
Attacks on the AJPS Mersenne-based
Cryptosystem

Koen de Boer1, Léo Ducas1, Stacey Jeffery1,2, and Ronald de Wolf1,2,3

1 CWI, Amsterdam
2 QuSoft

3 University of Amsterdam

Abstract. Aggarwal, Joux, Prakash and Santha recently introduced a
new potentially quantum-safe public-key cryptosystem, and suggested
that a brute-force attack is essentially optimal against it. They consider
but then dismiss both Meet-in-the-Middle attacks and LLL-based at-
tacks. Very soon after their paper appeared, Beunardeau et al. proposed
a practical LLL-based technique that seemed to significantly reduce the
security of the AJPS system. In this paper we do two things. First,
we show that a Meet-in-the-Middle attack can also be made to work
against the AJPS system, using locality-sensitive hashing to overcome
the difficulty that Aggarwal et al. saw for such attacks. We also present
a quantum version of this attack. Second, we give a more precise analysis
of the attack of Beunardeau et al., confirming and refining their results.

1 Introduction

Aggarwal, Joux, Prakash and Santha [1] recently proposed a variant of the NTRU
public-key encryption scheme [13]. This variant uses integers with sparse binary
representation as a secret key, rather than polynomials with small coefficients. In
particular, their cryptosystem is suspected to be resistant to quantum attacks.

Their system works as follows. Consider a Mersenne number N = 2n−1, with
n prime. Then we can identify the ring R = Z/NZ with the set of n-bit strings,
where 1n is identified with 0n. To set up the keys of the cryptosystem, choose
f, g ∈ R of fixed Hamming weight w = b

√
n/2c uniformly at random, subject

to g having a multiplicative inverse in R. Set the public key to h := f/g (this
corresponds to an n-bit string of arbitrary Hamming weight) and the private
key to g. In the next section we describe how Aggarwal et al. use these keys for
encryption and decryption.

The security of this system relies on the assumption that it is hard to solve
the following Mersenne Low Hamming Ratio Search Problem: given n,w ∈ N
and h ∈ R, find f, g ∈ R of weight w such that h = f/g, assuming such f and g
exist. A brute-force attack on this system would just try out all

(
n−1
w−1

)
possible

g’s of weight w that start with a 1 (the latter is without loss of generality) and
check whether hg has weight w. Aggarwal et al. [1] suggest that this brute-force
attack is close to optimal. This would correspond to roughly λ = log

(
n−1
w−1

)
≈

1
2 ·w log n bits of security. On a quantum computer, this brute-force attack could



be implemented using Grover’s quantum search algorithm [11] in time roughly√(
n−1
w−1

)
, corresponding to roughly 1

4 · w log n bits of security.

In particular, Aggarwal et al. [1] consider and then dismiss two possible lines
of attack that could be better than brute force. First, they suggest that a com-
binatorial Meet-in-the-Middle attack would fail due to a problem of “approxi-
mate collisions”. Second, they argue that their variation makes an adaptation
of known lattice attacks against NTRU ineffective. The latter claim was rapidly
challenged, when a faster experimental attack using LLL reduction was found
by Beunardeau et al. [6]. This attack exploits the low weight of f and g, and
is able to find f, g using partition-search in the integer interval {0, . . . , 2n − 1}.
The authors argue that their attack reduces the bit security to about λ ≈ 2w.
Beunardeau et al. [6] warn that their attack is only practically feasible, and
might not work with, for example, increasing parameters. They further expect
that slightly changing the cryptosystem protects against this attack [6, §4].

1.1 This work

In this work we revisit the security of the AJPS cryptosystem. We first pro-
pose a Meet-in-the-Middle attack that circumvents the issues raised by [1] and
gives a polynomial speed-up over a brute-force attack. It runs in classical time

Õ
(√(

n−1
w−1

))
, and can be accelerated on a quantum computer to Õ

(
3

√(
n−1
w−1

))
.

Our analysis requires several minor heuristics, which we have confirmed experi-
mentally. Secondly, we formally analyze the attack of Beunardeau et al. [6]. Our
analysis suggest that the attack is slightly less efficient, asymptotically, than sug-
gested in [6]. However, this small difference in complexity makes little difference
in practice.

Meet-in-the-Middle attack. Aggarwal et al. [1, § 5.1] described a failed attempt
at a Meet-in-the-Middle (MITM) attack on their cryptosystem. It fails because
the “collisions” in the “middle” are not exact, and they view this failure as
evidence for the optimality of the brute-force attack. In contrast, we show how
a MITM attack on their system can nonetheless be executed, using locality-
sensitive hashing to overcome the issue of inexact, approximate collisions.

The idea is still, given public key h ∈ {0, 1}n, to find an n-bit string g ∈ R
of weight ≤ w, such that hg also has low weight. Split the n-bit string g =
g1 ⊕ g2 into an n-bit string g1 with roughly αw 1s in the first αn bits and 0s
elsewhere, and a g2 with roughly (1 − α)w 1s in the last (1 − α)n bits and
0s elsewhere. Now hg = hg1 + hg2 having low weight corresponds to hg1 and
hg2 being approximately equal (i.e., having low Hamming distance), so our goal
becomes to find an “approximate collision” between the two sets {hg1} and
{hg2}. We can do this by first computing all elements of the first set, together
with their hashes, and storing these in an appropriate data structure. After that
we search in the second set to find an approximate collision with the elements
in the data structure (if such an approximate collision exists). This attack turns
out to be substantially cheaper than a brute-force search over all g’s of weight w.



In the classical case, setting the split at α = 1/2, the runtime of the attack is

roughly
(
n/2
w/2

)
≈
(
n
w

)1/2
, which corresponds to roughly 1

4 ·w log n bits of security.

In the quantum case, setting α = 1/3 yields an algorithm similar to [5], which

has runtime roughly
(
n/3
w/3

)
≈
(
n
w

)1/3
, corresponding to 1

6 ·w log n bits of security.

A meet-in-the-middle attack on NTRU, which has a similar structure to the
AJPS cryptosystem, is due to Odlyzko, and is described in [15]. The first example
of a quantum meet-in-the-middle algorithm was the collision-finding algorithm
of Brassard, Høyer and Tapp [9]. Similar ideas were later used in a quantum
algorithm for the subset sum problem [5], and a quantum attack on the NTRU
cryptosystem [23], which have a similar structure to the algorithm presented
here. One difference in our new algorithm is the use of Ambainis’s variable-cost
quantum search algorithm [3], described in Section 2.2.

