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Abstract

We investigate how a classical private key can be used
by two players, connected by an insecure one-way quantum
channel, to perform private communication of quantum in-
formation. In particular we show that in order to transmitn
qubits privately,2n bits of shared private key are necessary
and sufficient. This result may be viewed as the quantum
analogue of the classical one-time pad encryption scheme.

1 Introduction

Secure transmission of classical information is a well
studied topic. Suppose Alice wants to send ann-bit mes-
sageM to Bob over an insecure (i.e. spied-on) channel, in
such a way that the eavesdropper Eve cannot obtain any in-
formation aboutM from tapping the channel. If Alice and
Bob share some secretn-bit keyK, then here is a simple
way for them to achieve their goal: Alice exclusive-orsM
with K and sends the resultM 0 = M �K over the chan-
nel, Bob then xorsM 0 again withK and obtains the original
messageM 0�K =M . Eve may see the encoded messageM 0, but if she does not knowK then this will give her no
information about the real messageM , since for any mes-
sageM there is a keyK 0 giving rise to the same encodingM 0. This scheme is known as theVernam cipheror one-
time pad(“one-time” becauseK can be used only once if
we want information-theoreticsecurity). It shows thatn bits
of shared secret key are sufficient to securely transmitn bits
of information. Shannon [7, 8] has shown that this scheme
is optimal:n bits of shared key are alsonecessaryin order
to transmit ann-bit message in an information-theoretically
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Now let us consider the analogous situation in the quan-
tum world. Alice and Bob are connected by a one-way
quantum channel, to which an eavesdropper Eve has com-
plete access. Alice wants to transmit to Bob somen-qubit
state� taken from some setS, without allowing Eve to ob-
tain any information about�. Alice and Bob could eas-
ily achieve such security if they sharen EPR-pairs (or if
they were able to establish EPR-pairs over a secure quan-
tum channel), for then they can apply teleportation [1] and
transmit every qubit via 2 random classical bits, which will
give Eve no information whatsoever. But now suppose Al-
ice and Bob do not share EPR-pairs, but instead they only
have the resource of shared randomness, which is weaker
but easier to maintain.

A first question is: is it at all possible to send quantum
information fully securely using only a finite amount of ran-
domness? At first sight this may seem hard: Alice and Bob
have to “hide” the amplitudes of a quantum state, which are
infinitely precise complex numbers. Nevertheless, the ques-
tion has a positive answer. More precisely, to send privatelyn qubits, a2n-bit classical key is sufficient. The encryp-
tion technique is fairly natural. Alice applies to the state�
she wants to transmit a reversible quantum operation spec-
ified by the shared keyK (basically, she applies a random
Pauli matrix to each qubit), and she sends the result�0 to
Bob. In the most general setting this reversible operation
can be represented as doing a unitary operation on the state� augmented with a known fixed ancilla state�a. Know-
ing the keyK that Alice used, Bob knows which operation
Alice applied and he can reverse this, remove the ancilla,
and retrieve�. In order for this scheme to be information-
theoretically secure against the eavesdropper, we have to
require that Eve always “sees” the same density matrix�0
on the channel, no matter what� was. Because Eve does
not knowK, this condition can indeed be satisfied. Ac-
cordingly, an insecure quantum channel can be made secure
(private) by means of shared classical randomness.

A second question is, then,how muchkey Alice and Bob
need to share in order to be able to privately transmit anyn-qubit state.1 A good way to measure key size is by the1If Alice and Bob share an insecuretwo-way channel, then they can do
quantum key exchange [2] in order to establish a shared random key, so in
this case no prior shared key (or only a very small one) is required.



amount of entropy required to create it. As one might imag-
ine, showing that2n bits of key are also necessary is the
most challenging part of this article. We prove this2n-bit
lower bound in Section 5, and show that it even holds if then qubits of the message are not entangled. Accordingly, in
analogy with the classical one-time pad, we have an opti-
mal quantum one-time pad which uses2n classical bits to
completely “hide”n qubits from Eve. In particular, hiding a
qubit is only twice as hard as hiding a classical bit, despite
the fact that in the qubit we now have to hide amplitudes
coming from a continuous set.

