
How Low Can Approximate Degree and Quantum Query
Complexity be for Total Boolean Functions?∗

Andris Ambainis† Ronald de Wolf‡

Abstract

It has long been known that any Boolean function that depends on n input variables has both degree
and exact quantum query complexity of Ω(log n), and that this bound is achieved for some functions. In
this paper we study the case of approximate degree and bounded-error quantum query complexity. We
show that for these measures the correct lower bound is Ω(log n/ log log n), and we exhibit quantum
algorithms for two functions where this bound is achieved.

1 Introduction

1.1 Degree of Boolean functions

The relations between Boolean functions and their representation as polynomials over various fields have
long been studied and applied in areas like circuit complexity [Bei93], decision tree complexity [NS94,
BW02], communication complexity [BW01, She08], and many others. In a seminal paper, Nisan and
Szegedy [NS94] made a systematic study of the representation and approximation of Boolean functions
by real polynomials, focusing in particular on the degree of such polynomials. To state their and then our
results, let us introduce some notation.

• Every function f : {0, 1}n → R has a unique representation as an n-variate multilinear polynomial
over the reals, i.e., there exist real coefficients aS such that f =

∑
S⊆[n] aS

∏
i∈S xi. Its degree is the

number of variables in a largest monomial: deg(f) := max{|S| : aS 6= 0}.

• We say g ε-approximates f if |f(x)− g(x)| ≤ ε for all x ∈ {0, 1}n. The approximate degree of f is
d̃eg(f) := min{deg(g) : g 1/3-approximates f}.

• For x ∈ {0, 1}n and i ∈ [n], xi is the input obtained from x by flipping the bit xi. A variable xi is
called sensitive or influential on x (for f) if f(x) 6= f(xi). In this case we also say f depends on xi.
The influence of xi (on Boolean function f) is the fraction of inputs x ∈ {0, 1}n where i is influential:
Infi(f) := Prx[f(x) 6= f(xi)].

• The sensitivity s(f, x) of f at input x is the number of variables that are influential on x, and the
sensitivity of f is s(f) := maxx∈{0,1}n s(f, x).

∗Supported by the European Commission under the project QCS (Grant No. 255961).
†University of Latvia, Riga. ambainis@lu.lv
‡CWI and University of Amsterdam. rdewolf@cwi.nl. Supported by a Vidi grant from the Netherlands Organization for

Scientific Research (NWO).

One of the main results of [NS94] is that every function f : {0, 1}n → {0, 1} that depends on all n variables
has degree deg(f) ≥ log n − O(log log n) (our logarithms are to base 2). Their proof goes as follows.
On the one hand, the function fi(x) := f(x) − f(xi) is a polynomial of degree at most deg(f) that is
not identically equal to 0. Hence by a version of the Schwartz-Zippel lemma, fi is nonzero on at least a
2−deg(f)-fraction of the Boolean cube. Since fi(x) 6= 0 iff i is sensitive on x, this shows

Infi(f) ≥ 2− deg(f) for every influential xi. (1)

On the other hand, with a bit of Fourier analysis (see Section 2.1) one can show

n∑
i=1

Infi(f) ≤ deg(f)

and hence
there is an influential xi with Infi(f) ≤ deg(f)/n. (2)

Combining (1) and (2) implies deg(f) ≥ log n − O(log log n). As Nisan and Szegedy observe, this lower
bound is tight up to the O(log log n) term for the address function: let k be some power of 2, n = k+ log k,
and view the last log k bits of the n-bit input as an address in the first k bits. Define f(x) as the value of the
addressed variable. This function depends on all n variables and has degree log k + 1 ≤ log n+ 1, because
we can write it as a sum over all log k-bit addresses, multiplied by the addressed variable.