To complement our theoretical analysis we also implemented this attack on
a classical computer and ran a simulation for quantum computers. Our source
code is available at https://github.com/lducas/MiTM-Mersenne.

Analysis of the lattice attack of Beunardeau et al. Although Beunardeau et al. [6]
provide experimental evidence for the efficiency of their attack, they leave open
the task of providing a theoretical analysis to support the correctness of their
approach. This leaves some uncertainty for a concrete security estimate of the
cryptosystem of Aggarwal et al. We attempt to fill this gap with a more in-
depth analysis of their attack. We conclude that the cost of their attack is in
fact of the form (2 + δ + o(1))2w for some very small constant δ > 0. Besides
clarifying the heuristic asymptotic complexity of the attack of Beunardeau et
al. [6], it also essentially confirms their practical claim that their attack reduces
the security to roughly 2w bits. Hence it remains the best known attack on the
AJPS cryptosystem (better than our MITM attack).

1.2 Impact

The impact of this work is mostly of a conceptual nature. Our Meet-in-the-
Middle attack is a reminder that inexact collisions can sometimes be circum-
vented, depending on the metric at hand. While a similar near-collision MITM
attack was well known against NTRU (attributed to Odlyzko in [15]), it was
rather easy due to how close the near-collisions were. The setting of Aggarwal
et al. is more demanding. Our work also shows another application of Nearest-
Neighbor Search (NNS) techniques to cryptanalysis, which have already found
important application to lattice problems [18,4,17].

Our analysis of the attack of Beunardeau et al. [6] also provides better confi-
dence in the revised security estimate of the treated cryptosystem [1]. Moreover,
we hope that it provides clear tools and heuristics to understand the behavior
of LLL in more general scenarios.

Open questions. Our work highlights several interesting open questions. Con-
cerning the cryptosystem of [1], an interesting idea would be to see whether

https://github.com/lducas/MiTM-Mersenne


the lattice attack and the MITM attack could be combined into an even faster
attack, as was already done against NTRU by Howgrave-Graham [14]. At first
sight, it seems that this approach would not lead to an exponential acceleration,
yet it may make it possible to amortize the polynomial cost of each call to the
LLL algorithm.

More generally, our work highlights the question of Nearest-Neighbor Search
using quantum computers. This question was already approached in [17,19],
which considered generic application of Grover’s algorithm over classical NNS
techniques. It seems an important question to determine whether less generic
approaches could perform better.

1.3 Organization

The remainder of this paper is organized as follows. In Section 2, we give the
necessary preliminaries, including a description of the AJPS cryptosystem of [1],
and a description of a variant of the quantum search algorithm due to [3], for
settings where the cost of checking if an element is marked varies. In Section 3,
we present and analyze our classical Meet-in-the-Middle attack, and in Section 4,
we present and analyze our quantum Meet-in-the-Middle attack. In Section 5,
we present our formal analysis of the Beunardeau et al. attack [6].

2 Preliminaries

2.1 The AJPS Cryptosystem

In this section, we will describe the cryptosystem of Aggarwal et al. [1] (the
AJPS cryptosystem). Let N = 2n − 1, where n is a prime number4, and let
R = Z/NZ be the integer ring modulo N . We define w = b

√
n/2c to be the

upper bound on what we will consider “low weight”.
We will identify a number in R with its binary representation. In this way,

we can represent the elements of R by the elements of Fn2 , with 1n and 0n both
representing 0 ∈ R, and all other elements of R having unique representatives in
Fn2 . For nonzero a ∈ R, denote by |a| the Hamming weight of the unique binary
representation of a, and define |0| = 0. Similarly, denote by ∆(a, b) the Hamming
distance between the binary representations of a and b (using the representation
0n for 0 ∈ R). Note that it is not necessarily the case that |ab| and |a| · |b| are
equal nor that |a+ b| and |a|+ |b| are equal. However, we have the following.

Lemma 1 ([1]). Let a, b ∈ R. Then

(i) |a+ b| ≤ |a|+ |b|,
(ii) |ab| ≤ |a| · |b|, and

4 Numbers of the form N = 2n − 1 with n ∈ N are called Mersenne numbers. If,
additionally, N = 2n − 1 is prime, it is called a Mersenne prime. For the purposes
of the AJPS cryptosystem, N doesn’t need to be prime, but n does.



(iii) if a 6= 0, then | − a| = n− |a|.

Elements of the ringR have the special property that for any i ∈ {0, . . . , n−1}
and a ∈ R, the binary representation of a · 2i mod N is just a cyclic shift of the
binary representation of a by i.

We now describe the AJPS cryptosystem [1] with public parameter n.

Key Generation Randomly choose two elements f, g ∈ R of Hamming weight
w, where g is invertible in R. Set h = f/g. The public key is h, and the
secret key is g.

Encryption To encrypt a bit s, pick random p, q ∈ R of Hamming weight at
most w. Output the ciphertext c = (−1)s(ph+ q) ∈ R.

Decryption To decrypt c, compute cg = (−1)s(phg + qg) = (−1)s(pf + qg).
Since p, q, f and g all have Hamming weight ≤ w, the n-bit string pf+qg has
Hamming weight ≤ 2w2 < n/2 by Lemma 1. Thus if s = 0, then |cg| < n/2.
On the other hand, if s = 1, then | − cg| < n/2, so by Lemma 1, |cg| >
n− n/2 = n/2. Thus, to decrypt c, output 0 if |cg| < n/2, and 1 otherwise.

To attack this cryptosystem, it suffices to solve the following problem:

Given h ∈ R, find g ∈ R of Hamming weight w such that
|hg| = w, assuming such a g exists.

Since multiplication by 2i just shifts the binary representation of an element
of R by i, if g is a solution to the above problem, then so is 2ig. Thus, if a solution
exists, then a solution with the first bit set to 1 exists, and so we can restrict our
attention to such solutions. Since a brute-force attack can find such a solution g
in time

(
n−1
w−1

)
, to achieve security parameter λ, n and w must satisfy

(
n−1
w−1

)
> 2λ

and w <
√
n/2. Our results, however, imply that a stronger condition is required

to achieve λ-bit security.

2.2 Quantum search with variable costs

In this section we will introduce the quantum search algorithm, originally due
to Grover [11] and later generalized [7,8]. This algorithm searches a universe of
size N for a particular marked item, given access to some procedure for checking
if a given item is marked, using O(

√
N) calls to the checking procedure. We

will also make use of an elegant variant of the quantum search algorithm due
to Ambainis [3], that has better complexity when the cost of checking if a given
item is marked varies by item.

