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Abstract

We prove new upper bounds on the tolerable level of noise in a quantum circuit.
We consider circuits consisting of unitary k-qubit gates each of whose input wires is
subject to depolarizing noise of strength p, as well as arbitrary one-qubit gates that are
essentially noise-free. We assume that the output of the circuit is the result of measuring
some designated qubit in the final state. Our main result is that for p > 1—0(1/Vk), the
output of any such circuit of large enough depth is essentially independent of its input,
thereby making the circuit useless. For the important special case of k = 2, our bound is
p > 35.7%. Moreover, if the only allowed gate on more than one qubit is the two-qubit
CNOT gate, then our bound becomes 29.3%. These bounds on p are numerically better
than previous bounds, yet are incomparable because of the somewhat different circuit
model that we are using. Our main technique is the use of a Pauli basis decomposition,
in which the effects of depolarizing noise are very easy to describe.

1 Introduction

The field of quantum computing faces two main tasks: to build a large-scale quantum com-
puter, and to figure out what it can do once it exists. In general the first task is best left to
(experimental) physicists and engineers, but there is one crucial aspect where theorists play
an important role, and that is in analyzing the level of noise that a quantum computer can
tolerate before breaking down.

The physical systems in which qubits may be implemented are typically tiny and fragile
(electrons, photons and the like). This raises the following paradox: On the one hand we
want to isolate these systems from their environment as much as possible, in order to avoid
the noise caused by unwanted interaction with the environment—so-called “decoherence.”
But on the other hand we need to manipulate these qubits very precisely in order to carry
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out computational operations. A certain level of noise and errors from the environment is
therefore unavoidable in any implementation, and in order to be able to compute one would
have to use techniques of error-correction and fault-tolerance.

Unfortunately, the techniques that are used in classical error-correction and fault-tolerance
do not work directly in the quantum case. Moreover, extending these techniques to the
quantum world seems at first sight to be nearly impossible due to the continuum of possible
quantum states and error patterns. Indeed, when the first important quantum algorithms
were discovered [1, 2, 3, 4], many dismissed the whole model of quantum computing as a
pipe dream, because it was expected that decoherence would quickly destroy the necessary
quantum properties of superposition and entanglement.

It thus came as a great surprise when, in the mid-1990s, quantum error-correcting codes
were developed by Shor and Steane [5, 6, 7], and these ideas later led to the development
of schemes for fault-tolerant quantum computing [8, 9, 10, 11, 12]. Such schemes take any
quantum algorithm designed for an ideal noiseless quantum computer, and turn it into an
implementation that is robust against noise, as long as the amount of noise is below a certain
threshold, known as the fault-tolerance threshold. The overhead introduced by the fault-
tolerant schemes is usually a polylogarithmic factor in the total running time of the algorithm
(which is quite modest from a theoretical perspective, though not from an experimental one).

The existence of fault-tolerant schemes turns the problem of building a quantum computer
into a hard but possible-in-principle engineering problem: if we just manage to store our qubits
and operate upon them with a level of noise below the fault-tolerance threshold, then we
can perform arbitrarily long quantum computations. The actual value of the fault-tolerance
threshold is far from determined,*but will have a crucial influence on the future of the area—
the more noise a quantum computer can tolerate in theory, the more likely it is to be realized
in practice.

The first fault-tolerant schemes were only able to tolerate noise on the order of 107¢,
which is way below the level of accuracy that experimentalists can hope to achieve in the
foreseeable future. Informally, we quantify “noise” here by the error probability per qubit
per time-step. These initial schemes have been substantially improved in the past decade.
In particular, Knill has recently developed various schemes which, according to numerical
calculations, seem to be able to tolerate more than 1% noise [13, 14]. If we insist on provable
constructions, the best known threshold is on the order of 0.1% [15, 16, 17, 18]. We note that
virtually all known fault-tolerant schemes assume perfect classical control (but see [19] for
one exception).

Constructions of fault-tolerant schemes provide a lower bound on the fault-tolerance
threshold. In this paper we are concerned with upper bounds on the fault-tolerance threshold.
Such bounds give an indication on how far away we are from finding optimal fault-tolerant
schemes. They can also give hints as to how one should go about constructing improved fault-
tolerant schemes. Such upper bounds are statements of the form “any quantum computation
performed with noise level higher than p is essentially useless”, where “essentially useless” is
usually some strong indication that interesting quantum computations are impossible in such
a model. For instance, Buhrman et al. [20] quantify this by giving a classical simulation of
such noisy quantum computation, and Razborov [21] shows that if the computation is too
long, the output of the circuit is essentially independent of its input.

