
Quantum Speedup for Graph Sparsification,
Cut Approximation and Laplacian Solving

Simon Apers
CWI, Amsterdam, the Netherlands

Inria, Paris, France
ULB, Brussels, Belgium

smgapers@gmail.com

Ronald de Wolf
QuSoft, CWI and University of Amsterdam

Amsterdam, the Netherlands
rdewolf@cwi.nl

Abstract—Graph sparsification underlies a large number
of algorithms, ranging from approximation algorithms for
cut problems to solvers for linear systems in the graph
Laplacian. In its strongest form, “spectral sparsification”
reduces the number of edges to near-linear in the number of
nodes, while approximately preserving the cut and spectral
structure of the graph. The breakthrough work by Benczúr
and Karger (STOC’96) and Spielman and Teng (STOC’04)
showed that sparsification can be done optimally in time
near-linear in the number of edges of the original graph. In
this work we demonstrate a polynomial quantum speedup
for spectral sparsification and many of its applications.
In particular, we give a quantum algorithm that, given
a weighted graph with n nodes and m edges, outputs a
classical description of an ε-spectral sparsifier in sublinear
time Õ(

√
mn/ε). We prove that this is tight up to polylog-

factors. The algorithm builds on a string of existing results,
most notably sparsification algorithms by Spielman and
Srivastava (STOC’08) and Koutis and Xu (TOPC’16), a
spanner construction by Thorup and Zwick (STOC’01), a
single-source shortest paths quantum algorithm by Dürr
et al. (ICALP’04) and an efficient k-wise independent hash
construction by Christiani, Pagh and Thorup (STOC’15).
Our algorithm implies a quantum speedup for solving
Laplacian systems and for approximating a range of cut
problems such as min cut and sparsest cut.

Index Terms—Quantum computing; Quantum algo-
rithms; Graph theory

I. INTRODUCTION AND SUMMARY

A. Graph Sparsification

The complexity of many graph problems naturally
scales with the number of edges in the graph. Graph
sparsification aims to reduce this number of edges, while
preserving certain quantities of interest. When consider-
ing for instance the approximation of cut problems such
as MIN CUT or SPARSEST CUT, the aim is to sparsify
the graph while approximately preserving its cut values.
This was first shown to be possible in the pioneering
work of Karger [44] and later Benczúr and Karger [18].
They introduced the concept of cut sparsifiers, which
are reweighted subgraphs that ε-approximate all cuts
in the graph. We can then solve cut problems in the
hopefully sparser subgraph, yielding an approximate

solution to the original problem. Quite surprisingly, they
showed that for any undirected graph with n nodes
and m edges, there always exists a cut sparsifier with
as few as Õ(n/ε2) edges, and moreover this sparsifier
can be constructed in time Õ(m). This result lies at
the basis of Õ(m)-time approximation algorithms for
amongst others MIN CUT [44], MIN st-CUT [66], [47],
[62], SPARSEST CUT and BALANCED SEPARATOR [11],
[66]. We refer the interested reader to [63], [67] for
surveys on the many applications of cut approximation.

In their breakthrough work on Laplacian solvers,
Spielman and Teng [71] strengthened the notion of cut
sparsifiers to so-called spectral sparsifiers. Rather than
preserving the cut structure, these reweighted subgraphs
preserve the spectral structure or quadratic form of the
Laplacian associated to the graph. More specifically, H
is an ε-spectral sparsifier of G if

(1− ε)LG � LH � (1 + ε)LG,

with LH and LG the Laplacian matrices associated to H
resp. G. Since the value of any cut can be expressed as a
quadratic form in the Laplacian, any spectral sparsifier is
necessarily a cut sparsifier. More importantly it implies
that Laplacian systems, which are linear systems in the
graph Laplacian, can be approximately solved using the
Laplacian of the sparsified graph. Similar to the case for
cut sparsifiers, Spielman and Teng showed the existence
and Õ(m)-time construction of ε-spectral sparsifiers
with Õ(n/ε2) edges. This formed a critical cornerstone
of their Õ(m)-time solver for Laplacian systems, and
the string of results and algorithms that followed it,
commonly referred to as the “Laplacian paradigm” [73].
Some examples among these are faster algorithms for
learning [80], [79], computer vision and image process-
ing [52], spectral clustering [75], [60] and computing
random walk properties [27]. The sparsification results
of Spielman and Teng were later refined most notably by
Spielman and Srivastava [70] and Batson, Spielman and
Srivastava [14]. In [14], the existence of spectral sparsi-
fiers with only O(n/ε2) edges was proved, which later

inspired the resolution of the famous Kadison-Singer
problem by Marcus, Spielman and Srivastava [58].

B. Main Result and Applications

We give a quantum algorithm for sparsification:

Theorem 1. Fix n, m, and ε ≥
√
n/m. There exists a

quantum algorithm that, given adjacency-list access to a
weighted and undirected n-node graph G with m edges,
outputs with high probability the explicit description of
an ε-spectral sparsifier of G with Õ(n/ε2) edges, in time
Õ(
√
mn/ε).

The algorithm outputs an explicit classical description,
in the form of the list of Õ(n/ε2) edges of the sparsifier
together with their new weights. Note the assumption
ε ≥

√
n/m. This is because sparsification is only useful

when the number of edges of the sparsifier (roughly
n/ε2) is at most the number of edges m of the original
graph G. Note also that Õ(

√
mn/ε) ∈ Õ(m) whenever

ε ≥
√
n/m, and hence our quantum algorithm provides

a speedup over classical algorithms, whose Õ(m) run-
time can be shown to be optimal.1 For dense graphs,
where m ∈ Ω(n2), this improves the time complexity
from Õ(n2) classically to Õ(n3/2) quantumly.

Our algorithm assumes coherent access to the input
graph in the form of quantum queries to the adjacency
lists. It also assumes a QRAM (coherent RAM) memory
of Õ(

√
mn/ε) classical bits to which it can do classical

writes, and whose bits it can query in superposition. It
uses just O(log n) “actual” qubits. The “time” (com-
plexity) in the above theorem measures the number of
elementary gates, input queries, and QRAM writes and
queries. See Section II for more details.

The algorithm builds on a range of quantum and
classical results, the most important of which are clas-
sical sparsification algorithms by Spielman and Srivas-
tava [70] and Koutis and Xu [51], a spanner algorithm by
Thorup and Zwick [74], a quantum algorithm for single-
source shortest-path trees by Dürr, Heiligman, Høyer and
Mhalla [32] and an efficient k-independent hash function
by Christiani, Pagh and Thorup [25].

We prove a matching lower bound, showing that the
runtime of our quantum algorithm is optimal up to
polylog-factors. In fact, even outputting a weaker cut
sparsifier requires the same number of queries.

Theorem 2. Fix n, m and ε ≥
√
n/m. Any quantum

algorithm that, given adjacency-list access to a weighted
and undirected n-vertex graph G with m edges, explicitly
constructs with high probability an ε-cut sparsifier of G
has query complexity Ω̃(

√
mn/ε).

1Because there is an Ω(m) query lower bound for deciding whether
a graph is connected [33, Theorem 4.9, k = 1], we have the same linear
lower bound for finding a cut sparsifier for a given graph, as well as
for applications like approximating MIN CUT.

In this extended abstract we focus on giving the details
of our algorithm. However, in the full version of this
paper [9] we show that our algorithm also provides a
direct speedup for many of the aforementioned applica-
tions. In Table I we illustrate this speedup for a number
of cut approximation problems. All bounds follow by
combining our sparsification algorithm with the best
classical algorithms, applied to the sparsifier. As far as
we know, this is the first quantum speedup for these cut
approximation problems.

Classical Quantum (this work)

.878-MAX CUT Õ(m) [10] Õ(
√
mn)

ε-MIN CUT Õ(m) [46] Õ(
√
mn/ε)

ε-MIN st-CUT Õ(m+ n/ε5) [62] Õ(
√
mn/ε+ n/ε5)

O(
√

logn)-

SPAR.CUT/BAL.SEP.
Õ(m+ n1+δ) [65] Õ(

√
mn+ n1+δ)

TABLE I
TIME COMPLEXITY FOR CUT APPROXIMATION. QUANTUM BOUNDS

FOLLOW FROM COMBINING OUR QUANTUM SPARSIFICATION
ALGORITHM WITH THE BEST CLASSICAL ALGORITHMS. δ IS AN

ARBITRARILY SMALL BUT POSITIVE CONSTANT.

We can also use a classical Laplacian solver on the
sparsifier to find a speedup for Laplacian solving, i.e.,
solving the linear system Lx = b where L is the
Laplacian of the original graph.

Theorem 3. Fix n, m and ε ≥
√
n/m. There exists

a quantum algorithm that, given adjacency-list access
to a weighted and undirected n-vertex graph G with m
edges and Laplacian L, outputs with high probability
an approximate solution x̃ ∈ Rn to the linear system
Lx = b such that ‖x̃−x‖L ≤ ε‖x‖L in time Õ(

√
mn/ε).