Let U be some set of N objects, and let C : U → {0, 1} be some procedure,
called the checking procedure, that outputs 1 when given a marked item, and
suppose the complexity of the procedure C is C. Then there exists a quantum
algorithm with complexity Õ(C

√
N) that outputs u ∈ U such that C(u) = 1

with probability at least 2/3, assuming such a u exists.
We may also consider the scenario in which the complexity of computing

C(u) varies with u. Call this complexity C(u). Using the previously mentioned



standard quantum search algorithm, we can search for u ∈ U such that C(u) = 1
in Õ(maxu∈U C(u)

√
N) steps. However, we can do better:

Theorem 1 (Quantum search with variable costs (Ambainis [3])). Let
C : U → {0, 1} be any checking procedure. There exists a quantum algorithm that
outputs u ∈ U such that C(u) = 1 with probability at least 2/3 (assuming such a
u exists), and has complexity

Õ

√∑
u∈U

C(u)2

 ,

where C(u) is the cost of computing C(u), and needn’t be known in advance. We
call this algorithm quantum search for u ∈ U that satisfies C.

In the case where C(u) = C is constant, the algorithm from Theorem 1 has
complexity Õ(C

√
N), as in the standard quantum search algorithm.

3 Classical Meet-in-the-Middle Attack

3.1 Introduction

The “Meet-in-the-Middle attack” (MITM attack) is a well-known generic cryp-
tographic attack that can be deployed against a variety of cryptosystems, often
achieving an improved time complexity in breaking the system, at the cost of
greater space complexity. It may have originated in [12].

To illustrate this attack, we give an example in the context of the knapsack
problem, which can be described as follows. Given numbers h1, . . . , hn ∈ Z, find
g ∈ Fn2 such that

n∑
i=1

hig[i] = 0.

The MITMA idea is to split Fn2 = G1 ⊕G2 into two equally-large subspaces

of dimension n/2, where G1 = {(g, 0dn/2e) : g ∈ Fbn/2c2 } and G2 = {(0bn/2c, g) :

g ∈ Fdn/2e2 }. We calculate all numbers H(g1) = −
∑
i hig1[i] for g1 ∈ G1 and

store them in a database D. This costs 2n/2 time and space, up to a poly(n)
factor.

Hereafter, we calculate H(g2) =
∑
i hig2[i] for g2 ∈ G2, and check whether

the element −H(g2) is somewhere in D, using a single database lookup. If so,
then we have found a g1 ∈ G1 such that H(g2) = −H(g1). Then g1 + g2 ∈ Fn2
is a solution. This search costs about 2n/2 database lookups, and 2n/2 · poly(n)
time. This has much better time complexity than trying all combinations, which
costs roughly 2n time (but poly(n) space).



Description of our MITM attack on the AJPS system Given h ∈ R, we want to
find f, g ∈ R, each of Hamming weight w, such that h = f/g — or equivalently,
such that gh = f . In other words, our task is, informally, to find g ∈ Fn2 of weight
w such that |gh| is small.

For α ∈ [0, 1] to be specified later, we define

G
(α)
1 = {(g, 0d(1−α)ne) : g ∈ Fbαnc2 , |g| = bαwc}

and G
(α)
2 = {(0bαnc, g) : g ∈ Fd(1−α)ne2 , |g| = d(1− α)we}.

We note that while G
(α)
1 ⊕ G(α)

2 does not include all g ∈ Fn2 such that |g| = w,
restricting to this set is without loss of generality, since, if g = g1+g2 is a solution,
meaning that both g and gh have weight w, then for any z ∈ {0, . . . , n− 1}, 2zg
is also a solution. This is because 2zg just shifts the binary representation of
g by z in a cyclic manner, so 2zg and 2zgh also have weight w. Thus, if there
exists a solution, then there exists a solution in which g1 and g2 have weights
bαwc and d(1− α)we, respectively.

The attack will begin by enumerating (g1, g1h) for all g1 ∈ G(α)
1 , after which

we will search over G
(α)
2 for some g2 that is in collision with some g1 ∈ G(α)

1 ,
where, intuitively, we want to define g1, g2 to be in collision whenever the Ham-
ming distance ∆(g1h,−g2h) is not much bigger than 2w. The difficulty is that,
given some value −g2h, while it would be easy to find a stored value of g1h that
is equal to −g2h, it is not immediately clear how to find such a stored value that
is close in Hamming distance to −g2h.

Locality-sensitive hash functions Our solution is to use a simple form of locality-
sensitive hashing [16]. Intuitively, a locality-sensitive hash should take the same
value, with high probability, on two elements that are close with respect to some
desired distance. In our case, for B = {i1, . . . , iB} ⊂ [n] with i1 < · · · < iB , define

HB : Fn2 → F|B|2 by HB(s1, . . . , sn) = (si1 , . . . , siB ). We will use the function
family FB = {HB : |B| = B} for some B to be specified later. This works for
our purposes, because if two strings are close in Hamming distance, then on a
random small subset B of their bits, they are likely to agree.

Detailed description of algorithm Our Meet-in-the-Middle attack proceeds as
follows:

1. Choose a uniformly random H ∈ FB .
2. Initialize an empty hash table D, with 2B (initially empty) linked lists, one

for each element in the range of H.

3. For each g1 ∈ G(α)
1 :

(a) Insert (g1,H(g1h)) into D.

4. For each g2 ∈ G(α)
2 :

(a) Look up H(−g2h) in D, and let L be the resulting list of values g1 such
that H(g1h) = H(−g2h).

(b) For each g1 in L:
i. If |g1 + g2| = w and |(g1 + g2)h| = w, then output g1 + g2.



Analysis of algorithm We first argue that our algorithm succeeds in finding a
solution if one exists. The next lemma shows that if −g2h is uniformly random
from R, and b is an arbitrary element of R with Hamming weight w, then (with
high probability) −g2h and g1h = −g2h+ b do not differ in much more than 2w
bits of their binary representations, i.e., ∆(−g2h, g1h) is not much larger than
2w.

