defining, demonstrating,
organizing—in short of systematizing. And to systematize is to sim-
plify; [...] Science is the search for the simplest applicable theory.”
[Goo72d, p. 351]
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We will see more examples in the next chapter. Given the importance of sim-
plicity, clarifying what makes a simple theory simple, and what makes a simple
theory favourable is an important topic in the philosophy of science.

The idea that selecting simple theories is good, however, already brings us
to Occam’s Razor, to which we will devote the whole next chapter. In this
section, we will ignore the prescriptive aspects of simplicity (that simplicity is
good), restricting attention to its conceptual aspects. Most important among
these: what are its relations to the notions of elegance and beauty?

In general, if we do not restrict attention to science, what we would call
‘simple’, ‘elegant’, or ‘beautiful’ can diverge widely. For instance, the word ‘ele-
gant’ often has the connotation of ‘slightly superficial’, and hence diverges from
‘beautiful’. Furthermore, simple works of art need not be beautiful (“Who’s
afraid of red, yellow, and blue”); conversely, many of the most beautiful pieces
of art are highly complex and dense with connotations. On the other hand,
simple works of art can be very beautiful—examples that come to mind are
Mondriaan’s abstract paintings and Satie’s early piano music. Moreover, both
elegance and beauty are irreducibly subjective, whereas simplicity could to a
large extent be made objective, as we have seen.5

However, when we do restrict attention to the roles of simplicity, elegance,
and beauty in science, particularly their roles as properties of scientific theo-
ries, things start to get interesting. Many a scientist or philosopher has used
these notions in the same breath, and it is not at all clear how they can be
distinguished. Ordinary usage of these terms does not seem to provide us with
clear boundaries. On the one hand this is a nuisance, but, on the other, it also
leaves us plenty of room to specify these boundaries for ourselves, supplying
our own definitions. I would like to propose the following informal definitions:

e A theory is simple to the extent that it can be described easily. This can
satisfactorily be formalized in terms of low Kolmogorov complexity.

e A theory is elegant to the extent that it is simple (in the above sense) and
easy to handle.

e A theory is beautiful to the extent that it causes feelings of pleasure,
delight, reverence, and wonder.

Because of the vagueness of natural language, any boundary will be somewhat
arbitrary. Whether these particular boundaries diverge too far from ordinary
usage I leave for the native speakers of English to decide.

Our earlier statement that ‘simplicity’ is largely objective while ‘elegance’
and ‘beauty’ are subjective, is clearly in accordance with these definitions. Sim-
plicity can be defined in terms of Kolmogorov complexity, and hence is suffi-
ciently objective. On the other hand, a simple theory is elegant only if it is easy

®Even the complexity of works of art is amenable to analysis in terms of Kolmogorov
complexity. Literature or musical scores can easily be transformed into bitstrings, which can
be assigned a Kolmogorov complexity. Similarly, by treating it as a matrix of colour dots and
assigning each dot a number, a painting can be transformed into a bitstring. Very regular
paintings will have low complexity, visually very complex paintings will have high complexity.



56 CHAPTER 3. KOLMOGOROV COMPLEXITY AND SIMPLICITY

to handle, easy to use—and this depends, of course, partly on the person who
actually uses it: a complex theory is often easy to handle for those having much
experience with it, but difficult for first-year students. Thus elegance is partly
subjective. That beauty is also subjective will not surprise us: some people feel
pleasure, delight, reverence, and wonder very easily, while others remain numb
and uninterested even when faced with the theory of relativity. Despite the
subjectivity of the elegance or beauty of scientific theories, both are strongly
linked to the objectively definable simplicity. In case of elegance, this is im-
mediately apparent from the definition. But also beauty is strongly correlated
with simplicity; we will see some examples of this in the next chapter. For one
thing, in order to appreciate the beauty of some theory, we should be able to
comprehend it fully—which can only be if the theory is sufficiently simple for
us to be comprehensible in the first place. Extremely complex theories may
sometimes be great predictors, but they will generally not be considered very
beautiful.

The subjectivity of beauty in scientific theories also shows up in the vari-
ance of scientists’ aesthetic canons over time. To end this section, let us briefly
look at James McAllister’s interesting recent account of the role of aesthetical
criteria in science [McA96]. According to this account, empirical criteria for the-
ory choice, such as predictive success and consistency with other theories, are
supplemented by aesthetic criteria. McAllister mentions five classes of such aes-
thetic criteria: symmetry, invocation of a model, visualizability /abstractness,
methaphysical allegiance, and—most interesting for us—simplicity.” Aesthetic
value is projected onto an object (for instance a scientific theory) according to
such aesthetic criteria or canons. The content and weighing of these criteria are
not constant over time, but are (unconsciously) inductively derived from the
properties of recent successful theories: our sense of what is beautiful derives
from, and varies with, what is successful. Whenever theories are replaced by
more successful ones, our aesthetic canons are to some extent adjusted as well.

In McAllister’s model, a scientific revolution occurs if the aesthetic criteria
start lagging too far behind the empirical criteria, and these two sets of criteria
start coming in severe conflict. In this case a progressive faction of scientists,
which places more value on empiricial than on aesthetic criteria, supersedes a
conservative faction that wants to hold on to older theories they perceive as
more beautiful. This is corroborated by the fact that many of the truly revo-
lutionary new ideas and theories (such as Kepler’s elliptical orbits, or quantum
mechanics) were considered by many rather ugly early after their inception,

"An important difference between McAllister’s handling of simplicity and our own: while
we ascribe simplicity to representations of scientific theories (namely bitstrings), McAllis-
ter ascribes simplicity to those theories themselves, not to particular representations of
them [McA96, p. 24-26]. The fact that we looking only at representations avoids the problems
associated with McAllister’s almost Platonic view of theories as abstract entities.

Furthermore, McAllister explicitly rejects using Kolmogorov complexity as the measure of
simplicity, since there are alternatives, for instance measuring the number of assumptions or
the number of variables in a theory [McA96, pp. 119-120]. Nevertheless, we consider simplicity
as measured by Kolmogorov complexity to be more fundamental than other measures, because
its foundation (the Turing machine as a model of effective computability) is more fundamental
and less ad hoc than others.
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but are considered much more beautiful and elegant now that we have gotten
used to them and have been convinced of their empirical success—our aesthetic
canons have been adjusted to them.

3.4 Randomness

Actually, despite our focusing on the use of Kolmogorov complexity as a for-
malization of simplicity, the initial motivation of its development lay elsewhere:
namely in the notion of randomness of strings. From the point of view of philos-
ophy of science, it is very interesting to specify randomness. After all, scientists
aim at finding structure, regularity, causes, etc., in the world, but we cannot
rule out a priori that some domains have no regularity whatsoever. Intuitively,
if some domain possesses no regularity at all, then descriptions that stem from
this domain will be random strings. Accordingly, ways to recognize randomness
are important.

Before the advent of Kolmogorov complexity, several attempts had been
made to define necessary and sufficient conditions for randomness, for instance
by Von Mises, Wald, and Church.® However, each of those definitions included
some strings as random which we intuitively would not consider random, and
hence failed.

3.4.1 Finite Random Strings

In this subsection, we will characterize the property of randomness of finite
binary strings, in the next we will deal with infinite strings. It should be
noted that when dealing with finite strings, it is rather arbitrary to fix a sharp
boundary between random and non-random finite strings: randomness is a
matter of degree here. Furthermore, strings are not random per se, but random
with respect to a certain probability distribution. For example, a binary string
of length 10,000 consisting of about equally many Os and 1s, distributed in an
irregular way over the string, will be fairly random with respect to a probability
distribution induced by a fair coin. However, it would be rather surprising if this
string were generated by tossing an unfair coin that comes up ‘heads’ 70% of
all tosses, and the string is not random with respect to the distribution induced
by the unfair coin.

The way we will define randomness here, is via tests for randomness: a
string is random if it passes certain tests. For instance, one test for randomness
might say that a string that contains much more 0Os than 1s is not random
with respect to the probability distribution induced by a fair coin, another test
might say that a string which starts with a 1,000 1s is not random with respect
to that distribution. Thus we could define a string as random if it passes all
conceivable tests for randomness. The theory of tests for randomness described
below shows that we can actually formalize this. This framework is due to the
Swedish mathematician Martin-Lof [ML66], who co-operated with Kolmogorov.

8See [LV97, pp. 49-56] for an overview of the various approaches, and why they failed.
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A string is random if it passes all conceivable tests for randomness. But
what constitutes a “conceivable test for randomness”? Firstly, in order for us
to be able to carry out such a test, we should in any case be able to compute
or approximate its outcome. Secondly, a test for the randomness of a string
z is a test whether z is a “typical” string for that distribution. For instance,
1010100010110 would be a typical outcome for the fair-coin-distribution, while
1111111111111 (13 times ‘heads’ in a row) would not. The typical strings form
a “reasonable majority” of all strings; a majority on which most probability
concentrates. Each test is a way of specifying such a majority and of testing
whether a given string x belongs to it or not. A string will be called random if
it belongs to every “reasonable majority” specified in this way, i.e., if it passes
each test. We now first give the definition of a test, and then explain what is
intended by this idea of a majority.

Definition 3.5 Let P be a recursive probability distribution on {0,1}* (the
set of finite binary strings). A total function ¢ : {0,1}* — N is a P-test (or a
Martin-Léf test for randomness with respect to P) if it satisfies the following
two conditions:

1. § is enumerable.
2. Y{P(x) | 6(z) > m,l(x) =n} <27™, for every m and n.
o

What is going on here? The first condition is fairly plain: § can only be
an “implementable” or “effective” test for randomness if we can computably
approximate it. The second condition requires some more explanation. The
idea here is that the elements of {0,1}* that do not belong to some “reason-
able majority” of typical strings, are assigned high values by the test . The
set Vipn = {2z | 6(z) > m,l(xz) = n} singles out all strings of length n that
are special in having d-value at least m; this set forms the complement of the
“reasonable majority” of typical strings. The second condition in the definition
is to ensure that V,, , is indeed the complement of a reasonable majority, by
requiring that Vj, , becomes ever more more improbable for larger m (equiv-
alently, the probability concentrates on the complement of V;, ,, which is to
contain the typical strings):

P(Vin) =>{P(z) | 0(z) > 1.1 <
P(Von) = S{P(2) | 6(z) > 2,1(z) = n} < 0.25.
P(Van) = 2{P(z) | 0(z) > 3.1

Thus, if we draw an arbitrary z of length n according to P, it is very unlikely
that = belongs to V,, , for higher m. If z does belong to V, ,, we have good
reason to believe that it is a non-typical string, and we can consider it non-
random accordingly. In statistical terms, each Vi, , is a critical region. If
% € Viun, then we can reject the hypothesis that = is random with significance
level 1 — 27™. Suppose for instance that we have a string x of length n, and
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we want to know whether this string is random with respect to a distribution
P, using some particular P-test 6. Suppose d(z) = 10. The second condition
in the above definition tells us that the probability that an arbitrary element
of length n is a member of Vjg, is at most 2710 which is less than 0.1%, and
hence rather improbable. However, our string z is a member of this set, so
apparently it is a rather special, non-typical string, which does not belong to
the “reasonable majority” tested by J: we can reject the hypothesis that x is
random with 99.9% confidence. Thus a P-test gives us information about the
“typicalness” of its argument: z tends to be less typical (with respect to P) if
d(z) is higher (i.e., z € V,, for higher m).

Recall that we wanted to define a string as random if it belongs to all
“reasonable majorities”, i.e., if it passes all tests for randomness (at a certain
confidence level). Now, there are clearly infinitely many different P-tests for
any probability distribution P, and it would be rather cumbersome to check
whether a string x passes each of those tests before we can assign it the predicate
“random with respect to P”. Instead, it would be much more interesting to
have a single P-test which only the random strings pass. It is in fact possible
to “combine” all possible P-tests into a single P-test. Such a test is called
universal:

Definition 3.6 A P-test 0, is universal if, for every P-test §, there exists a
constant ¢ > 0 such that for every string z, d,(z) > d(z) — c. <&

A universal P-test d, is such that no other P-test can find more than a
constant amount of regularity in £ more than §,. It is a fundamental result
that for each recursive probability distribution P there is a universal P-test.

Theorem 3.5 Let P be a recursive probability distribution, and 61, 09,03, ...
be an enumeration of all P-tests. Then §,(x) = max{d;(z) —i|i > 1} is a
universal P-test.