This improves over the runtime Õ(m log(1/ε)) of clas-
sical solvers [72] in terms of m. In contrast to the well-
known HHL algorithm [38], our algorithm outputs an
explicit classical description of x̃ (i.e., a vector of n real
entries), not an n-dimensional quantum state. ‖v‖L de-
notes the L-induced norm ‖v‖L =

√
v†Lv = ‖L1/2v‖,

with v† the complex transpose of vector v. This is the
typical norm considered for Laplacian solving. Similar
to the classical case, we also get a quantum speedup for
the more general class of symmetric, weakly diagonally-
dominant (SDD) linear systems.

We also find quantum speedups for approximating
effective resistances and random walk commute times,
creating an approximate “resistance oracle” which allows
to query for the effective resistance of any node pair in
time Õ(1), for approximating the random walk cover
time, and for approximating the bottom eigenvalues of
the Laplacian. Finally we discuss how a spectral spar-
sifier allows to implement spectral k-means clustering
more efficiently, so that our quantum sparsification algo-
rithm also leads to a speedup there. We summarize our

speedups in Table II, and discuss prior work on quantum
algorithms for some of these problems in Section I-E.

Classical Quantum (this work)

ε-Laplacian/SDD solver Õ(m) [72] Õ(
√
mn/ε)

ε-eff. resistance (single) Õ(m) Õ(
√
mn/ε)

ε-eff. resistances (all) Õ(m+ n/ε4) [70] Õ(
√
mn/ε+ n/ε4)

O(1)-cover time Õ(m) [30] Õ(
√
mn)

k bottom eigenvalues Õ(m+ kn/ε2) Õ(
√
mn/ε+ kn/ε2)

spectral clust. Õ(m+ n poly k) Õ(
√
mn+ n poly k)

TABLE II
TIME COMPLEXITY OF LAPLACIAN SOLVING AND APPLICATIONS.

CLASSICAL BOUNDS WITHOUT REFERENCE ARE FROM [72].
QUANTUM BOUNDS COMBINE OUR QUANTUM SPARSIFICATION

ALGORITHM WITH THE BEST CLASSICAL ALGORITHM.

C. Quantum Algorithm

Our quantum sparsification algorithm starts from the
iterative sparsification algorithm by Koutis and Xu [53].
Their algorithm provides a simple combinatorial coun-
terpart to the usual, algebraic treatment of spectral
sparsification. It crucially relies on the growth of so-
called spanners of the graph, which are sparse subgraphs
that approximately preserve all pairwise distances be-
tween nodes. After growing a small number of disjoint
spanners in the graph, and keeping these edges, they
downsample the remaining edge set by keeping every
edge independently with some fixed constant probability,
and discarding the rest. This results in a sparsifier with
approximately half the number of edges of the original
graph. Repeating this procedure a logarithmic number of
times gives an ε-spectral sparsifier with Õ(n/ε2) edges.

The gist of our quantum speedup comes from a faster
quantum algorithm for constructing spanners. This algo-
rithm follows essentially by pairing a classical spanner
algorithm by Thorup and Zwick [74] with the shortest-
paths quantum algorithm by Dürr, Heiligman, Høyer and
Mhalla [32]. More specifically we prove the theorem
below, where we call a graph H a spanner of G if it
is a subgraph with O(n log n) edges, and the distance
between any pair of nodes in H is at most log n times
their original distance in G. Our algorithm speeds up the
classical Õ(m)-time algorithm by Thorup and Zwick.

Theorem 4. Fix n, m. There exists a quantum algorithm
that, given adjacency-list access to a weighted and
undirected n-vertex graph G with m edges, outputs with
high probability a spanner of G in time Õ(

√
mn).

We can now try to plug this faster spanner construction
in the Koutis-Xu sparsification algorithm. The problem,
however, is that we cannot write down the “intermediate”
sparsifiers: after a constant number of iterations these
still have Ω(m) edges, while we aim for runtime

√
mn.

We overcome this using two observations, which allow
us to describe the intermediate graphs only implicitly.

First we show that if we were given query access
to a uniformly random string of Õ(m) bits, then we
could implicitly mark the discarded edges, and grow
spanners in the remaining, unmarked graph without
significantly affecting the runtime. Second, we get rid
of this long random string by using that any (k/2)-
step quantum algorithm cannot distinguish a uniformly
random string from a k-wise independent string, which
only behaves uniformly random for subsets of at most
k elements. This is a known result and can be proven
for instance using the polynomial method [16]. Hence it
suffices that we have access to a k-wise independent
random string, allowing us to use the rich literature
on k-independent hash functions that aim to simulate
access to such random strings. Specifically we require
the recent result by Christiani, Pagh and Thorup [25],
which shows that in Õ(k) time we can construct a
data structure that can simulate queries to a k-wise
independent string, requiring only Õ(1) time per query.
Prior to their work, all algorithms required preprocessing
time Õ(k1+δ), for δ > 0. Using their construction we
can efficiently simulate the random string:

Claim 1. Consider any quantum algorithm with runtime
q that uses a uniformly random string. Then we can
construct a quantum algorithm without random string
with the same output distribution and runtime Õ(q).

Combining these observations fixes the issue of having
to store intermediate graphs, and speeds up the Koutis-
Xu algorithm runtime to Õ(

√
mn/ε2) quantum time.

We further improve the runtime down to Õ(
√
mn/ε)

by combining with the sparsification toolbox of Spielman
and Srivastava [70]. They show that a graph can be
sparsified very elegantly by sampling edges with weights
roughly proportional to their effective resistances. Com-
plementing this, they propose a near-linear time con-
structible “resistance oracle”, which allows to query for
effective resistances in logarithmic time. We use our
quantum sparsification algorithm to construct an initial,
rough sparsifier with a constant error in time Õ(

√
mn).

We then construct an approximate resistance oracle for
this sparsifier, which is also an approximate resistance
oracle for the original graph. Surprisingly, such rough ap-
proximation suffices for constructing an ε-spectral spar-
sifier using the Spielman-Srivastava sampling scheme.
This finally allows us to sample the Õ(n/ε2) edges of the
sparsifier in time Õ(

√
mn/ε), using Grover’s algorithm.

This idea of using a “poor” spectral approximation to
compute sampling probabilities to obtain a better spectral
approximation is also used in [56], [28].

D. Matching Lower Bound

In the full version of this paper [9] we prove that
the Õ(

√
mn/ε)-runtime of our quantum algorithm is

optimal, up to polylog-factors, even when we wish to
construct a weaker cut sparsifier. The intuition behind
this is that an ε-cut sparsifier of a general graph must
contain Ω(n/ε2) edges (and this is tight [14]). If we
can appropriately “hide” these edges among the m
edges of G, then a quantum search algorithm requires
Θ(
√
mn/ε2) = Θ(

√
mn/ε) queries to retrieve them.

Turning this intuition into a concrete lower bound,
however, turns out to be rather complicated. We start
with a random graph construction by Andoni, Chen,
Krauthgamer, Qin, Woodruff and Zhang [7]. This con-
struction describes graphs on n nodes and Õ(n/ε2)
edges, so that any ε-cut sparsifier must contain a constant
fraction of the edges. As such, the constructed graphs
are in fact already sparsifiers. We then carefully “hide”
these sparsifiers in a larger, denser graph, in such a
way that a sparsifier of this graph must retrieve all
of the original, hidden sparsifiers. To prove a quantum
lower bound for this search problem, we describe it as
the composition of the problem of finding a constant
fraction of the nonzero bits in a Boolean matrix with
the OR-function. Finally we combine lower bounds for
the individual problems using a composition theorem
for adversary bounds, applicable to the composition of
a relational problem with a function. This composition
theorem was very recently proven by Belovs and Lee
[17], prompted by our question to them.

E. Prior Work

We are not aware of prior work on quantum speedups
for graph sparsification. In a very different line of work
though, sparsification has been studied with the goal
of sparsifying Hamiltonian matrices, which are used to
describe many-body quantum systems. Aharonov and
Zhou [1] asked whether the interaction graph of a
many-body system can be sparsified while preserving
its spectrum, showing that this is not possible in general.
More recently, Herbert and Subramanian [39] considered
the weaker notion of sparsifying the Hamiltonian matrix,
and suggested that sparsification could indeed help in
Hamiltonian simulation.

Research on quantum algorithms for cut approxima-
tion is also limited. There is recent work by Hamoudi,
Rebentrost, Rosmanis and Santha [37] on quantum ap-
proximate minimization of submodular functions, which
can be used for cut approximation. However, their work
was more recently superseded by better classical al-
gorithms [12]. Other recent work by Brandão, Kueng
and Stilck França [20] used quantum SDP-solvers to
approximate quadratic binary optimization problems, of
which MAX CUT is the most notable instance. They do

not succeed in finding a speedup for MAX CUT though,
mainly because their algorithm does not benefit from the
special structure of this instance.