The best known upper bounds on the threshold are 50% by Razborov [21] and 45.3% by
Buhrman et al. [20]. (These bounds are incomparable because they work in different models;

*The “fault-tolerance threshold” is actually not a universal constant, but rather depends on the details of the
circuit model (allowed set of gates, type of noise, etc.). A more precise discussion will be given later.



see the end of this section for more accurate statements.) As one can see, there are still about
two orders of magnitude between our best upper and lower bounds on the fault-tolerance
threshold. This leaves experimentalists in the dark as to the level of accuracy they should try
to achieve in their experiments. In this paper, we somewhat reduce this gap. So far, much
more work has been spent on lower bounds than on upper bounds. We focus here on upper
bounds instead, hoping to bring new techniques to bear on this problem.

Our model. In order to state our results, we need to describe our circuit model. We consider
parallel circuits, composed of n wires and T levels of gates (see Figure 1). We sometimes use
the term time to refer to one of the T+ 1 “vertical cuts” between the levels. For convenience,
we assume that the number of qubits n does not change during the computation. Each level
is described by a partition of the qubits, as well as a gate assigned to each set in the partition.
Notice that at each level, all qubits must go through some gate (possibly the identity). Notice
also that for each gate the number of input qubits is the same as the number of output qubits.
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Fig. 1. Parallel circuit with k = 3 and T levels. Dark circles denote £-depolarizing noise, and light
circles denote e1-depolarizing noise. Also marked are two consistent sets (defined in Section 3),
each containing four qubits. The first has distance 1, the second has distance T'— 2. The output
qubit is in the upper right corner.

We assume the circuit is composed of k-qubit gates that are probabilistic mixtures of
unitary operations, as well as arbitrary (i.e., all completely-positive trace-preserving) one-
qubit gates. In particular, it is possible to do intermediate one-qubit measurements. We
assume the output of the circuit is the outcome of a measurement of a designated output
qubit in the computational basis. Finally, we assume that the circuit is subject to noise as
follows. Recall that p-depolarizing noise on a certain qubit i of state p replaces that qubit
by the completely mixed state with probability p, and does not alter the state p otherwise.
Formally, this is described by the 1-qubit superoperator £ acting on a qubit p as

E(p) =1 —p)p+pl/2.

We use &; to denote the multi-qubit superoperator that applies £ to the i-th qubit, and
applies the identity to all other qubits. We assume that each one-qubit gate is followed
by at least £;-depolarizing noise on its output qubit, where €1 > 0 is an arbitrarily small
constant. Thus one-qubit gates can be essentially noise-free. We also assume that each k-
qubit gate is preceded by at least ep-depolarizing noise on each of its input qubits, where

ep >1—V2UF —1=1-0(1/Vk).



Before stating our main result, let us emphasize here one important limitation of our
model (more about such limitations below): we do not allow classical control, which is the
ability to have a perfect classical computer on the side which processes the outcomes of
intermediate measurements and feeds the results back into the quantum circuit. Given how
reliable classical computers are in practice, assuming classical control is quite reasonable. In
fact, the best known quantum fault-tolerance schemes use this. Constant lower bounds on
the fault-tolerance threshold can be proved even in the absence of classical control, but they
are substantially lower [19].

Our results. In Section 3 we prove our main result:

Theorem 1 Fiz any T'-level quantum circuit as above. Then for any two states p and T,
the probabilities of obtaining measurement outcome 1 at the output qubit starting from p and
starting from T, respectively, differ by at most 2~(T),

In other words, for any n > 0, the probability of measuring 1 at the output qubit of a
circuit running for 7' = O(log(1/n)) levels is independent of the input, up to £n. This
makes the output essentially independent of the starting state, and renders long computations
“essentially useless.”

Of special interest from an experimental point of view is the case k = 2, for which our
bound becomes 1 — Vv2 — 1 ~ 35.7%. Furthermore, for the case in which the only allowed
two-qubit gate is the controlled-NOT (CNOT) gate, we can improve our bound further to
1 —1/v2 =~ 29.3%, as we show in Section 4. This case is interesting both experimentally
and theoretically, since the CNOT gate together with all one-qubit gates forms a universal
set [22] (i.e., circuits of such gates can implement any unitary). The same noise-bound of
29.3% applies if we also allow controlled-Y and controlled-Z gates.

Significance of results. Here we comment on the significance of our results and of our
model, as well as their limitations. First, it is known that fault-tolerant quantum computation
is impossible (for any positive noise level) without a source of fresh qubits. Our model takes
care of this by allowing arbitrary one-qubit gates—in particular, this includes gates that take
any input, and output a fixed one-qubit state, for instance |0). This justifies our assumption
that the number of qubits in the circuit remains the same throughout the computation: all
qubits can be present from the start, since we can reset them to whatever we want whenever
needed.