The main element in the proof of this theorem (Theorem 2.4.1 of [LV97]) is
to show that the sequence 41, 09, d3, . .. is indeed recursively enumerable. Given
that fact, it is fairly easy to show that J, as defined here is itself a P-test and
has d,(z) > 0;(z) —1, for every i. Hence §, is indeed a universal P-test, and can
be used to measure the degree of randomness of finite strings: x is less random
if 0,,(z) is higher.

If we fix some universal P-test and some constant ¢ (for instance ¢ = 1),
then randomness of finite strings with respect to P can be defined as follows:

Definition 3.7 Let P be a recursive probability distribution and z a finite
binary string. Fix some universal P-test d, and constant ¢. We call x P-
random if 0, (z) < c. <&

3.4.2 Infinite Random Strings

In the case of finite binary strings we cannot distinguish sharply between ran-
dom and non-random strings, but in the case of infinite strings we can. In this
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subsection we will generalize the previous definitions of tests for randomness to
the case of infinite strings. We use B = {0, 1}* to denote the set of all infinite
binary strings. If w is some infinite binary string, we use wy., to denote the finite
string consisting of the first n bits of w. For instance, if w = 110110110. . ., then
wi.5 = 11011. Because we cannot computably deal with probability distribu-
tions on the set of infinite strings (no Turing machine can completely “swallow”
an infinite string as input and compute its probability), we have to use some-
thing else. We will use a function p that assigns a number p(z) € [0,1] to any
finite binary string z, with the following restrictions:?

p(e) = 1.
p(z) = p(z0) + p(zl).

Here u(z) is interpreted as the probability that a string from B starts with
z. The first restriction simply says that any string must start with the empty
string (which is fairly obvious). The second says that the probability that an
infinite string starts with z equals the sum of the probabilities that it starts
with 20 or with z1 (which is obvious as well, because z can only be followed
by a 0 or a 1). Such a function y is called a measure on B.

For a recursive measure on B, Martin-Lo6f’s definition of a test for random-
ness of infinite strings can be stated as follows:

Definition 3.8 Let x4 be a recursive measure on B = {0, 1}*°. A total function
d: B = NU({oo} is a sequential p-test (or a sequential Martin-Lof test for
randomness) if it satisfies the following two conditions:

1. There exists an enumerable total function 7 : {0,1}* — N such that
d(w) = sup, .N{V(win)}-
(Notational remark: the supremum of a set A of numbers, denoted sup A,
is the maximum of A if A contains a greatest element, and oc otherwise.)

2. p{w | 0(w) >m} < 2™ for every m.
<&

Such tests are called sequential, because we can use the function v to ap-
proximate §(w) by sequentially approximating y(wy.,) for n =1,2,3,....

Just as in the case of finite strings, a high value for §(z) indicates that x
is non-typical and hence non-random. Let V,,, = {z | 6(z) > m}. The set V,,
contains all strings that are identified as special or non-typical in the sense of
being assigned a d-value of m or more. A string  may be said to pass the test ¢
if it is not special for higher m: = ¢ V,,, for some m, equivalently w & (N, =1 Vin-
An infinite string is random if it passes all tests in this way:

Definition 3.9 Let u be a recursive measure on {0,1}°°, and V be the set of
all sequential py-tests. An infinite binary string w is called p-random if it passes
all sequential p-tests: w & (o —; Vi for every 4. O

920 is the string which is the concatenation of = and 0; z1 is the concatenation of z and 1.
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Analogous to the case of finite strings, for each recursive measure i on the
set of infinite strings there is a universal sequential p-test (see Theorem 2.5.2
of [LV97]).

Definition 3.10 A sequential p-test d, is universal if, for every sequential p-
test 4, there exists a constant ¢ > 0 such that for every infinite string w, we
have §,(w) > d(w) — c. O

Theorem 3.6 Let u be a recursive measure, and 41,09, 03 . .. be an enumeration
of all sequential p-tests. Then 6y(xz) = sup{d;(x) —i | i > 1} is a universal
sequential p-test.

It is not very difficult to see that the set of infinite strings w that are random
in the sense of Definition 3.9 are exactly the strings for which §,(w) is finite.
Thus an alternative equivalent definition of randomness is: w is p-random iff
0u(w) is finite. Note that if §, and §, are two distinct universal sequential p-
tests, then |d,(w) — d§,(w)| < ¢, for some constant ¢ and for all w. Hence §,(w)
is finite iff 0, (w) is finite, which shows that it does not matter which particular
test we use: each universal sequential u-test picks out exactly the same set of
random strings.

The above paragraphs defined randomness in terms of tests for randomness.
How does all this relate to Kolmogorov complexity? Kolmogorov complexity
allows us to formalize another intuition about randomness: a string is non-
random to the extent that it contains many regularities. Very vaguely and
abstractly, a regularity is some kind of repetition, the recurrence of a certain
pattern. Now, if a string contains some kind of repetition, then we can make use
of this to represent the string more efficiently. For instance, a string of length
10,000 that consists of the string ‘10°, repeated 5,000 times, can be represented
by the much shorter string “5,000 times ‘10’ ”. In other words, if a string
contains regularities, we can use these to compress the string. Thus a finite
string is non-random to the extent that it can be compressed, and is random
to the extent that it cannot be compressed.'® Extending this to the infinite
case, an infinite string w may be said to be random if all of its prefixes are
incompressible, or at least compressible at most a fixed number of bits. That
is, basically the shortest description of its prefixes are those prefixes themselves,
and the shortest description of the whole sequence is that sequence itself. The

19n the case of finite strings, the definition of K(x) does not enable us to state a clear
relation between Kolmogorov complexity and randomness. However, if we temporarily drop
the condition that the set of encodings of Turing machines should be prefix-free, and define
C(z|l(x)) as the length of a shortest Turing machine that generates z, given I(z) on a special
input tape, we can state such a relation. Define the randomness deficiency of a finite string
z to be f(z) = l(z) — C(z|l(z)) — 1. This deficiency is higher if z is more compressible
(more regular). Theorem 2.4.2 of [LV97] states that f(z) is a universal test with respect to
the uniform measure. Hence high compressibility indicates non-randomness, and vice versa.
(Incidentally, since pseudo random number generators are usually fairly short programs, the
“random” numbers that these programs generate will not really be random at all.)

Dennett [Den91] uses Kolmogorov complexity (without mentioning this name) to argue that
strings contain real patterns if those strings are compressible.
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following fundamental result ([LV97, Theorem 3.6.1]) shows this intuition to be
correct if we consider randomness with respect to the uniform measure X\, which
assigns A(z) = 274*), This X is a very natural measure, because it distributes
probability in an unbiased, uniform way: all distinct prefixes of length n are
equally probable.

Theorem 3.7 An infinite binary sequence w is A-random iff there is a constant
¢ such that K(w1.,) > n — ¢, for every n > 1.

3.4.3 An Interesting Random String

In the previous pages we have characterized randomness for finite and infinite
strings. As the number of infinite strings is uncountable, whereas the number
of Turing machines is only countably infinite, it is clear that there are infinitely
many infinite strings that are random with respect to the uniform measure. It
is, however, equally clear that we can never effectively describe one. (How could
we?—a random infinite string has no finite effective description.) Nevertheless,
we can give non-effective descriptions of random strings.

A very interesting example of such a string is the real number Q. This is
defined as follows, where U is some fixed universal Turing machine:

0= 3 2-1(®)

{t | U(t) halts}

It can be shown that 0 < € < 1; in binary expansion, we can write ) =
0.wiwaws . .., where each w; is a bit.!! We use Qy.,, to denote wjws ...w,, the
string of the first n bits of {2’s binary expansion.

This very abstract number is called the halting probability, because it is the
probability that when we feed a sequence of fair coin flips into the universal
Turing machine U, the machine U halts.!? This can be seen as follows. Consider
a monkey who repeatedly flips a fair coin. If the coin comes up ‘heads’ we write
down a 1, and a 0 otherwise, thus producing a growing binary string. As soon
as the binary string z is the encoding of a Turing machine, we let the monkey
stop flipping coins. Now consider the infinite sequence of all finite binary strings
that encode halting Turing machines

T1,22,2Z3, ...

For each z;, the probability that the monkey produces z; is 27/, (Since
the z1,xo,...-sequence is prefix-free, these events are mutually exclusive, so
we can add the probabilities.) For instance, the probability of producing 101

"'The first bit in a binary expansion corresponds to 27! = 0.5, the second bit to 272, the
third to 272, etc. Thus, for example, the binary number 0.11001 corresponds to the decimal
1270 4+1:27240:27%40-27441-27°=0.5+0.25+0+ 0+ 0.03125 = 0.78125.

2Note that Q is defined relative to U; distinct universal Turing machines induce distinct Qs.
Furthermore, here we have one of the technical points where the importance of using prefix-
free Turing machines shows: if we considered Turing machines encoded in a non-prefix-free

way, the sum Z{t | U(e) hatts} 27!® could go to infinity.
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is 2-1.1 =973 Adding up the probabilities for these z;, we get the total
probability that U will halt on the string produced by the monkey:

o0

—U(w) _ ()
> 2 Yoo 27l
=1

{t | U(t) halts}

which is our number €.

It is quite remarkable that we can actually define a number which gives
the probability that an arbitrary Turing machine halts. Apart from this, {2
has some more interesting properties. Firstly, since it is undecidable whether a
given Turing machine halts, it follows that Q is not recursive. (It is, however,
enumerable by a procedure outlined below.)

The most interesting property of {2, however, is that knowledge of its first n
bits (that is, of €1.,) enables us to find out which of the first n Turing machines
halt. Suppose we know the number €2;.,, and we want to find out whether some
particular Turing machine T, of length n, halts. Consider a program P which
simulates all Turing machines: first it executes the first step of the first Turing
machine; then it executes the first two steps of the first two Turing machines;
then it executes the first three steps of the first three Turing machines; and so
on. Then, if we run this procedure forever, each Turing machine which halts
will be found to halt after a finite number of steps. Suppose this program P
maintains a variable €', initially zero. For each Turing machine, of length I,
that it finds to halt, let our program P add 27/ to . Then during the execution
of P, ' will approach Q from below. (This procedure can be used to show that
Q2 is enumerable.) Let P terminate as soon as Q' > Qy.,. What do we know
once P has halted? If T has been found to halt during P’s execution, then of
course we know T halts. Now suppose T" has not halted during the execution of
P. Is it possible that T' would halt later on? If so, then Q' +27" < Q, since T"s
contribution of 27" to the halting probability has not yet been incorporated in
Q. However, since Q and Q;., can only differ in the n + 1-th and later bits, we
have Q1., < Q < Qq., +27". Thus, if T' does not halt during the execution of P
but would halt eventually, then Q' + 27" < Q < Qq., + 27", which contradicts
Q' > Qq.,. Accordingly, if T halts during the execution of P then we know it
halts; and if it does not halt during the execution of P, then we know it never
halts.

Knowledge of whether or not certain Turing machines halt is tantamount to
knowing the answers to many mathematical questions. Consider for instance
Goldbach’s famous conjecture, which says that every even number is the sum
of two primes.'? We can easily program a Turing machine 7' which checks if n
is the sum of two prime numbers (which each should be smaller than n), first
for n = 0, then for n = 1, then for n = 2, and so on, and which halts if it
finds an n which is not the sum of two primes. This Turing machine T halts
iff Goldbach’s conjecture is false. Suppose T' has length at most n bits, and
somehow we know Q1.,. Using the procedure outlined above, we can find out

1376 the knowledge of the author, this problem is still open. Fermat’s even more famous
last theorem (there are no natural numbers z,y,z > 1 and n > 3 such that z" + y™ = 2") is
often cited in this context, but this theorem has finally been proved a few years ago.
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whether or not T halts, and hence whether or not Goldbach’s conjecture is true.
And similarly for all other statements that can be encoded in Turing machines
of length at most n. Accordingly, if some mathematician had a secret way to
access (2, and sufficient computing power to extract from this whether a given
Turing machine halts, he could answer any major question statable in terms
of the halting of Turing machines—and become the world’s most celebrated
mathematician overnight. Unfortunately, the non-computability of Q tells us
that there is no systematic way to access €.

Furthermore, it can be shown that € is a random infinite string, which will
become important in the next section: there is a constant ¢ such that

K(Qi.p) > n—c¢, for every n > 1.

This can be seen as follows. Given 2., we can compute the set T of all Turing
machines of length at most n that halt. There clearly exists a finite string x
that is not computed by any of the Turing machines in 7, and hence for which
we must have K (z) > n. Now, we can define a Turing machine T in which Q;.,
is somehow encoded, and which uses those n bits to exhibit one such . This T'
requires only K (£21.,) bits to encode Qy.,, plus some constant ¢ to compute an
x from €2y.,. Here ¢ does not depend on n. Since K(z) > n and T generates z,
we must have that

(T) = K(Q.p) + ¢ >n, for every n > 1.