Lemma 2. Let a ∈ R = Z/(2n− 1)Z be chosen uniformly at random, let w ∈ N
and let b ∈ R be any element such that |b| = w. Then, for every s > 0, we have:

P
[
∆(a, a+ b) > 2w + s

√
w
]
≤ exp

(
− s2

8 + 4s/
√
w

)
+ 2−n. (1)

Proof. We assume a to be chosen uniformly at random from Fn2 , instead of from
R. These two distributions P,Q on the set of n-bit strings only differ by 2−n

with respect to the total variation distance:

1

2

∑
b∈Fn2

|P[b]−Q[b]| = 1

2

|P[1n]−Q[1n]|+
∑

b∈Fn2 \{1n}

|P[b]−Q[b]|


=

1

2

(
1

2n
+ (2n − 1)

(
1

2n − 1
− 1

2n

))
= 2−n,

which accounts for the 2−n-term in the right-hand side of Equation (1).
Given a, b, we define the carry element cncn−1 . . . c1 = c ∈ R by c = (a+ b)⊕

(a ⊕ b). One can show that c equals the ‘carry vector’ that one puts above the
sum of a and b when doing addition on a blackboard (see Table 1). Note that
a ⊕ b ⊕ c = a + b, implying that ∆(a, a + b) = |b ⊕ c| = |b| + |c| − 2|b ∧ c| =
w + |c| − 2|b ∧ c|.

c 0111 1110

a 0010 1111

b 0001 0001

b ∧ c 0001 0000

Table 1. Having a nonzero bit in b ∧ c leads necessarily to an extra carry.

We now want to analyze the number of carry bits, i.e., the random variable
|c|. The idea of the proof is that each 1-bit in b, combined with bits of a, will
induce a sequence of carry-bits “to its left”. If there were no other 1-bits in b,
then that induced number of carry-bits would be geometrically distributed with
parameter 1/2; we can think of this as the number of 1s that precede the first 0
in a sequence of 0/1-valued fair coin flips. In actual fact, the number of carry
bits induced by one 1-bit in b could be one more, namely when the leftmost
end of the sequence of carry-bits coincides with another position where b has a



1-bit. The number of positions where this can happen is the random variable
|b ∧ c|. Therefore the random variable |c| is majorized5 by the random variable
|b ∧ c| + S, where S =

∑w
i=1Gi is the sum of w i.i.d. geometrically distributed

random variables (each with parameter 1/2, and support {0, 1, 2, . . .}).
Therefore we have

P
[
∆(a, a+ b) > 2w + s

√
w
]

= P
[
w + |c| − 2|b ∧ c| > 2w + s

√
w
]

= P
[
|c| > 2|b ∧ c|+ w + s

√
w
]
≤ P

[
|c| > |b ∧ c|+ w + s

√
w
]
≤ P

[
S > w + s

√
w
]

= P
[
Bin(2w + s

√
w, 1/2) < w

]
≤ exp

(
− (s

√
w)2

8w + 4s
√
w

)
= exp

(
− s2

8 + 4s/
√
w

)
.

The second inequality uses majorization. The penultimate equality holds because
the event ‘S > w+s

√
w’ is the same as the event that in a sequence of 2w+s

√
w

fair coin flips, there are fewer than w successes. We upper bound the probability
of the latter by Chernoff’s inequality.

Heuristic 1. The above lemma still holds when setting a = hg1 and b = f for
f, g, h distributed as in the AJPS cryptosystem.

Remark 1. The above heuristic is corroborated by experiments, see Appendix A.
More concretely, for primes n ≤ 2000, it holds that ∆(−g2h, g1h) ≤ 2w − 1 for
more than half of the keys, and that ∆(−g2h, g1h) ≤ 2w + 7 for about 90% of
the keys.

We are now ready to analyze the space and time complexity of the algo-
rithm. We will set α = 1/2. We can see immediately that the algorithm requires

Õ(|G(α)
1 |) = Õ

((
n/2
w/2

))
space.

To analyze the time complexity, we first note that Step 3 of the algorithm

costs |G(α)
1 | insertions into the data structure, so the cost is Õ(|G(α)

1 |) = Õ
((

n/2
w/2

))
.

The loop in Step 4 runs |G(α)
2 | times, and the iteration corresponding to some

g2 ∈ G(α)
2 costs approximately 1 + `(g2), where `(g2) = |{g1 ∈ G(α)

1 : H(g1h) =
H(−g2h)}|. The total cost of Step 4 is thus at most:

|G(α)
2 |+

∑
g2∈G(α)

2

`(g2).

We can rewrite the above as

|G(α)
2 |+

∑
v∈FB2

|{(g1, g2) ∈ G(α)
1 ×G(α)

2 : H(g1h) = H(−g2h) = v}|

= |G(α)
2 |+ |{(g1, g2) ∈ G(α)

1 ×G(α)
2 : H(g1h) = H(−g2h)}|.

Heuristic 2. For every fixed H ∈ FB, with high probability over g and f

as chosen in the AJPS system, we have |{(g1, g2) ∈ G
(α)
1 × G

(α)
2 : H(g1h) =

H(−g2h)}| ≈ |G(α)
1 | · |G

(α)
2 |2−B.

5 Random variable X majorizes random variable Y , if P[X > t] ≥ P[Y > t] for all t.



Remark 2. The above heuristic is obtained by considering allH(g1h) andH(g2h)
values as independent random uniform strings of B bits. The validity of this
heuristic is confirmed by the experiments presented in Appendix A.1.

Let g = g∗1 +g∗2 be a solution. The algorithm will only find this g if H(g∗1h) =
H(−g∗2h), in which case we say H is good for g. By Lemma 2 and assuming
Heuristic 1, ∆(g∗1h,−g∗2h) ≤ 2w + s

√
w happens with high probability, for a

fixed constant s. So, assuming ∆(g∗1h,−g∗2h) ≤ 2w + s
√
w, the hash function

H is good with probability at least p(B) =
(n−2w−s

√
w

B )
(nB)

where the probability is

over the function family FB = {HB : |B| = B}.

Lemma 3. Under the above heuristics, setting α = 1/2 and B = dlog2

(
n/2
w/2

)
e (≈

w
2 log(n/w) +O(w)), the time complexity of the algorithm is Õ

(√(
n
w

))
.

Proof. Ignoring polylogarithmic factors, the complexity of the algorithm equals

|G(α)
1 |+ |G

(α)
2 |+ |G

(α)
1 | · |G

(α)
2 |2−B . Note that |G(α)

2 |2−B ≤ 1, by the choice of B

and the fact that |G(α)
2 | =

(
n/2
w/2

)
. Therefore the complexity of steps 1-4 equals

2|G(α)
1 |+ |G

(α)
2 | = 3

(
n/2
w/2

)
= Õ

(√(
n
w

))
. To achieve constant success probability,

we repeat the algorithm 1/p(B) times, which is, as we will show, polynomial
in n. We use the identity ln

(
m
`

)
= ` ln(m/`)+`+O(lnm) whenever ` = Õ(

√
m),

and the fact that w2 ≈ n/4. We have:

ln
1

p(B)
= ln

(
n

B

)
− ln

(
n− 2w − s

√
w

B

)
= −B ln

(
n− 2w − s

√
w

n

)
+O(lnn)

= (1 + o(1))
2wB

n
+O(lnn) = (1 + o(1))

w2

n
ln(n/w) +O(lnn) = O(lnn).

