
Average-Case Quantum Query ComplexityAndris Ambainis1? and Ronald de Wolf2;31 Computer Science Department, University of California, Berkeley CA 94720,ambainis@cs.berkeley.edu2 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands, rdewolf@cwi.nl3 ILLC, University of AmsterdamAbstract. We compare classical and quantum query complexities of to-tal Boolean functions. It is known that for worst-case complexity, the gapbetween quantum and classical can be at most polynomial [3]. We showthat for average-case complexity under the uniform distribution, quan-tum algorithms can be exponentially faster than classical algorithms.Under non-uniform distributions the gap can even be super-exponential.We also prove some general bounds for average-case complexity and showthat the average-case quantum complexity of MAJORITY under the uni-form distribution is nearly quadratically better than the classical com-plexity.1 IntroductionThe �eld of quantum computation studies the power of computers based on quan-tum mechanical principles. So far, most quantum algorithms|and all physicallyimplemented ones|have operated in the so-called black-box setting. Examplesare [9, 18, 11, 7, 8]; even period-�nding, which is the core of Shor's factoring algo-rithm [17], can be viewed as a black-box problem. Here the input of the functionf that we want to compute can only be accessed by means of queries to a \black-box". This returns the ith bit of the input when queried on i. The complexityof computing f is measured by the required number of queries. In this settingwe want quantum algorithm that use signi�cantly fewer queries than the bestclassical algorithms.We restrict attention to computing total Boolean functions f on N vari-ables. The query complexity of f depends on the kind of errors one allows.For example, we can distinguish between exact computation, zero-error com-putation (a.k.a. Las Vegas), and bounded-error computation (Monte Carlo). Ineach of these models, worst-case complexity is usually considered: the complex-ity is the number of queries required for the \hardest" input. Let D(f), R(f)and Q(f) denote the worst-case query complexity of computing f for classicaldeterministic algorithms, classical randomized bounded-error algorithms, andquantum bounded-error algorithms, respectively. Clearly Q(f) � R(f) � D(f).The main quantum success here is Grover's algorithm [11]. It can compute the? Part of this work was done when visiting Microsoft Research.

OR-function with bounded-error using �(pN) queries (this is optimal [4, 5, 20]).Thus Q(OR) 2 �(pN), whereas D(OR) = N and R(OR) 2 �(N). This is thebiggest gap known between quantum and classical worst-case complexities fortotal functions. (In contrast, for partial Boolean functions the gap can be muchbigger [9, 18].) A recent result is that the gap between D(f) and Q(f) is atmost polynomial for every total f : D(f) 2 O(Q(f)6) [3]. This is similar to thebest-known relation between classical deterministic and randomized algorithms:D(f) 2 O(R(f)3) [16].Given some probability distribution � on the set of inputs f0; 1gN one mayalso consider average-case complexity instead of worst-case complexity. Average-case complexity concerns the expected number of queries needed when the inputis distributed according to �. If the hard inputs receive little �-probability, thenaverage-case complexity can be signi�cantly smaller than worst-case complexity.Let D�(f), R�(f), and Q�(f) denote the average-case analogues of D(f), R(f),and Q(f), respectively. Again Q�(f) � R�(f) � D�(f). The objective of thispaper is to compare these measures and to investigate the possible gaps betweenthem. Our main results are:{ Under uniform �, Q�(f) and R�(f) can be super-exponentially smaller thanD�(f).{ Under uniform �, Q�(f) can be exponentially smaller than R�(f). Thusthe [3]-result for worst-case quantum complexity does not carry over to theaverage-case setting.{ Under non-uniform � the gap can be even larger: we give distributions �where Q�(OR) is constant, whereas R�(OR) is almost pN . (Both this gapand the previous one still remains if we require the quantum algorithm towork with zero-error instead of bounded-error.){ For every f and �, R�(f) is lower bounded by the expected block sensitivityE�[bs(f)] and Q�(f) is lower bounded by E�[pbs(f)].{ For the MAJORITY-function under uniform �, we have Q�(f) 2 O(N1=2+")for every " > 0, and Q�(f) 2
(N1=2). In contrast, R�(f) 2
(N).{ For the PARITY-function, the gap between Q� and R� can be quadratic,but not more. Under uniform �, PARITY has Q�(f) 2
(N).2 De�nitionsLet f : f0; 1gN ! f0; 1g be a Boolean function. It is symmetric if f(X) onlydepends on jX j, the Hamming weight (number of 1s) of X . 0 denotes the inputwith weight 0. We will in particular consider the following functions: OR(X) = 1i� jX j � 1; MAJ(X) = 1 i� jX j > N=2; PARITY(X) = 1 i� jX j is odd. IfX 2 f0; 1gN is an input and S a set of (indices of) variables, we use XS todenote the input obtained by
ipping the values of the S-variables in X . Theblock sensitivity bsX(f) of f on input X is the maximal number b for whichthere are b disjoint sets of variables S1; : : : ; Sb such that f(X) 6= f(XSi) for all1 � i � b. The block sensitivity bs(f) of f is maxX bsX(f).