Our assumption that all k-qubit gates are mixtures of unitaries does slightly restrict gen-
erality. Not every completely-positive trace-preserving map can be written as a mixture of
unitaries.” However, we believe that it is still a reasonable assumption. For instance, to the
best of our knowledge, all known fault-tolerant constructions can be implemented using such
gates (in addition to arbitrary one-qubit gates). Moreover, all known quantum algorithms
obtain their speed-up over classical algorithms by using only unitary gates.

We only analyze depolarizing noise acting independently on each qubit. Depolarizing
noise is the “most symmetric” type of one-qubit noise, and therefore a natural choice for
our analysis. Also, it is a relatively weak type of noise: it is not adversarial and does not
have correlations between the errors occurring on different qubits. Since we are proving an
upper bound on the fault-tolerance threshold, this weakness is actually a good thing, making

TOne can implement an arbitrary gate by a unitary gate acting on the original qubits and additional ancilla
qubits in a fixed pure state, but notice that this increases the arity of the gate and moreover the ancilla qubits
will be affected by the noise operators that precede the unitary.



our result stronger. In principle one can extend our results to various other one-qubit noise
models, using an analysis similar to the one developed in Lemma 2. However, not all noise
models can actually yield a result like ours. For instance, if we have Toffoli gates with only
phaseflip errors, then we can do perfect classical computation. Statements like Theorem 1
are just false in that case.

A more severe restriction is the assumption that the output consists of just one qubit.
However, we believe that in many instances this is still a reasonable assumption. For instance,
this is the case whenever the circuit is required to solve a decision problem. Moreover, our
results can easily be extended to the case where the output is obtained by a measurement on
a small number of qubits, instead of only one. Still, this assumption rules out circuits where
the output is obtained by a collective measurement on a many-qubit encoded state.

By allowing essentially noise-free one-qubit gates, our model addresses the fact that gates
on more than one qubit are generally much harder to implement than one-qubit gates. It
should also be noted that the exact value of the constant 1 is inessential and can be chosen
arbitrarily small, as this just affects the constant in the Q(-) of Theorem 1. In fact, &1 > 0 is
only necessary because otherwise it would be possible to let p := |0)(0|®p’ and 7 := |1)(1|®7/,
do nothing for T levels (i.e., apply noise-free one-qubit identity gates on all wires) and then
measure the first qubit. The resulting difference between output probabilities is then 1.
Instead of assuming an €; > 0 amount of noise, we could alternatively deal with this issue by
requiring that every path from the input to the output qubit goes through enough k-qubit
gates. Our proof can easily be adapted to this case.

Note that since our theorem applies to arbitrary starting states, it in particular applies
to the case where the initial state is encoded in some good quantum error-correcting code, or
that it contains some sort of “magic states” [23, 24]. In all these cases, our theorem shows
that the computation becomes essentially independent of the starting state after sufficiently
many levels.

One may question whether results like this really render quantum circuits “essentially
useless.” For instance, instead of treating the input one really cares about (say, a number
we want to factor) as the starting state, one could hardwire it into a circuit, and just run
that circuit on some fixed starting state. In this case our theorem shows the output bit to
be essentially independent of the starting state, but this output bit could still give useful
information (say, whether the largest factor is above some specific value). As a partial answer
to this criticism, note that our result implies that in circuits with too much noise, taking a
constant number of levels from the end of the circuit suffices to get a close approximation to the
output qubit. Hence, in some sense, quantum computations in our noisy model are restricted
to constant depth, which is believed to severely limit the type of quantum computations one
can perform. Moreover, we note that the best known results for classical circuits [25, 26, 27]
as well as the earlier result for quantum circuits [21, 28] are subject to the same objection.

It is interesting that our bound on the threshold behaves like 1 — ©(1/v/k). This matches
what is known for classical circuits [25, 26], and therefore may represent the correct asymptotic
behavior. Previous results could only show an upper bound of 1 — 1/k [21, 28].

Finally, our result does not apply to the most general model of fault-tolerant quantum
computation, in which one additionally allows perfect classical control and classical side-
processing. In this model it is possible to do intermediate measurements and let a classical,
noise-free computer operate on it and later feed its result back into the “quantum” part of
the computation. Note that in this model it is always possible to compute any function, by
measuring the input in the beginning and then letting the classical part do all the computation.
Hence, a result like ours is simply not true in this model. Instead, one can hope to prove that



exponential speed-ups over classical computation are not possible in this model. Results of
this kind are typically established by showing how to efficiently simulate the noisy quantum
part on a classical computer. However, these results usually apply only to very specific gate
sets or circuits, and moreover, cannot rule out polynomial speed-ups as in Grover’s algorithm.
For more on this see our “related work” section below.