1.2 Approximate degree of Boolean functions

Our focus in this paper is on what happens if instead of considering representation by polynomials we
consider approximation by polynomials. While Nisan and Szegedy studied some properties of approximate
degree in their paper, they did not state a general lower bound for all functions depending on n variables.
Can we modify their proof to work for approximating polynomials? While (2) still holds if we replace
the right-hand side by approximate degree, (1) becomes much weaker. Since it is known that Infi(f) ≥
2−2s(f)+1 [Sim83, p. 443] and s(f) = O(d̃eg(f)2) [NS94], we have

Infi(f) ≥ 2−O(gdeg(f)2) for every influential xi. (3)

This lower bound on Infi(f) is in fact optimal. For example for the n-bit OR-function each variable has
influence (n+ 1)/2n and the approximate degree is Θ(

√
n). Hence modifying Nisan and Szegedy’s exact-

degree proof will only give an Ω(
√

log n) bound on approximate degree. Another way to prove that same
bound is to use the facts that s(f) = O(d̃eg(f)2) and s(f) = Ω(logn) if f depends on n bits [Sim83].

In Section 2 we improve this bound to Ω(log n/ log log n). The proof idea is the following. Suppose
P is a degree-d polynomial that approximates f . First, by a bit of Fourier analysis we show that there is a
variable xi such that the function Pi(x) := P (x) − P (xi) (which has degree ≤ d and expectation 0) has
low variance. We then use a concentration result for low-degree polynomials to show that Pi is close to
its expectation for almost all of the inputs. On the other hand, since xi has nonzero influence, (3) implies
that |Pi| must be close to 1 (and hence far from its expectation) on at least a 2−O(d2)-fraction of all inputs.
Combining these things then yields d = Ω(log n/ log log n).

2

1.3 Relation with quantum query complexity

One of the main reasons that the degree and approximate degree of a Boolean function are interesting
measures, is their relation to the quantum query complexity of that function. We define QE(f) and Q2(f)
as the minimal query complexity of exact (errorless) and 1/3-error quantum algorithms for computing f ,
respectively, referring to [BW02] for precise definitions.

Beals et al. [BBC+01] established the following lower bounds on quantum query complexity in terms
of degrees:

QE(f) ≥ deg(f)/2 and Q2(f) ≥ d̃eg(f)/2.

They also proved that classical deterministic query complexity is at most O(d̃eg(f)6), improving an earlier
8th-power result of [NS94], so this lower bound is never more than a polynomial off for total Boolean
functions. While the polynomial method sometimes gives bounds that are polynomially weaker than the true
complexity [Amb06], still many tight quantum lower bounds are based on this method [AS04, KŠW07].

Our new lower bound on approximate degree implies that Q2(f) = Ω(log n/ log logn) for all total
Boolean functions that depend on n variables.1 In Section 3 we construct two functions that meet this
bound, showing that Q2(f) can be O(log n/ log log n) for a total function that depends on n bits. Since
Q2(f) ≥ d̃eg(f)/2, we immediately also get that d̃eg(f) can be O(log n/ log logn).2

The idea behind our construction is to modify the address function (which achieves the smallest degree
in the exact case). Let n = k+m. We use the lastm bits to build a quantum addressing scheme that specifies
an address in the first k bits. The value of the function is then defined to be the value of the addressed bit.
The following requirements need to be met by the addressing scheme:

• There is a quantum algorithm to compute the index i addressed by y ∈ {0, 1}m, using d queries to y;

• For every index i ∈ {1, . . . , k}, there is a string y ∈ {0, 1}m that addresses i (so that the function
depends on all of the first k bits);

• Every string y ∈ {0, 1}m addresses one of 1, . . . , k (so the resulting function on k +m bits is total);

In Section 3 we give two constructions of addressing schemes that address k = dΘ(d) bits using d quan-
tum queries. Each gives a total Boolean function on n ≥ dΘ(d) bits that is computable with d + 1 =
O(log n/ log log n) quantum queries: d queries for computing the address i and 1 query to retrieve the
addressed bit xi.

To summarize, all total Boolean functions that depend on n variables have approximate degree and
bounded-error quantum query complexity at least Ω(log n/ log log n), and that lower bound is tight for
some functions.