We focus on three kinds of algorithms for computing f : classical determinis-tic, classical randomized bounded-error, and quantum bounded-error algorithms.If A is an algorithm (quantum or classical) and b 2 f0; 1g, we use Pr[A(X) = b]to denote the probability that A answers b on input X . We use TA(X) forthe expected number of queries that A uses on input X .1 Note that this onlydepends on A and X , not on the input distribution �. For deterministic A,Pr[A(X) = b] 2 f0; 1g and the expected number of queries TA(X) is the sameas the actual number of queries.Let D(f) denote the set of classical deterministic algorithms that computef . Let R(f) = fclassical A j 8X 2 f0; 1gN : Pr[A(X) = f(X)] � 2=3g bethe set of classical randomized algorithms that compute f with bounded errorprobability. Similarly let Q(f) be the set of quantum algorithms that computef with bounded-error. We de�ne the following worst-case complexities:D(f) = minA2D(f) maxX2f0;1gN TA(X)R(f) = minA2R(f) maxX2f0;1gN TA(X)Q(f) = minA2Q(f) maxX2f0;1gN TA(X)D(f) is also known as the decision tree complexity of f and R(f) as the bounded-error decision tree complexity of f . Since quantum generalizes randomized andrandomized generalizes deterministic computation, we have Q(f) � R(f) �D(f) for all f . The three worst-case complexities are polynomially related:D(f) 2 O(R(f)3) [16] and D(f) 2 O(Q(f)6) [3] for all total f .Let � : f0; 1gN ! [0; 1] be a probability distribution. We de�ne the average-case complexity of an algorithm A with respect to a distribution � as:T�A = XX2f0;1gN �(X)TA(X):The average-case deterministic, randomized, and quantum complexities of f withrespect to � are D�(f) = minA2D(f)T�AR�(f) = minA2R(f)T�AQ�(f) = minA2Q(f)T�ANote that the algorithms still have to output the correct answer on all inputs,even on X that have �(X) = 0. Clearly Q�(f) � R�(f) � D�(f) for all � and1 See [3] for de�nitions and references for the quantum circuit model. A satisfactoryformal de�nition of expected number of queries TA(X) for a quantum algorithm Ais a hairy issue, involving the notion of a stopping criterion. We will not give such ade�nition here, since in the bounded-error case, expected and worst-case number ofqueries can be made the same up to a small constant factor.