Techniques. We believe that a main part of our contribution is introducing a new technique
for obtaining upper bounds on the fault-tolerance threshold. Namely, we use a Pauli basis
decomposition in order to track the state of the computation. We believe this framework will
be useful also for further analysis of quantum fault-tolerance. A finer analysis of the Pauli
coefficients might improve the bounds we achieve here, and possibly obtain bounds that are
tailored to other computational models.

Related work. The work most closely related to ours is that of Razborov [21], who proved
an upper bound of e, = 1 — 1/k on the fault-tolerance threshold. Later, one of the current
authors showed [28, Chapter 3] that the same bound not only holds for depolarizing noise
but also for erasure noisetand some sort of classical control. For erasure noise this bound is
essentially tight. On one hand, these results are stronger than ours as they allow arbitrary
k-qubit gates and not just mixtures of unitaries. They also show a second type of result,
namely the trace distance between the two states obtained by applying the circuit to starting
states p and 7, respectively, is bounded from above by n2~%(T). Hence even the results of an
arbitrary n-qubit measurement on the full final state become essentially independent of the
initial state after T'= O(logn) levels. On the other hand, the value of our bound is better for
all values of k, and we also allow essentially noise-free one-qubit gates. Hence these previous
results are incomparable to our result. Razborov’s proof is based on tracking how the trace
distance evolves during the computation. Our proof is similar in flavor, but instead of working
with the trace distance, we work with the Frobenius distance (since it can easily be expressed
in terms of the Pauli decomposition).

Buhrman et al. [20] (see Theorem 5.4.4 in [28] for a precise statement) show that classical
circuits can efficiently simulate any quantum circuit that consists of perfect, noise-free stabi-
lizer operations®and arbitrary one-qubit unitary gates that are followed by 45.3% depolarizing
noise. Hence such circuits are not more powerful than classical circuits. ¥This result is incom-
parable to ours: the noise models and the sets of allowed gates are different. In particular,
in our case noise hits the qubits going into the k-qubit gates but barely affects the one-qubit
gates, while in their case the noise only hits the non-Clifford one-qubit unitaries.

tHere the experimenter is notified whenever an error happens, and hence these types or errors are easier to
correct

§Meaning Clifford gates (Hadamard, phase gate, CNOT), preparations of states in the computational basis,
and measurements in the computational basis.

9The 45.3%-bound of [20] is in fact tight if one additionally allows perfect classical control (i.e., the ability
to condition future gates on the earlier classical measurement outcomes): circuits with perfect stabilizer
operations and arbitrary one-qubit gates suffering from less than 45.3% noise, can simulate perfect quantum
circuits. See [29] and [20, Section 5]. These assumptions are not very realistic, however. In particular the
assumption that one can implement perfect, noise-free CNOTSs is a far cry from experimental practice. In
order to address this problem Plenio and Virmani [30] recently studied the case where all gates (Clifford
and non-Clifford) are hit by noise and showed that various fault-tolerant schemes by Knill can be classically
simulated already at much lower noise levels. Their idea is to transfer the noise from the Clifford gates to the
non-Clifford gates. For high enough noise rates this results in an effective noise rate on the non-Clifford gates
that is high enough to allow classical simulation by earlier results.



Another related result is by Virmani et al. [31]. Instead of depolarizing noise, they consider
“dephasing noise.” This models phase-errors: rather than replacing a qubit by the completely
mixed state with some probability p, dephasing noise applies the Z-gate to a qubit with prob-
ability p/2. Virmani et al. [31] show, among other results, that we can efficiently classically
simulate any quantum circuit consisting of perfect stabilizer operations, and one-qubit uni-
tary gates that are diagonal in the computational basis and are followed by more than 29.3%
dephasing noise. Their result is incomparable to ours for essentially the same reasons as why
the Buhrman et al. result is incomparable: a different noise model and a different statement
about the resulting power of their noisy quantum circuits.

Finally, it is known that it is impossible to transmit quantum information through a p-
depolarizing channel for p > 1/3 [32]. As Razborov [21] noticed, this seems to suggest that
quantum computation is impossible with depolarizing noise of strength greater than 1/3, but
there is no proof that this is indeed the case.