Accordingly, by Theorem 3.7 we know € is random in the sense of passing all
sequential tests for randomness with respect to the uniform measure.

The above proof is related to the Richard-Berry paradoz, which asks for the
following number:

Let z be the smallest number not definable in less than 20 words.

We have just defined z in less than 20 words, despite the fact that z’s own
definition rules this out! Analogously, the set of all Turing machines of length
at most n bits specifies the set of of all strings “effectively definable” in at
most n bits. The Turing machine T mentioned above exhibits a string = that
is not definable in n or less bits. If its length [(T') were n bits or less, than we
had effectively defined z in n or less bits, which would turn the Richard-Berry
paradox into a formal contradiction. Hence [(T) must be greater than n, from
which the non-compressibility of the prefixes of €2 follows.

3.5 Godel’s Theorem Without Self-Reference

One further application of Kolmogorov complexity lies in a new proof of Godel’s
celebrated first incompleteness theorem [G6d31]. Godel’s theorem shows a fun-
damental limitation of computers: no single computer can fully capture mathe-
matics, in the sense of being able to prove every true mathematical proposition.
The philosophical relevance of this theorem shows up for instance in discussions
on the philosophy of mind, in particular on theories which take the mind/brain
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to be something like a computer. Do human beings have the same limitations as
computers? People like Roger Penrose [Pen89] answer negatively, and conclude
that the mind/brain must be something more than a computer. Many others,
such as Douglas Hofstadter [Hof79], hold on to the idea that the mind/brain is
a computer. For them, the importance of Godels’s theorem lies in self-reference,
in particular the analogy between the self-referring sentence used in the stan-
dard proof of Godel’s theorem, and the self-consciousness (the ability to think
about ourselves) that is a fundamental aspect of our main/brain. Hofstadter
and others take this notion of self-reference or self-consciousness to be more or
less the “essence” of mind, and consider Godel’s theorem important because it
tells us something fundamental about self-reference. What is interesting, how-
ever, is that Godel’s theorem can be proved without making use of self-referring
sentences at all, thus undermining the analogy with self-consciousness.

3.5.1 The Standard Proof

Let us first spell out Godel’s theorem and its “standard proof” in some more
detail. A full introduction to first-order logic lies beyond the scope of the present
thesis; we will only explain the things we need, referring to [BJ89] for the many
technical details swept under the rug here.

Consider the first-order language of arithmetic, the alphabet of which con-
sists of a constant a, a successor function symbol s, two binary function symbols
+ and -, the binary predicate symbol =, the usual quantifiers V (for all) and 3
(there exists), and connectives = (not), A (and), V (or), — (if...then), and «
(if and only if), and some variables and interpunction symbols. We assume the
reader to be familiar with the usual syntactical rules that specify how terms
and formulas are formed from this alphabet. We define a sentence as a formula
in which all variables are quantified.

Now consider the interpretation of this language which has the set of natural
numbers as domain, which assigns the number 0 to the constant a, the successor
function (+1) to s, the addition function to + and the multiplication function
to -, and the equality relation over the domain to =. In this interpretation,
every term in the language denotes a natural number: a denotes the number
0, s(a) denotes 1, s(s(a)) denotes 2, +(s(s(a)),s(s(a))) denotes 2 + 2 = 4,
etc. Furthermore, every sentence in the language has a truth wvalue in this
interpretation. For instance, Va Jy y = s(z) is true, because every number has
a successor, while +(s(a),s(a)) = s(s(s(a))) is false, because 1 + 1 does not
equal 3. This interpretation of the language of arithmetic is called the Standard
Model of arithmetic; in the sequel, when we speak of a “true” sentence, we mean
a sentence that is true in this Standard Model.

Let us denote the set of true sentences by 7. For every sentence ¢ in
the language of arithmetic, either ¢ or —¢, but not both, is a member of 7.
Thus T contains all and only true arithmetical statements. Since large parts
of mathematics can be translated into arithmetic, the contents of 7 are clearly
of the utmost importance. In fact, if we had efficient mechanical access to T,
many mathematicians would be out of work. How can we get a grip on 77 We
can, of course, do what arithmeticians have done for ages: simply try to prove
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or disprove some interesting statements with hitherto unknown truth values.
From a systematic point of view, however, it would be much more satisfactory
to have an adequate aziomatization of 7. An axiomatization is a recursively
enumerable set of sentences. We will call an axiomatization A sound if it implies
only true sentences (and hence no false ones), and we call A complete if it implies
all true sentences. Clearly, what we are looking for is an axiomatization which
is both sound and complete, i.e., which implies exactly the sentences in 7,
nothing more and nothing less. In case such an axiomatization exists, we would
be able to enumerate T then there is an algorithm which produces (ever longer
finite prefixes of) an infinite list containing all and only formulas from 7. If we
are interested in the truth value of a sentence ¢, we can simply enumerate this
list until we encounter ¢ (in which case ¢ is true) or =¢ (then ¢ is false). Thus
if we have a sound and complete axiomatization of 7, we effectively hold every
arithmetical truth in our hands!

Unfortunately, Godel’s theorem tells us that such an axiomatization does
not exist. The proof that Godel himself gave, which is repeated in some form
or other in most logic books, makes use of a self-referring sentence, similar to
the liar’s paradox (i.e., the mindboggling sentence “This sentence is false”).
Ignoring many technicalities, for which see [BJ89, Chapter 15], this proof runs
as follows.

Suppose A is an axiomatization. We will show that A cannot be sound and
complete at the same time. We can assign to each sentence in the language
its own unique natural number, the Gddel number of that sentence. Similarly,
we can assign Godel numbers to proofs (formal derivations from the axioms
of A)." Now suppose A is complete. Then we must be able to express each
recursive function. In particular, we can construct a formula P(z,y), with two
variables z and y, which is true just in case x is the Godel number of a proof
of the sentence of which y is the Godel number. Informally, P(z,y) means “x
is a proof (from A) of y”. Thus for a particular sentence S with Gédel number
s, S is provable iff 3x P(z,s) is true.

Now comes the really interesting and technical part: the diagonal lemma,
which we will not prove here [BJ89, Lemma 2, p. 173]. It says that for any
formula G(y), with variable y, there is a sentence L, with G6del number [,
such that A implies L «» G(l). Suppose we substitute “=3zP(z,y)” (“y is not
provable”) for G(y). Then we get that there is a sentence L, with Gédel number
I, such that A implies L <> =3z P(z,l). Thus A implies that L is true iff L is
not provable from A! Informally, L can be seen as saying “I am not provable
from A”. In order for A to be sound as well as complete, the true statements
should coincide exactly with the provable ones. But if L is true then L is not
provable, and if L is provable then L is not true! Hence A cannot be both
sound and complete at the same time.

14We assume some complete proof procedure is used, so the set of sentences provable from
A is exactly the set of sentences that are logically implied by A. That such complete proof
procedures exist is Godel’s completeness theorem from 1930.
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3.5.2 A Proof Without Self-Reference

In this subsection we will use Kolmogorov complexity to outline an alternative
proof of Godel’s theorem, due to Chaitin [Cha74, Cha75, Cha87], which does
not require the construction of a self-referring sentence. Apparently, though
self-reference can be used to establish Goédel’s theorem, it is not necessary for
its proof. This sheds new light on the many cases where Godel’s theorem is
invoked in discussions about self-reference and self-consciousness.

So, how can we prove Godel’s theorem without self-reference? By making
use of the incompressibility of the number 2 we saw earlier. We can define a
formula O(n,y), with two variables n and y, which is true iff y = Qy.,, i.e., y is
the first n bits of 2 (again, we leave out the technical details of the definition).
Thus exactly the following instances of O(n,y) are true:

O(la Q1:1)
O(2a QI:Q)
0(3, Q1:3)

(In order to improve readability, we have written 1 instead of the more correct
s(a) in the above formulas, 2 instead of s(s(a)), etc.) Now, we can show that
for every sound axiomatization A, there exists a number & such that A cannot
imply any true sentence of the form O(n,y) for n > k. In other words, the
prefixes of Q longer than k bits are “beyond the grasp of A”. From this Godel’s
theorem immediately follows, since each of the formulas

O(k+1,Q1.41)
Ok +2,Q1.512)
O(k 4 3,Q1.43)

will be true but unprovable!

Given a sound A, how can we prove the existence of such a k7 Suppose
such a k does not exist. Then for every k, there is an n > k such that A
implies O(n, Q1.,). There exists a Turing machine which enumerates all logical
consequences of A, including O(n,$y.,). Let T, be the shortest such Turing
machine, and b, be its length. Then we can construct from 7T}, a Turing machine
T! that generates 2i.,: this 7, simply enumerates all logical consequences of
A, using T),, until it finds some O(n,y), and then outputs y, which must be
Q... The length of T, will be at most b, +2log n+d, where d is some constant
independent of n (the 2logn term is due to the fact that T,, must know n in
order to know what it is looking for). Since 7T}, generates {21.,, we must have

K(Q.) < by +2logn + d. (3.1)

However, recall from Section 3.4.3 that because € is random, there is a ¢ such
that
K(Q.,) > n —c, for every n > 1. (3.2)

Now choose a sufficiently large m such that b,, + 2logm +d < m — ¢ and A
implies O(m, Q1. ). We must have K(Qy.,) < by, +2logm+d (because of 3.1)
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and K (Q1.,) > m — ¢ (because of 3.2), which is a contradiction. Hence there
must be a k such that A does not imply any of the true formulas:

O(k+1,Q141)
O(k 4 2,Q1.42)
Ok +3,Q1.513)

Note that while the standard proof provides us with only one example of a
true but unprovable formula, namely L =“T am unprovable from A”, the above
proof gives infinitely many such formulas.

In a nutshell: any axiomatization of arithmetic will contain only a finite
amount of information, and hence cannot capture all truths about the infinite,
incompressible string €.

3.5.3 Randomness in Mathematics?

Because Q is random, it contains no regularities whatsoever (at least, no algo-
rithmically detectable regularities): each of its infinitely many bits is in a way
independent of the other bits. This means that the only way to know these bits,
is to know them explicitly—no formal system is able to unveil each of them for
us. From this, as we saw, Godel’s theorem immediately follows. Our inability
to fully capture €2 in a formal system, no matter how complicated, shows a clear
limit of formal mathematical reasoning.

Now € is a rather outlandish real number, and one may wonder whether
mathematicians in general should be much bothered by its existence. However,
the number can be translated to the most elementary part of mathematics: el-
ementary number theory. Chaitin has constructed an exponential Diophantine
equation E, (an equation built up from nonnegative integer variables and con-
stants, and a finite number of additions, multiplications, and exponentations)
with one parameter n, such that E,, has finitely many solutions if the nth bit of
2 is 0, and E, has infinitely many solutions if this bit is 1 (see [LV97, pp. 224
225]). Since  is incompressible, each of its bits is independent of the others,
and hence the existence of finitely or infinitely many solutions of E, for some
particular n is as it were a “brute fact”. This is a very strong form of Godel’s
theorem: formal systems are not even powerful enough to fully capture this
single parameterized equation. Chaitin draws rather strong conclusions from
this fact:

“...we see that proving whether particular exponential Diophantine

equations have finitely or infinitely many solutions, is absolutely in-
tractable. Such questions escape the power of mathematical reason-
ing. This is a region in which mathematical truth has no discernible
structure or pattern and appears to be completely random. These
questions are beyond the power of human reasoning. Mathematics
cannot deal with them. Nonlinear dynamics and quantum mechan-
ics have shown that there is randomness in nature. I believe that we
have demonstrated in this book that randomness is already present
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in pure mathematics, in fact, even in rather elementary branches of

number theory.” [Cha87, p. 160].

Here Chaitin’s rhetorical step from “no single formal system can deal with all
solutions to this equation” to “mathematics cannot deal with them” seems a
rather hasty one, since no one has a precise definition of what ‘mathematics’ is.
It certainly seems that mathematics (in the vague sense of “the community of
mathematicians and their work”) cannot be equated with some single formal
system. Moreover, we can agree with Van Lambalgen that the analogy be-
tween {2’s randomness and physical randomness is “rather farfetched” [Lam89,
p. 1398].