f . Our goal is to examine how large the gaps between these measures can be, inparticular for the uniform distribution unif (X) = 2�N .The above treatment of average-case complexity is the standard one usedin average-case analysis of algorithms [19]. One counter-intuitive consequenceof these de�nitions, however, is that the average-case performance of polynomi-ally related algorithms can be superpolynomially apart (we will see this happenin Section 5). This seemingly paradoxical e�ect makes these de�nitions unsuit-able for dealing with polynomial-time reducibilities and average-case complexityclasses, which is what led Levin to his alternative de�nition of \polynomial timeon average" [13].2 Nevertheless, we feel the above de�nitions are the appropri-ate ones for our query complexity setting: they just are the average number ofqueries that one needs when the input is drawn according to distribution �.3 Super-Exponential Gap between Dunif(f) and Qunif(f)Here we show that Dunif(f) can be much larger then Runif(f) and Qunif(f):Theorem 1. De�ne f on N variables such that f(X) = 1 i� jX j � N=10. ThenQunif(f) and Runif(f) are O(1) and Dunif(f) 2
(N).Proof. Suppose we randomly sample k bits of the input. Let a = jX j=N denotethe fraction of 1s in the input and ~a the fraction of 1s in the sample. StandardCherno� bounds imply that there is a constant c > 0 such thatPr[~a < 2=10 j a � 3=10] � 2�ck:Now consider the following randomized algorithm for f :1. Let i = 1.2. Sample ki = i=c bits. If the fraction ~ai of 1s is � 2=10, output 1 and stop.3. If i < logN , increase i by 1 and repeat step 2.4. If i � logN , count N exactly using N queries and output the correct answer.It is easily seen that this is a bounded-error algorithm for f . Let us bound itsaverage-case complexity under the uniform distribution.If a � 3=10, the expected number of queries for step 2 islogNXi=1 Pr[~a1 � 2=10; : : : ; ~ai�1 � 2=10 j a > 3=10] � ic �logNXi=1 Pr[~ai�1 � 2=10 j a > 3=10] � ic � logNXi=1 2�(i�1) � ic 2 O(1):The probability that step 4 is needed (given a � 3=10) is at most 2�c logN=c =1=N . This adds 1NN = 1 to the expected number of queries.2 We thank Umesh Vazirani for drawing our attention to this.

The probability of a < 3=10 is 2�c0N for some constant c0. This case con-tributes at most 2�c0N (N + (logN)2) 2 o(1) to the expected number of queries.Thus in total the algorithm uses O(1) queries on average, hence Runif(f) 2 O(1).It is easy to see that any deterministic classical algorithm for f must makeat least N=10 queries on every input, hence Dunif(f) � N=10. utAccordingly, we can have huge gaps betweenDunif(f) and Qunif(f). However,this example tells us nothing about the gaps between quantum and classicalbounded-error algorithms. In the next section we exhibit an f where Qunif(f) isexponentially smaller than Runif(f).4 Exponential Gap between Runif(f) and Qunif(f)4.1 The FunctionWe use the following modi�cation of Simon's problem [18]:3Input: X = (x1; : : : ; x2n), where each xi 2 f0; 1gn.Output: f(X) = 1 i� there is a non-zero k 2 f0; 1gn such that xi�k = xi 8i.Here we treat i 2 f0; 1gn both as an n-bit string and as a number, and �denotes bitwise XOR. Note that this function is total (unlike Simon's). Formally,f is not a Boolean function because the variables are f0; 1gn-valued. However,we can replace every variable xi by n Boolean variables and then f becomes aBoolean function of N = n2n variables. The number of queries needed to com-pute the Boolean function is at least the number of queries needed to computethe function with f0; 1gn-valued variables (because we can simulate a query tothe Boolean oracle with a query to the f0; 1gn-valued oracle by just throwingaway the rest of the information) and at most n times the number of queriesto the f0; 1gn-valued oracle (because one f0; 1gn-valued query can be simulatedusing n Boolean queries). As the numbers of queries are so closely related, itdoes not make a big di�erence whether we use the f0; 1gn-valued oracle or theBoolean oracle. For simplicity we count queries to the f0; 1gn-valued oracle.The main result is the following exponential gap:Theorem 2. For f as above, Qunif (f) � 22n+ 1 and Runif (f) 2
(2n=2).4.2 Quantum Upper BoundThe quantum algorithm is similar to Simon's. Start with the 2-register super-position Pi2f0;1gn jiij0i (for convenience we ignore normalizing factors). Applythe oracle once to obtain Xi2f0;1gn jiijxii:3 The recent preprint [12] proves a related but incomparable result about anothermodi�cation of Simon's problem.