2 Preliminaries
Let P ={I,X,Y, Z} be the set of one-qubit Pauli matrices,
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and let P, = {X,Y,Z}. We use P" to denote the set of all tensor products of n one-qubit
Pauli matrices. For a Pauli matrix S € P™ we define its support, denoted supp(S), to be the
qubits on which S is not identity. We sometimes use superscripts to indicate the qubits on
which certain operators act. Thus, for example, I** denotes the identity operator applied to
the qubits in set A and P4 denotes all Pauli operators on the qubits in the set A.

The set of all 2™ x 2™ Hermitian matrices forms a 4"”-dimensional real vector space. On this
space we consider the Hilbert-Schmidt inner product, given by (A, B) := Tr(A'B) = Tr(AB).
Note that for any S, 5" € P™, Tr(SS’) = 2™ if S = S’ and 0 otherwise, and hence P™ is an
orthogonal basis of this space. It follows that we can uniquely express any Hermitian matrix
0 in this basis as )

0=, PRIECIE
Sepn
where S(S) := Tr(8S) are the (real) coefficients, which we call the Pauli coefficients.|

We now state some easy observations which will be used in the proof of our main result.

First, by the orthogonality of P, it follows that for any J,

1 ~
Sepn

This easily leads to the following observation.

Observation 1 (Unitary preserves sum of squares) For any unitary matriz U and any
Hermitian matriz 6, if we denote §' = USUT, then

> F(8)? = 2"Ti(6?) = 2" Tr(USUTUSUT) = 2" Tr(6%) = > 6(5)%
sepn Sepn

IThese Pauli coefficients of matrices are analogous to the Fourier coefficients of real-valued functions on
{0,1}™. In fact, if § is a diagonal matrix, then the Pauli coefficients §(S) for S € {I,Z}"™ are (up to
normalization) the Fourier coefficients of the function whose values are on the diagonal of §. Montanaro and
Osborne [33] have shown that much of the theory of Fourier analysis can be generalized to the Pauli coefficients
of Hermitian matrices.



This also shows that the operation of conjugating by a unitary matrix, when viewed as a
linear operation on the vector of Pauli coefficients, is an orthogonal transformation.

Observation 2 (Tracing out qubits) Let § be some Hermitian matriz on a set of qubits
W. For V.C W, let §y = Try\v () and let S € PV. Then,

S(STW\VY = Te(5 - SIW\V) = Tr(8y - S) = 6y (S).

Observation 3 (Noise in the Pauli basis) Applying a p-depolarizing noise to the j-th qubit
of Hermitian matriz § changes the coefficients as follows: for every S € P"

— 5(S) ifS;=1

&£ (6)(5) = > g
g (1-p)3(S) if S; #1

In other words, &£; “shrinks” by a factor 1 — p all coefficients that have support on the j-th

coordinate.

Observation 4 Let p and 7 be two one-qubit states and let § = p — 7. Consider the two
probability distributions obtained by performing a measurement in the computational basis on
p and T, respectively. Then the variation distance between these two distributions is 1|0(Z)|.

Proof. Since there are only two possible outcomes for the measurements, the variation
distance between the two distributions is exactly the difference in the probabilities of obtaining
the outcome 0, which is given by

(Tx((p = ) - 10)(0])] = ]ﬂ (5- #)’ ;

where we have used Tr(d) =0 O.

Our final observation follows immediately from the convexity of the function z2.
Observation 5 (Convexity) Letp; be any probability distribution, and §; a set of Hermitian
matrices. Let 6 =, pi0;. Then

DA< p Y w(9)*

Sepn i Sepn

3 Proof of Theorem 1

In this section we prove Theorem 1. The rough idea is the following. Fix two arbitrary
initial states p and 7. Our goal is to show that after applying the noisy circuit, the state of
the output qubit is nearly the same with both starting states. Equivalently, we can define
0 = p — 7 and show that after applying the noisy circuit to &, the “state” of the output
qubit is essentially 0 (the noisy circuit is a linear operation, and hence there is no problem in
applying it to ¢, which is the difference of two density matrices). In order to show this, we
will examine how the coefficients of § in the Pauli basis develop through the circuit. Initially
we might have many large coefficients. Our goal is to show that the coefficients of the output
qubit are essentially 0. This is established by analyzing the balance between two opposing
forces: noise, which shrinks coefficients by a constant factor (as in Observation 3), and gates,
which can increase coefficients. As we saw in Observation 1, unitary gates preserve the sum
of squares of coefficients. They can, however, “concentrate” several small coefficients into
one large coefficient. One-qubit operations need not preserve the sum of squares (a good
example is the gate that resets a qubit to the |0) state), but we can still deal with them by



using a known characterization of one-qubit gates. This characterization allows us to bound
the amount by which one-qubit gates can increase the Pauli coeflicients, and very roughly
speaking shows that the gate that resets a qubit to |0) is “as bad as it gets.”