The article is organized as follows. Section 2 introduces
some notation and some properties of Von Neumann en-
tropy. In Section 3 we give a formal definition of a private
quantum channel (PQC). In Section 4 we give some exam-
ples ofPQCs. In particular we show that there is aPQC
that privately sends anyn-qubit state using2n bits of ran-
domness (shared key). We also exhibit a non-trivial set ofn-qubit states, namely the tensor products of qubits with
real amplitudes, for which there isPQC requiring onlyn
bits of randomness. The latter result includes the classical
one-time pad. In Section 5 we show that2n bits of random-
ness are necessary if we want to be able to send anyn-qubit
state privately.

Remarks about related work. Several recent papers in-
dependently discussed issues similar to our work. In a
related but slightly different setting, Braunstein, Lo, and
Spiller [4, 5] have shown that 2 bits of entropy are neces-
sary and sufficient to “randomize” a qubit. Very recently,
Boykin and Roychowdhury [3] exhibited the2n-bit Pauli-
matrix one-time pad. They also gave a general characteri-
zation of all possible encryption schemes without ancilla, a
characterization which can also be derived from the simulta-
neous and independent work of Werner [10]. Furthermore,
Boykin and Roychowdhury proved a2n-bit lower bound for
the case where the encryption scheme does not allow the use
of an ancilla state. In Section 5 we start with a simplified
proof of the lower bound for the no-ancilla case and give a
different and more complicated proof for the lower bound
in the case where we do allow an ancilla.

2 Preliminaries

2.1 States and operators

We usejjvjj for the Euclidean norm of vectorv. If A is
a matrix, then we useAy for its conjugate transpose andTr(A) for its trace (the sum of its diagonal entries). A
square matrixA is Hermitian if A = Ay, andunitary ifA�1 = Ay. Important examples of unitary transformations

are the 4Pauli matrices:�0 = � 1 00 1 � ; �1 = � 0 11 0 � ;�2 = � 0 �ii 0 � ; �3 = � 1 00 �1 � :
Let j0i ; : : : ; jM � 1i denote the basis states of someM -
dimensional Hilbert spaceHM . We useH2n for the Hilbert
space whose basis states are the2n classicaln-bit strings. A
pure quantum statej�i is a norm-1 vector inHM . We treatj�i as anM -dimensional column vector and useh�j for the
row vector that is its conjugate transpose. Theinner product
between pure statesj�i andj i is h�j i. A mixed quantum
stateor density matrix� is a non-negative Hermitian matrix
that has traceTr(�) = 1. The density matrix corresponding
to a pure statej�i is j�i h�j. Because a density matrix� is
Hermitian, it has a diagonalization� = PNi=1 pi j�ii h�ij,
where thepi are its eigenvalues,pi � 0,

Pi pi = 1, and
the j�ii form an orthonormal set. Thus� can be viewed as
describing a probability distribution over pure states. We
use ~IM = 1M IM = 1M PMi=1 jii hij to denote the totally
mixed state, which represents the uniform distribution on
all basis states. If two systems are in pure statesj�i andj i, respectively, then their joint state is the tensor product
pure statej�i 
 j i = j�i j i. If two systems are in mixed
states�1 and�2, respectively, then their joint state is the
tensor product�1 
 �2. Note that(j�i 
 j i)(h�j 
 h j) is
the same asj�i h�j 
 j i h j.

Applying a unitary transformationU to a pure statej�i
gives pure stateU j�i, applyingU to a mixed state� gives
mixed stateU�U y. We will useE = fppiUi j 1 � i � Ng
to denote thesuperoperatorwhich appliesUi with proba-
bility pi to its argument (we assume

Pi pi = 1). ThusE(�) =Pi piUi�U yi . Quantum mechanics allows for more
general superoperators, but this type suffices for our pur-
poses. If two superoperatorsE = fppiUi j 1 � i � Ng
andE 0 = fpp0iU 0i j 1 � i � N 0g are identical (E(�) =E 0(�) for all �), then they are unitarily related in the follow-
ing way [6, Theorem 8.2] (where we assumeN � N 0 and
if N > N 0 we padE 0 with zero operators to makeE andE 0
of equal size): there exists a unitaryN �N matrixA such
that for alli ppiUi = NXj=1Aijqp0jU 0j :
2.2 Von Neumann entropy