Measuring the second register gives some j and collapses the �rst register toXi:xi=j jii:Applying a Hadamard transform H to each qubit of the �rst register givesXi:xi=j Xi02f0;1gn(�1)(i;i0)ji0i: (1)(a; b) denotes inner product mod 2; if (a; b) = 0 we say a and b are orthogonal.If f(X) = 1, then there is a non-zero k such that xi = xi�k for all i. Inparticular, xi = j i� xi�k = j. Then the �nal state (1) can be rewritten asXi02f0;1gn Xi:xi=j(�1)(i;i0)ji0i = Xi02f0;1gn0@ Xi:xi=j 12((�1)(i;i0) + (�1)(i�k;i0))1A ji0i= Xi02f0;1gn0@ Xi:xi=j (�1)(i;i0)2 (1 + (�1)(k;i0))1A ji0i:Notice that ji0i has non-zero amplitude only if (k; i0) = 0. Hence if f(X) = 1,then measuring the �nal state gives some i0 orthogonal to the unknown k.To decide if f(X) = 1, we repeat the above process m = 22n times. Leti1; : : : ; im 2 f0; 1gn be the results of the m measurements. If f(X) = 1, theremust be a non-zero k that is orthogonal to all ir. Compute the subspace S �f0; 1gn that is generated by i1; : : : ; im (i.e. S is the set of binary vectors obtainedby taking linear combinations of i1; : : : ; im over GF (2)). If S = f0; 1gn, then theonly k that is orthogonal to all ir is k = 0n, so then we know that f(X) = 0. IfS 6= f0; 1gn, we just query all 2n values x0:::0; : : : ; x1:::1 and then compute f(X).This latter step is of course very expensive, but it is needed only rarely:Lemma 1. Assume that X = (x0:::0; : : : ; x1:::1) is chosen uniformly at randomfrom f0; 1gN . Then, with probability at least 1�2�n, f(X) = 0 and the measuredi1; : : : ; im generate f0; 1gn.Proof. It can be shown by a small modi�cation of [1, Theorem 5.1, p.91] thatwith probability at least 1� 2�c2n (c > 0), there are at least 2n=8 values j suchthat xi = j for exactly one i 2 f0; 1gn. We assume that this is the case.If i1; : : : ; im generate a proper subspace of f0; 1gn, then there is a non-zerok 2 f0; 1gn that is orthogonal to this subspace. We estimate the probability thatthis happens. Consider some �xed non-zero vector k 2 f0; 1gn. The probabilitythat i1 and k are orthogonal is at most 1516 , as follows. With probability at least1/8, the measurement of the second register gives j such that f(i) = j for aunique i. In this case, the measurement of the �nal superposition (1) gives auniformly random i0. The probability that a uniformly random i0 has (k; i0) 6= 0is 1/2. Therefore, the probability that (k; i1) = 0 is at most 1� 18 � 12 = 1516 .