Before continuing with the proof, we introduce some terminology. From now on we use the
term qubit to mean a wire at a specific time, so there are (T'+1)n qubits (although during the
proof we will also consider qubits that are located between a gate and its associated noise).
We say that a set of qubits V is consistent if we can meaningfully talk about a “state of the
qubits of V" (see Figure 1). More formally, we define a consistent set as follows. The set of
all qubits at time 0 and all its subsets are consistent. If V is some consistent set of qubits,
which contains all input qubits IN of some gate (possibly a one-qubit identity gate), then
also (V\IN)UOUT and all its subsets are consistent, where OUT denotes the gate’s output
qubits. Note that here we think of the noise as being part of the gate. For a consistent set V'
and a state (or more generally, a Hermitian matrix) p, we denote by py the state of V' when
the circuit is applied with the initial state p. In other words, py is the state one obtains by
applying some initial part of the circuit to p, and then tracing out from the resulting state
all qubits that are not in V.

If v is a qubit, we use dist(v) to denote its distance from the input, i.e., the level of the
gate just preceding it. The qubits of the starting state have dist(v) = 0. For a nonempty
set V' of qubits we define dist(V) = min{dist(v) | v € V}, and extend it to the empty set by
dist(()) = co. Note that dist(V) does not increase if we add qubits to V.

In the remainder of this section we prove the following lemma, showing that a certain
invariant holds for all consistent sets V.

Lemma 1 For alle; > 0 and g > 1 — 2k — 1 there exists a 0 < 1 such that the following
holds. Fix any T-level circuit in our model, let p and T be some arbitrary initial states, and
let § = p— 7. Then for every consistent V,

> ov(s)? 2.2V gty (1)
SepPV

or equivalently,
“(5‘2/) <2. edist(V)'

In particular, if we consider the consistent set V' containing only the designated output qubit
at time 7', then we get that &y (Z)? < 467. By Observation 4, this implies Theorem 1.

3.1 Proof of Lemma 1

The proof of the invariant is by induction on the sets V. At the base of the induction are all
sets V' contained entirely within time 0. All other sets are handled in the induction step. In
order to justify the inductive proof, we need to provide an ordering on the consistent sets V'
such that for each V, the proof for V uses the inductive hypothesis only on sets V’ that appear
before V' in the ordering. As will become apparent from the proof, if we denote by latest(V")
the maximum time at which V contains a qubit, then each V' for which we use the induction
hypothesis has strictly less qubits than V' at time latest(V'). Therefore, we can order the sets
V first in increasing order of latest(V') and then in increasing order of the number of qubits
at time latest(V).

8.1.1 Base case

Here we consider the case that V is fully contained within time 0. If V' = ) then both sides
of the invariant are zero, so from now on assume V is nonempty. In this case dist(V) = 0.



The matrix dy is the difference of two density matrices, say éy = py — 7y, and hence
Tr(62) = Tr(p?,) + Tr(r3) — 2Tr(pvrv) < Tr(p} ) + Tr(rd) < 2, and the invariant is satisfied.

3.1.2  Induction step

Let V" be any consistent set containing at least one qubit at time greater than zero. Our
goal in this section is to prove the invariant for V. Consider any of the qubits of V" located
at time latest(V") and let G be the gate that has this qubit as one of its output qubits. We
now consider two cases, depending on whether G is a k-qubit gate or a one-qubit gate.

Case 1: G is a k-qubit gate. Here we consider the case that G is a probabilistic mixture
of k-qubit unitaries. First note that by Observation 5 it suffices to prove the invariant for
k-qubit unitaries. So assume G is a k-qubit unitary acting on the qubits A = {A;,..., Ax}.
Let A" = {A],..., A} be the qubits after the e;-noise but before the gate G and A" =
{AY, ..., A} the qubits after G (see Figure 2). By our choice of G, A” N V" # (. Define
Vi=V"\AYUA and V = (V" \ A”)U A. Note that V and its subsets are consistent sets
with strictly fewer qubits than V" at time latest(V"), and hence we can apply the induction
hypothesis to them.
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Fig. 2. An example showing the sets V', V/, and V" for a two-qubit gate G.