2 Approximate degree is Ω(log n/ log log n) for all total f

2.1 Tools from Fourier analysis

We use the framework of Fourier analysis on the Boolean cube. We will just introduce what we need here,
referring to [O’D08, Wol08] for more details and references. In this section it will be convenient to denote

1In contrast, the classical bounded-error query complexity is lower bounded by sensitivity [NS94] and hence always Ω(log n).
2Interestingly, the only way we know to construct f with asymptotically minimal gdeg(f) is through such quantum algorithms—

this fits into the growing sequence of classical results proven by quantum means [DW11].

3

bits as +1 and −1, so a Boolean function will now be f : {±1}n → {±1}. Unless mentioned otherwise,
expectations and probabilities below are taken over a uniformly random x ∈ {±1}n.

Define the inner product between functions f, g : {±1}n → R as

〈f, g〉 =
1
2n

∑
x∈{±1}n

f(x)g(x) = E[f · g].

For S ⊆ [n], the function χS is the product (parity) of the variables indexed in S. These functions form an
orthonormal basis for the space of all real-valued functions on the Boolean cube. The Fourier coefficients
of f are f̂(S) = 〈f, χS〉, and we can write f in its Fourier decomposition

f =
∑
S⊆[n]

f̂(S)χS .

The degree deg(f) of f is max{|S| : f̂(S) 6= 0}. The expectation or average of f is E[f] = f̂(∅), and its
variance is Var[f] = E[f2]− E[f]2 =

∑
S 6=∅ f̂(S)2. The p-norm of f is defined as

‖f‖p = E[|f |p]1/p.

This is monotone non-decreasing in p. For p = 2, Parseval’s identity says

‖f‖22 =
∑
S

f̂(S)2.

For low-degree f , the famous Bonami-Beckner hypercontractive inequality says that higher norms cannot
be much bigger than lower norms:

Theorem 1 (Bonami-Beckner). Let f be a multilinear n-variate polynomial. If 1 ≤ p ≤ q, then

‖f‖q ≤
(
q − 1
p− 1

)deg(f)/2

‖f‖p.

The main tool we use is the following concentration result for degree-d polynomials from [DFKO07,
Section 2.2] and [O’D08, Theorem 5.4] (the degree-1 case is essentially the familiar Chernoff bound). It is
an easy consequence of the hypercontractive inequality, and for completeness we include its easy derivation
from Theorem 1.

Theorem 2 (DFKO07). Let F be a multilinear n-variate polynomial of degree at most d, with expectation 0
and variance σ2 = ‖F‖22. For all t ≥ (2e)d/2 it holds that

Pr[|F | ≥ tσ] ≤ exp
(
−(d/2e) · t2/d

)
.

Proof. Theorem 1 with p = 2 implies

E[|F |q] = ‖F‖qq ≤ (q − 1)dq/2‖F‖q2 = (q − 1)dq/2σq.

Using Markov’s inequality gives

Pr[|F | ≥ tσ] = Pr[|F |q ≥ (tσ)q] ≤ E[|F |q]
(tσ)q

≤ (q − 1)dq/2σq

(tσ)q
≤ qdq/2

tq
.

Choosing q = t2/d/e gives the theorem (note that our assumption on t implies q ≥ 2).

4

2.2 The lower bound proof

Here we prove our main lower bound.

Theorem 3. Every Boolean function f that depends on n input bits has

d̃eg(f) = Ω(log n/ log log n).

Proof. Let P : Rn → [−1, 1] be a 1/3-approximating polynomial for f (the assumption that the range is
[−1, 1] rather than [−1 − ε, 1 + ε] is for convenience and does not change anything significant.) Our goal
is to show that d := deg(P) is Ω(log n/ log log n). If d > log n/ log log n then we are already done, so
assume d ≤ log n/ log logn.

Define fi by fi(x) = (f(x) − f(xi))/2 and similarly define Pi by Pi(x) = (P (x) − P (xi))/2. Note
that both fi and Pi have expectation 0. We have fi(x) ∈ {±1} if i is sensitive for x, and fi(x) = 0 if i
is not sensitive for x. Similarly for Pi, with an error of up to 1/3. Note that P̂i(S) = P̂ (S) if i ∈ S and
P̂i(S) = 0 if i 6∈ S. Then

n∑
i=1

‖Pi‖22 =
n∑
i=1

∑
S

P̂i(S)2 =
n∑
i=1

∑
S3i

P̂ (S)2 =
∑
S

|S|P̂ (S)2 ≤ d
∑
S

P̂ (S)2 = d‖P‖22 ≤ d.