Concerning our speedup for Laplacian solving, we
mention a range of papers on quantum speedups for
general linear system solving. Most famous is the work
by Harrow, Hassidim and Lloyd [38], which was later
refined in work by Ambainis [5] and Childs, Kothari
and Somma [24]. They describe a quantum algorithm
for solving general linear systems Ax = b in time
Õ(dMκ log(1/ε)), with dM the row sparsity and κ the
condition number of A. These algorithms are particularly
relevant for sparse and well-conditioned systems (in
general, however, κ can be as large as O(n3wmax/wmin)
for graph Laplacians [72, Lemma 6.1]). Crucially, they
only output a quantum state that encodes the solution,
rather than an explicit description as we do.

Quantum speedups for the problems of estimating ef-
fective resistances and spectral gaps have also been stud-
ied in other work. Very recently and independently from
our work, Piddock [64] constructed a quantum walk al-
gorithm that ε-approximates the effective resistance Rs,t
using Õ(

√
mRs,t/ε

2) ∈ Õ(
√
mn/ε2) quantum walk

steps. He also argued how this could possibly be further
improved to Õ(

√
mRs,t/ε) ∈ Õ(

√
mn/ε). While the

quantum walk model is different from our model, this
tentative bound would agree with our runtime. In addi-
tion, however, we can effectively approximate all effec-
tive resistances simultaneously in the graph in the same
complexity. The problem was also studied in slightly
different settings in [76], [23], [40]. A quantum walk
algorithm for estimating the second bottom eigenvalue
λ2 of the Laplacian in the adjacency-matrix model was
studied by Jarret, Jeffery, Kimmel and Piedrafita [41].
They give a multiplicative ε-approximation of λ2 in time
Õ(n/(

√
λ2ε)), which is Õ(n2/ε) in the worst case. We

improve this to Õ(
√
mn/ε) ∈ Õ(n3/2/ε).

We also mention some past and concurrent work
on quantum speedups for clustering. One paper by
Daskin [29] describes a quantum algorithm for spectral
clustering but no direct speedup is found with respect
to classical algorithms. Concurrent to our work is a
paper by Kerenidis and Landman [49] which describes
a quantum algorithm for outputting the centroids of a
k-means spectral clustering. In contrast to our work,
they start from quantum access to a data set, which they
then use to query an associated Laplacian. They find a
quantum speedup under certain assumptions (e.g., that
the input data is appropriately clustered), and as such
is incomparable to our quantum algorithm. Less directly
related, there exists a number of papers [3], [57], [77],
[50] on quantum speedups for k-means clustering and
the construction of a neighborhood graph. These tasks
are complementary to our work on finding a spectral

embedding, given a similarity graph of the data. It does
seem interesting to try and use these algorithms to further
speed up our spectral clustering algorithm.

Finally we mention classical work on sublinear al-
gorithms for Laplacian solving and sparsification. The
work by Andoni, Krauthgamer and Pogrow [8] describes
a sublinear algorithm for Laplacian solving aimed at
approximating a single coordinate of the output. Their
algorithm is inspired by quantum algorithms for linear
system solving, and similarly only finds a speedup for
sparse and well-conditioned systems. The second work
is by Lee [55], who proposes a sublinear algorithm
for spectral sparsification of unweighted graphs. He
bypasses the Ω(m) lower bound by allowing a weaker,
additive error in the approximation. As such this work
is incomparable to ours.

F. Open Questions

Our work raises a number of interesting questions and
future directions, some of which we summarize below.
• We prove a matching Ω̃(

√
mn/ε) lower bound on

the quantum query complexity of spectral sparsification.
Can we extend this to a tight lower bound for any
of the resulting applications, like ε-approximating the
min cut or effective resistance? Since these reduce to
constructing an ε-spectral sparsifier, this would yield a
stronger lower bound.
• Work on Laplacian solvers has also led to progress

on the long-standing question of computing maximum
flows in graphs [26], [66], [47], [62], ultimately leading
to classical algorithms with runtime Õ(m) that approx-
imate max flows. Since the naive description of such
a flow already requires size Ω(m), this seems optimal,
even for quantum algorithms. We might, however, hope
to find a quantum speedup for approximating certain
quantities of the flow, or a compressed representation.
A slower quantum algorithm for finding an exact max
flow was already proposed by Ambainis and Špalek [6].
• At first sight, sparsifiers can only yield approximate

solutions to cut problems. However, for the case of
MIN CUT, Karger [45], [46] has shown that in fact
they can also be used to provide an exact solution in
time Õ(m). We leave it as an open question whether
our algorithm allows to speed up the exact MIN CUT
problem. A related open question, asked by Lee, Santha
and Zhang [54] is the quantum complexity of exact
MIN CUT w.r.t. cut queries (which, given a set S of
vertices, return the induced cut value).
• Spectral sparsification of graphs and Laplacians has

been extended in different directions such as sparsifica-
tion of hypergraphs [69], [13], sparsification of sums of
positive semi-definite matrices [69], [68], sparsification
in a streaming setting [48], [42]. It is also closely related
to concepts such as spectral sketching [7] and linear data

regression using leverage scores [31]. It seems likely
that we can also find quantum speedups for these related
problems. Similarly we might hope to solve “quantum”
tasks like sparsifying density operators or POVMs.

II. PRELIMINARIES

We say that something holds “with high probability”
if it holds with probability at least 1−O(1/n).

A. Computational Model and Quantum Algorithms

We assume as our computational model a quantum-
accessible classical control system that

1) can run quantum subroutines on at most O(logN)
qubits, with N the problem instance size;

2) can make quantum queries to the input; and
3) has access to a quantum-read/classical-write RAM

(QRAM)2 of poly(N) classical bits, where a sin-
gle QRAM operation corresponds to either clas-
sically writing a bit to the QRAM, or making a
quantum query (a read operation) to bits stored in
QRAM, possibly in superposition.

In this model, an algorithm has time complexity T if it
uses at most T elementary classical and quantum gates,
quantum queries to the input, and QRAM operations.
The query complexity of an algorithm only measures
the number of queries to the input. If we only care about
query complexity, the assumption of having QRAM may
be dropped at the expense of a polynomial increase in
the number of gates.

An important quantum subroutine in our work is
Grover’s algorithm [36] for searching sets of marked
elements, which is summarized in the claim below.

Claim 2 (Repeated Grover Search). Let f : [N] →
{0, 1} be a function that marks a set of elements
S = {i ∈ [N] | f(i) = 1}. Then there is a quantum

2Another name for this type of memory is “coherent RAM.” We
feel a QRAM containing a classical k-bit string z and allowing
efficient queries of the form |i, b〉 7→ |i, b⊕ zi〉 (where i ∈ [k] and
b ∈ {0, 1}) is a reasonable generalization of classical RAM: if one
believes in classical RAM and in quantum superposition, then QRAM
is quite natural. Like a classical RAM, the physical hardware of such
a QRAM necessarily requires size at least proportional to k because
it contains k bits of information, but answering a query would have a
cost proportional to log k, even when querying multiple stored bits in
superposition. This could be realized for instance by laying out the k
bits as the leaves of a binary tree of depth log k; the log k bits of the
binary representation of an address i ∈ [k] would chart a path from
the root to the addressed bit zi, allowing for efficient lookup of the
addressed bit. Note that running this on a superposition of different
addresses i involves going down different paths in superposition, but
still only uses a superposition of O(log k) qubits.

Assuming such QRAM is very common in quantum algorithms for
graph problems. It should be noted, though, that the notion of QRAM
is a bit controversial, (1) because the term is sometimes used in the
literature for a different and stronger kind of memory (allowing for
efficient conversion of a classically-stored unit vector of k numbers into
the corresponding state of log k qubits), and (2) since implementing it
on noisy hardware might require O(k) work to error-correct a quantum
query, rather than O(log k) work.

algorithm that finds S with probability at least 2/3 in
Õ(
√
N |S|) elementary operations and queries to f , and

uses O(logN) qubits and Õ(|S|) classical bits.

We also use an algorithm for finding shortest-path trees
by Dürr, Heiligman, Høyer and Mhalla [32], but the
quantum parts in that algorithm reduce to Grover search.

B. Graphs, Queries and Spanners

We consider undirected, weighted graphs G =
(V,E,w) with |V | = n nodes and |E| = m edges, and
edge weights w : E → R≥0. We are given adjacency-
list access to G, as is considered in e.g. [32], [35]. This
allows to query for the degree of a node, its k-th neighbor
(according to some unknown but fixed ordering), or the
weight of an edge.

We define the distance δG(u, v) between nodes u and
v with respect to G as

δG(u, v) = min
u−v path P

∑
e∈P

1

we
.