Still, the intractability of even a single equation clashes with the usual way
we look at mathematics, as a supremely reasonable and reasoned science, where
the true facts are true for a reason. Chaitin even goes so far as to suggest that
the existence of such randomness should change the way mathematicians work.
Rather than formulating axiomatic systems and trying to prove conjectures
within these systems, Chaitin argues, mathematicians should work much more
in the way of physics. If some conjecture seems plausible but you are not able
to prove it (and, by Godel’s theorem, it may actually be true and unprovable
at the same time), you may tentatively accept it as a working hypothesis, as a
new axiom, experiment with it and see what happens. Indeed, this pragmatic
stance—despite being in strong contradiction with the Olympian image many
people hold of mathematics—seems to be forced upon parts of mathematics
where certain central conjectures turn out to be extremely hard to prove or
disprove. An example is the adoption of P # NP as a working hypothesis in
complexity theory (see footnote 16 on p. 39).

3.6 Summary

The Kolmogorov complexity K (x) of a string z is the length of its shortest effec-
tive description, that is, the length of a shortest Turing machine that generates
x, relative to some fixed universal Turing machine U. K (z) is independent (up
to a fixed constant) of the choice of U, it is non-computable, and converges
to Shannon’s measure of information content. It allows us to give an objective
formalization of the notion of simplicity: a string (theory, description) is simple
if it has low Kolmogorov complexity. Furthermore, the random infinite binary
strings can be identified exactly as those strings whose prefixes are incompress-
ible. Finally, Kolmogorov complexity enables us to show that Godel’s theorem
can be proved without self-referring sentences.
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Chapter 4

Occam’s Razor

4.1 Introduction

Occam’s Razor is one of the most important principles of method in science. In
its best known formulation, it says that “entities are not to be multiplied beyond
necessity”. This means that if we can explain some phenomenon in two ways,
the first postulating less entities than the second, then we should choose the
first. Somewhat more liberally, without focusing on “entities”, we may say that
Occam’s Razor tells us that among the theories, hypotheses, or explanations
that are consistent with the facts, we are to prefer simpler over more complex
ones. In other words, we should weed out all unnecessary complexity. (Other
names for this are the ‘principle of simplicity’ or the ‘principle of parsimony’).
How exactly are we to interpret this principle? We can discern at least three
different interpretations of the razor:

1. Methodological. In this interpretation, selecting simple theories is sim-
ply a part of the scientific method, perhaps because simpler theories are
easier to work with.

2. Ontological (or metaphysical). In this interpretation, Occam’s Razor
is a statement about the world, akin to the laws of physics: it says that the
world itself is relatively simple and well-organized, and preferring simple
theories is advisable precisely because the world itself is simple.

3. Aesthetical. In this third interpretation, beauty is taken to be a positive
indicator of truth: simple theories tend to be beautiful and beautiful
theories tend to be true, so selecting simple theories is a good thing.!

Note that the second and third of these are stronger than the first: if the
world itself is simple (ontological interpretation) or if simplicity indicates truth
(aesthetical interpretation), then it is clearly good method to favour simple

1

“Beauty is truth, truth beauty,” —that is all
Ye know on earth, and all ye need to know.

John Keats, Ode on a Grecian Urn.

71
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theories (methodological interpretation). The converse need not hold: the world
may be complex and the right theories may be rather ugly, while favouring
simple theories may still be good method, because simple theories are easiest
for us to deal with.

Occam’s Razor plays a prominent role in science, as well as in philosophy
of science and philosophy in general; the next section will illustrate this with
a number of examples. However, most of those who do the shaving seem to
accept the razor more or less as an article of faith, as something intuitively
acceptable, which need not or cannot be proved itself. This is a somewhat odd
stance. After all, the simplest theory consistent with the available data is not
guaranteed to be the right one, and indeed, in many cases it will be wrong. For
example, there once were times when circular planetary orbits were consistent
with the data available at that time. Would it not be simpler if the planets
moved in circles rather than approximate ellipses? Still they don’t. Or, as a
second example, the overly simple early model of the atomic nucleus: “... one
of the most striking examples of how physicists can temporarily be lead astray
by the selection of complexes from nature on grounds of simplicity. The case in
point is the model of the nucleus built of protons and electrons.” [Pai82, p. 326].
So following Occam’s Razor in these two cases would lead to false results.

Despite the fact that the razor may yield incorrect results in particular cases,
it still remains a quite successful guiding principle in science and elsewhere.
Accordingly, an important question is: what are the justifications for Occam’s
Razor? Of course, we can give a fairly shallow inductive argument to the effect
that the razor—in each of its three interpretations—has worked quite well in
the past, and hence will probably keep doing so in the future. This, however,
is rather circular: since considerations of simplicity (i.e., Occam’s Razor itself)
are crucial for induction, we cannot simply use an inductive argument to justify
Occam’s Razor.

Quine is one of the few who have looked a little closer at why we prefer
simple theories. His conclusions:

“We have noticed four causes for supposing that the simpler hy-
pothesis stands the better chance of confirmation. There is wishful
thinking. There is a perceptual bias that slants the data in favor of
simple patterns. There is a bias in the experimental criteria of con-
cepts, whereby the simpler of two hypotheses is sometimes opened
to confirmation while its alternative is left inaccessible. And finally
there is a preferential system of scorekeeping, which tolerates wider
deviations the simpler the hypothesis [for instance, changing the
simple value 5.2 to 5.23 is more likely to be seen as a refinement
(rather than a refutation) of an hypothesis than a change from 5.21
to 5.23, RAW]. These last two of the four causes operate far more
widely, T suspect, than appears on the surface. Do they operate
widely enough to account in full for the crucial role that simplicity
plays in scientific method?” [Qui76, p. 258]

Quine leaves the last question as a real question. But his conclusions are not
very encouraging as they stand, since they consider the success of simplicity
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(Occam’s Razor) to be mainly an artifact of the way we perceive and the way
we do science.

However, we can actually do much better than that: in certain formal set-
tings we can, more or less, prove that certain versions of Occam’s Razor work.
This is the topic of the present chapter, which is organized as follows. In the
next section, we start with a brief historical overview of Occam’s Razor and
some examples of its application in science and philosophy. Then in the three
ensuing sections, we provide three different formal justifications of Occam’s
principle. In each of these, simplicity is measured by means of Kolmogorov
complexity. Finally, in Section 4.6 we briefly look at what the theory of Kol-
mogorov complexity has to say on the very possibility of science.

4.2 Occam’s Razor

In this section we will first make some historical remarks on the razor, and then
describe some examples of its influence in science and philosophy.

4.2.1 History

An appropriate place to start the history of Occam’s Razor is, of course, William
of Occam himself (also sometimes spelled ‘Ockham’). Occam was an English
theologian who lived from c. 1285 to c. 1349. Despite his rather exciting life,
involving conflicts with the Pope and others, and his relatively modern phi-
losophy, Occam is nowadays mainly remembered for his razor. This is often
cited as “Entia non sunt multiplicanda sine necessitate” (entities should not
be multiplied without necessity; don’t postulate more things than you really
need). Notoriously, however, this formulation has not been found anywhere in
Occam’s actual writings, as was noted by Thornburn [Tho18].2 Some similar
formulations which can be found in Occam’s work are the following (these and
others are cited on pp. 115-117 of [Der93)):

Pluralitas non est ponenda sine necessitate. (A plurality should not
be postulated without necessity.)

Nulla pluralitas est ponenda nisi per rationem vel experiantiam vel
auctoritatem illius, qui non potest falli nec errare, potest convivi.
(A plurality should only be postulated if there is some good reason,
experience, or unfallible authority for it.)

Frustra fit per plura, quod potest fieri per pauciora. (It is vain to
do with more what can be done with less.)

However, formulations like these were not originally introduced by Occam him-
self; similar ones can be found in the writings of Occam’s teacher, Duns Scotus,
as well as in many other medieval philosophers/theologicians. Moreover, as
Wil Derkse shows, Occam’s Razor might as well be called Aristotle’s Razor,

2As far as we know, the term ‘razor’ was not used by Occam himself, either. The first
known to use the word (the French ‘rasoir’) in this connection was Pierre Bayle, in the index
of his Pensées from 1704 (see pp. 97-98 of [Der93]).
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because each of its various aspects—the methodological, the ontological, and
the aesthetical—can already be found in texts of Aristotle.?

To what extent is it still appropriate to call Occam’s Razor Occam’s? From
the above quotations from his work, it is fairly obvious that Occam accepted the
razor in its methodological interpretation. On the other hand, the aesthetical
aspect seems to be missing [Der93, p. 135]. It remains to examine to what
extent Occam acccepted the ontological interpretation of the razor. Admittedly,
Occam is well-known for his parsimonious, nominalist ontology. In particular,
he denied separate existence to various kinds of abstractions, such as species,
relations, causation, motion etc. This is usually taken to be the result of his
razor. However, one might question whether the sparseness of Occam’s ontology
is due to an application of the razor, or to other reasons. In fact, Roger Ariew
argues for the latter view. For Occam, the basic principle is not parsimony but
absolute divine ommnipotence. Now suppose, for instance, that relations could
have an existence separate from the relata. Since God is omnipotent, this would
imply that He could create a relation without creating the relata. But that is
absurd, so relations cannot be separate “things” [Ari76, p. 11]. In general,
for Occam God’s omnipotence bars the ontological assumption that the world
itself is simple, since God can—and sometimes does—make it more complex
than strictly necessary:

“God does many things by means of more which He could have done
by means of fewer simply because He wishes it. No other cause must
be sought for and from the very fact that God wishes, He wishes in
a suitable way, and not vainly.”

(Occam, as cited on p. 19 of [Ari76]).

Thus for Occam the razor is a methodological, but not an ontological principle:
“The razor must be viewed as a restriction on men, not on God or any of its
works” [Ari76, p. 24]. Weinberg reaches the same conclusion: “For Ockham
there is a principle of Parsimony which applies to human thought, not to the
universe” [Wei64, p. 239].

4.2.2 Applications in Science

Here we will illustrate the influence of Occam’s Razor in science with some
examples.

The starting point of modern science is usually taken to be the work of
Copernicus, Kepler, and Galileo, which put cosmology on its present heliocen-
tric feet. Each of these men had a strong preference for simplicity, and can be
regarded as adherent of the ontological interpretation of Occam’s Razor: nature
itself is simple and economical. For instance, Copernicus writes:

“Attacking a problem obviously difficult and almost inexplicable, at
length I hit upon a solution whereby this could be reached by fewer
and much more convenient constructions than had been handed

%See [Boa59] and [Der93, Chapter TI] for numerous illuminating citations from Aristotle’s
work.
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down of old, if certain assumptions, which are called axioms, be
granted me.” [i.e., Copernicus claims his heliocentic model requires
far fewer epicycles than Ptolemy’s geocentric one]

(Copernicus, as cited on p. 50 of [Bur80]).

Many historians and philosophers of science repeat the claim that Copernicus’
system is much simpler than Ptolemy’s (for instance [Bur80, p. 38]), stating that
Ptolemy requires some 80 epicycles, while Copernicus needs only 34.* However,
much like the usual wording of Occam’s Razor, this is a myth which has to be
taken “cum grano salis, in fact, with the whole saltcellar” [Coh85, p. 111].
Copernicus’ epicycles are not quite the same as Ptolemy’s, and there are many
different ways of counting and comparing the number of cycles each requires.
On quite a few of those counts, Copernicus’ system comes out more complex
than Ptolemy’s [Coh85, p. 119].°

The real simplification actually only occurred somewhat later, when Kepler
dropped Copernicus’ assumption that planetary orbits are basically circular
(with some additional epicycles thrown in to get empirical adequacy), in favour
of ellipsoid orbits. Like Copernicus, Kepler explicitly endorsed simplicity:

“Natura simplicitatem amat.” (Nature loves simplicity.)

“Natura semper quod potest per faciliora, non agit per ambages
difficiles.” (Nature does not use difficult roundabout ways to do
what can be done with simpler methods.)

(Kepler, as cited on p. 57 of [Bur80]).

And finally Galileo:

“Nature...doth not that by many things, which may be done by
few.” (Galileo, Dialogues Concerning the Two Great Systems of
the World, Salusbury translation, London, 1661, p. 99, as cited on
pp. 74-75 of [Bur80].)

“When, therefore, I observe a stone initially at rest falling from
a considerable height and gradually acquiring new increments of
speed, why should I not believe that such increases come about in
the simplest, the most plausible way? On close scrutiny we shall
find that no increase is simpler than that which occurs in always
equal amounts.” [i.e., gravitation causes constant acceleration]
(Galileo, as cited on p. 138 of [Der93].)