Hence there exists an i ∈ [n] for which
‖Pi‖22 ≤ d/n.

Assume i = 1 for convenience. Because every variable (including x1) is influential, Eq. (3) implies

Inf1(f) ≥ 2−O(d2).

Define σ2 = Var[P1] = ‖P1‖22 ≤ d/n. Set t = 1/2σ ≥
√
n/4d. Then t ≥ (2e)d/2 for sufficiently large n,

because we assumed d ≤ log n/ log logn. Now use Theorem 2 to get

Inf1(f) = Pr[f1(x) ∈ {±1}]
= Pr[|P1(x)| ≥ 1/2]
= Pr[|P1(x)| ≥ tσ]

≤ exp
(
−(d/2e) · t2/d

)
≤ exp

(
−(d/2e) · (n/4d)1/d

)
.

Combining the upper and lower bounds on Inf1(f) gives

2−O(d2) ≤ exp
(
−(d/2e)(n/4d)1/d

)
.

Taking logarithms of left and right-hand side and negating gives

O(d2) ≥ (d/2e)(n/4d)1/d.

Dividing by d and using our assumption that d ≤ log n/ log log n implies, for sufficiently large n:

log n ≥ (n/4d)1/d.

Taking logarithms once more we get

d ≥ log(n/4d)/ log logn = log n/ log log n−O(1),

which proves the theorem.

5

Note that the constant factor in the Ω(·) is essentially 1 for any constant approximation error. The
Ω(log n/ log logn) bound remains valid even for quite large errors: the same proof shows that for every
constant γ < 1/2, every polynomial P for which sgn(P (x)) = f(x) and |P (x)| ∈ [1/nγ , 1] for all
x ∈ {±1}n, has degree Ω(log n/ log logn). This lower bound no longer holds if γ = 1; for example for
odd n, the degree-1 polynomial

∑n
i=1 xi/n has the same sign as the majority function, and |P (x)| ∈ [1/n, 1]

everywhere.

3 A function with quantum query complexity O(log n/ log log n)

In this section we exhibit two n-bit Boolean functions whose bounded-error quantum query complexity (and
hence approximate degree) is O(log n/ log log n).

Theorem 4. There is a Boolean function f : {0, 1}n → {0, 1} that depends on all n variables and has

Q2(f) = O

(
log n

log log n

)
.

Proof. Let us call a function a(x1, . . . , xm) of m variables x1, . . . , xm ∈ {0, 1} a k-addressing scheme if
a(x1, . . . , xm) ∈ [k] and, for every i ∈ [k], there exist x1, . . . , xm ∈ {0, 1} such that a(x1, . . . , xm) = i.

Lemma 1. For every t > 0, there exists a k-addressing scheme a(x1, . . . , xm) with k = tt that can be
computed with error probability ≤ 1/3 using O(t) quantum queries.

Proof. In Sections 3.1 and 3.2 we give two constructions of addressing schemes achieving this bound.

Without loss of generality, we assume all variables x1, . . . , xm in the k-addressing scheme a(x1, . . . , xm)
from Lemma 2 are significant. (Otherwise remove the insignificant variables and decrease m.) We take
n = k +m and define

f(x1, . . . , xn) = xa(xk+1,xk+2,...,xk+m).

Then f can be computed with O(t) + 1 queries and the number of variables is n > k = tt. Hence,

log n
log log n

≥ t log t
log t+ log log t

= (1 + o(1))t.

3.1 Addressing scheme: 1st construction

Setm = t2 and define the scheme in the following way. We select k = ttm-bit wordsw(i) = (w(i)
1 , . . . , w

(i)
m)

so that every two words w(i) and w(j) differ in m
2 ± ct

√
t log t places. (One possibility is to select the w(i)

randomly from {0, 1}m. By Chernoff bounds, the necessary property holds with probability 1− o(1) if the
constant c is chosen appropriately.)