This definition is in accordance with the interpretation
of G as an electrical network, in which an edge e
corresponds to a link of conductance we (and hence
resistance or “cost” 1/we), as is common in the literature
on spectral sparsification. A spanner of G is a sparse
subgraph H that approximately preserves all pairwise
distances. Specifically, we will call H a t-spanner of G
if for any pair u, v ∈ V it holds that

δG(u, v) ≤ δH(u, v) ≤ tδG(u, v).

The first inequality is trivially satisfied since H is a
subgraph. It is well-known that every weighted graph
has a (2k − 1)-spanner with O(n1+1/k) edges [4].
Throughout the paper we use the shorthand spanner
to denote a t-spanner with t = 2 log n and Õ(n)
edges. An r-packing of spanners of G is an ordered
set H = (H1, H2, . . . ,Hr) of r edge-disjoint spanners
such that Hj is a spanner for G−∪i<jHi, which is the
remaining graph after removing the edges of all previous
spanners. Such an r-packing always exists for every r,
though once G−∪i<jHi has no edges left anymore, the
subsequent spanners Hj , . . . ,Hr are empty.

The Laplacian L of a weighted graph G is given by
L = D − A, with A the weighted adjacency matrix
(Aij) = wij and D the diagonal weighted degree matrix
(Dii) =

∑
j wij . Equivalently, we can write

L =
∑
e∈E

weχeχ
T
e ,

where we let χe = χu − χv denote a vector associated
to the edge e = (u, v), with χu, χv indicator vectors
of the nodes u, v (we fix an arbitrary orientation of the
edges). If G is connected then LG has a trivial kernel

consisting only of the all-ones vector. Moreover, LG
is a real, symmetric, diagonally dominant matrix with
nonnegative diagonal entries, and is hence psd.

C. Spectral Sparsification using Spanner Packings

A cut sparsifier H of a graph G is a sparse, reweighted
subgraph that preserves the value of all cuts. Specifically,
H is called an ε-cut sparsifier if for any S ⊆ V we have

(1− ε)valG(S) ≤ valH(S) ≤ (1 + ε)valG(S), (1)

where valG(S) =
∑
i∈S,j /∈S w(i,j) denotes the total

weight of the edges leaving S.
A spectral sparsifier H of a graph G is a sparse,

reweighted subgraph that preserves the quadratic form
xTLGx associated to the Laplacian LG of G, for any
vector x ∈ Cn. Specifically, H is called an ε-spectral
sparsifier if for any x ∈ Cn it holds that

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx. (2)

Alternatively, we can rewrite this as (1− ε)LG � LH �
(1 + ε)LG, where A � B denotes that A−B is positive
semi-definite. This condition implies for instance that
all eigenvalues of H ε-approximate the eigenvalues of
G [15], and all cuts in H ε-approximate those in G. To
see the latter, consider a subset S ⊆ V and let χS denote
the indicator on S, then

χTSLGχS =
∑

(u,v)=e∈E

we(χS(u)− χS(v))2 = valG(S).

This shows that the cut value is a quadratic form in the
Laplacian, and hence (2) implies that (1− ε)valG(S) ≤
valH(S) ≤ (1+ε)valG(S), for all S ⊆ V . Any ε-spectral
sparsifier is therefore also an ε-cut sparsifier.

Spectral sparsifiers can be constructed by using span-
ners to identify the “important” edges in the graph. This
was first noticed by Kapralov and Panigrahy [43], and
further refined by Koutis and Xu [53]. We will build on
the latter work which constructs spectral sparsifiers from
spanner packings. Their algorithm iteratively invokes
the routine described below, which roughly halves the
number of edges.

Algorithm 1 H = Half Sparsify(G, ε)

1: construct O(log2(n)/ε2)-packing of spanners of G
2: let P be their union and set H = P
3: for each edge e /∈ P do
4: with probability 1/4, add e to H with weight 4we

Theorem 5 ([53, Thm 3.2]). The graph H =
Half Sparsify(G, ε) is, with probability ≥ 1− 1/n2, an
ε-spectral sparsifier of G with ≤ m/2 + Õ(n/ε2) edges.

Now consider a fixed ε > 0. If we iterate T ∈
O(log(m/n)) times the routine Half Sparsify(G, ε′),

with ε′ ∈ O(ε/T), then we retrieve with high probability
an ε-spectral sparsifier with Õ(n/ε2) edges. By [7] this
is optimal up to log-factors.

III. QUANTUM SPARSIFICATION ALGORITHM

Our quantum sparsification algorithm is based on the
scheme by Koutis and Xu. We use as a black-box a
quantum algorithm for constructing a spanner in time
Õ(
√
mn), whose description we postpone to Section V.

As mentioned in the introduction, we cannot simply
plug this quantum spanner algorithm in the Koutis and
Xu algorithm: after a single iteration this would require
to output a graph with up to m/2 edges. This is much
too costly since we aim at a runtime that scales as√
mn. To resolve this issue we first assume that we

have access to a random string of length Õ(m). We use
this string to mark edges that have been discarded at
some iteration by 0-bits, which we later use to implicitly
set their weight equal to zero. By its construction, the
spanner algorithm can then construct a spanner in the
remaining graph. At the end we use Grover search to
explicitly retrieve the remaining Õ(n/ε2) edges, whose
union forms the spectral sparsifier. Then, we then get
rid of the random string. To this end we use efficient k-
independent hash functions that allow to simulate queries
to a k-wise independent random string. This suffices
since by standard results a k-query quantum algorithm
cannot distinguish a 2k-wise independent strings from a
uniformly random one.

A. Using a Random String

We first assume access to a family of independent, ran-
dom strings ri ∈ {0, 1}m, with indices i ∈ [log(m/n)],
such that all bits are independent and equal to 1 with
probability 1/4. For different indices i, the strings ri
will function as consecutive “sieves” of the edge set.

Algorithm 2 describes the sparsification algorithm
using such random strings. A critical remark is that steps
4 and 5 of the algorithm are only performed implicitly,
as mentioned before. Rather than keeping an explicit
list of updated edge weights, we maintain an implicit
“weight oracle”. Only when an edge weight is queried,
does this weight oracle calculate its weight by consulting
the necessary random strings. We show how to do this
efficiently in the proof of Theorem 6.

Algorithm 2 H = Quantum Sparsify(G, ε)

1: let {w′e = we} and ` = dlog(m/n)e
2: for i = 1, 2, . . . , ` do
3: create an O(log2(n)/ε2)-packing of spanners of
G′ = (V,E,w′), let Pi denote its union

4: for each edge e /∈ Pi do . implicitly!
5: if ri(e) = 1 then set w′e = 4w′e else w′e = 0

6: use repeated Grover to find H = {e ∈ E | w′e > 0}

Theorem 6. Given access to independent, uniformly
random strings ri ∈ {0, 1}m, i ∈ [log(m/n)], algo-
rithm Quantum Sparsify(G, ε) returns with probability
1 − O(log(n)/n2) an ε-spectral sparsifier of G with
Õ(n/ε2) edges. There is a quantum algorithm that
implements it in time Õ(

√
mn/ε2).

Proof. Correctness follows from Theorem 5: per itera-
tion we “half-sparsify” the graph (induced by all edges
of weight we > 0). The probability that all log(m/n)
iterations succeed is 1 − O(log(n)/n2). Below we dis-
cuss how steps 4 and 5 can be implemented efficiently,
so that the runtime of the for-loop is dominated by the
construction of Õ(1/ε2) spanners. By Theorem 13 this
takes time Õ(

√
mn/ε2). By standard results [59], the

repeated Grover search routine in the final step takes time
Õ(
√
mn/ε) for finding n/ε2 edges among m edges.

Now we prove that there exists an efficient oracle to
keep track of the weights in steps 4 and 5. Consider
the i-th iteration. Given edge e, let k denote the number
of spanners before this iteration containing e. If k = 0,
return w′e = 4iwe if (ri ri−1 . . . r1)(e) = 1, and w′e = 0
if (ri ri−1 . . . r1)(e) = 0. If k > 0, let j < i index
the last spanner packing in which it occurs. Now return
w′e = 4i−kwe if (ri ri−1 . . . rj+1)(e) = 1, and w′e = 0

otherwise. This takes Õ(1) searches through the set of
spanners and O(i) ∈ Õ(1) evaluations of the random
oracle.

The space complexity of the algorithm is O(log n)
qubits and Õ(n/ε2) classical bits. The number of qubits
follows from the space complexity of the quantum
spanner algorithm and the Grover search routine. The
number of classical bits is dominated by the output size.

B. Using k-independent Hash Functions

To get rid of the random strings {ri} we build on
an easy consequence of the polynomial method [16].
It seems that this was first used in the proof of [21,
Theorem 19], and is stated in e.g. [78, Theorem 3.1].