Isaac Newton hugely contributed to the simplification of physics by bringing
very different phenomena (falling bodies, the tides, the movements of the plan-
ets, etc.) under the same relatively simple system of general laws, inventing the
required mathematics along the way. He, like his predecessors, was explicitly
guided by a preference for simplicity. In the third edition of his Philosophiae

*Copernicus himself claimed greater simplicity for his system in his early Commentariolus
(1510-1514), but no longer in his later and more famous De revolutionibus orbium coelestium
(1543).

% And his system wasn’t more empirically accurate than Ptolemy’s, either [Coh85, pp. 116
118!
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Naturalis Principia Mathematica, he included the following as the first of the
“Regulae Philosophandi”:

“We are to admit no more causes of natural things than such as
are both true and sufficient to explain their appearances. To this
purpose, the philosophers say, that nature does nothing in vain,
and more is in vain when less will serve; for nature is pleased with
simplicity, and affects not the pomp of superfluous causes.”
(Newton, Principles, 11, p. 314, as cited on p. 218 of [Bur80].)

This rule of Newton’s is just another formulation of Occam’s Razor.

Apart from Newton, Albert Einstein is probably the most important physi-
cist of all times. Not only is he arguably this century’s greatest scientist (and
certainly the most idolized one), he also was one of those who were most influ-
enced by simplicity. As Derkse writes: “Albert Einstein can be considered as a
paradigmatical example of a great scientist who valued simplicity heuristically,
sought for simplicity methodologically and believed in simplicity ontologically”
[Der93, p. 143]. This is a recurring theme in Abraham Pais’ superb biography
of Einstein. In fact, Pais concludes that simplicity was the most important
driving force behind Einstein’s development of relativity:

“Finstein was driven to the special theory of relativity mostly by
aesthetic arguments, that is, arguments of simplicity. This same
magnificent obsession would stay with him for the rest of his life. It
was to lead him to his greatest achievement, general relativity, and
to his noble failure, unified field theory.” [Pai82, p. 140]°

This is corroborated by many of Einstein’s own writings, particularly those
from his later years, for instance:

“I do not consider the main significance of the general theory of
relativity to be the prediction of some tiny observable effects, but
rather the simplicity of its foundations and its consistency.”
(Einstein, as cited on p. 273 of [Pai82].)

As with Newton and the others, the preference for simplicity is not merely a
methodological or heuristical tool, but is taken to correspond to simplicity in
the world itself:

“In my opinion, there is the correct path and ... it is in our power
to find it. Our experience up to date justifies us in feeling sure that
in nature is actualized the ideal of mathematical simplicity.”
(Einstein, as cited on pp. 466-467 of [Pai82].)

Apart from adopting the ontological form of the razor, Einstein and many other
scientists also followed its aesthetical interpretation. For instance, Paul Dirac
writes:

%Notice that Pais seems to identify ‘aesthetic arguments’ with ‘arguments of simplicity’.
As far as science is concerned, he is probably to a very large extent in the right. However, in
other areas such as art, equating aesthetics and simplicity would be too simple.
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“It is more important to have beauty in one’s equations than to
have them fit experiment. [...] It seems that if one is working from
the point of view of getting beauty in one’s equations, and if one
has really a sound insight, one is on a sure line of progress.”
([Dir63, p. 47], as cited on p. 15 of [McA96].)

We may conclude that some of the greatest advances in modern science—
Copernicus’ heliocentric model, Newton’s theory of gravition, and Einstein’s
theory of relativity—were highly influenced by the value those scientists them-
selves bestowed on simplicity as a virtue of theories and as an indicator of the
truth of those theories. In sum, many of the greatest scientists held Occam’s
Razor in its ontological as well as in its aesthetical form, believing in the sim-
plicity of the world and the truth-indicating properties of beauty.

4.2.3 Applications in Philosophy

Whether or not philosophy is “continuous” with science (and what exactly this
might mean) is a debatable issue, which we shall not go into here. One impor-
tant feature that philosophy shares with science is the importance it places on
simplicity as a desirable feature of theories and explanations, and accordingly
on Occam’s Razor. Particularly in our century, many a philosopher invested a
lot of time and effort in Occam’s Razor. For instance, Bertrand Russell used
the razor so extensively that Passmore calls it “his main philosophical occupa-
tion” [Pas67, p. 229]. In this subsection we will mention some applications of
Occam’s Razor—mainly in its ontological form—in philosophy.

The first and foremost application in philosophy lies in the philosophy of
science: Occam’s Razor closes the gap between observation and theory. What
is this gap, how does it arise, and how can it be closed? The available data—
observations, experiments, etc.—constitute the raw material on which a scien-
tific theory is to be built. However, usually more than one theory is consistent
with the available data: the data underdetermine the theory. That is, usually
we can construct many—mutually inconsistent—theories to explain the same
set of observational data, and the data do not provide us with further criteria
to choose between these various theories. Thus the data leaves open a lot of
possible choices. Now Occam’s Razor closes this gap by stating that of all the-
ories consistent with the data, we are to choose the simplest one. Accordingly,
if we accept Occam’s Razor (in some precise form, where ‘simplicity’ is measur-
able), there is hardly any underdetermination left!” Informally, we might even
say that the conjunction of the observational data and Occam’s Razor entails
which theory we are to adopt. Thus Occam’s Razor may be seen as one of the
cornerstones of science.

Our second example concerns logical positivism, the logico-scientifically min-
ded movement that sprung from the Wiener Kreis and included people like
Schlick, Carnap, and Reichenbach. Following the lead of Wittgenstein’s Trac-
tatus 3.328 (“Wird ein Zeichen nicht gebraucht, so ist es bedeutungslos. Das ist

"The only case where some underdetermination remains, is where the simplest theory does
not exist, i.e., where several among the consistent theories share the lowest complexity.
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der Sinn der Devise Occams.”)®, they attempted to cut away metaphysics by
showing its propositions to be meaningless. If some term or proposition has no
testable links to our experiental world, they contended, it can only be used in
empty babble, but not in any proper, scientifically relevant way. Accordingly,
we can do without it, and by Occam’s Razor we should do without it. Since
the logical positivists thought they could show all metaphysical terms—such
as ‘God’, ‘spirit’, ‘Ding an sich’—to be without testable empirical content, this
allowed them to cleanly shave away all of metaphysics.

Our third example is from the philosophy of mind. Here Occam’s Razor
is used to argue against dualism, the position which says that the physical
and the mental are different kinds of “stuff”. Are statements like “I am in
pain” about something irreducibly mental, or are they actually about material
brain processes? A number of materialists—mainly Australian ones, for some
reason—have argued for the latter [Pla95, Sma95]. Why? “Mainly because of
Occam’s Razor” [Sma95, p. 118]. The Australian strategy is to show that mate-
rialism, which says that the mental is identical to a brain process, is consistent
with the facts and much simpler than competing positions like dualism. After
all, materialism requires only one kind of stuff, dualism requires two (which,
moreover, do not seem to fit together very well). An application of Occam’s
Razor then suffices to eliminate the competition, leaving materialism as the glo-
rious winner. We can see Occam’s Razor at work in the following quote from
the notable materialist Jack Smart:

“If it be agreed that there are no cogent philosophical arguments
which force us into accepting dualism, and if the brain process the-
ory and dualism are equally consistent with the facts, then the prin-
ciples of parsimony and simplicity [= Occam’s Razor| seem to me
to decide overwhelmingly in favour of the brain-process theory.”
[Sma95, p. 130].

If Occam’s Razor helps us decide between dualism and materialism, it is a very
sharp and powerful razor indeed!

A fourth example is in the field of ontology. Here trope theory has fairly
recently been put forward as an alternative to the ancient substance/property
ontology [Wil66, Cam90, Bac88]. According to the latter, there are two separate
ontological categories: the world consists of things (substances), which have
properties. Trope theory, on the other hand, argues that there is only one
category, namely tropes. A trope is in a way the intersection of a substance and
a property: it is a particular property of a particular thing, like the greenness of
this particular pea. According to trope theory, tropes are the only ontological
category: the world consists of tropes, all tropes, and nothing but tropes. Given
that one ontological category is simpler than two, Occam’s Razor induces us to
favour trope theory over the substance/property ontology.”

8A similar attitude also appears in the later Wittgenstein, for instance “Hier mdchte ich
sagen: das Rad gehort nicht zur Maschine, das man drehen kann, ohne da Anderes sich
mitbewegt” [With3, §271].

9However, it should be noted that this example differs somewhat from the others. Namely,
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Our fifth and final example uses Occam’s Razor as an argument for atheism,
or at least for agnosticism (both atheism and agnosticism would horrify Occam
himself!). Basically, the argument is that science is sufficient to explain the
phenomena, and hence there is no need to invoke the existence of a God, in some
form or other, as an additional explanatory factor. But if we do not need God
in our explanations, Occam’s Razor tells us that we should not postulate His
existence, thus making us either an atheist (if we postulate His non-existence)
or an agnostic (if we suspend judgment as to His existence).

As a final comment on the application of Occam’s Razor, it should be noted
that such razing arguments are not conclusive, in the sense that they do not
establish something beyond any doubt. In each of the five above examples,
Occam’s Razor provides one argument, one good reason for the simpler position,
but not a conclusive proof. After all, Occam’s Razor cannot be conclusive
always, because sometimes the simplest explanation or hypothesis simply is not
the right one and turns out to be false later on. Nevertheless, arguing for some
position on the basis of Occam’s Razor is not futile or empty either, because
as we will see, one can establish a positive correlation (though clearly not a
perfect one) between simplicity on the one hand, and “truth” or adequacy on
the other. Thus, given competing positions, it still makes sense to favour the
simpler.

4.3 Occam and PAC Learning

The examples given in the previous section are probably sufficient to convince
the reader of the central place Occam’s Razor holds in science and philosophy.
In this and the following two sections, we will see how we can mathematically
formalize and “prove” versions of Occam’s Razor. Each of these three versions
is closer to the methodological than to the ontological interpretation of the ra-
zor, though they also capture the aesthetical interpretation to the extent that
simplicity can be equated with beauty. Clearly, in order to formalize Occam’s
Razor, we need some quantitative measure of simplicity. Not surprisingly, Kol-
mogorov complexity will serve this role in each of the three settings. The first
of these, the topic of the present section, deals with PAC learning.

Occam’s Razor states that the simplest consistent hypothesis should be
selected. However, in many cases it is computationally rather costly to really
find the simplest hypothesis, while it is often much easier to find a relatively
simple hypothesis. For instance, given two finite sets S and T of sentences
(known to be grammatical and ungrammatical, respectively), it is not very
difficult to find a Deterministic Finite Automaton (or a regular grammar) which
generates a language L that contains S and is disjoint from T, whereas finding
the smallest such DFA is known to be N'P-complete, and hence probably not
efficiently solvable [GJ79, p. 267]. Accordingly, we will weaken Occam’s Razor
somewhat to the following:

Selecting relatively simple hypotheses is a good strategy.

the choice of substance/property versus a trope ontology is more like a choice of conceptual
scheme (or language), than a choice between competing empirical hypotheses.
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Below we give a theorem which can be seen as a formal counterpart to this
version of the razor within the PAC learning framework. Here we will assume
some representation R, without explicitly mentioning R each time. Further-
more, we assume R as well as the domain have a binary alphabet {0, 1}, so all
names of concepts and all examples are binary strings.

An Occam algorithm is a learning algorithm that follows Occam’s preferred
strategy: it reads examples and outputs a consistent hypothesis that is signifi-
cantly simpler than those examples. The main result of this section will be that
an efficient Occam algorithm is an efficient PAC learning algorithm. Informally
this means that if we follow Occam’s Razor, then we thereby automatically learn
probably approximately correctly!

There exist several subtly differing versions of the Occam’s Razor theo-
rem. It was originally proved by Blumer, Ehrenfeucht, Haussler, and Warmuth
[BEHWS8T], but see also [AB92, Theorem 6.5.1], [Nat91, Theorem 3.3], [KV94,
Theorems 2.1 and 2.2], [LV97, Theorem 5.4.1]. Most of these results measure
the simplicity of a hypothesis by the length of the name the learning algorithm
outputs. [LV97] is the only one that uses the more sophisticated approach
of measuring simplicity by the Kolmogorov complexity of that name. Unfor-
tunately, the PAC-framework used there is somewhat simpler than the one
adopted by us (in particular, it takes 6 = £, and there is no length parame-
ter n). Accordingly, we will have to prove a version of our own, adapting and
combining some definitions and proofs that can be found in the literature.