4 Quantum Meet-in-the-Middle Attack

We now present our quantum meet-in-the-middle attack. The first example of
a quantum meet-in-the-middle algorithm was the collision finding algorithm of
Brassard, Høyer and Tapp [9]. Similar ideas were later used in quantum algo-
rithm for the subset sum problem [5], and a quantum attack on the NTRU
cryptosystem [23], which have a similar structure to the algorithm presented
here. One difference in our new algorithm is the use of Ambainis’s variable-cost
quantum search algorithm [3], described in Section 2.2.

The algorithm presented in this section requires time and space Õ
((

n
w

)1/3)
.

The bulk of the memory required for this quantum algorithm must be quantum
accessible, meaning it does not need to be able to store a quantum state, but
must be accessible in superposition. OnlyO(n) of the space used by the algorithm
must be fully quantum memory, capable of being in an arbitrary superposition.



The quantum algorithm presented and analyzed in this section is then very
similar to the classical MITM attack, except we use quantum search to search

over all g2 ∈ G(α)
2 , and then since the complexity of this step of the algorithm

decreases in the quantum case, it is optimal to use α = 1/3 rather than α = 1/2.

Detailed description of algorithm Our quantum MITM attack proceeds as fol-
lows:

1. Choose a uniformly random H ∈ FB .
2. Initialize an empty hash table D.

3. For each g1 ∈ G(α)
1 :

(a) Insert (g1,H(g1h)) into D.

4. Quantum search (using Theorem 1) for g2 ∈ G(α)
2 that satisfies the following

checking procedure:
(a) Look up H(−g2h) in D, and let L(g2) be the resulting list of values g1

such that H(g1h) = H(−g2h).
(b) Quantum search for g1 in L that satisfies the following checking proce-

dure:
i. If |g1 + g2| = w and |(g1 + g2)h| = w, then output 1.

Analysis of algorithm We will use α = 1/3. The algorithm requires |G(α)
1 | =(

αn
αw

)
=
(
n/3
w/3

)
quantum accessible memory, and O(log |G(α)

2 |) = O(n) quantum
memory.

In order to upper bound the time complexity, we will make use of Heuristic 2
with α = 1/3. Then we have the following.

Lemma 4. Assuming Heuristic 1 and Heuristic 2 with α = 1/3, setting B =

dlog2

(
n/3
w/3

)
e, the time complexity of the algorithm is Õ

((
n
w

)1/3)
.

Proof. As in the classical algorithm, the time complexity of Steps 1 to 3 of the

quantum algorithm is Õ(|G(α)
1 |) = Õ

((
αn
αw

))
, which, in this case, is Õ

((
n/3
w/3

))
.

For a particular g2 ∈ G
(α)
2 , Steps 4a and 4b together cost (neglecting negligi-

ble factors) 1 +
√
`(g2), so using variable cost quantum search, as described in

Section 2.2, the total cost of Step 4 is√√√√ ∑
g2∈G(α)

2

(1 +
√
`(g2))2 = O

√|G(α)
2 |+

√√√√ ∑
g2∈G(α)

2

`(g2)

 .

By Heuristic 2 and the choice of B, we have
∑
g2∈G(α)

2
`(g2) ≈ |G(α)

1 |·|G
(α)
2 |2−B ≤

|G(α)
2 |. Thus, the total complexity of steps 1-4 of the attack is O

(√
|G(α)

2 |
)

=

O
(√(

2n/3
2w/3

))
= Õ

((
n/3
w/3

))
. Finally, as in Section 3, H is good with probability

p(B) =
(n−2w−s

√
w

B )
(nB)

. To achieve constant success probability, we repeat 1/p(B)

times, which is polynomial in n by a similar reasoning as in Lemma 3.



5 Analysis of the Beunardeau et al. attack

Within a week of the publication of the AJPS cryptosystem [1], an experimental
attack was proposed by Beunardeau et al. [6]. This attack exploits the fact that
a certain lattice, derived from the public key of the AJPS cryptosystem and two
well-chosen partitions, has very short vectors. One of these short vectors, which
can be found by means of the LLL lattice reduction algorithm [20], represents
the private key.

Although Beunardeau et al. do not give a clear asymptotic estimate of the
complexity of their attack, they do suggest tentatively that it might run in time
22wnO(1), where w = b

√
n/2c is the Hamming weight of secret key g ∈ R [6,

§2.2]. More specifically, once a partition is chosen, the attack runs in polynomial
time nO(1), and the probability that it is successful should be about 2−2w.

Remark 3. Note that this probability is taken only over the randomness of the
secret key. It is not obvious that one can amplify the success probability for a
fixed key up to a constant by repeating the attack with 22w different partitions.
Indeed, there could be certain keys that are caught by a fraction of partitions
significantly smaller than 2−2w.

In this section, we propose an analysis of a simplified version of their attack.
Using standard lattice heuristics we can argue that, for each pair of partitions,
the probability that a secret key will be found by applying LLL on the derived

lattice equals ( 1
2 − c

(
d
w

)2
+ o(1))2w, where d is the lattice dimension, and c is

a very small constant, say 1/140. The lattice dimension d corresponds to the
number of blocks in a partition of the bits of f and g. While in theory we can
choose d between 2 and O(w), in order to find f and g for a particular h, we will
generally need to choose d as large as Ω(w). We discuss this more at the end of
Section 5.3. While asymptotically slightly different from the tentative conclusion
of [6], this analysis certainly does not contradict the fact that this attack is quite
efficient in practice, and remains the best known attack (better than our MITM
attack).

We remark that one could also replace LLL with a perfect SVP-oracle to raise
the success probability to ( 1

2 +o(1))2w, but this would increase the running time

of the lattice reduction step to 2Θ(d). Namely, for partitions of size d = Θ(w)
the ratio of the cost over success probability remains at least 2(2+δ)w+o(w) for a
fixed δ > 0.

Finally, we note that this attack can also be sped up with a quantum com-
puter. If, for a particular fixed key g, the probability that a sampled partition
allows the LLL subroutine to find the secret key is p, then there is a quantum
algorithm that finds the key in only

√
1/p calls to the subroutine, compared to

the 1/p calls required by a classical algorithm. So under the heuristic assumption
that p ≈ 2−2w, there is a quantum algorithm that recovers the key in time ≈ 2w.