Recall that our goal is to prove the invariant Eq. (1) for V. To begin, using Observation 2,

T8 > dvman(S) (2)

Sepv” Sepv/iuAr

Because G (which maps dy+ to dyryar) is unitary, it preserves the sum of squares of 5-
coefficients (see Observation 1), so the right-hand side of (2) is equal to

Soows)2= > Y w(rS):>
SepPVv’ SePV\A" RepA

Since the only difference between dy and dy+ is depolarizing noise of strength at least 5 on
the qubits Ay, ..., Ak, using Observation 3 and denoting p = 1 — e, we get that the above is
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at most

< Z Z p2lsrp(DIs (RS2

SePV\A RePA

= D a3 dv(rs)?,

SePV\AaCA RePe@IA\a

where the equality follows by noting that for any fixed S and any R € P4, the term SE(RS )2,
which appears with coefficient p2/5"PP(F)l on the left-hand side, appears with the same coeffi-
cient Zaqupp(R) p2lel (1 — p2)k=lal = 2swpp(B)] on the right-hand side. By rearranging and
using Observation 2 we get that the above is equal to

DY (T LD WA

aCA Sep(V\A)Ua
< Z u2\a\(1 _ }L2)k7|a|2 . 2|(V\.A)Ua| . odist((V\A)Ua)
aCA

where we used the inductive hypothesis. Note that dist((V \ .A) Ua) > dist(V'), so the above
is

< 2 2VVAL gaise(V) § gl 2lal (1 _ 2kl

aCA
=92. 2‘V\A| . 9dist(V)((1 _ /142) + 2M2)k
—9. 2\V\.A| _9dist(V)(1 + /L2)k- (3)

Note that |V \ A] < [V”| =1 and dist(V") — 1 < dist(V), so the right-hand side is bounded
by
< 9. 2\V”|71 . edist(V”)fl(l 4 ,UQ)k.

Since g > 1 — V21/k — 1, we have that (1 + p2)* < 20 if 0 is close enough to 1, so we can
finally bound the last expression by

< 2. 2\V”\ . edist(V”)

which proves the invariant for V.

Case 2: G is a one-qubit gate. Before proving the invariant, we need to prove the
following property of completely-positive trace-preserving (CPTP) maps on one qubit.
Lemma 2 For any CPTP map G on one qubit there exists a 3 € [0, 1] such that the following
holds. For any Hermitian matriz &, if we let &' denote the result of applying G to §, then we
have

S(XVZ4+8Y)2+0(2)2<1=8)-0)%+8-(0(X)2+8(Y)2+6(2)2).

Proof. The proof is based on the characterization of trace-preserving completely-positive
maps on one qubit due to Ruskai, Szarek, and Werner [34, Sections 1.2 and 1.3]. This
characterization implies that any one-qubit gate G can be written as a convex combination of
gates of the form Uy o J o Us. Here U; and Us are one-qubit unitaries (acting on the density

11



matrix by conjugation), and J is a one-qubit map that in the Pauli basis has the form

1 0 0 0

lox 0 o0

=10 0 xn o
t 0 0 A

for some A1, Ay € [—1,1] and t = /(1 — A2)(1 — \3).

First observe that by the convexity of the square function, it suffices to prove the lemma
for G of the form Uy o J o Us (with the resulting 8 being the appropriate average of the
individual f’s). Next note that since U; and U, are unitary, they act on the vector of
coefficients (8(X),3(Y),8(Z)) as an orthogonal transformation, and hence leave the sum of
squares invariant. This shows that it suffices to prove the lemma for a map J as above. For
this map,

§(X)2 +8/(Y)2 4+ 6(2)% = X26(X)? + A20(Y)? + (t6(1) + M Aa0(2))2. (4)

Assume without loss of generality that A7 > A\3. Applying Cauchy-Schwarz to the two 2-
dimensional vectors (£4/1 — A2a, \1b) and (/1 — A3, \2), we get that for any real numbers
a,b,

(ta 4+ MA2b)? < (1 — AD)a? + \Fb2

Hence the expression of (4) is bounded from above by
AS(X)2 + M20(Y)? + (1= A)S(1)% + A36(2)?

and we complete the proof by choosing 3 = A? O.

Let A be the qubit G is acting on, and recall that our goal is to prove the invariant for
the set V. Denote by A’ the qubit of G after the gate but before applying the depolarizing
noise of at least €1, and by A” the qubit after the noise. As before, by our choice of G, we
have A” € V”. Let A = {A}, A’ = {4}, A" = {A"}. Define V' = (V" \ A”)U A’ and
V = (V"\ A”) U A and notice that |V| = |V’/| = |V”|. By using Lemma 2, we obtain a
3 € [0,1] such that

PIIZICIEED Y <$(IS)2+(1—61)2 > 5AVf(RS)2>

Sepv” SePV/\AY RePA
< > <<1+<1—sl>2<1—2ﬁ>>55<15)2+<1—51)% > @(RSf).
SecPV\A RePA

By applying the induction hypothesis to both V' \ A and V', we can upper bound the above
by