Fact 1. The output distribution of a quantum algorithm
making q queries to a uniformly random string is identi-
cal to the same algorithm making q queries to a 2q-wise
independent string.

As a consequence, we can replace the uniformly ran-
dom strings of length m by a k-wise independent string
with k ∈ Õ(

√
mn/ε2). Surely we also cannot explicitly

construct a k-wise independent string of length Õ(m)
in time Õ(

√
mn/ε2), but we can use hash functions

to simulate queries to such a string. A family of hash
functions F = {h : [u] → [r]} is called k-independent
if, for any subset S ⊆ [u] of size |S| ≤ k and a uniformly
random function h in the family, the image of h on S
behaves uniformly random in [r]|S|. This implies that the

image of a random member of F , which we will refer to
as a k-independent hash function, describes a k-wise in-
dependent string over [r]u. Elegant constructions of such
functions have long been known, the most famous ex-
ample being random degree-k polynomials, as proposed
by Carter and Wegman [22]. Crucial, however, is that we
can evaluate the hash function in Õ(1) time, potentially
allowing Õ(k) preprocessing time. Fortunately, such a
result was established very recently by Christiani, Pagh
and Thorup [25], who proved the theorem below.

Theorem 7 ([25]). It is possible to construct in time
Õ(k) a data structure of size Õ(k) that simulates queries
to a k-independent hash function in Õ(1) time per query.

With k = 2q and [r] = {0, 1}, we can combine this with
Fact 1 to give the corollary below.

Corollary 1. Consider any quantum algorithm with
runtime q that makes queries to a uniformly random
string. We can simulate this algorithm with a quantum
algorithm with runtime Õ(q) without random string,
using Õ(q) additional classical bits.

Hence we can efficiently simulate the random string
in Algorithm 2, with at most a polylogarithmic over-
head in the runtime. The classical space complexity of
the algorithm increases from Õ(n/ε2) to Õ(

√
mn/ε2).

Combining Theorem 6 with Corollary 1 gives:

Theorem 8. There exists a quantum algorithm that,
given adjacency-list access to a weighted and undirected
graph G, constructs with high probability an ε-spectral
sparsifier of G with Õ(n/ε2) edges in time Õ(

√
mn/ε2).

It uses O(log n) qubits and Õ(
√
mn/ε2) classical bits.

IV. REFINED QUANTUM SPARSIFICATION

Here we show how to improve the runtime from
Õ(
√
mn/ε2) to Õ(

√
mn/ε), which matches our lower

bound up to polylog-factors. The improvement builds
on seminal results by Spielman and Srivastava [70].
They first showed that sampling edges with probabilities
approximately proportional to their effective resistances
results in a spectral sparsifier. Then they showed how
Laplacian solvers can efficiently estimate these effective
resistances. We use our quantum sparsification algorithm
to first construct a “rough” ε-sparsifier, for constant ε,
which we use to approximate effective resistances in the
original graph. Surprisingly such approximation suffices
to implement the Spielman-Srivastava sampling scheme
on the original graph. We then use a quantum sampling
routine to efficiently implement this sampling scheme,
leading to an ε-spectral sparsifier for arbitrary ε > 0 in
time Õ(

√
mn/ε). This idea of using a “poor” spectral

sparsifier for computing sampling probabilities to obtain
a better spectral sparsifier is also present in [56], [28].

A. Spielman-Srivastava Toolbox and Quantum Sampling

Here we formally introduce the main tools that we
use. These are an efficiently constructible “resistance
oracle” and a sparsification algorithm based on this
oracle from [70], and a quantum sampling routine for
implementing this sparsification algorithm.

1) Approximate Resistance Oracle: The effective re-
sistance in a graph G between a pair of nodes s and
t is defined as the effective resistance between s and
t after replacing every edge e by a resistor of value
1/we. It can be expressed algebraically as Rs,t =
(χs−χt)TL+

G(χs−χt), so that a Laplacian solver allows
to efficiently compute Rs,t. Spielman and Srivastava
proved that in some sense one can efficiently compute
all effective resistances in roughly the same time. More
specifically, they showed that it is possible to construct
in near-linear time a data structure of size Õ(n/ε2) that
allows to efficiently approximate Rs,t for any s, t.

Theorem 9 ([70]). Consider a weighted and undirected
graph G. There is an Õ(m/ε2)-time algorithm which
computes a (24 log(n)/ε2)× n matrix Z such that with
probability at least ≥ 1 − 1/n, for every pair s, t ∈ V
we have (1− ε)Rs,t ≤ ‖Z(χs − χt)‖2 ≤ (1 + ε)Rs,t.

This Z is a data structure which allows to ε-approximate
Rs,t for any pair s, t by calculating the 2-norm distance
between two columns, each of dimension Õ(1/ε2).

2) Spectral Sparsification with Edge Scores:
Spielman-Srivastava also showed a spectral sparsifier
can be constructed by independently keeping edges with
weights roughly proportional to effective resistance.

Theorem 10 ([70]). Let 2Re ≥ R̃e ≥ Re/2 for each
edge e ∈ E, and pe = min(1, CweR̃e log(n)/ε2) for
some universal constant C. Then keeping every edge
e independently with probability pe, and rescaling its
weight with 1/pe, yields with probability at least 1−1/n
an ε-spectral sparsifier of G with O(n log(n)/ε2) edges.

Note that
∑
e pe � 1 is the expected number of edges

of the sparsifier. Since
∑
e weRe = n− 1 [19, Theorem

25], this yields the claimed number of edges.3

3) Quantum Sampling: Assuming access to an ap-
proximate resistance oracle that gives approximations
R̃e to Re, we implement the Spielman-Srivastava spar-
sification scheme. Classically this requires time Õ(m+∑
e pe), but quantumly it can be done more efficiently.

Claim 3. Assume we have query access to a list of prob-
abilities {pe}e∈E . Then there is a quantum algorithm
that samples a subset S ⊆ E, such that S contains

3Spielman and Srivastava describe a slightly different scheme: sam-
ple Õ(n/ε2) i.i.d. edges, with probabilities proportional to effective
resistance. This gives the same performance bound [34, Remark 1].

every e independently with probability pe, in expected
time Õ(

√
m(
∑
e pe)).

Proof. By Corollary 1 we can assume access to a random
Õ(m)-bit random string r. From this r we can derive a
function hr : E × [0, 1] → {0, 1} s.t. for each e inde-
pendently hr(e, pe) = 1 with probability pe. Combining
with a query to the list of probabilities allows to imple-
ment an oracle |e〉 |0〉 |0〉 7→ |e〉 |pe〉 |hr(e, pe)〉. Let T
be the number of e ∈ E for which hr(e, pe) = 1. Then
E[T] =

∑
e pe. Use repeated Grover search (Claim 2) to

retrieve these edges in expected time Õ(
√
mT).

B. Refined Quantum Sparsification

Now we combine the Spielman-Srivastava toolbox, the
quantum sampling routine and our quantum sparsifica-
tion algorithm from the last section.

Algorithm 3 H = Quantum Sparsify(G, ε)

1: use quantum sparsification (Theorem 8) to construct
a (1/100)-spectral sparsifier H of G

2: create a (1/100)-approximate resistance oracle of H
using Theorem 10, yielding estimates {R̃e}

3: use quantum sampling (Claim 3) to sample a subset
of the edges, keeping every edge with probability
pe = min(1, CweR̃e log(n)/ε2)

Theorem 11 (Quantum Spectral Sparsification). Algo-
rithm Quantum Sparsify(G, ε) returns with high proba-
bility an ε-spectral sparsifier H with Õ(n/ε2) edges, and
has runtime Õ(

√
mn/ε). The algorithm uses O(log n)

qubits and Õ(
√
mn/ε) classical bits.

Proof. First we prove correctness. Since H is a spectral
sparsifier of G, and effective resistances correspond to
quadratic forms in the inverse of the Laplacian, we know
that the effective resistances of H approximate those of
G: (1 − 1/100)RGs,t ≤ RHs,t ≤ (1 + 1/100)RGs,t for all
s, t ∈ V . By Theorem 9 we know that the approximate
resistance oracle yields estimates {R̃Hs,t} such that (1−
1/100)RHs,t ≤ R̃Hs,t ≤ (1+1/100)RHs,t. Combining these
inequalities shows that

(1− 1/100)2RGs,t ≤ R̃Hs,t ≤ (1 + 1/100)2RGs,t.

By Theorem 10, if we now keep every edge with
probability pe = min(1, CweR̃

H
e log(n)/ε2), then with

probability 1− 1/n we find an ε-spectral sparsifier with
O(n log(n)/ε2) edges. Combining this success proba-
bility with those of the quantum sparsification algorithm
and the construction of the resistance oracle, the total
success probability is ≥ (1− 1/n)3 = 1−O(1/n).