Unfortunately, despite some effort, we have not been able to answer the
question left open by Beunardeau et al.: “Are there classes of public keys that
are harder to recover using this lattice attack, and if so, which ones?”



5.1 Partitions

In this section, we show how partitioning of [n] = {0, . . . , n − 1} can lead to a
short representation of the secret key g ∈ R = Z/NZ. The overall idea is to write
g as a binary string in Fn2 , as before. Since g has a low Hamming weight, one can
imagine the one-valued bits scattered sparsely among the n possible positions.
One then chooses interval-like subsets of [n] such that, with any luck, each one-
valued bit falls in the right-half of one of these subsets. In that case, each subset
of [n] in the partition corresponds to a binary substring of g representing a
“small” number. Consequently, the array of these numbers can be considered as
a short representation of g. An example is depicted in Table 2.

Remark 4. Because of the bit-wise arithmetic in R, it is natural to consider
interval-like partitions only. An interval-like partition P of [n] consists of subsets
that are of the form {a, a+1, a+2, . . . , b−1, b} for a, b ∈ [n], i.e., subsets without
‘gaps’. Due to the fact that multiplication by 2i in R simply shifts all binary
representations by i, we also allow subsets of the form {a, a + 1, . . . , n − 2, n −
1, 0, 1, . . . , b}.

Remark 5. Formally, our approach is slightly different from the one of Beu-
nardeau et al. [6]. Namely, they define partitions with black and white blocks,
hoping that all 1-valued bits of the secret key fall into the white blocks of the
partitions. It turns out, however, that the black blocks do not play any role in
the construction of the lattice related to this partition. Therefore, we prefer to
omit the black partitions in our approach. This alteration has no algorithmic
impact and is merely an editorial choice simplifying the analysis.

g 00100000000001000010

Partition
{19, 18, 17, 16}, {15, 14, 13, 12}, {11, . . . , 6},

{5, . . . , 0}
g partitioned in a “good” way 0010 0000 000001 000010

Array of decimal numbers
representing g

[2, 0, 1, 2], g = 2 · 216 + 0 · 212 + 1 · 26 + 2 · 20

Table 2. Example partition of g with Hamming weight 3.

5.2 Lattice Reduction

Lattice construction Given any two interval-like partitions P = {P1, . . . , Pk},
Q = {Q1, . . . , Q`} of [n] and a public key h ∈ R. Let pi, qi be the least elements
of Pi, Qi respectively. Then, one can consider the following lattice.

LP,Q,h =

(x1, . . . , xk, y1, . . . , y`)
∣∣∣ h · k∑

i=1

2pi · xi −
∑̀
j=1

2qi · yi ≡ 0 mod N

 .



This lattice LP,Q,h has determinant ∆ = N and dimension d = k+`. Namely,
as LP,Q,h is a sublattice of Zd, we have det(LP,Q,h) = det(Zd)·[Zd : LP,Q,h] = N ,
since det(Zd) = 1 and the group index equals N .

This lattice contains vectors of the form (0, . . . , 0, 2m,−1, 0, . . . , 0), for some
m, which we will call ‘structural’ vectors. These structural vectors have length√

4|Pi| + 1 and
√

4|Qi| + 1. For example, (2p2−p1 ,−1, 0, . . . , 0) ∈ LP,Q,h is a struc-
tural vector which is easily seen to have the described length, observing that
p2 − p1 = |P1|. Applying this example for every two subsequent variables of the
same kind, one arrives at all structural vectors.

Definition 1 (Secret vector). Let h = f/g ∈ R be as in the AJPS-cryptosystem,
suppose P = {P1, . . . , Pk} and Q = {Q1, . . . , Q`} are interval-like partitions of
[n] and denote pi = minPi and qj = minQj. We define the secret vector

s := (g1, . . . , gk, f1, . . . , f`) ∈ LP,Q,h,

where 0 ≤ gi < 2|Pi| and 0 ≤ fj < 2|Qj | are the unique natural numbers such

that
∑k
i=1 gi · 2pi = g and

∑`
j=1 fj · 2qj = f .

Remark 6. The vector s is actually just the concatenation of the vectors (g1, . . . , gk)
and (f1, . . . , f`), which are constructed from g, P and f,Q respectively as in Ta-
ble 2.

Applying LLL Let us recall the guarantees provided by the LLL algorithm.

Lemma 5 ([20,21]). For any γ >
√

4/3, the LLLγ-algorithm applied to a d-
dimensional lattice L returns, within polynomial time, a basis (b1, . . . , bd) of L
satisfying

– ‖b1‖ ≤ HF(L) := γ(d−1)/2 ·∆1/d
L (Hermite factor bound);

– ‖b1‖ ≤ AF(L) := γd−1 · λ1(L) (Approximation factor bound).

where λ1(L) is the length of a shortest nonzero vector of L, and ∆L is the
determinant of the lattice L.

In practice, LLL performs much better. For cryptanalytic purposes, one often
assumes γ = 1.04, which is corroborated by many experiments [22]. In the current
analysis, this practical value of γ will be used.

The inequalities in Lemma 5 give rise to two so-called regimes of LLLγ , the
Hermite regime and the Approximation regime. A lattice L lies in the Hermite
regime when HF(L) ≤ AF(L), and lies in the Approximation regime whenever
AF(L) < HF(L). One distinguishes these two cases because the output of LLL
differs significantly between the regimes. This effect is most prominent when a
single, unique short vector causes a lattice to be in the Approximation regime;
in that case LLL typically outputs this particular short vector [10, §3.3].

One would like to have that this last scenario holds for the lattice LP,Q,h and
the secret vector s. So, informally, one wishes to have no vectors in LP,Q,h that
are shorter than usual except for the secret vector s. One obstacle could be that



the structural vectors are too short, causing s not to be unique. However, we
will rule out this possibility by comparing the lengths of these structural vectors
to the Gaussian heuristic of LP,Q,h.

The Gaussian heuristic uses a geometric argument to estimate the length
of the shortest vector of a lattice [10]. For d-dimensional lattices L one expects

λ1(L) ≈
√
d/(2πe) ·∆1/d

L , according to this heuristic. Applying this to the lattice

of interest, one obtains λ1(LP,Q,h) ≈
√
n/(2πe) · 2nd . Recall that the structural

vectors have approximate length 2|Pi| and 2|Qi|. So, whenever |Pi|, |Qi| > n/d+
Θ(log n), we have 2|Pi|, 2|Qi| >

√
d/(2πe) · 2nd . So, in this case, the structural

vectors are not shorter than the estimate of the Gaussian heuristic and hence
longer than the secret vector s. Note that the average size of |Pi|, |Qi| is 2n/d,
meaning that this constraint is not so restrictive.