Formally, an Occam algorithm is defined as an algorithm that, when given a
set of examples, outputs the name of a concept (consistent with those examples)
with “small” Kolmogorov complexity:

Definition 4.1 Let F be a concept class. A learning algorithm L for F is
called an Occam algorithm if there exist constants 0 < a < 1 and § > 1 such
that, whenever L is given a set S of m examples for a target concept f, L
outputs a name r of a concept g satisfying

e g is consistent with §.
o K(r) < (mn)*min(f)?, where n is the length parameter.
Moreover, L is a polynomial-time Occam algorithm if also

e There is a polynomial p(n,m) such that, given length parameter n and
m examples, L needs at most p(n,m) steps.

O

The interesting and perhaps puzzling part of this definition is the condition
K(r) < (mn)®min(f)P. It says that the Kolmogorov complexity of the output
should be bounded by a polynomial in mn (the number of examples times
the maximal length of examples) and [,,;, (f) (the shortest name of the target
concept f). If we have a set S of m examples, each of length at most n bits, then
we can often simply construct a consistent hypothesis by recording the given
examples and their labels explicitly, and assigning all other, unseen elements
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of the domain the label 0. Since each example is at most n bits, recording m
examples and their labels takes roughly mn bits. This concept represents the
examples explicitly, but does not really “learn” anything. However, because a <
1 and L, (f)? and n are fixed, for sufficiently large m we get (mn)®l,imn (f)? <
mn, so an Occam algorithm will have to find a ¢ which is simpler than the
concept that simply records the given examples. Accordingly, for sufficiently
large m an Occam algorithm will have to compress the data: the output concept
should be simpler than the examples themselves.

The following theorem shows that Occam’s Razor really works, in the sense
that an Occam algorithm can meet the requirements of a PAC algorithm. In
order not to impair readability, we have deferred the very technical proof to the
appendix of this chapter.

Theorem 4.1 Let F be a concept class. If there is a polynomial-time Occam
algorithm for F, then F is polynomial-time PAC learnable.

Cutting through the above notation, the result says the following: if we
can follow Occam’s Razor in the sense of having an efficient algorithm that
selects short hypotheses, then this algorithm is automatically guaranteed to
learn probably approximately correctly. In less words: efficiently selecting short
hypotheses is a good strategy, and we can formally prove this in the PAC
framework!

It is important to note carefully what has and has not been proved here.
What has been proved, is that if we can follow Occam’s Razor in the sense
of having an efficient Occam algorithm, then this algorithm will be a “good”
(i.e., PAC) hypothesis selector. What has not been proved, is that we can
always follow Occam’s Razor. One can easily think of cases (for instance, if
the domain X consists of all finite binary strings, and as concept class we have
F = 2%) where a sufficiently long given sequence of m examples, each of length
n, has a Kolmogorov complexity of about mn. In such cases, compression of
the examples to within the bound K () < (mn)®lmin(f)? < mn will not always
be possible; no Occam algorithm will exist in this case. In sum: we can prove
that following Occam’s Razor is a good thing, but in some cases it may not be
possible to implement the razor.'®

4.4 Occam and Minimum Description Length

Of the three formalizations of Occam’s Razor discussed in this chapter, the
Minimum Description Length (MDL) principle probably comes closest to our
informal understanding of Occam’s Razor. It was invented by Jorma Rissa-
nen [Ris78, Ris89], motivated by Ray Solomonoff’s work (to be described in the
next section) and tells us to select the theory which most compresses the data:

"9There actually exist some weak converses to related forms of this theorem (see [KV94,
Exercises 2.3 and 4.2] and [Nat91, Theorem 3.4]), which show that, under certain conditions,
classes that are efficiently learnable are also learnable using Occam algorithms. Unfortunately,
we have not been able to prove an exact converse to our present version of the theorem.
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Given a sample of data and an effective enumeration of the appro-
priate alternative theories, the best theory is the one that minimizes
the sum of

e the length (in bits) of the description of the theory;
e the length (in bits) of the data when encoded with the help of
the theory.

The idea here is that we should balance between putting too much and too
few detail in the theory. In the most likely cases, the data contain a more or
less regular pattern with some additional noise (irregularities due to measuring
errors, etc.). If we tried to include the noise in the theory, the description of the
theory would get rather large and detailed, while the length of the data encoded
with the help of the theory would get smaller, since the data can then already
be reconstructed largely from the theory itself. However, in this case we would
probably overfit the data, i.e., we would lose predictive power by focussing too
much on the accidental noisy details of the given data. On the other hand, we
can minimize the length of the theory by including all the details of the data in
the second part. But in this case, we would have a virtually empty theory and,
again, no predictive power. The right approach lies somewhere in the middle,
and achieves predictive power by balancing the descriptions of the theory and
data by minimizing the sum of their lengths.

To the extent that Occam’s Razor is intuitively acceptable, the MDL prin-
ciple seems acceptable as well. In fact, however, under certain conditions it
can be proved that MDL does indeed work well. Suppose we want to explain
some data D. Let H = {Hy, Hy,...} be the (finite or countably infinite) set of
all possible hypotheses or theories. We assume each possible D and each H;
is somehow encoded as a binary string. These H; are assumed to be exhaus-
tive as well as mutually exclusive. Furthermore, we assume each H; induces
a probability distribution Pr(-|H;) on the possible data D, so it makes sense
to speak of the conditional probability Pr(D|H;) that D arises, given that H;
is true. We will asume each Pr(-|H;) to be recursive. For a recursive prob-
ability distribution P, we define K(P) to be the length of a shortest Turing
machine that computes P(z) given z, for all z. Let P be an a priori probabil-
ity distribution on the possible hypotheses (3 ey P(H) = 1). P(H;) can be
interpreted as the probability we are willing to confer upon H; before having
seen any data. P can be used to define an a priori probability on the possible D:
Pr(D) = Y gey Pr(D|H)P(H). This is the sum, over all H, of the probability
that H is true and causes D. If both Pr and P are computable, then Pr(D)
can be computed (or approximated if # is infinite).

So, we have a prior distribution on the hypotheses and on the data. Now
we observe the data D, which induces us to adjust the probabilities we confer
upon the different hypotheses. For example, if Pr(D|H;) = 0, then observing
D effectively rules out the possibility that H; is the right hypothesis, and we
can put the probability Pr(H;|D) = 0: given D, we know H; is impossible.
Similarly we can update the other probabilities, incorporating the fact that
D was observed. Bayes’s Theorem or Bayes’s Rule (which is actually due to
Laplace rather than Bayes) is basically a rule which tells us how to update the
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a priori probability P(H) to an a posteriori probability Pr(H|D):

Pr(D|H)P (H)

P(H|D) = = s

This rule gives a mathematically sound way to update the probabilities con-
ferred upon the hypotheses, given that D has been observed. The best hypoth-
esis H is the most probable one, given D, i.e., the H that maximizes Pr(H|D)
(there may actually be several different such H, so we should rather speak of a
best hypothesis rather than the best hypothesis).!!

This approach gives a sound and objective way to select an optimal hypoth-
esis, and if we have P (as well as the resources to do all required computation)
then this approach is the best way to select a hypothesis. Unfortunately, the
problem is that we usually will not know P. Thus the Bayesian approach is an
optimal but usually unworkable hypothesis selection scheme.

However, using Kolmogorov complexity we can show that the MDL principle
is often a very good approzimation to the above Bayesian approach. First, if we
take negative logarithms on both sides of Bayes’s Rule, we get the equivalent

—logPr(H|D) = —log P(H) — log Pr(D|H) + log Pr(D). (4.1)

Since log Pr(D) is fixed independent of H, choosing a hypothesis H which maz-
imizes Pr(H|D) is equivalent to choosing an H which minimizes —logP(H) —
log Pr(D|H). Thus hypothesis selection according to Bayes’s Rule is equiva-
lent to selecting a hypothesis H that minimizes —log P(H) — log Pr(D|H). Of
course, the same old problem still obtains: we do not know P(H).

Now suppose we replace this unknown prior P by the following universal

distribution:
m(z) =2~ K@),

This distribution assigns each natural number or binary string x a non-zero
probability.'> The universal distribution incorporates Occam’s Razor by giv-
ing simple hypotheses high probability: if K(H) is small, then m(H) will be
relatively high. This m is enumerable, but not recursive. It has the property
that for every enumerable probability distribution P (in particular, for every
recursive P), there is a constant ¢ such that for every x we have cm(z) > P(x).

What happens if we replace P by m? Let us first impose three conditions:
(1) we restrict attention to recursive P, (2) the “true” hypothesis H is P-
random, and (3) the data D is Pr(-|H)-random. The latter two conditions

Y An alternative is to use the Mazimum Likelihood principle, which selects a H with highest
Pr(D|H). In other words, this principle favours a hypothesis that makes the data most
probable. However, this principle may give strongly counterintuitive results. For instance, the
principle may well select D as its rather useless hypothesis, because Pr(D|D) = 1 is maximal.

21t can be shown that >, m(z) < 1[LV97, Lemma 4.3.2], so m is not quite a probability
distribution. However, we can construct an additional dummy object v and define m(u) =
1— >, m(z) in order to make probabilities sum to one.

It should be noted that we attach no “objective” character to the universal prior probability;
we do not consider it the “true” probability of theories (it is not even clear what this might
mean). Rather, we take an instrumentalist stance, satisfying ourselves with the conclusion
that using m as a prior gives good results.
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informally mean that H is a “typical” hypothesis for P, and D is “typical”
data for H. Since an overwhelming majority of all strings will be “typical” in
this sense, this is not a very strong restriction.'® Under these conditions it can
be shown that the following inequality holds [LV97, p. 357]:

K(H) — K(P) < —log P(H) < K(H). (4.2)

This means that —logP(H) and —logm(H) = K(H) are equal to within a
fixed constant (namely K (P)), which is independent of H.

Similarly, if we define K(z|y) as the length of a shortest Turing machine
that generates x, given string y on a special input tape, then, under the above
conditions, —log Pr(D|H) and K(D|H) are approximately equal:

K(D|H) — K(Pr(-|H)) < —logPr(D|H) < K(D|H). (4.3)

As we saw, our original aim to maximize Pr(H|D) is equivalent to mini-
mizing — log P(H) — log Pr(D|H). Since K(H) approximates — log P(H) and
K(D|H) approximates — log Pr(D|H), minimizing —log P(H) — log Pr(D|H)
now turns out to be approximately equivalent to minimizing K (H) + K (D|H).
That is, we want to select a H which minimizes the description length of H and
the description length of the data D, encoded with the help of H. But this is
just what the MDL principle says! Therefore the Bayesian approach, which is
optimal but infeasible because we do not know the prior P, can be approximated
using Kolmogorov complexity, which gives us the MDL principle.

How good an approximation is MDL to the Bayesian selection scheme? If
we define (P, H) = K(Pr(-|H))+ K(P) and add up inqualities 4.2 and 4.3, we
obtain the following:

K(H)+ K(D|H) —a(P,H) < —logP(H) —logPr(D|H) < K(H) + K(D|H).

We call an H admissible if it satisfies this inequality. As we can see, if this
inequality holds and «(P, H) is small, then K(H)+ K(D|H) and —logP(H) —
log Pr(D|H) will be close to each other, and the MDL principle will provide a
good approximation to Bayesian hypothesis selection. The following is Theo-
rem 5.5.1 of [LVI7]:

Theorem 4.2 Let a(P,H) be small. Then Bayes’s Rule and MDL are op-
timized (or almost optimized) by the same hypothesis among the admissible
H'’s. That is, there is one admissible H that simultaneously (almost) mini-
mizes both —log P(H) —log Pr(D|H) (selection according to Bayes’s Rule) and
K(H)+ K(D|H) (selection according to MDL).

131t is not a very surprising requirement that the data should be random or typical in order
for MDL to work. After all, non-typical data may well be very misleading. For example,
suppose we are given some data pertaining to the movements of the planets (a number of
points in space and time). Since the planetary orbits are not circular, typical data will be
inconsistent with the theory that planets move in perfect circles around the sun. However, if
we are given non-typical data which are consistent with this theory, then we cannot be blamed
for jumping to the simple but wrong conclusion that planets move in circles. Analogously,
MDL’s preference for simple theories may go wrong if the given data is non-typical and just
happens to be consistent with one or more very simple but wrong theories. MDL would select
an overly simple and incorrect theory, but it cannot be blamed for this: if the right information
just isn’t there, MDL can’t be expected to extract it from the data.
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Thus Occam’s Razor in the form of the MDL principle can be justified
if the true hypothesis and the data are typical. Notice, however, that the
non-computability of Kolmogorov complexity makes MDL in this form still
beyond algorithmic means. The problem now is no longer that we do not know
the prior P, but that we generally cannot compute the description lengths
K(H) and K(D|H). Therefore most “real-world” versions of MDL restrict the
domain of application such that description lengths are (efficiently) computable.
Nevertheless, despite the fact that Occam’s Razor in its MDL-form is not fully
implementable, the above results do vindicate the razor by showing that if we
somehow follow the razor, we will probably get good results.