For input x ∈ {0, 1}m, define a(x) := i if x = w(i), and a(x) := 1 if x does not equal any of
w(1), . . . , w(k). We select t′ = O(t) so that(

2c
√

log t√
t

)t′
≤ 1
t2t
.

6

Let
|ψ〉 =

1√
m

(−1)x1 |1〉+
1√
m

(−1)x2 |2〉+ · · ·+ 1√
m

(−1)xm |m〉.

Let |ψi〉 be the state |ψ〉 defined above if x = w(i). If i 6= j, we have

〈ψ⊗t′i |ψ
⊗t′
j 〉 = (〈ψi|ψj〉)t

′
≤
(

2c
√

log t√
t

)t′
≤ 1
t2t
.

The following lemma is quantum computing folklore:

Lemma 2. Let |φ1〉, . . . , |φk〉 be such that 〈φi|φj〉 ≤ 1
k2 whenever i 6= j. Then there is a measurement that,

given |φi〉, produces outcome i with probability at least 2/3.

We will apply this lemma to the k states |φi〉 = |ψi〉⊗t
′
. Our O(t) query quantum algorithm is as follows:

1. Use t′ = O(t) queries to generate |ψ〉⊗t′ .

2. Apply the measurement of Lemma 2.

3. If the measurement gives some i 6= 1, then use Grover’s search algorithm [Gro96, BHMT02] (with
error probability ≤ 1/3) to search for j ∈ [m] such that xj 6= w

(i)
j .

4. If no such j is found, output i. Otherwise, output 1.

The number of queries is O(t′) to generate |ψ〉⊗t′ and O(
√
m) for Grover search. The total number of

queries is O(t′ +
√
m) = O(t).

If the input x equals some w(i), then the measurement of Lemma 2 will produce the correct i with
probability at least 2/3 and Grover search will not find j : xj 6= w

(i)
j . Hence, the whole algorithm will

output i with probability at least 2/3. If the input x is not equal to any w(i), then the measurement will
produce some i but Grover search will find j : xj 6= w

(i)
j , with probability at least 2/3. As a result, the

algorithm will output the correct answer 1 with probability at least 2/3 in this case.

3.2 Addressing scheme: 2nd construction

Our second addressing scheme is based on the Bernstein-Vazirani algorithm [BV97]. For a string z ∈
{0, 1}s, let h(z) be its 2s-bit Hadamard codeword: h(z)j = z · j mod 2, where j ranges over all indices
∈ {0, 1}s, and z · j denotes the inner product of the two s-bit strings z and j. The Bernstein-Vazirani
algorithm recovers z with probability 1 using only one quantum query if its 2s-bit input is of the form h(z).
For our addressing scheme, we set s = log log k − log log log k and t = (log k)/s (assume for simplicity
these numbers are integers). Note that k = t(1+o(1))t. The m-bit input x to the addressing scheme consists
of t blocks x(1), . . . , x(t) of 2s bits each, so m = t2s = O(t2). Define the addressing scheme as follows:

If x is of the form h(z(1)) . . . h(z(t)) then set a(x) := z(1) . . . z(t). Otherwise set a(x) := 0log k.

Note that the value of a(x) is a log k-bit string, and that the function is surjective. Hence, identifying
{0, 1}log k with [k], the function a addresses a space of k bits.

The following algorithm computes a(x) with O(t) quantum queries:

1. Use the Bernstein-Vazirani algorithm t times, once on each x(j), computing z(1), . . . , z(t) ∈ {0, 1}s.

7

2. Use Grover [Gro96, BHMT02] to check if x = x(1) . . . x(t) equals them-bit string h(z(1)) . . . h(z(t)).

3. If yes, output a(x) = z(1) . . . z(t). Otherwise, output 0log k.

The query complexity is t queries for the first step and O(
√
m) = O(t) for the second.