Therefore, we assume the following heuristic.

Heuristic 3. The attack of Beunardeau et al. is successful in recovering the
secret vector s if s (as in Definition 1) is the shortest vector and causes the lattice
LP,Q,h to fall into the Approximation regime, i.e., AF(LP,Q,h) < HF(LP,Q,h).

From the above heuristic we can deduce that the lattice attack succeeds if

‖s‖ · γd−1 < γ(d−1)/2 · 2n/d = HF(LP,Q,h).

Moreover, according to the study of Albrecht et al. [2] on the behavior
of LLL for unique-SVP instances, this condition should be essentially tight.
More precisely, we expect the attack to fail with overwhelming probability when
AF(LP,Q,h) > O(

√
d) ·HF(LP,Q,h).

The metric bounds ‖s‖∞ ≤ ‖s‖ ≤
√
d · ‖s‖∞ imply that the attack passes

when
√
d · ‖s‖∞ < γ−(d−1)/2 · 2nd and is expected to fail when ‖s‖∞ > O(

√
d) ·

γ−(d−1)/2 · 2nd . Since ‖s‖∞ = max{gi, fi}, we can write ‖s‖∞ = 2r, where r is
the bit size of the maximum of the gi and fi. Putting this in the inequalities and
taking base-two logarithms, yields the following. The attack succeeds whenever
r < n

d (1− δ1 − δ2) and is expected to fail when r > n
d (1 − δ1 + δ2 + O(d/n)),

where

δ1 =
d(d− 1) · log2(γ)

2n
and δ2 =

d · log2(d)

2n
.

5.3 Success probability analysis

Let P and Q be partitions with block sizes at least n/d+Θ(log n), where d = k+`
with k = |P | and ` = |Q|. We analyze the success probability of the lattice attack
with respect to random f and g ∈ R both of Hamming weight w = b

√
n/2c.

From the previous section, we found that it suffices that the non-zero bits
of f and g fall in the rightmost r bits of each block, in order to make LLL find
the secret vector. So, for g, the total number of bits that are allowed to be one
equals k · r. Therefore, we can approximate the probability of the bits of f and
g all falling in the good region by(

` · r
n

)w (
k · r
n

)w
.



Putting in the upper and lower bound for r, we obtain an upper and lower bound
for the success probability p of the attack.(

`k(1− δ1 − δ2)2

d2

)w
< p <

(
`k(1− δ1 + δ2 +O(d/n))2

d2

)w
.

In order to maximize the above probability, we will assume that k = ` = d/2
and d = O(w). Namely, the fraction `k

(`+k)2 attains its maximum at ` = k = d/2.

Recalling w2 ≈ n/4, we obtain δ1 = d(d−1)
2n · log2(γ) ≈ 1

8

(
d
w

)2 · log2(γ) and
δ2 = o(1) as n→∞. Therefore(

1− δ1 − o(1)

2

)2w

< p <

(
1− δ1 + o(1)

2

)2w

.

Thus, assuming Heuristic 3, the success probability of LLL recovering a randomly
chosen AJPS secret key pair (f, g) ∈ R2 from the lattice LP,Q,h (where h = f/g),

is roughly
(

1
2 − c

(
d
w

)2
+ o(1)

)2w
, where c = log2(γ)/8 = log2(1.04)/8 ≈ 1/140.

This probability value suggests that one should start with partitions with a small
number of blocks, exploiting both the low dimension m of the lattice LP,Q,h and
a slightly larger success probability. Note, however, that it is not likely that the
secret key s = (g, f) will be recovered in this stage; the smaller d is, the fewer
possible partitions there are, so the need to sample new partitions will require
us to increase d to Ω(w) for most keys.

Replacing LLL by an SVP-oracle. If one replaces LLL by an SVP-oracle, the
success condition from Heuristic 3 needs to be amended. Instead, the attack
would be successful when s is the shortest vector of L. Heuristically this is
the case if and only if s is shorter than what is predicted by the Gaussian

Heuristic λ1(L) ≈
√
d/2πe ·∆1/d

L . Using a similar analysis, this leads to a success
probability of 2−2w+o(1). Note however that the best SVP-solvers [4] need time
(3/2)d/2, which would increase the overall complexity of the attack significantly.

5.4 Generalization to scaled partitions

The attack that is treated above is a simplification of the attack of Beunardeau
et al.; essentially we omitted a ‘scaling’ technique [6, §2.2, ‘Trying partitions’].
This particular technique allows the variation of partition sizes and the fraction
of each partition block that must consist of leading 0s.

The lattice LP,Q,h scaled by the vector σ = (σ1, . . . , σk, σ
′
1, . . . , σ

′
`) ∈ Rd can

be defined explicitly as follows.

LσP,Q,h =

{
(σ1x1, . . . , σkxk, σ

′
1y1, . . . , σ

′
`y`)

∣∣∣
h ·

k∑
i=1

2pi · xi −
∑̀
j=1

2qi · yi ≡ 0 mod N

}
.



Allocating less weight σi to the content xi of a certain partition Pi lets a lattice
reduction algorithm tolerate larger values xi; this means that the required frac-
tion of leading 0s in this partition is diminished. This technique implies more
freedom in choosing block sizes and required fractions of leading 0s.

Note, however, that scaling the entire lattice L 7→ cL by a constant won’t
affect the attack at all. Therefore, one might require, without loss of generality,
that

∏k
i=1 σi

∏`
j=1 σ

′
j = 1. This implies that the increase and decrease of the

fractions of leading 0s of the blocks are in an equilibrium, not affecting the total
region where non-zero bits are allowed.

So, this extension possibly increases the number of public keys that can be
broken but does not affect the running time nor the success probability of the
attack. Even considering this generalization, we were not able to prove that
this improved attack could recover every key with constant probability in time
2(2+δ)w+o(1) for some small constant δ > 0.

Acknowledgments

The authors wish to thank David Naccache, Antoine Joux and Marc Beunardeau
for helpful discussions, and the anonymous PQCrypto reviewers for useful feed-
back. LD is supported by a NWO Veni Innovational Research Grant under
project number 639.021.645. SJ is supported by an NWO WISE Grant and
an NWO Veni Innovational Research Grant under project number 639.021.752.
RdW is partially supported by ERC Consolidator Grant 61530-QPROGRESS.