4.5 Occam and Universal Prediction

In this section we will not be concerned with choosing a good theory or hy-
pothesis, but with predicting the future from the past. Here we will describe
Ray Solomonoft’s prediction procedure, for which Kolmogorov complexity was
initially introduced [Sol64].!4

First, let us mention explicitly that optimal prediction does not coincide
with prediction according to the best hypothesis H. In fact, sometimes predic-
tion can yield better results if we refrain from explicitly selecting one hypothesis
among the many possibilities. Consider an unfair coin which has an unknown
chance p of coming up ‘heads’. Suppose there are only two hypotheses possible,
H, says that p = p; = 1/3 and Hj says p = ps = 2/3, and we have determined
that the probability of H; being true is 2/3, the probability of Hs is 1/3. Then
we clearly should select H; as the best (most likely) hypothesis. Yet the best
prediction for p, given our knowledge, is 2/3 - p1 + 1/3 - po = 4/9. If we were
to bet against this coin, then the prediction p = 4/9 would be more profitable
than the Hj-prediction p = 1/3. Thus the best hypothesis need not give the
best prediction.

The formal setting in which the prediction will take place is simple, abstract,
and austere. We are given a finite initial segment z of a binary sequence, and
our aim is to predict how the sequence will continue. Intuitively, we can think
of the given initial segment x as a description of relevant aspects of the past,
and our predicting the continuation of the sequence is like predicting the future.
Where does this  come from? Informally, it may be seen as the outcome of
past observations or experiments. Formally, we assume it is drawn according
to some unknown semimeasure p on the set of infinite binary sequences.

What is a semimeasure? Recall from Section 3.4.2 that a measure on {0, 1}>°
(the set of infinite binary sequences) is a function p, from {0, 1}* to [0, 1], such
that:

p(e) = 1.
p(z) = p(z0) + p(zl).

"An interesting historical point for the relation between philosophy and Kolmogorov-
complexity-based prediction: during his physics studies at the University of Chicago in the
late 1940s, Solomonoff followed a course given by Rudolf Carnap, who was at that time very
active in research on induction and prior probabilities.




86 CHAPTER 4. OCCAM'’S RAZOR

Here p(z) is interpreted as the probability that a string from {0,1}°° starts
with z. A semimeasure needs to satisfy only the following weaker conditions:

pu(e) < 1.
p(z) > p(20) + p(zl).

Clearly, a measure is a semimeasure, but not always vice versa.

As mentioned, our given z is a description of (parts of) the world, and we
assume this world to behave in accordance with some unknown semimeasure p,
which assigns a number pu(z) to every finite binary string z. Given u, we can
define the conditional semimeasure u(y|z) as

15

)
p(y|z) @)

Intuitively, u(y|z) is the “probability” that, given an initial segment x, the
sequence will continue with y (it’s not quite a probability, because the proba-
bilities need not sum to one in a semimeasure and need to be renormalized, but
it is easiest still to think of u(z) and u(y|z) as probabilities). So, for example,
if £(1010) = 0.5 and ©(10100) = 0.2, then (0(1010) = 0.2/0.5 = 0.4. If, more-
over, 11(1/1010) = 0.1, then we can interpret this as an 80% chance that the next
bit will be a 0 and a 20% chance that it will be 1, given 1010 as initial segment.
Note that this setting is able to incorporate a non-deterministic world.

Given z, we want to predict how the sequence continues, in such a way that
our predictions do not diverge too far from the true but unknown distribution p.
Let us restrict attention to predicting only the next bit of the sequence (further
bits can then be predicted by reiterating the procedure). As our world may be
probabilistic (non-deterministic), it is best if our predictions are probabilistic
as well: rather than definitely predicting “the next bit will be a 0”, we should
make predictions of the form “with probability 0.6, the next bit will be a 0”.
How can we make a good prediction in a uniform way? In general, we can’t:
if we allow arbitrary semimeasures g as our “world”, then basically anything
can happen, and there is no prediction method that will work well universally.
However, now suppose we restrict attention to recursive p’s, that is, to p’s for
which there is an effective procedure to calculate u(z) for every z. This is not
a very strong restriction; for example, all usual distributions one finds in books
on statistics (the normal one, the uniform one, the exponential one, etc.) are
recursive.

Now, almost miraculously, under this mild restriction we can use a single
semimeasure, the universal semimeasure M, to predict how the sequence z will
continue, no matter what the actual p is! Informally, this universal M in a
way “combines” all enumerable semimeasures, weighed according to their Kol-
mogorov complexity. We know what the Kolmogorov complexity of a binary

15The fact that probabilities need not sum to one in a semimeasure is a technical con-
venience. One can always “renormalize” a semimeasure to a measure. For example, if we
are given x as initial segment, and we have p(x0) = 0.3 and p(zl) = 0.2, then we can use
P(20) = 0.6 and P(z1) = 0.4 as probabilities, which sum to one. However, in general the
measure obtained by renormalizing an enumerable semimeasure need not be enumerable itself
(an example is M, defined below).
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string is, but what is the Kolmogorov complexity of an enumerable semimea-
sure? One can effectively enumerate all enumerable semimeasures—more pre-
cisely, the Turing machines that enumerate them—in a sequence p1, po, us, . - .
(see the proof of Theorem 4.3.1 of [LV97]). Given a particular enumeration like
this, we can define K (u;) = K(i): the complexity of an enumerable semimea-
sure is the complexity of its index in the enumeration (after all, given a Turing
machine that constructs the enumeration, all we need in order to be able to
construct u; is its index ). Now M is defined as the weighed sum of all these

i
M(z) = 3 2750, (),
n=1

Each p; is a possibility for the true p (the one from which z has been drawn),
and hence may be seen as a possible hypothesis. The above definition of M in-
corporates Occam’s Razor in giving preference to simple hypotheses: the simple
ones (the ones with low K (;)) are considered more preferable, and are assigned
high weight 27K (#) accordingly. The universal M is an enumerable semimea-
sure, but it is not recursive. ‘Universal’ here means that M multiplicatively
dominates all enumerable semimeasures: for every such semimeasure y;, there
is a constant ¢; such that ¢;M(z) > p(z), for every z.'® Namely, if we put
¢; = 2K0) then ¢;M(z) = ¢; 0%, 27 Kbn) () > ;2 KW () = (), for
every z. (Actually, the particular M that we defined here is just one example
of a universal distribution; there are others with the same property.)

To repeat our prediction problem once more: we get an initial segment z,
and we want to predict the next bit, which is either 0 or 1. Let us look at
predicting the probability of getting a 0 as next bit. The true prediction would
of course be p(0]z). But, alas, y is not known, and there would not be much
to learn if it were. What happens if we use M(0|z)(= M(z0)/M(z)) as our
prediction? Surprisingly, it can be shown that this gives a very good prediction
indeed, still assuming p to be recursive. How good a prediction is M(0|z),
compared to u(0]z)? Suppose our initial segment x has length n — 1, and we
want to predict the nth bit. The following S,, measures the sum of the errors
for all possible z of length n — 1 (we square the errors in order to avoid positive
and negative errors to cancel out each other):

Definition 4.2 5, is the u-expected square of the difference in u-probability
and M-probability of 0 occurring at the nth prediction:

Sn= Y w@)(M(O]z) - pu(0)z))>*.
l(x)=n—1

O

The following result [LV97, Theorem 5.2.1] tells us that M is a good pre-
dictive tool for any recursive .

16 This is analogous to the universal distribution m of the last section. However, note the
distinction between m and M: m assigns a probability to finite strings, while M assigns a
probability to finite prefixes of infinite strings.
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Q

Theorem 4.3 If i is a recursive semimeasure, then > o2 1 Sy, < 0.51n2-K () (
0.35K ().

This means not only that the error S, converges to 0, but also that it
does so rather fast: S, must converge to 0 faster than 1/n does, in order for
S 18, <0.5In2 - K(u) to hold.'”

It is instructive to see exactly in which way Occam’s Razor is justified by
the above results. These results do not prove a version of Occam’s Razor;
rather, we presuppose Occam’s Razor (by weighing the different yu; according
to their complexity in the construction of M) and show that it has beneficial
consequences to do so, namely a provably successful induction procedure. Let
us stress again, however, that such an abstract justification of Occam’s Razor
does not imply its efficient applicability. In particular, the universal measure
M, though enumerable, is not recursive, and getting a good approximation of
its value can be very expensive computationally.

4.6 On the Very Possibility of Science

Science aims at describing the multitude of observations and data in simple
and elegant theories. In other words, science aims at compression. As we have
seen in the last three sections, that compression is a good strategy can even
be justified mathematically. However, in order for science to be possible in the
first place, compression should be possible—if there is nothing we can compress,
there is nothing to learn, and everything will just be an incomprehensible flurry.

Let us consider the possibility that there is nothing we can compress, so
nothing that science can successfully work on. Suppose the long binary string
x is a complete description (in some sense) of our universe. We can roughly
distinguish two cases: (1) z is significantly compressible (i.e., K(z) is much
smaller than the length of z), or (2) it is not. In the first case, there is clearly
a structure inherent in z that scientific research can latch on to. But what
about the second case: if = is completely random, how then is science possible?
Fortunately, in this case it can be shown that the irregular z will probably
contain some very regular non-random substrings! ([LV97, Section 2.6] contains
some results to this effect.) This result is not as surprising as it may seem at
first sight. After all, if we flip a fair coin a huge number of times, then the
resulting sequence of ‘heads’/‘coins’ will probably be completely random; but
still a long sequence of ‘heads’ is bound to come up at some point, simply
because of the laws of probability. So in this second case, even though “the
world as a whole” (i.e., ) is random and a successful “theory of everything”
would be beyond us, some parts of the world (substrings of x) will be non-
random and will enable fruitful scientific research to take place. In either case,
whether z is compressible or not, we can rest (?) assured: it is reasonable to
expect that science is at least possible in some domains or parts of the world.

Accordingly, scientific research is concerned, first, with identifying which
substrings (i.e., which parts of the world) are sufficiently regular to enable

""This is so because Y >~ 1/n =00 > 0.5In2 K(p).
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fruitful research, and, second, with identifying what exactly the structure in
those regular substrings is. Clearly, whether a particular science can be suc-
cessful depends on the regularity of its subject matter; it seems fair to say that
the substrings of our world that successful sciences like physics are working on,
are much more regular than the substrings that are the object of, for instance,
sociology.

4.7 Summary

Occam’s Razor tells us that we should prefer simpler theories over more complex
ones; a prescription which is generally followed in science as well as philosophy.
What justifies this razor? We described three different formal settings in which
a form of Occam’s razor could be mathematically justified. Firstly, in the PAC
framework, an Occam algorithm is an algorithm that outputs names of concepts
with “small” Kolmogorov complexity, compared to the given examples and the
target concept. An efficient Occam algorithm automatically learns probably
approximately correct concepts. Secondly, the Minimum Description Length
principle tells us to select a hypothesis such that the Kolmogorov complexity of
hypothesis + examples is minimized. It can be shown that in “typical” cases,
this approach does indeed select an approximately optimal hypothesis. Thirdly,
Solomonoff’s prediction procedure predicts the continuation of binary sequences
using a combination of all possible (computable) probability measures, weighed
according to their complexity. Such predictions quickly converge to the true
values.

What these three approaches have in common, is that they show that sim-
plicity is to be favoured, and hence compression is a good thing in science.
In the last section, we saw how the theory of Kolmogorov complexity renders
it very likely that compression—and hence successful scientific activity—is at
least possible in some domains.
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4.A Proof of Occam’s Razor (PAC Version)

In this appendix we give the proof of Theorem 4.1 from Section 4.3, which
stated a version of Occam’s Razor in the framework of PAC learning. Except
for using a Kolmogorov complexity bound rather than a simple length bound on
the names the algorithm outputs, this proof is analogous to the proof of [AB92,
Theorem 6.5.1].

Theorem 4.1 Let F be a concept class. If there is a polynomial-time Occam
algorithm for F, then F is polynomial-time PAC learnable.

Proof Let L be a polynomial-time Occam algorithm for F. Consider a target
concept f € F and a distribution P on the domain. L reads a set S of m
examples for f, and outputs a name r of a concept g € F, consistent with S,
satisfying K (r) < (mn)®min(f)?. We will see how we can choose m in such
a (polynomially-bounded) way that the requirements of a PAC algorithm are
satisfied. In the following, we use ‘I’ to abbreviate ‘l,,in(f) .