The bound on the runtime follows from summing
the Õ(

√
mn) runtime of the quantum sparsification

algorithm, the Õ(n) runtime for creating the resis-
tance oracle of the sparsifier with Õ(n) edges, and

the Õ(
√
m(
∑
e pe)) expected runtime of the quantum

sampling routine. Since∑
e

pe ≤
C log(n)

ε2

∑
e

weR̃
H
e

≤ (1 + 1/100)2C log(n)

ε2

∑
e

weR
G
e ,

and
∑
e weR

G
e = n − 1 [19, Theorem 25], we have

that
∑
e pe ∈ Õ(n/ε2) and so the expected runtime of

the sampling routine is Õ(
√
mn/ε). Moreover, by the

Chernoff bound the runtime of the latter routine will
indeed be Õ(

√
mn/ε) with probability at least 1− 1/n.

Hence we can abort the algorithm whenever the runtime
exceeds this bound, and the algorithm will still succeed
with high probability, while the total runtime becomes
Õ(
√
mn/ε) in the worst case.

V. QUANTUM ALGORITHM FOR FINDING SPANNERS

The Koutis-Xu sparsification algorithm identifies “im-
portant” edges by growing spanners inside the graph. In
this section we propose a quantum algorithm for growing
spanners, speeding up the best classical algorithms.

Recall from Section II that a t-spanner of a graph
G = (V,E,w) is a subgraph H = (V,EH ⊆ E,w) that
preserves all pairwise distances between nodes up to a
stretch factor t. For every pair u, v ∈ V , it holds that

δG(u, v) ≤ δH(u, v) ≤ tδG(u, v),

where δG(u, v) = minu−v path P

∑
e∈P 1/we. A span-

ner preserves the original weights on its edges. This is
in contrast to spectral sparsifiers which are necessarily
reweighted. A classic result by Althöfer et al. [4] shows
that, for any parameter k > 0, any n-node graph has a
(2k − 1)-spanner with O(n1+1/k) edges. We refer the
interested reader to the classic book by Peleg [61] or the
very recent survey by Ahmed et al. [2]. There exists a
range of classical algorithms for constructing spanners.
We will make use of one by Thorup and Zwick [74],
which follows from their work on “approximate dis-
tance oracles”. The main bottleneck of their algorithm
is the growth of shortest-path trees in subgraphs. We
speed up this bottleneck using the quantum algorithm of
Dürr, Heiligman, Høyer and Mhalla [32] for growing a
shortest-path tree in time Õ(

√
mn).

A. Thorup-Zwick Algorithm

The Thorup-Zwick spanner algorithm [74] uses
shortest-path trees (SPTs). An SPT T (v) from a node v
spanning a subset C is defined as a tree, rooted at v and
spanning C, so that the distance in this tree from v to
any node in C is the same as the distance in the original
graph G. Algorithm 4 randomly partitions the node set
into k layers {Ai}, which are increasingly sparsified. The

nodes in these layers are “hubs” for the nearby nodes.
Shortest-path trees are then grown that allow efficient
routing along these hubs. The resulting spanner consists
of the union of these shortest-path trees. In the algorithm
below, we set δ(w, ∅) =∞ for any w ∈ V .

Algorithm 4 H = Spanner(G, k)

1: let A0 = V and Ak = ∅
2: for i = 1, 2, . . . , k do
3: if i < k, let Ai contain each element of Ai−1,

independently, with probability n−1/k

4: for v ∈ Ai−1 −Ai do
5: grow shortest-path tree T (v) from v spanning
C(v) = {w ∈ V | δ(w, v) < δ(w,Ai)}

6: add T (v) to H

Theorem 12 (from the analysis in [74]).
• The output graph H of Spanner(G, k) is a (2k−1)-

spanner of G.
• The expected number of edges in H is
O(E(

∑
v |C(v)|)) ∈ O(kn1+1/k).

• The expected number of edges with at least
one node in the clusters is E(

∑
v |E(C(v))|) ∈

O(kmn1/k).

Setting k = 1/2 + log n yields a 2 log n-spanner with an
expected number of edges O(n log n).

B. Quantum Spanner Algorithm

We can use a quantum algorithm from Dürr, Heilig-
man, Høyer and Mhalla [32] to speed up the construc-
tion of the shortest-path tree T (v), spanning C(v). We
slightly generalize their algorithm to deal with “forbid-
den edges”, which are encoded by associating a weight
we = 0 to them (which corresponds to an infinite
resistance or cost). Such edges will correspond to edges
going outside of C(v), as well as edges that have already
been discarded by our sparsification algorithm.

In the full version [9] we prove the following state-
ment. We define the connected component of a node v0
as the smallest subset Cv0 ⊆ V such that v0 ∈ Cv0
and either E(Cv0 , V \Cv0) = ∅ or max{we | e ∈
E(Cv0 , V \Cv0)} = 0. This implies that there is no path
of finite distance between v0 and any node outside Cv0 .

Proposition 1. Assume adjacency-list access to a
weighted and undirected graph G = (V,E,w). Let
v0 be a source node and Cv0 its connected com-
ponent. Then there exists a quantum algorithm that
outputs, with probability at least 1 − δ, a shortest-
path tree from v0 that spans Cv0 . It has a runtime
Õ(
√
|Cv0 ||E(Cv0)| log(n/δ)) and requires O(log n)

qubits and Õ(|Cv0 |) classical bits.

To speed up the spanner construction, note that the
runtime of the Thorup-Zwick algorithm is dominated
by the task of growing the shortest-path trees T (v),
spanning the local clusters C(v), for all nodes v ∈ V .
By setting we = 0 for any edge reaching out of C(v),
this task corresponds to a shortest-path tree on the
connected component of v. If we use the above quan-
tum algorithm to accelerate this, using Cauchy-Schwarz
the total runtime becomes Õ(

∑
v

√
|C(v)||E(C(v)|) ∈

Õ(
√∑

v |C(v)|
√∑

v |E(C(v)|). By Theorem 12 we
know that E(

∑
v |C(v)|) ∈ O(kn1+1/k) and that

E(
∑
v |E(C(v))|) ∈ O(kmn1/k). By Markov’s inequal-

ity, with probability close to 1 the runtime is

Õ
(√

kn1+1/k
√
kmn1/k

)
∈ Õ

(
kn1/k

√
mn
)
.

What remains to be shown is how we (implicitly) set
we = 0 for all edges reaching out of C(v). To that end
we follow the idea of Thorup and Zwick of connecting
a new source node s to every node in Ai, with edges
of infinite weight, and construct an SPT from s to V .
It is easy to see that this returns the shortest path from
any node w /∈ Ai to Ai, allowing to calculate δ(w,Ai).
Using the standard quantum SPT algorithm of [32] we
can construct this SPT in time Õ(

√
mn), and we do this

whenever we construct a new Ai. Now assume that the
quantum SPT algorithm at some point wishes to choose
an edge (w,w′), with w part of the SPT constructed so
far, and w′ an adjacent node. Then by design this must be
a cheapest border edge of the SPT constructed so far, and
δ(v, w′) = δ(v, w) + δ(w,w′). Hence we know δ(v, w′)
and we can simply check whether δ(v, w′) < δ(w,Ai),
setting the weight of the edge equal to zero if this is not
the case. This proves the following theorem.

Theorem 13. There exists a quantum algorithm that
outputs in time Õ(kn1/k

√
mn) with high probability a

(2k−1)-spanner of G of size O(kn1+1/k). The algorithm
uses O(log n) qubits and Õ(kn1+1/k) classical bits.

Setting k = log n + 1/2, we find an Õ(
√
mn) quan-

tum algorithm for constructing 2 log n-spanners, as is
required by our sparsification algorithm.

Acknowledgements. We are very grateful to Alek-
sandrs Belovs and Troy Lee for proving a composition
property of the adversary method for relational problems,
as we required for the proof of our lower bound. This
work also benefited from discussions with Joran van
Apeldoorn, André Chailloux, Shantanav Chakraborty,
András Gilyén, Michael Kapralov, Robin Kothari, An-
thony Leverrier, Christian Majenz, Christian Schaffner,
Luca Trevisan and Luca Zanetti. We also thank the
anonymous FOCS referees for helpful comments. SA
was at the CWI-Inria International Lab when most of
this work was done. RdW was partially supported by the

Dutch Research Council (NWO) through Gravitation-
grant Quantum Software Consortium 024.003.037, and
QuantERA project QuantAlgo 680-91-034.