References

1. D. Aggarwal, A. Joux, A. Prakash, and M. Santha. A new public-key cryptosystem
via Mersenne numbers. Cryptology ePrint Archive, Report 2017/481, 2017. http:
//eprint.iacr.org/2017/481.

2. M. R. Albrecht, F. Göpfert, F. Virdia, and T. Wunderer. Revisiting the Expected
Cost of Solving uSVP and Applications to LWE. Cryptology ePrint Archive, Re-
port 2017/815, 2017. https://eprint.iacr.org/2017/815.

3. A. Ambainis. Quantum search with variable times. Theory of Computing Systems,
47(3):786–807, Oct 2010.

4. A. Becker, L. Ducas, N. Gama, and T. Laarhoven. New directions in nearest
neighbor searching with applications to lattice sieving. In Proceedings of the 27th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016), pages 10–
24, 2016.

5. D. J. Bernstein, S. Jeffery, T. Lange, and A. Meurer. Quantum algorithms for
the subset sum problem. In Proceedings of the 5th International Conference on
Post-Quantum Cryptography (PQCrypto 2013), pages 16–33, 2013.

6. M. Beunardeau, A. Connolly, R. Géraud, and D. Naccache. On the hardness
of the Mersenne low Hamming ratio assumption. In Progress in Cryptology –
LATINCRYPT 2017, 2017. Available at http://eprint.iacr.org/2017/522.

7. M. Boyer, G. Brassard, P. Høyer, and A. Tapp. Tight bounds on quantum search-
ing. Fortschritte der Physik, 46(4-5):493–505, 1998.

http://eprint.iacr.org/2017/481
http://eprint.iacr.org/2017/481
https://eprint.iacr.org/2017/815
http://eprint.iacr.org/2017/522


8. G. Brassard, P. Høyer, M. Mosca, and A. Tapp. Quantum amplitude amplification
and estimation. In Quantum Computation and Quantum Information: A Millen-
nium Volume, volume 305 of AMS Contemporary Mathematics Series Millennium
Volume, pages 53–74. AMS, 2002.

9. G. Brassard, P. Høyer, and A. Tapp. Quantum algorithm for the collision problem.
ACM SIGACT News, 28:14–19, 1997. arXiv:quant-ph/9705002.

10. N. Gama and P. Q. Nguyen. Predicting lattice reduction. Advances in Cryptology
– EUROCRYPT 2008, pages 31–51, 2008.

11. L. K. Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the 28th Annual ACM Symposium on the Theory of Computing
(STOC 1996), pages 212–219, 1996.

12. M. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on In-
formation Theory, 26(4):401–406, July 1980.

13. J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key
cryptosystem. In International Algorithmic Number Theory Symposium, pages
267–288. Springer, 1998.

14. N. Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack
against NTRU. Advances in Cryptology – CRYPTO 2007, pages 150–169, 2007.

15. N. Howgrave-Graham, J. H. Silverman, and W. Whyte. A meet-in-the-middle
attack on an NTRU private key. Technical report, NTRU Cryptosystems, June
2003.

16. P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the
curse of dimensionality. In Proceedings of 30th Symposium on Theory of Computing
(STOC 1998), 1998.

17. T. Laarhoven. Search problems in cryptography. PhD thesis, Eindhoven University
of Technology, http://www.thijs.com/docs/phd-final.pdf, 2015.

18. T. Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive
hashing. In Annual Cryptology Conference, pages 3–22. Springer, 2015.

19. T. Laarhoven, M. Mosca, and J. van de Pol. Finding shortest lattice vectors faster
using quantum search. Designs, Codes and Cryptography, 77(2-3):375–400, 2015.

20. A. K. Lenstra, H. W. Lenstra, and L. Lovasz. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261:515–534, 1982.

21. P. Q. Nguyen. Hermite’s constant and lattice algorithms. In The LLL Algorithm,
pages 19–69. Springer, 2009.

22. P. Q. Nguyen and D. Stehlé. LLL on the average. Algorithmic Number Theory,
pages 238–256, 2006.

23. H. Wang, Z. Ma, and C. Ma. An efficient quantum meet-in-the-middle attack
against NTRU-2005. Chinese Science Bulletin, 58:3514–3518, 2013.

http://www.thijs.com/docs/phd-final.pdf


A Experiments

Since our MITM attack is not fully provable due to the presence of Heuristics 1
and 2, we provide some experimental verifications. The python scripts of those
experiments are available at https://github.com/lducas/MiTM-Mersenne.

One tweak in our implementation is that when w is odd, we do not split our
space exactly into two equal parts. Instead we choose w1 = bw/2c, w2 = w−w1,
and then choose n1, n2, such that

(
n1

w1

)
≈
(
n2

w2

)
. We will also simulate the quantum

case, and choose w1 = dw/3e, w2 = w − w1, and then choose n1, n2, such that(
n1

w1

)2 ≈ (n2

w2

)
. In both the classical and quantum case, we set B = blog2

(
n1

w1

)
c.

A.1 Verification of Heuristic 2

We recall that Heuristic 2 states that the number of collisions c = |{(g1, g2) ∈
S1×S2 : H(g1h) = H(−g2h)}| is approximately given by c′ = |S1| · |S2|2−B . We
measure the ratio r = c/c′ experimentally, over 100 samples for each dimension n.
Infrequently, this ratio may get as large as 3, yet for 90% of the experiments, it
was very close to 1. Figure 1 below shows the 9th decile of r as n grows.

Classical setting Quantum setting

Fig. 1. 9th decile of the ratio between the measured number of collisions c and expected
number of collisions c′ according to Heuristic 2, over 100 experiments per dimension.

A.2 Running time and success probability

In Figure 2 and Figure 3, we report on the practical efficiency of our attack and
compare it to our heuristic prediction. Note that in the quantum regime, the
success probability of this MITM attack in practice is sometimes significantly
larger than the theoretical prediction. This is most likely due to the fact that
our analysis is done for one particular solution, while certain rotations of the
same key may be found as well if its bits are properly balanced with respect to
the split Fn2 = G1 ⊕G2.

https://github.com/lducas/MiTM-Mersenne


Classical setting Quantum setting

Fig. 2. Success rate of the attack over 100 trials (in blue), compared to the theoretical
success rate (1 − 2w/(n − B))B (in red). The rather discontinuous shape of the red
curve is due to the rounding of w = b

√
n/2c and B = blog2

(
n1
w1

)
c.

Experimental running time Prediction

Fig. 3. Average running time of the classical attack over 100 trials in comparison with

the function
√(

n
w

)
, which is the dominant factor in our asymptotic complexity.


	Attacks on the AJPS Mersenne-based Cryptosystem