The vectors i1; : : : ; im are chosen independently. Therefore, the probabilitythat k is orthogonal to each of them is at most (1516)22n < 2�2n. There are 2n�1possible non-zero k, so the probability that there is a k which is orthogonal toeach of i1; : : : ; im, is at most (2n � 1)2�2n < 2�n. utNote that this algorithm is actually a zero-error algorithm: it always outputsthe correct answer. Its expected number of queries on a uniformly random inputis at most m = 22n for generating i1; : : : ; im and at most 12n 2n = 1 for queryingall the xi if the �rst step does not give i1; : : : ; im that generate f0; 1gn. Thiscompletes the proof of the �rst part of Theorem 2.4.3 Classical Lower BoundLet D1 be the uniform distribution over all inputs X 2 f0; 1gN and D2 be theuniform distribution over all X for which there is a unique k 6= 0 such thatxi = xi�k (and hence f(X) = 1). We say an algorithm A distinguishes betweenD1 and D2 if the average probability that A outputs 0 is � 3=4 under D1 andthe average probability that A outputs 1 is � 3=4 under D2.Lemma 2. If there is a bounded-error algorithm A that computes f with m =T unifA queries on average, then there is an algorithm that distinguishes betweenD1 and D2 and uses O(m) queries on all inputs.Proof. We run A until it stops or makes 4m queries. The average probability(under D1) that it stops is at least 3/4, for otherwise the average number ofqueries would be more than 14 (4m) = m. Under D1, the probability that Aoutputs f(X) = 1 is at most 1=4 + o(1) (1/4 is the maximum probability oferror on an input with f(X) = 0 and o(1) is the probability of getting an inputwith f(X) = 1). Therefore, the probability under D1 that A outputs 0 after atmost 4m queries, is at least 3=4� (1=4 + o(1)) = 1=2� o(1).In contrast, the D2-probability that A outputs 0 is � 1=4 because f(X) = 1for any input X from D2. We can use this to distinguish D1 from D2. utLemma 3. No classical randomized algorithm A that makes m 2 o(2n=2) queriescan distinguish between D1 and D2.Proof. For a random input fromD1, the probability that all answers tom queriesare di�erent is1 � (1� 1=2n) � � � (1� (m� 1)=2n) � (1�m=2n)m ! e�m2=2n = 1� o(1):For a random input from D2, the probability that there is an i s.t. A queriesboth xi and xi�k (k is the hidden vector) is � �m2 �=(2n � 1) 2 o(1), since:1. for every pair of distinct i; j, the probability that i = j � k is 1=(2n � 1)2. since A queries only m of the xi, it queries only �m2 � distinct pairs i; j

If no pair xi, xi�k is queried, the probability that all answers are di�erent is1 � (1� 1=2n�1) � � � (1� (m� 1)=2n�1) = 1� o(1):It is easy to see that all sequences of m di�erent answers are equally likely.Therefore, for both distributionsD1 andD2, we get a uniformly random sequenceofm di�erent values with probability 1�o(1) and something else with probabilityo(1). Thus A cannot \see" the di�erence between D1 and D2 with su�cientprobability to distinguish between them. utThe second part of Theorem 2 now follows: a classical algorithm that com-putes f with an average number of m queries can be used to distinguish betweenD1 andD2 with O(m) queries (Lemma 2), but then O(m) 2
(2n=2) (Lemma 3).5 Super-Exponential Gap for Non-Uniform �The last section gave an exponential gap between Q� and R� under uniform �.Here we show that the gap can be even larger for non-uniform �. Consider theaverage-case complexity of the OR-function. It is easy to see that Dunif (OR),Runif (OR), and Qunif (OR) are all O(1), since the average input will have many1s under the uniform distribution. Now we give some examples of non-uniformdistributions � where Q�(OR) is super-exponentially smaller than R�(OR):Theorem 3. If � 2 (0; 1=2) and �(X) = c=� NjXj�(jX j+1)�(N+1)1�� (c � 1��is a normalizing constant), then R�(OR) 2 �(N�) and Q�(OR) 2 �(1).Proof. Any classical algorithm for OR requires �(N=(jX j+1)) queries on inputX . The upper bound follows from random sampling, the lower bound from ablock-sensitivity argument [16]. Hence (omitting the intermediate �s):R�(OR) =XX �(X) NjX j+ 1 = NXt=0 cN�(t+ 1)�+1 2 �(N�):Similarly, for a quantum algorithm �(pN=(jX j+ 1) queries are necessary andsu�cient on input X [11, 5], soQ�(OR) =XX �(X)s NjX j+ 1 = NXt=0 cN��1=2(t+ 1)�+1=2 2 �(1): utIn particular, for � = 1=2 � " we have the huge gap O(1) quantum versus
(N1=2�") classical. Note that we obtain this super-exponential gap by weighingthe complexity of two algorithms (classical and quantum OR-algorithms) whichare only quadratically apart on each input X .In fact, a small modi�cation of � gives the same big gap even if the quantumalgorithm is forced to output the correct answer always. We omit the details.