REFERENCES

[1] D. Aharonov and L. Zhou, “Hamiltonian sparsification and gap-
simulation,” in Proceedings of the 10th Innovations in Theoretical
Computer Science Conference (ITCS), 2019, pp. 2:1–2:21, arXiv:
1804.11084

[2] R. Ahmed, G. Bodwin, F. D. Sahneh, K. Hamm, M. J. Jebelli,
S. Kobourov, and R. Spence, “Graph spanners: A tutorial review,”
2019, arXiv: 1909.03152

[3] E. Aïmeur, G. Brassard, and S. Gambs, “Quantum clustering
algorithms,” in Proceedings of the 24th International Conference
on Machine Learning (ICML). ACM, 2007, pp. 1–8, doi:
10.1145/1273496.1273497

[4] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares, “On
sparse spanners of weighted graphs,” Discrete & Computational
Geometry, vol. 9, no. 1, pp. 81–100, 1993.

[5] A. Ambainis, “Variable time amplitude amplification and quan-
tum algorithms for linear algebra problems,” in Proceedings of
the 29th Symposium on Theoretical Aspects of Computer Science
(STACS), vol. 14. LIPIcs, 2012, pp. 636–647.

[6] A. Ambainis and R. Špalek, “Quantum algorithms for
matching and network flows,” in Proceedings of the 23rd
Symposium on Theoretical Aspects of Computer Science
(STACS). Springer, 2006, pp. 172–183. [Online]. Available:
https://doi.org/10.1007/11672142_13

[7] A. Andoni, J. Chen, R. Krauthgamer, B. Qin, D. P. Woodruff, and
Q. Zhang, “On sketching quadratic forms,” in Proceedings of the
2016 Innovations in Theoretical Computer Science Conference
(ITCS). ACM, 2016, pp. 311–319.

[8] A. Andoni, R. Krauthgamer, and Y. Pogrow, “On solving linear
systems in sublinear time,” in Proceedings of the 10th Innovations
in Theoretical Computer Science Conference (ITCS). ACM,
2019, pp. 3:1–3:19.

[9] S. Apers and R. de Wolf, “Quantum speedup for graph sparsi-
fication,cut approximation and Laplacian solving,” 2020, arXiv:
1911.07306

[10] S. Arora and S. Kale, “A combinatorial, primal-dual approach
to semidefinite programs,” Journal of the ACM, vol. 63, no. 2,
2016.

[11] S. Arora, S. Rao, and U. Vazirani, “Expander flows, geometric
embeddings and graph partitioning,” Journal of the ACM, vol. 56,
no. 2, p. 5, 2009.

[12] B. Axelrod, Y. P. Liu, and A. Sidford, “Near-optimal approximate
discrete and continuous submodular function minimization,” in
Proceedings of the 14th ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM, 2020, pp. 837–853.

[13] N. Bansal, O. Svensson, and L. Trevisan, “New notions and
constructions of sparsification for graphs and hypergraphs,” in
Proceedings of the 60th IEEE Symposium on Foundations of
Computer Science (FOCS). IEEE, 2019, pp. 910–928.

[14] J. Batson, D. A. Spielman, and N. Srivastava, “Twice-Ramanujan
sparsifiers,” SIAM Journal on Computing, vol. 41, no. 6, pp.
1704–1721, 2012.

[15] J. Batson, D. A. Spielman, N. Srivastava, and S.-H. Teng,
“Spectral sparsification of graphs: theory and algorithms,” Com-
munications of the ACM, vol. 56, no. 8, pp. 87–94, 2013.

[16] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf,
“Quantum lower bounds by polynomials,” Journal of the ACM,
vol. 48, no. 4, pp. 778–797, 2001.

[17] A. Belovs and T. Lee, “The quantum query complexity of
composition with a relation,” 2020, arXiv: 2004.06439

[18] A. A. Benczúr and D. R. Karger, “Approximating s−t minimum
cuts in Õ(n2) time,” in Proceedings of the 28th ACM Symposium
on Theory of Computing (STOC), vol. 96. ACM, 1996, pp. 47–
55.

[19] B. Bollobás, Modern graph theory. Springer Science & Business
Media, 2013, vol. 184.

[20] F. G. S. L. Brandão, R. Kueng, and D. Stilck França, “Faster
quantum and classical SDP approximations for quadratic binary
optimization,” 2019, arXiv: 1909.04613

[21] H. Buhrman, L. Fortnow, I. Newman, and H. Röhrig, “Quantum
property testing,” SIAM Journal on Computing, vol. 37, no. 5,
pp. 1387–1400, 2008.

[22] L. J. Carter and M. N. Wegman, “Universal classes of hash
functions,” Journal of computer and system sciences, vol. 18,
no. 2, pp. 143–154, 1979.

[23] S. Chakraborty, A. Gilyén, and S. Jeffery, “The power of block-
encoded matrix powers: improved regression techniques via faster
Hamiltonian simulation,” in Proceedings of the 46th Interna-
tional Colloquium on Automata, Languages, and Programming
(ICALP). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2019, pp. 33:1–33:14.

[24] A. M. Childs, R. Kothari, and R. D. Somma, “Quantum algorithm
for systems of linear equations with exponentially improved
dependence on precision,” SIAM Journal on Computing, vol. 46,
no. 6, pp. 1920–1950, 2017.

[25] T. Christiani, R. Pagh, and M. Thorup, “From independence to
expansion and back again,” in Proceedings of the 47th ACM
Symposium on Theory of Computing (STOC). ACM, 2015, pp.
813–820.

[26] P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and S.-H.
Teng, “Electrical flows, Laplacian systems, and faster approxi-
mation of maximum flow in undirected graphs,” in Proceedings
of the 43rd ACM Symposium on Theory of Computing (STOC).
ACM, 2011, pp. 273–282.

[27] M. B. Cohen, J. A. Kelner, J. Peebles, R. Peng, A. Sidford,
and A. Vladu, “Faster algorithms for computing the stationary
distribution, simulating random walks, and more,” in Proceedings
of the 57th IEEE Symposium on Foundations of Computer
Science (FOCS). IEEE, 2016, pp. 583–592.

[28] M. B. Cohen, Y. T. Lee, C. M. Musco, C. P. Musco, R. Peng,
and A. Sidford, “Uniform sampling for matrix approximation,”
in Proceedings of the 6th Innovations in Theoretical Computer
Science Conference (ITCS). ACM, 2015, pp. 181–190.

[29] A. Daskin, “Quantum spectral clustering through a biased phase
estimation algorithm,” 2017, arXiv: 1703.05568

[30] J. Ding, J. R. Lee, and Y. Peres, “Cover times, blanket times, and
majorizing measures,” in Proceedings of the forty-third annual
ACM symposium on Theory of computing. ACM, 2011, pp.
61–70.

[31] P. Drineas, M. W. Mahoney, and S. Muthukrishnan, “Sampling
algorithms for l2 regression and applications,” in Proceedings of
the 17th ACM-SIAM Symposium on Discrete Algorithms (SODA).
Society for Industrial and Applied Mathematics, 2006, pp. 1127–
1136.

[32] C. Dürr, M. Heiligman, P. Høyer, and M. Mhalla, “Quantum
query complexity of some graph problems,” SIAM Journal on
Computing, vol. 35, no. 6, pp. 1310–1328, 2006.

[33] T. Eden and W. Rosenbaum, “Lower bounds for approximating
graph parameters via communication complexity,” in Proceedings
of APPROX-RANDOM, 2018, pp. 11:1–11:18.

[34] W.-S. Fung, R. Hariharan, N. J. A. Harvey, and D. Panigrahi,
“A general framework for graph sparsification,” SIAM Journal
on Computing, vol. 48, no. 4, pp. 1196–1223, 2019.

[35] O. Goldreich and D. Ron, “Property testing in bounded degree
graphs,” Algorithmica, vol. 32, no. 2, pp. 302–343, 2002.

[36] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the 28th ACM Symposium on Theory
of Computing (STOC). ACM, 1996, pp. 212–219.

[37] Y. Hamoudi, P. Rebentrost, A. Rosmanis, and M. Santha,
“Quantum and classical algorithms for approximate submodular
function minimization,” Quantum Information and Computation,
vol. 19, no. 15-16, pp. 1325–1349, 2019.

[38] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm
for linear systems of equations,” Physical Review Letters, vol.
103, no. 15, p. 150502, 2009.

[39] S. Herbert and S. Subramanian, “Spectral sparsification of matrix

https://arxiv.org/abs/1804.11084
https://arxiv.org/abs/1909.03152
https://doi.org/10.1145/1273496.1273497
https://doi.org/10.1007/11672142_13
https://arxiv.org/abs/1911.07306
https://arxiv.org/abs/2004.06439
https://arxiv.org/abs/1909.04613
https://arxiv.org/abs/1703.05568

inputs as a preprocessing step for quantum algorithms,” 2019,
arXiv: 1910.02861

[40] T. Ito and S. Jeffery, “Approximate span programs,” Algorith-
mica, vol. 81, no. 6, pp. 2158–2195, 2019.

[41] M. Jarret, S. Jeffery, S. Kimmel, and A. Piedrafita, “Quantum
algorithms for connectivity and related problems,” in Proceedings
of the 26th European Symposium on Algorithms (ESA). Springer,
2018, pp. 49:1–49:13.