Let density matrix � have the diagonal-
ization

PNi=1 pi j�ii h�ij. TheVon Neumann entropyof �
is S(�) = H(p1; : : : ; pN ) = �PNi=1 pi log pi, whereH is
the classical entropy function. ThisS(�) can be interpreted



as the minimal Shannon entropy of the measurement out-
come, minimized over all possible complete measurements.
Note thatS(�) only depends on the eigenvalues of�. The
following properties of Von Neumann entropy will be use-
ful later (for proofs see for instance [9]).

1. S(j�i h�j) = 0, for every pure statej�i.
2. S(�1 
 �2) = S(�1) + S(�2).
3. S(U�U y) = S(�).
4. S(�1�1+�2�2+ � � �+�n�n) � �1S(�1)+�2S(�2)+� � �+ �nS(�n) if �i � 0 and

Pi �i = 1.

5. If � = PNi=1 pi j�ii h�ij with the j�ii not necessarily
orthogonal, thenS(�) � H(p1; : : : ; pN ).

3 Private Quantum Channels

Let us sketch the scenario for a private quantum chan-
nel. There areN possible keys, which we identify for
convenience with the numbers1; : : : ; N . The ith key has
probabilitypi, so the key has entropyH(p1; : : : ; pN ) when
viewed as a random variable. Each keyi corresponds to a
unitary transformationUi. Suppose Alice wants to send a
pure statej�i from some setS to Bob. She appends some
fixed ancilla qubits in state�a to j�i h�j and then appliesUi
to j�i h�j 
 �a, wherei is her key. She sends the resulting
state to Bob. Bob, who shares the keyi with Alice, appliesU�1i to obtainj�i h�j 
 �a, removes the ancilla�a, and is
left with Alice’s messagej�i h�j. One can verify that this is
the most general setting allowed by quantum mechanics if
we want Bob to be able to recover the state perfectly. Now
in order for this to be secure against an eavesdropper Eve,
we have to require that if Eve does not knowi, then the
density matrix�0 that she gets from monitoring the channel
is independent ofj�i. This implies that she gets no infor-
mation at all aboutj�i. Of course, Eve’s measuring the
channel might destroy the encoded message, but this is like
classically jamming the channel and cannot be avoided. The
point is thatif Eve measures, then she receives no informa-
tion aboutj�i. We formalize this scenario as follows.

Definition 3.1 LetS � H2n be a set of puren-qubit states,E = fppiUi j 1 � i � Ng be a superoperator where eachUi is a unitary mapping onH2m ,
PNi=1 pi = 1, �a be an(m � n)-qubit density matrix, and�0 be anm-qubit den-

sity matrix. Then[S; E ; �a; �0] is called aPrivate Quantum
Channel (PQC) if and only if for all j�i 2 S we haveE(j�i h�j 
 �a) = NXi=1 piUi (j�i h�j 
 �a)U yi = �0:
If n = m (i.e. no ancilla), then we omit�a.

Note that by linearity, if thePQC works for all pure
states inS, then it also works for density matrices overS: applying thePQC to a mixture of states fromS gives
the same�0 as when we apply it to a pure state. Accord-
ingly, if [S; fppi Ui j 1 � i � Ng; �a; �0] is aPQC, thenH(p1; : : : ; pN) bits of shared randomness are sufficient for
Alice to send any mixture� of S-states to Bob in a secure
way. Alice encodes� in a reversible way depending on her
key i and Bob can decode because he knows the samei and
hence can reverse Alice’s operationUi. On the other hand,
Eve has no information about the keyi apart from the dis-
tributionpi, so from her point of view the channel is in state�Eve = �0. This is independent of the� that Alice wants to
send, and hence gives Eve no information about�.