6 General Bounds for Average-Case ComplexityIn this section we prove some general bounds. First we make precise the intu-itively obvious fact that if an algorithm A is faster on every input than anotheralgorithm B, then it is also much faster on average under any distribution:Theorem 4. If � : R ! R is a concave function and TA(X) � �(TB(X)) forall X, then T �A � � (T �B) for every �.Proof. By Jensen's inequality, if � is concave then E�[�(T)] � �(E�[T]), henceT�A � XX2f0;1gN �(X)�(TB(X)) � �0@ XX2f0;1gN �(X)TB(X)1A = � (T �B) : utIn words: taking the average cannot make the complexity-gap between twoalgorithms smaller. For instance, if TA(X) �pTB(X) (say, A is Grover's algo-rithm and B is a classical algorithm for OR), then T �A � pT �B. On the otherhand, taking the average can make the gap much larger, as we saw in Theo-rem 3: the quantum algorithm for OR runs only quadratically faster than anyclassical algorithm on each input, but the average-case gap between quantumand classical can be much bigger than quadratic.We now prove a general lower bound on R� and Q�. Using an argumentfrom [16] for the classical case and an argument from [3] for the quantum case,we can show:Lemma 4. Let A be a bounded-error algorithm for some function f . If A is clas-sical then TA(X) 2
(bsX(f)), and if A is quantum then TA(X) 2
(pbsX(f)).A lower bound in terms of the �-expected block sensitivity follows:Theorem 5. For all f , �: R�(f) 2
(E�[bsX(f)]) and Q�(f) 2
(E�[pbsX(f)]).7 Average-Case Complexity of MAJORITYHere we examine the average-case complexity of the MAJORITY-function. Thehard inputs for majority occur when t = jX j � N=2. Any quantum algorithmneeds
(N) queries for such inputs [3]. Since the uniform distribution puts mostprobability on the set of X with jX j close to N=2, we might expect an
(N)average-case complexity. However we will prove that the complexity is nearlypN . For this we need the following result about approximate quantum counting,which follows from [8, Theorem 5] (see also [14] or [15, Theorem 1.10]):Theorem 6 (Brassard, H�yer, Tapp; Mosca). Let � 2 [0; 1]. There is aquantum algorithm with worst-case O(N�) queries that outputs an estimate ~t ofthe weight t = jX j of its input, such that j~t� tj � N1�� with probability � 2=3.Theorem 7. For every " > 0, Qunif(MAJ) 2 O(N1=2+").