(1 + (1 _ 81)2(1 _ 26)) .9. 2|V\71 . odist(V\A) + (1 _ 51)26 .. 2\V\ .edist(V)

c1r(- 1) 9. 9lV"| . gdist(V"")
- 20

where we used that |V| = |[V”|, and dist(V") —1 < dist(V) < dist(V'\.A). Hence the invariant
remains valid if we choose 6 < 1 such that 1+ (1 —1)? < 26. This concludes the proof of
Lemma 1 [0.
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4 Arbitrary one-qubit gates and CNOT gates

In this section we consider the case where CNOT is the only allowed gate acting on more
than one qubit. We still allow arbitrary one-qubit gates. The proof follows along the lines of
that of Theorem 1 with one small modification. As before, we will prove that for all 1 > 0
and e > 1 — 1/1/2 =~ 0.293 the invariant, Eq. (1), holds. The proof for the case that G is a
one-qubit gate holds without change. We will give the modified proof for the case that G is
a CNOT gate. The idea for the improved bound is to make use of the fact that the CNOT
gate merely permutes the 16 elements of P ® P, and does not map elements from I ® P, to
P, @ I or vice versa (as illustrated in Figure 3). As a result we need to apply the induction
hypothesis on one less term, which in turn improves the bound, as follows.

ﬁ> IQ Iy 1z

XI-——XX | XY, Z

YI-—YX |YY YZ

ZQ Z@ zy ZZ

Fig. 3. The action of CNOT on P ® P under conjugation. The first qubit is the control wire.

Assume the CNOT acts on qubits A = {A, B}, with A" = {4, B’} and A” = {A”, B"}
as before, where again A” N V" £ (). If both A” and B” are contained in V" then the proof
of the general case (cf. Eq. (3)) already gives a bound of

2. 2‘V\A| . odist(v)(l + ,11/2)2 S 2. 2“///‘—2 . edist(v//)—l(l + ,LL2>2 S 2. 2|V”‘ . edist(v//)

where the last inequality holds for all 4 < 1. Hence it suffices to consider the case that exactly
one of A” and B” is in V”. Assume without loss of generality that A” € V" and B” ¢ V.
As before, our goal is to bound from above

ST (9?2 = > dveupn(SIETY,

Sepv” SepVv”

where the equality follows from Observation 2. Because of the property of CNOT mentioned
above, we can now bound this from above by

S (U ISR+ Y SeRITS?+ Y Gv(RSP).

SePV\AY RePA’ RePA' @PB’

This is the crucial change compared to the case of general two-qubit gates (the latter case
also includes a term of the form ), 5/ Sy (I4"RS)?). The rest of the proof is similar to
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the earlier proof. Using the induction hypothesis we can upper bound the above by

S (SvUrESE 42 Y SV (RIPSP 4t Y Gu(RS)?)

SepV\A RePA RePAQPE
< (=) D dnalS?+ =) D sy (9Pt Y av(S)?

<

IN

IN

SepViA SePV\{B} SepPV
(1 — p2)2- 2V\AL gaistON\A) (2 dyg ol VB gdist(V{B}) | 4 o 9lV] , gdist(V)

" . 1 2
9. 9lV"| . pdist(V) (% i u‘*)

2
9. 9lV"I . 9dist(V”)(1 ‘;H i M4) %

Hence the invariant remains valid as long as # +p* < 0 < 1. This can be satisfied as long
as p < 1/4/2, equivalently eo > 1 — 1/1/2 =~ 0.293.

5 Discussion and future work

As already pointed out in the introduction, our noisy circuit model is not yet fully satisfactory.
We feel our results should be strengthened in a number of directions:

One should make it work for all possible k-qubit gates (CPTP maps), rather than just
mixtures of unitaries.

One should allow some form of classical control, where classical outcomes of intermediate
measurements can be stored noise-free and a classical computer can operate on them
and later feed its results back into the quantum circuit. Although results like this are
certainly desirable, they are probably hard to obtain, as we already pointed out in the
“Significance of results” part of Section 1.

One should relax the assumption that the final output is determined by a measurement
on one or a few qubits of the final state. Often in fault-tolerant schemes one encodes
each “logical qubit” in a large block of physical qubits, and needs to measure all qubits
in that block to obtain the final outcome of the computation.

While depolarizing noise on individual qubits fits very nicely with our formalism (as it
just shrinks Pauli coefficients), it would be interesting to extend our results to stronger
noise models, such as correlated noise on several qubits or gates simultaneously.

Last but not least, our upper bounds on the fault-tolerance threshold are still substan-
tially higher than one would expect. It would be desirable to decrease them further,
bringing them closer to the best proven lower bounds.
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