4 Examples and properties of PQCs

In this section we exhibit some private quantum chan-
nels. The first uses2n bits of key to send privately anyn-qubit state. The idea is simply to apply a random Pauli
matrix to each bit individually. This takes 2 random bits
per qubit and it is well known that the resulting qubit is
in the completely mixed state. For notational convenience
we identity the numbersf0; : : : ; 22n � 1g with the setf0; 1; 2; 3gn. Forx 2 f0; 1; 2; 3gn we usexi 2 f0; 1; 2; 3g
for its ith entry, and we use�x to denote then-qubit unitary
transformation�x1 
 � � � 
 �xn .

Theorem 4.1 If E = f 1p22n�x j x 2 f0; 1; 2; 3gng, then[H2n ; E ; ~I2n ] is a PQC.

Proof It is easily verified that applying each�i with proba-
bility 1=4 to a qubit puts that qubit in the totally mixed state~I2 (no matter if it is entangled with other qubits). OperatorE just applies this treatment to each of then qubits, henceE(j�i h�j) = ~I2n for everyj�i 2 H2n . 2

Since the aboveE contains22n operations and they have
uniform probability, it follows that2n bits of private key
suffice to privately send any state fromH2n .

The next theorem shows that there is some nontrivial
subspace ofH2n wheren bits of private key suffice, namely
the set of all tensor products of real-amplitude qubits:

Theorem 4.2 If B = fcos(�) j0i + sin(�) j1i j 0 � � <2�g, S = B
n, andE = f 1p2n�x j x 2 f0; 2gng, then[S; E ; ~I2n ] is aPQC.

Proof This is easily verified: applying�0 and�2, each
with probability 1/2, puts any qubit fromB in the totally
mixed state. OperatorE does this to each of then qubits
individually. 2



Note that if we restrictB to classical bits (i.e.� 2f0; �=2g) then the abovePQC reduces to the classical
one-time pad: flipping each bit with probability 1/2 gives
information-theoretical security. Note also that thisPQC
does not work for arbitrary entangled real-amplitude states;
for instance the entangled state1p2 (j00i + j11i) is not
mapped to the totally mixed state. Forn = 1; 2; 3 there ex-
ist PQCs that require exactlyn bits of entropy and can pri-
vately transmit any entangled real-amplituden-qubit state.
However, forn � 4 we can show that such aPQC requires
entropy strictly more thann bits. This marks a difference
between sending entangled and unentangled real-amplitude
states. We omit the technical proofs for reasons of space.

In the previousPQCs,�0 was the completely mixed state~I2n . This is no accident, and holds whenevern = m and~I2n is one of the states that thePQC can send:

Theorem 4.3 If [S; E ; �0] is aPQCwithout ancilla and~I2n
can be written as a mixture ofS-states, then�0 = ~I2n .

Proof If ~I2n can be written as a mixture ofS-states, then�0 = E(~I2n) = NXi=1 piUi ~I2nU yi = NXi=1 pi ~I2n = ~I2n : 2
In general�0 need not be~I2n . For instance, letS =fj0i ; 1p2 (j0i+j1i)g, E = fpp1I2; pp2p2 � 1 11 �1 �gwithp1 = p2 = 1=2, and�0 = � 34 1414 14 �. Then it is easily

verified that[S; E ; �0] is aPQC.
Finally we prove that aPQC for n-qubit states and

a PQC for m-qubit states can easily be combined to a
PQC for n + m-qubit states: entanglement between then-qubit andm-qubit parts is dealt with automatically. IfE = fppiUig andE 0 = fqp0jU 0jg are superoperators, then

we useE 
 E 0 = fqpip0jUi 
U 0jg for their tensor product.

We will need the following lemma, the technical proof of
which is deferred to the appendix.

Lemma 4.4 Suppose thatE(j�i h�j 
 �a) = �0 wheneverj�i is a tensor product ofn qubits. ThenE(jxi hyj
�a) = 0
wheneverx; y 2 f0; 1gn andx 6= y.

Theorem 4.5 If [H2n ; E ; �a; �0] and[H2m ; E 0; �a0; �00] are
PQCs, then[H2n+m ; E 
 E 0; �a 
 �a0; �0 
 �00] is aPQC.