If the input x is the concatenation of t Hadamard codewords h(z(1)), . . . , h(z(t)), then the first step will
identify the correct z(1), . . . , z(t) with probability 1, and the second step will not find any discrepancy. On
the other hand, if the input is not the concatenation of t Hadamard codewords then the two strings compared
in step 2 are not equal, and Grover search will find a discrepancy with probability at least 2/3, in which case
the algorithm outputs the correct value 0log k.

4 Conclusion

We gave an optimal answer to the question how low approximate degree and bounded-error quantum query
complexity can be for total Boolean functions depending on n bits. We proved a general lower bound of
Ω(log n/ log logn), and exhibited two functions where this bound is achieved. The latter upper bound is
obtained by a new quantum algorithm.

Acknowledgement. Eq. (3) was observed in email discussion between RdW and Scott Aaronson in 2008.
We thank Artūrs Bačkurs, Oded Regev and Mario Szegedy for useful discussions and comments.

References

[Amb06] A. Ambainis. Polynomial degree vs. quantum query complexity. Journal of Computer and
System Sciences, 72(2):220–238, 2006. Earlier version in FOCS’03. quant-ph/0305028.

[AS04] S. Aaronson and Y. Shi. Quantum lower bounds for the collision and the element distinctness
problems. Journal of the ACM, 51(4):595–605, 2004.

[BBC+01] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by
polynomials. Journal of the ACM, 48(4):778–797, 2001. Earlier version in FOCS’98. quant-
ph/9802049.

[Bei93] R. Beigel. The polynomial method in circuit complexity. In Proceedings of the 8th IEEE
Structure in Complexity Theory Conference, pages 82–95, 1993.

[BHMT02] G. Brassard, P. Høyer, M. Mosca, and A. Tapp. Quantum amplitude amplification and estima-
tion. In Quantum Computation and Quantum Information: A Millennium Volume, volume 305
of AMS Contemporary Mathematics Series, pages 53–74. 2002. quant-ph/0005055.

[BV97] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM Journal on Computing,
26(5):1411–1473, 1997. Earlier version in STOC’93.

[BW01] H. Buhrman and R. de Wolf. Communication complexity lower bounds by polynomials. In
Proceedings of 16th IEEE Conference on Computational Complexity, pages 120–130, 2001.
cs.CC/9910010.

8

[BW02] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: A survey.
Theoretical Computer Science, 288(1):21–43, 2002.

[DFKO07] I. Dinur, E. Friedgut, G. Kindler, and R. O’Donnell. On the Fourier tails of bounded functions
over the discrete cube. Israel Journal of Mathematics, 160(1):389–412, 2007. Earlier version
in STOC’06.

[DW11] A. Drucker and R. de Wolf. Quantum proofs for classical theorems. Theory of Computing,
2011. ToC Library, Graduate Surveys 2.

[Gro96] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of 28th
ACM STOC, pages 212–219, 1996. quant-ph/9605043.

[KŠW07] H. Klauck, R. Špalek, and R. de Wolf. Quantum and classical strong direct product theorems
and optimal time-space tradeoffs. SIAM Journal on Computing, 36(5):1472–1493, 2007. Earlier
version in FOCS’04. quant-ph/0402123.

[NS94] N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials. Computa-
tional Complexity, 4(4):301–313, 1994. Earlier version in STOC’92.

[O’D08] R. O’Donnell. Some topics in analysis of boolean functions. Technical report, ECCC Report
TR08–055, 2008. Paper for an invited talk at STOC’08.

[She08] A. Sherstov. Communication lower bounds using dual polynomials. Bulletin of the EATCS,
95:59–93, 2008.

[Sim83] H. U. Simon. A tight Ω(log log n)-bound on the time for parallel RAM’s to compute non-
degenerate Boolean functions. In Symposium on Foundations of Computation Theory, volume
158 of Lecture Notes in Computer Science, pages 439–444. Springer, 1983.

[Wol08] R. de Wolf. A brief introduction to Fourier analysis on the Boolean cube. Theory of Computing,
2008. ToC Library, Graduate Surveys 1.

9