Proof. Consider the following algorithm, with input X , and � 2 [0; 1] to bedetermined later.1. Estimate t = jX j by ~t using O(N�) queries.2. If ~t < N=2�N1�� then output 0; if ~t > N=2 +N1�� then output 1.3. Otherwise use N queries to classically count t and output its majority.It is easy to see that this is a bounded-error algorithm for MAJ. We determineits average complexity. The third step of the algorithm will be invoked i� j~t �N=2j � N1��. Denote this event by \~t � N=2". For 0 � k � N�=2, let Dkdenote the event that kN1�� � jt � N=2j < (k + 1)N1��. Under the uniformdistribution the probability that jX j = t is �Nt �2�N . By Stirling's formula thisis O(1=pN), so the probability of the event Dk is O(N1=2��). In the quantumcounting algorithm, Pr[kN1�a � j~t � tj < (k + 1)N1�a] 2 O(1=(k + 1)) (thisfollows from [6], the upcoming journal version of [8] and [14]). Hence also Pr[~t �N=2 j Dk] 2 O(1=(k + 1)). The probability that the second counting stage isneeded is Pr[~t � N=2], which we bound byN�=2Xk=0 Pr[~t � N=2 j Dk]�Pr[Dk] = N�=2Xk=0 O(1k + 1)�O(N1=2��) = O(N1=2�� logN):Thus we can bound the average-case query complexity of our algorithm byO(N�) + Pr[~t � N=2] �N = O(N�) +O(N3=2�� logN):Choosing � = 3=4, we obtain an O(N3=4 logN) algorithm.However, we can reiterate this scheme: instead of using N queries in step 3we could count using O(N�2) instead of N queries, output an answer if there isa clear majority (i.e. j~t�N=2j > N1��2), otherwise count again using O(N�3)queries etc. If after k stages we still have no clear majority, we count using Nqueries. For any �xed k, we can make the error probability of each stage su�-ciently small using only a constant number of repetitions. This gives a bounded-error algorithm for MAJORITY. (The above algorithm is the case k = 1.)It remains to bound the complexity of the algorithm by choosing appropriatevalues for k and for the �i (put �1 = �). Let pi denote the probability underunif that the ith counting-stage will be needed, i.e. that all previous counts gaveresults close to N=2. Then pi+1 2 O(N1=2��i logN) (as above). The averagequery complexity is now bounded by:O(N�1) + p2 �O(N�2) + � � �+ pk � O(N�k) + pk+1 �N =O(N�1)+O(N1=2��1+�2 logN)+� � �+O(N1=2��k�1+�k logN)+O(N3=2��k logN):Clearly the asymptotically minimal complexity is achieved when all exponentsin this expression are equal. This induces k� 1 equations �1 = 1=2��i +�i+1,1 � i < k, and a kth equation �1 = 3=2� �k. Adding up these k equations weobtain k�1 = ��1+(k�1)=2+3=2, which implies �1 = 1=2+1=(2k+2). Thus wehave average query complexity O(N1=2+1=(2k+2) logN). Choosing k su�cientlylarge, this becomes O(N1=2+"). ut

The nearly matching lower bound is:Theorem 8. Qunif(MAJ) 2
(N1=2).Proof. Let A be a bounded-error quantum algorithm for MAJORITY. It followsfrom the worst-case results of [3] that A uses
(N) queries on the hardestinputs, which are the X with jX j = N=2 � 1. Since the uniform distributionputs
(1=pN) probability on the set of such X , the average-case complexity ofA is at least
(1=pN)
(N) =
(pN). utWhat about the classical average-case complexity? Alonso, Reingold, andSchott [2] prove that Dunif(MAJ) = 2N=3�p8N=9� + O(logN). We can alsoprove that Runif(MAJ) 2
(N) (for reasons of space we omit the details), soquantum is almost quadratically better than classical for this problem.8 Average-Case Complexity of PARITYFinally we prove some results for the average-case complexity of PARITY. Thisis in many ways the hardest Boolean function. Firstly, bsX(f) = N for all X ,hence by Theorem 5:Corollary 1. For every �, R�(PARITY) 2
(N) and Q�(PARITY) 2
(pN).We can bounded-error quantum count jX j exactly, using O(p(jX j+ 1)N)queries [8]. Combining this with a � that puts O(1=pN) probability on the setof all X with jX j > 1, we obtain Q�(PARITY) 2 O(pN).We can proveQ�(PARITY) � N=6 for any � by the following algorithm: withprobability 1=3 output 1, with probability 1=3 output 0, and with probability 1=3run the exact quantum algorithm for PARITY, which has worst-case complexityN=2 [3, 10]. This algorithm has success probability 2=3 on every input and hasexpected number of queries equal to N=6.More than a linear speed-up on average is not possible if � is uniform:Theorem 9. Qunif(PARITY) 2
(N).Proof. Let A be a bounded-error quantum algorithm for PARITY. Let B bean algorithm that
ips each bit of its input X with probability 1=2, recordsthe number b of actual bit
ips, runs A on the changed input Y , and outputsA(Y)� b. It is easy to see that B is a bounded-error algorithm for PARITY andthat it uses an expected number of T �A queries on every input. Using standardtechniques, we can turn this into an algorithm for PARITY with worst-caseO(T �A) queries. Since the worst-case lower bound for PARITY is N=2 [3, 10], thetheorem follows. utAcknowledgmentsWe thank Harry Buhrman for suggesting this topic, and him, Lance Fortnow,Lane Hemaspaandra, Hein R�ohrig, Alain Tapp, and Umesh Vazirani for helpfuldiscussions. Also thanks to Alain for sending a draft of [6].