Proof For notational convenience we will assume�a =�a0 = 0. Consider anyn + m-qubit pure statej�i =Px2f0;1gn;y2f0;1gm �xy jxi jyi. We have:

(E 
 E 0) (j�i h�j)= (E 
 E 0)0@ Xx;y;x0;y0 �xy��x0y0 jxi hx0j 
 jyi hy0j1A= Xx;y;x0;y0 �xy��x0y0E (jxi hx0j)
 E 0 (jyi hy0j)(�)= Xx;y �xy��xyE (jxi hxj)
 E 0 (jyi hyj)= Xx;y j�xyj2�0 
 �00= �0 
 �00:
In the step marked by(�) we used thatE(jxi hx0j) = 0
unlessx = x0 (Lemma 4.4). 2

The above proof also shows that aPQC for S = H
n2
(the set of all unentangledn-qubit states) is automatically
also aPQC for S = H2n (the set of alln-qubit states).

Finally, the same technique shows that Alice can employ
a PQC to privately send part of an entangled state to Bob
in a way that preserves the entanglement. ThePQC puts
this part of the state in the�0-state, so Eve can obtain no
information from the channel. When Bob reconstructs the
original state, this will still be entangled with the part of the
state that Alice kept.

5 Lower bound on the entropy of PQCs

Above we showed that2n bits of entropy suffice for a
PQC that can send arbitraryn-qubit states. In this section
we will show that2n bits are alsonecessaryfor this. Very
recently and independently of our work, this2n-bit lower
bound was also proven by Boykin and Roychowdhury [3]
for the special case where thePQC is not allowed to use any
ancilla qubits. We will first give a shorter version of their
proof, basically by observing that a large part of it can be re-
placed by a reference to the unitary equivalence of identical
superoperators stated at the end of Section 2.1.

Theorem 5.1 If [H2n ; fppiUi j 1 � i � Ng; ~I2n ] is a
PQC, thenH(p1; : : : ; pN ) � 2n.

Proof Let E = fppiUig, E 0 = f 1p22n�x j x 2f0; 1; 2; 3gng be the superoperator of Theorem 4.1, and letK = max(22n; N). SinceE(�) = E 0(�) = ~I2n for all n-
qubit states�, we have thatE andE 0 are unitarily related
in the way mentioned in Section 2.1: there exists a unitaryK �K matrixA such that for all1 � i � N we haveppiUi = Xx2f0;1;2;3gnAix 1p22n�x:



We view the set of all2n�2n matrices as a22n-dimensional
vector space with inner producthM;M 0i = Tr(M yM 0)=2n
and induced normjjM jj = phM;Mi (as done in [3]).
Note thatjjM jj = 1 if M is unitary. The set of all�x forms
an orthonormal basis for this vector space, so:pi = jjppiUijj2 = jjXx Aix 1p22n�xjj2= 122n Xx jAixj2 � 122n :
HenceN � 22n andH(p1; : : : ; pN) � 2n. 2

However, even granted this result it is still conceivable
that aPQC might require less randomness if it can “spread
out” its encoding over many ancilla qubits — it is even con-
ceivable that those ancilla qubits can be used toestablish
privately shared randomness using some variant of quan-
tum key distribution. The general case with ancilla is not
addressed in [3], and proving that the2n-bit lower bound
extends to this case requires more work. The next few the-
orems will do this. These show that aPQC that can trans-
mit anyunentangledn-qubit state already requires2n bits
of randomness, no matter how many ancilla qubits it uses.
Thus Theorem 4.1 exhibits an optimal quantum one-time
pad, analogous to the optimal classical one-time pad men-
tioned in the introduction.

We use the notationCk = fjii j 0 � i � k�1g for the set
of the firstk classical states. The next theorem implies that
a PQC that privately conveysn unentangled qubits usingm bits of key, can be transformed into aPQC that privately
conveys anyjii 2 C22n , still using onlym bits of key.