First note that the number of binary strings of length at most (mn)®18 is

20 4ol 192 4 4 omn)?l? _ o(mm)* P41 _

L can only output a name 7 for a concept g if K(r) < (mn)®l?. Hence the

number C' of concepts for which L can output a name satisfies C' < 9(mn)* 1741,

Let us call a concept g € F bad if it has too large an error: P(fAg) > e. The
probability that some particular bad concept g is consistent with one example
for fis 1 — P(fAg) < 1 — ¢; hence the probability that g is consistent with
each of our m examples is at most (1 — ¢)™. Now, the probability that at least
one of the C possible output concepts of L is bad, is at most

C(1—e)™ < 27 (mm)*+1(] _ gym,
If we can bound this probability by §, then with probability at least 1 — §, L
will output a good (i.e., non-bad) concept, thus satisfying the requirements of
a PAC algorithm. Accordingly, we want to choose m such that:
2mm)*U+1(1 _ gym < 5,
Equivalently, taking natural logarithms on both sides:
(mn)®1P 2 +1In2 +In(l — &)™ < Ind.
If we abbreviate A = n®%In2 and B = In(2/6), we can rewrite this to:
Am®+ B < —In(1 —¢)™ = —mIn(1 —¢).
Because ¢ < —In(1 — ¢), the above inequality is implied by the following:

Am®* + B < me.
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Dividing by m®¢ yields:
A+ B/m®
— - <

m'e.

Since B/m® < B, the above inequality is implied by:

A+ B
<
€

11—«

This inequality holds if we choose

A+ B 1/(1—a)
s (ALY

Thus, choosing m in this way, L will output a name of a concept g such that
with probability at least 1 — §, we have P(fAg) < e.

It remains to check the efficiency of L. Since L is an Occam algorithm, it
runs in time polynomial in m and n. Furthermore, it is easy to see that our
choice of m can be bounded from above by a polynomial in 1/§, 1/¢, n, and .
It follows that L runs in time polynomial in 1/e, 1/, n, and [, in accordance
with Definition 1.12. Hence F is polynomial-time PAC learnable. O
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Chapter 5

Summary and Conclusion

Though each of the previous chapters had its own short summary, it might
benefit the reader’s overview of the thesis if we wrap things up once more.
Accordingly, in the following pages we will take stock, summarizing in non-
technical language what we have done.

5.1 Computational Learning Theory

Chapter 1 introduced computational learning theory, the branch of Artificial In-
telligence which studies the complexity and other theoretical properties of mech-
anisms for learning. Given some examples—positive and negative instances of
some unknown target concept (a subset of a domain of objects)—our aim is to
learn this concept. However, since the examples will usually not give complete
information about the target, we cannot expect to learn this target perfectly.
Instead, we can only hope to learn an approximately correct concept: a con-
cept which diverges only slightly from the target, in the sense that the target
and the learned concept will agree on most members of the domain. Moreover,
since the given set of examples may be biased and need not always be a good
representative of the target concept as a whole, we cannot even expect to learn
approximately correctly every time. Accordingly, the best we can do, is learn
a concept which is probably approximately correct (PAC).

The model of PAC learning formalizes this idea in precise mathematical
terms. In this model, a class of concepts is considered to be learnable’, if there
exists an algorithm which efficiently learns a PAC concept whenever the target
is drawn from that class. This can both be seen as a rough model of learning
by children or human beings generally, and as a model of theory construction
in empirical science.

The PAC model can be extended in various ways. Firstly, we may allow the
learning algorithm access to an oracle. The oracle can answer certain questions
posed by the learner, for instance membership queries (which ask whether a
certain object is a member of the target), or equivalence queries (which ask
whether a certain concept is equal to the target). In the latter case, the PAC

!Polynomial-time PAC learnable or polynomial-time PAC predictable.
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requirement is usually strengthened to the requirement that the target is iden-
tified exactly by the learning algorithm. Learnability in this stronger model
implies learnability in the PAC model. Secondly, we can make the PAC model
more realistic by allowing the examples to contain some noise (errors), and
examining learnability in the presence of such noise.

5.2 Language Learning

Since the late 1950s, the work of Noam Chomsky has dominated linguistics,
and has revived the old debate about innate knowledge. Specifically, Chomsky
argues that the speed and accurateness with which children learn their native
language—despite the poverty of the “input sentences”, the examples they re-
ceive from parents and others—can only be explained by postulating that the
child is already born with some linguistic bias, some pre-knowledge of its na-
tive language. Without such a bias, natural languages would not be learnable.
Chomsky particularly focuses on syntaz, identifying a hierarchy of four classes
of languages, Type 3 to Type 0, with increasing syntactical complexity. Each of
these classes properly includes the simpler ones. The class of Type 0 languages
contains all languages that can be enumerated by an algorithm, and hence is
the broadest class that lies within the reach of algorithmic means.

In Chapter 2, we looked at learnability results pertaining to such classes of
languages, and the results were rather negative. The class of Type 3 languages
is not learnable in the PAC model (without membership queries), and neither
are the more complex classes. We defined an even simpler class, the class of
Type 4 languages, which also turned out to require too much examples to be
efficiently learnable. The Type 3 class is learnable given the ability to make
membership queries, and the Type 2 class may be learnable in this case (this
is not known to the author). However, these classes are still too restricted to
contain natural languages such as English and Dutch. Finally, the Type 1 and
Type 0 classes are not even learnable with membership queries.

We can see from ordinary children that the class of natural languages is
learnable in some non-technical sense. Assuming the PAC model to be suffi-
ciently realistic, we conjectured that this class is also learnable in the technical
PAC sense. From this it follows that the class of languages that children can
learn cannot be some broad class such as the Type 1 or Type 0 languages.
Therefore, in order to be able to explain how language learning can take place,
we must conclude that the class of natural languages is very restricted, and a
child must somehow have pre-knowledge of the particular restrictions. Thus in-
deed we must have a linguistic bias in favour of languages of some specific kind,
as Chomsky argued. Whether this bias is innate cannot conclusively be proved
using learnability arguments, but does seem to be the most likely option.

5.3 Kolmogorov Complexity

Chapter 3 discussed Kolmogorov complezity and some of its philosophically in-
teresting consequences and applications. Technicalities apart, the Kolmogorov
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complexity K (z) of a finite binary string x is the length of a shortest Turing
machine which produces that string, when fed into some universal Turing ma-
chine U. The choice of U can affect the value of K(z) only up to a constant
that does not depend on z, which makes K (z) a sufficiently objective measure
of the complexity of z. The function K is not computable, but it can be algo-
rithmically approximated. For longer strings it converges to Shannon’s measure
of information content.

Kolmogorov complexity can be used to give an objective definition of the
degree of simplicity of descriptions (data, theories, etc., represented as binary
strings): a description is simple to the extent that it has low Kolmogorov com-
plexity. Because of the great importance of the notion of simplicity—especially
in Occam’s Razor, see next section—this is a significant formalization. Partic-
ularly as a property of scientific theories, simplicity is strongly correlated with
the subjective notions of elegance and beauty.

Secondly, Kolmogorov complexity can be used in a formalization of the
property of randomness of finite or infinite binary strings with respect to some
probability distribution P. Roughly, a string is P-random if it possesses all
properties one can attribute to random strings, i.e., if it passes all effective
tests for randomness. The set of all tests for P-randomness can be combined
in a single universal test. In case P is the uniform measure, which distributes
probability uniformly, randomness varies with incompressibility: a finite string
is random to the extent that it is incompressible (z is incompressible if K(x) is
near to the length of z), and an infinite string is random if each of its prefixes
is incompressible. One important example of a random infinite string is the
binary expansion of the number 2, which is the probability that a randomly
drawn binary string encodes a halting Turing machine. The first n bits of this
number contain sufficient information to find out whether any Turing machine
of length at most n halts, and hence to find out the answers to the questions
that can be encoded in such machines.

Finally, we can use Kolmogorov complexity to prove Godel’s important in-
completeness theorem, without invoking the self-referring constructs employed
in the usual proof. Basically, the proof shows that any finite (or recursively
enumerable) set of axioms will have only a finite complexity, and hence will not
contain sufficient “information” to prove all truths about the infinite incom-
pressible string 2. Hence it is not possible to capture all mathematical truths
in a formal, axiomatic theory.

5.4 Occam’s Razor

Chapter 4 dealt with mathematical justifications of Occam’s Razor. In its
most often cited form—which cannot be found in Occam’s writings—this says
that “entities are not to be multiplied without necessity”. More broadly, we
can render Occam’s Razor as saying that we should always prefer the simplest
hypothesis or theory among those that are consistent with the data. This prin-
ciple can be interpreted in at least three ways: as merely a principle of method;
ontologically (“Selecting simple theories is good because the world itself is rela-
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tively simple”); or aesthetically (“Beauty—of which simplicity is an important
aspect—indicates truth”). The preference for simplicity profoundly influences
science and philosophy, but is usually accepted without further justification.

The problem in formally justifying Occam’s Razor lies in the notion of sim-
plicity. If we solve this by identifying simplicity with low Kolmogorov complex-
ity, we can give formal justifications of the razor in three different contexts.
Firstly, in the PAC model, an Occam algorithm is a learning algorithm which
outputs a concept that is consistent with the examples as well as relatively sim-
ple compared to those examples. An efficient Occam algorithm can be shown
to be an efficient PAC algorithm. Hence, if a learning algorithm can sufficiently
compress the examples, it will automatically learn PAC.

Secondly, the Minimum Description Length principle tells us to select the
simplest hypothesis, i.e., a hypothesis which most compresses the data. Under
certain mild assumptions, this hypothesis selection scheme can be shown to be
approximately equivalent to the optimal but infeasible hypothesis selection that
is based on Bayes’s Theorem. Accordingly, under those assumptions, Occam’s
Razor is an approximately optimal rule for hypothesis selection.

Thirdly and finally, Kolmogorov complexity was originally introduced in
order to give a universal method for prediction. We are given an initial finite
binary sequence, drawn according to some unknown computable “probability
distribution”, and we are to predict how the sequence will continue. We can pre-
dict this by combining the predictions of all computable distributions, weighing
those predictions according to the Kolmogorov complexity of the distributions.
Here distributions with low complexity are given high weight, in accordance
with the Occamite preference for simplicity. This Occam-based prediction can
be shown to converge very quickly to the true values.

5.5 Conclusion

The main aim of this thesis has been to examine the philosophical relevance
of recent results from the field of computational learning theory. The mod-
els of learning put forward in that field are abstract and mathematical, but
still capture much of what is important in “real world” learning. Accordingly,
they can be used as (1) models of learning by human beings, and (2) as mod-
els of inductive theory construction in the empirical sciences. For the former
case, the main application we discussed was a computational analysis of human
language learning; for the latter, we discussed various formal justifications of
Occam’s Razor, using Kolmogorov complexity as a measure of simplicity. We
feel that these results—as well as others that we discussed, and others we did
not discuss—are highly relevant for philosophy and merit more attention than
they presently receive. Let me end by expressing the hope that this thesis
will contribute something to an increased awareness of formal learning theory
among philosophers.
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element

subset

proper subset

superset

proper superset

union

intersection

set difference

symmetric difference
| C(x)} set of all z that satisfy condition C

empty set

cardinality (number of elements) of set S
|7| absolute value of number r
25 power set (set of all subsets) of set S
SxT Cartesian product of sets S and T
S? Cartesian product of set S with itself
f:S—=T function f, with set S as domain and set T as range

mST b2 Ccuuninm

N set of natural numbers

Q set of rational numbers

R set of real numbers

o0 infinity

Y5 summation over all members of set S
log logarithm with base 2

In natural logarithm (base e = 2.71...)

€ empty string

S* set of all finite strings over alphabet S
{0,1}* set of all finite binary strings

S set of all infinite strings over alphabet S
{0,1}° set of all infinite binary strings

W1 first n bits of infinite binary string w
Xxn] set of all strings of length at most n in domain X
flnl projection of concept f on X

Flnl projection of concept class F on X ™
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probability of event A

probability of A, given B

confidence parameter

error parameter

rate of malicious or random classification noise

size (shortest name) of concept f, in representation R
size of smallest concept consistent with examples S, in R
Vapnik-Chervonenkis dimension

length of binary string x

length of shortest program for Turing machine T'
Kolmogorov complexity of binary string =
Kolmogorov complexity of string x, given string y
halting probability

universal distribution

universal semimeasure
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