References1. N. Alon and J. H. Spencer. The Probabilistic Method. Wiley-Interscience, 1992.2. L. Alonso, E. M. Reingold, and R. Schott. The average-case complexity of deter-mining the majority. SIAM Journal on Computing, 26(1):1{14, 1997.3. R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lowerbounds by polynomials. In Proceedings of 39th FOCS, pages 352{361, 1998.http://xxx.lanl.gov/abs/quant-ph/9802049.4. C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weak-nesses of quantum computing. SIAM Journal on Computing, 26(5):1510{1523,1997. quant-ph/9701001.5. M. Boyer, G. Brassard, P. H�yer, and A. Tapp. Tight bounds on quantumsearching. Fortschritte der Physik, 46(4{5):493{505, 1998. Earlier version inPhyscomp'96. quant-ph/9605034.6. G. Brassard, P. H�yer, M. Mosca, and A. Tapp. Quantum amplitude ampli�cationand estimation. Forthcoming.7. G. Brassard, P. H�yer, and A. Tapp. Quantum algorithm for the collision problem.ACM SIGACT News (Cryptology Column), 28:14{19, 1997. quant-ph/9705002.8. G. Brassard, P. H�yer, and A. Tapp. Quantum counting. In Proceedings of25th ICALP, volume 1443 of Lecture Notes in Computer Science, pages 820{831.Springer, 1998. quant-ph/9805082.9. D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation.In Proceedings of the Royal Society of London, volume A439, pages 553{558, 1992.10. E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. A limit on the speed ofquantum computation in determining parity. quant-ph/9802045, 16 Feb 1998.11. L. K. Grover. A fast quantum mechanical algorithm for database search. InProceedings of 28th STOC, pages 212{219, 1996. quant-ph/9605043.12. E. Hemaspaandra, L. A. Hemaspaandra, and M. Zimand. Almost-everywhere su-periority for quantum polynomial time. quant-ph/9910033, 8 Oct 1999.13. L. A. Levin. Average case complete problems. SIAM Journal on Computing,15(1):285{286, 1986. Earlier version in STOC'84.14. M. Mosca. Quantum searching, counting and amplitude ampli�cation by eigenvec-tor analysis. In MFCS'98 workshop on Randomized Algorithms, 1998.15. A. Nayak and F. Wu. The quantum query complexity of approximating the medianand related statistics. In Proceedings of 31th STOC, pages 384{393, 1999. quant-ph/9804066.16. N. Nisan. CREW PRAMs and decision trees. SIAM Journal on Computing,20(6):999{1007, 1991. Earlier version in STOC'89.17. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete log-arithms on a quantum computer. SIAM Journal on Computing, 26(5):1484{1509,1997. Earlier version in FOCS'94. quant-ph/9508027.18. D. Simon. On the power of quantum computation. SIAM Journal on Computing,26(5):1474{1483, 1997. Earlier version in FOCS'94.19. J. S. Vitter and Ph. Flajolet. Average-case analysis of algorithms and data struc-tures. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science. Vol-ume A: Algorithms and Complexity, pages 431{524. MIT Press, Cambridge, MA,1990.20. Ch. Zalka. Grover's quantum searching algorithm is optimal. Physical Review A,60:2746{2751, 1999. quant-ph/9711070.