Theorem 5.2 If there exists aPQC [H
n2 ; E = fppiUi j1 � i � Ng; �a; �0], then there exists aPQC [C22n ; E 0 =fppiU 0i j 1 � i � Ng; �a; ~I2n 
 �0].
Proof For ease of notation we assume without loss of gen-
erality thatE uses no ancilla, so we assume�0 is ann-
qubit state and omit�a (this does not affect the proof in
any way). We will defineE 0 and show that it is aPQC. In-
tuitively, E 0 maps every state fromC22n to a tensor product
of n Bell states by mapping pairs of bits to one of the four
Bell states.2 The second bits of the pairs are then moved to
the second half of the state and encrypted by applyingE to
them. Because of the entanglement between the two halves
of each Bell state, the resulting2n-qubit density matrix will
be ~I2n 
 �0. More specifically, defineU jxi = (�x 
 I2n) 1p2n 2n�1Xi=0 jii jii ;2The 4 Bells states are1p2 (j00i � j11i) and 1p2 (j01i � j10i).

with �x = �x1 
 � � � 
 �xn as in Theorem 4.1. Also defineU 0i = (I2n 
 Ui)U . It remains to show thatE 0(jxi hxj) =~I2n 
 �0 for all jxi 2 C22n :E 0(jxi hxj)= NXi=1 pi(I2n 
 Ui)"(�x 
 I2n) 1p2n 2n�1Xy=0 jyi jyi! 1p2n 2n�1Xz=0 hzj hzj! (�x 
 I2n)y# (I2n 
 Ui)y= (�x 
 I2n)" 12n NXi=1 pi(I2n 
 Ui)0@ Xy;z2f0;2n�1gjyi hzj 
 jyi hzj1A (I2n 
 Ui)y35 (�x 
 I2n)y= (�x 
 I2n)24 12n Xy;z2f0;2n�1g jyi hzj
 NXi=1 piUi jyi hzjU yi !# (�x 
 I2n)y= (�x 
 I2n)24 12n Xy;z2f0;2n�1gjyi hzj 
 E(jyi hzj)35 (�x 
 I2n)y(�)= (�x 
 I2n)" 12n 2n�1Xy=0 jyi hyj 
 E(jyi hyj)# (�x 
 I2n)y= (�x 
 I2n) h~I2n 
 �0i (�x 
 I2n)y= ~I2n 
 �0:
In the step marked by(�) we used thatE(jyi hzj) = 0 unlessy = z (Lemma 4.4). 2

Privately sending any state fromC2m corresponds to pri-
vately sending any classicalm-bit string. If communica-
tion takes place throughclassicalchannels, then Shannon’s
theorem implies thatm bits of shared key are required to
achieve such security. Shannon’s classical lower bound
does not translate automatically to the quantum world (it
is in fact violated if atwo-way quantum channel is avail-
able, see Footnote 1). Nevertheless, if Alice and Bob com-
municate via a one-way quantum channel, then Shannon’s
theorem does generalize to the quantum world:

Theorem 5.3 If [C2m ; fppiUi j 1 � i � Ng; �a; �0] is a
PQC, thenH(p1; : : : ; pN ) � m.

Proof Diagonalize the ancilla as�a = Prj=1 qj j ji h j j,
soS(�a) = H(q1; : : : ; qr). First note that the properties of



Von Neumann entropy (Section 2) imply:S(�0) = S NXi=1 piUi(j0i h0j 
 �a)U yi != S0@ NXi=1 rXj=1 piqjUi(j0i h0j 
 j ji h j j)U yi1A� H(p1q1; p1q2; : : : ; pNqr�1; pNqr)= H(p1; : : : ; pN ) +H(q1; : : : ; qr):
Secondly, note thatS(�0) = S NXi=1 piUi(~I2m 
 �a)Uyi !� NXi=1 piS �~I2m 
 �a�= NXi=1 pi(m+ S(�a))= m+ S(�a):
Combining these two inequalities gives the theorem.2

In particular, for sending arbitrary states fromC22n we
need entropy at least2n. Combining Theorems 5.2 and 5.3
we thus obtain:

Corollary 5.4 If [H
n2 ; fppiUi j 1 � i � Ng; �a; �0] is a
PQC, thenH(p1; : : : ; pN) � 2n (and hence in particularN � 22n).