[42] M. Kapralov, Y. T. Lee, C. M. Musco, C. P. Musco, and A. Sid-
ford, “Single pass spectral sparsification in dynamic streams,”
SIAM Journal on Computing, vol. 46, no. 1, pp. 456–477, 2017.

[43] M. Kapralov and R. Panigrahy, “Spectral sparsification via
random spanners,” in Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference (ITCS). ACM, 2012,
pp. 393–398.

[44] D. R. Karger, “Using randomized sparsification to approximate
minimum cuts,” in Proceedings of the 5th ACM-SIAM Symposium
on Discrete Algorithms (SODA), vol. 94, 1994, pp. 424–432.

[45] ——, “Random sampling in cut, flow, and network design
problems,” Mathematics of Operations Research, vol. 24, no. 2,
pp. 383–413, 1999.

[46] ——, “Minimum cuts in near-linear time,” Journal of the ACM,
vol. 47, no. 1, pp. 46–76, 2000.

[47] J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford, “An almost-
linear-time algorithm for approximate max flow in undirected
graphs, and its multicommodity generalizations,” in Proceedings
of the 25th ACM-SIAM Symposium on Discrete Algorithms
(SODA). SIAM, 2014, pp. 217–226.

[48] J. A. Kelner and A. Levin, “Spectral sparsification in the semi-
streaming setting,” Theory of Computing Systems, vol. 53, no. 2,
pp. 243–262, 2013.

[49] I. Kerenidis and J. Landman, “Quantum spectral clustering,”
2020, arXiv: 2007.00280

[50] I. Kerenidis, J. Landman, A. Luongo, and A. Prakash, “q-means:
A quantum algorithm for unsupervised machine learning,” in
Advances in Neural Information Processing Systems, 2019, pp.
4136–4146.

[51] I. Koutis, G. L. Miller, and R. Peng, “Approaching optimality
for solving SDD linear systems,” SIAM Journal on Computing,
vol. 43, no. 1, pp. 337–354, 2014.

[52] I. Koutis, G. L. Miller, and D. Tolliver, “Combinatorial precon-
ditioners and multilevel solvers for problems in computer vision
and image processing,” Computer Vision and Image Understand-
ing, vol. 115, no. 12, pp. 1638–1646, 2011.

[53] I. Koutis and S. C. Xu, “Simple parallel and distributed algo-
rithms for spectral graph sparsification,” ACM Transactions on
Parallel Computing (TOPC), vol. 3, no. 2, pp. 1–14, 2016.

[54] T. Lee, M. Santha, and S. Zhang, “Quantum algorithms for graph
problems with cut queries,” 2020, arXiv: 1709.04262

[55] Y. T. Lee, “Probabilistic spectral sparsification in sublinear time,”
2013, arXiv: 1401.0085

[56] M. Li, G. L. Miller, and R. Peng, “Iterative row sampling,” in
Proceedings of the 54th IEEE Symposium on Foundations of
Computer Science (FOCS). IEEE, 2013, pp. 127–136.

[57] S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum algorithms
for supervised and unsupervised machine learning,” 2013, arXiv:
1307.0411

[58] A. W. Marcus, D. A. Spielman, and N. Srivastava, “Interlacing
families II: Mixed characteristic polynomials and the Kadison-
Singer problem,” Annals of Mathematics, pp. 327–350, 2015.

[59] M. A. Nielsen and I. Chuang, Quantum computation and quan-
tum information. Cambridge University Press, 2002.

[60] L. Orecchia, S. Sachdeva, and N. K. Vishnoi, “Approximating
the exponential, the Lanczos method and an Õ(m)-time spectral
algorithm for balanced separator,” in Proceedings of the 44th
ACM Symposium on Theory of Computing (STOC). ACM, 2012,
pp. 1141–1160.

[61] D. Peleg, “Distributed computing,” SIAM Monographs on dis-
crete mathematics and applications, vol. 5, 2000.

[62] R. Peng, “Approximate undirected maximum flows in
O(m polylog(n)) time,” in Proceedings of the 27th ACM-SIAM

Symposium on Discrete Algorithms (SODA). SIAM, 2016, pp.
1862–1867.

[63] J.-C. Picard and M. Queyranne, “Selected applications of mini-
mum cuts in networks,” INFOR: Information Systems and Oper-
ational Research, vol. 20, no. 4, pp. 394–422, 1982.

[64] S. Piddock, “Quantum walk search algorithms and effective
resistance,” 2019, arXiv: 1912.04196

[65] J. Sherman, “Breaking the multicommodity flow barrier for
O(
√

logn)-approximations to sparsest cut,” in Proceedings of
the 50th IEEE Symposium on Foundations of Computer Science
(FOCS). IEEE, 2009, pp. 363–372.

[66] ——, “Nearly maximum flows in nearly linear time,” in Proceed-
ings of the 54th IEEE Symposium on Foundations of Computer
Science (FOCS). IEEE, 2013, pp. 263–269.

[67] D. B. Shmoys, “Approximation algorithms for np-hard prob-
lems.” PWS Publishing Co., 1997, ch. Cut Problems and Their
Application to Divide-and-conquer, pp. 192–235.

[68] M. K. Silva, N. J. A. Harvey, and C. M. Sato, “Sparse sums of
positive semidefinite matrices,” ACM Transactions on Algorithms
(TALG), vol. 12, no. 1, p. 9, 2016.

[69] T. Soma and Y. Yoshida, “Spectral sparsification of hypergraphs,”
in Proceedings of the 30th ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM, 2019, pp. 2570–2581.

[70] D. A. Spielman and N. Srivastava, “Graph sparsification by
effective resistances,” SIAM Journal on Computing, vol. 40, no. 6,
pp. 1913–1926, 2011.

[71] D. A. Spielman and S.-H. Teng, “Spectral sparsification of
graphs,” SIAM Journal on Computing, vol. 40, no. 4, pp. 981–
1025, 2011.

[72] ——, “Nearly linear time algorithms for preconditioning and
solving symmetric, diagonally dominant linear systems,” SIAM
Journal on Matrix Analysis and Applications, vol. 35, no. 3, pp.
835–885, 2014.

[73] S.-H. Teng, “The Laplacian paradigm: Emerging algorithms for
massive graphs,” in International Conference on Theory and
Applications of Models of Computation. Springer, 2010, pp.
2–14.

[74] M. Thorup and U. Zwick, “Approximate distance oracles,” Jour-
nal of the ACM, vol. 52, no. 1, pp. 1–24, 2005.

[75] N. K. Vishnoi, “Lx= b,” Foundations and Trends in Theoretical
Computer Science, vol. 8, no. 1–2, pp. 1–141, 2013.

[76] G. Wang, “Efficient quantum algorithms for analyzing large
sparse electrical networks,” Quantum Information and Compu-
tation, vol. 17, no. 11-12, pp. 987–1026, 2017.

[77] N. Wiebe, A. Kapoor, and K. Svore, “Quantum algorithms
for nearest-neighbor methods for supervised and unsupervised
learning,” Quantum Information and Computation, vol. 15, no.
3&4, pp. 316–356, 2015.

[78] M. Zhandry, “Secure identity-based encryption in the quantum
random oracle model,” International Journal of Quantum Infor-
mation, vol. 13, no. 04, p. 1550014, 2015.

[79] D. Zhou, J. Huang, and B. Schölkopf, “Learning from labeled and
unlabeled data on a directed graph,” in Proceedings of the 22nd
International Conference on Machine Learning (ICML). ACM,
2005, pp. 1036–1043.

[80] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised
learning using Gaussian fields and harmonic functions,” in
Proceedings of the 20th International Conference on Machine
Learning (ICML), 2003, pp. 912–919.

https://arxiv.org/abs/1910.02861
https://arxiv.org/abs/2007.00280
https://arxiv.org/abs/1709.04262
https://arxiv.org/abs/1401.0085
https://arxiv.org/abs/1307.0411
https://arxiv.org/abs/1912.04196

	Introduction and Summary
	Graph Sparsification
	Main Result and Applications
	Quantum Algorithm
	Matching Lower Bound
	Prior Work
	Open Questions

	Preliminaries
	Computational Model and Quantum Algorithms
	Graphs, Queries and Spanners
	Spectral Sparsification using Spanner Packings

	Quantum Sparsification Algorithm
	Using a Random String
	Using k-independent Hash Functions

	Refined Quantum Sparsification
	Spielman-Srivastava Toolbox and Quantum Sampling
	Approximate Resistance Oracle
	Spectral Sparsification with Edge Scores
	Quantum Sampling

	Refined Quantum Sparsification

	Quantum Algorithm for Finding Spanners
	Thorup-Zwick Algorithm
	Quantum Spanner Algorithm

	References