SinceH
n2 � H2n , we have also proved the optimality
of thePQC of Theorem 4.1:

Corollary 5.5 If [H2n ; fppiUi j 1 � i � Ng; �a; �0] is a
PQC, thenH(p1; : : : ; pN) � 2n.

In relation to Theorem 4.2, note thatC2n � B
n. Hence
another corollary of Theorem 5.3 is the optimality of the
PQC of Theorem 4.2:

Corollary 5.6 If [B
n; fppiUi j 1 � i � Ng; �a; �0] is
a PQC, thenH(p1; : : : ; pN) � n (and hence in particularN � 2n).

6 Summary

The main result of this paper is an optimal quantum ver-
sion of the classical one-time pad. On the one hand, if Al-
ice and Bob share2n bits of key, Alice can send Bob anyn-qubit state�, encoded in anothern-qubit state in a way

which conveys no information about� to the eavesdropper.
This is a simple scheme which works locally (i.e. deals with
each qubit separately) and uses no ancillary qubits. On the
other hand, we showed that even if Alice and Bob are al-
lowed to use any number of ancilla qubits, then they still
require2n bits of entropy.
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A Proof of Lemma 4.4

Lemma 4.4 Suppose thatE(j�i h�j 
 �a) = �0 wheneverj�i is a tensor product ofn qubits. ThenE(jxi hyj
�a) = 0
wheneverx; y 2 f0; 1gn andx 6= y.

Proof For notational convenience we assume�a = 0. The
proof is by induction on the Hamming distanced betweenx andy.

Base case.If d = 1, then 1p2 (jxi + jyi) and 1p2 (jxi +



i jyi) are tensor products, and we have:�0 = E � 12 (jxi hxj+ jyi hyj)�= 12 (E(jxi hxj) + E(jyi hyj)) :�0 = E �( 1p2 (jxi+ jyi))( 1p2 (hxj+ hyj))�= 12 (E(jxi hxj) + E(jyi hyj) + E(jxi hyj) + E(jyi hxj)) :�0 = E �( 1p2 (jxi+ i jyi))( 1p2 (hxj � i hyj))�= 12 (E(jxi hxj) + E(jyi hyj)� iE(jxi hyj) + iE(jyi hxj)) :
The first and second equality implyE(jxi hyj) + E(jyi hxj) = 0;
the first and third equality implyE(jxi hyj)� E(jyi hxj) = 0:
HenceE(jxi hyj) = E(jyi hxj) = 0.

Induction step. Let x; y 2 f0; 1gn have Hamming dis-
tanced > 1. Without loss of generality we assumex = 0dz
andy = 1dz for somez 2 f0; 1gn�d. We have to showE(jxi hyj) = 0.

Let v 2 f0; 1gd. We consider the puren-qubit statej�vi = 1p2d (j0i+ iv1 j1i)
 � � � 
 (j0i+ ivd j1i)
 jzi :
Let u � v = Pj ujvj denote the inner product of bitstringsu andv, and letu denote the negation ofu (all bits flipped).
Sincej�vi is a tensor product, we have�0 = E(j�vi h�v j)= 12d Xu;u02f0;1gd iu�v(�i)u0�vE(jui hu0j 
 jzi hzj):
Note that the2d terms withu = u0 in the latter expression
sum to�0. Furthermore, by the induction hypothesis we
haveE(jui hu0j 
 jzi hzj) = 0 whenever the Hamming dis-
tance betweenu andu0 lies between 1 andd� 1. Thus the
only terms left in the above equation are the ones whereu
andu0 have Hamming distanced (i.e.u0 = u). Now, usingiu�v(�i)u�v = (�i)jvj(�1)u�v, the equation reduces to:0 = 12d Xu2f0;1gd(�1)u�vE(jui huj 
 jzi hzj):
Summing over allv and using that

Pv(�1)u�v = 2d foru = 0d and 0 foru 6= 0d, we obtain:0 = 12d Xv2f0;1gd Xu2f0;1gd(�1)u�vE(jui huj 
 jzi hzj)= E(j0 : : : 0i h1 : : : 1j 
 jzi hzj):
Sincej0 : : : 0i h1 : : : 1j 
 jzi hzj = jxi hyj, this concludes
the proof. 2


