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the worst-ase query omplexity of omputing f for lassial deterministi algorithms, lassialrandomized bounded-error algorithms, and quantum bounded-error algorithms, respetively. Morepreise de�nitions will be given in the next setion. Sine quantum bounded-error algorithms are atleast as powerful as lassial bounded-error algorithms, and lassial bounded-error algorithms areat least as powerful as deterministi algorithms, we have Q(f) � R(f) � D(f). The main quantumsuess here is Grover's algorithm [14℄. It an ompute the OR-funtion with bounded-error using�(pN) queries (whih is optimal [4, 5, 27℄). Thus Q(OR) 2 �(pN), whereas D(OR) = Nand R(OR) 2 �(N). This is the biggest gap known between quantum and lassial worst-aseomplexities for total funtions. (In ontrast, for partial Boolean funtions the gap an be muhbigger [12, 25, 11℄.) In fat, it is known that the gap between D(f) and Q(f) is at most polynomialfor every total f : D(f) 2 O(Q(f)6) [3℄. This is similar to the best known relation between lassialdeterministi and randomized algorithms: D(f) 2 O(R(f)3) [21℄.Given some probability distribution � on the set of inputs f0; 1gN one may also onsider average-ase omplexity instead of worst-ase omplexity. Average-ase omplexity onerns the expetednumber of queries needed when the input is distributed aording to �. If the hard inputs reeivelittle �-probability, then average-ase omplexity an be signi�antly smaller than worst-ase om-plexity. Let D�(f), R�(f), and Q�(f) denote the average-ase analogues of D(f), R(f), and Q(f),respetively, to be de�ned more preisely in the next setion. Again Q�(f) � R�(f) � D�(f). Theobjetive of this paper is to ompare these measures and to investigate the possible gaps betweenthem. Our main results are:� Under uniform �, Q�(f) and R�(f) an be super-exponentially smaller than D�(f).� Under uniform �, Q�(f) an be exponentially smaller than R�(f). Thus the polynomialrelation that holds between quantum and lassial query omplexities in the ase of worst-ase omplexity [3℄ does not arry over to the average-ase setting.� Under non-uniform � the gap an be even larger: we give distributions � where Q�(OR) isonstant, whereas R�(OR) is almost pN .� For every f and �, R�(f) is lower bounded by the expeted blok sensitivity E�[bs(f)℄ andQ�(f) is lower bounded by E�[pbs(f)℄.� For the MAJORITY-funtion under uniform �, we have that Q�(f) 2 O(pN(logN)2) andQ�(f) 2 
(pN). In ontrast, R�(f) 2 
(N).� For the PARITY-funtion, the gap between Q� and R� an be quadrati, but not more.Under uniform �, PARITY has Q�(f) 2 
(N).2 De�nitionsLet f : f0; 1gN ! f0; 1g be a Boolean funtion. This funtion is symmetri if f(X) only dependson jXj, the Hamming weight (the number of 1s) of X. We will in partiular onsider the followingsymmetri funtions: OR(X) = 1 i� jXj � 1; MAJ(X) = 1 i� jXj > N=2; PARITY(X) = 1 i� jXjis odd. If X 2 f0; 1gN is an input and S a set of (indies of) variables, we use XS to denote theinput obtained by ipping the values of the S-variables in X. The blok sensitivity bsX(f) of f onan input X is the maximal number b for whih there are b disjoint sets of variables S1; : : : ; Sb suhthat f(X) 6= f(XSi) for all 1 � i � b. The blok sensitivity bs(f) of f is maxX bsX(f).2



We are interested in the question how many bits of the input have to be queried in order toompute f , either for the worst-ase or average-ase input. We assume familiarity with lassialomputation and briey sketh the de�nition of quantum query algorithms. For a general intro-dution to quantum omputing, see the book of Nielsen and Chuang [20℄. For more details about(quantum) query omplexity we refer to [10℄.An m-qubit state is a 2m-dimensional unit vetor of omplex numbers, writtenPx2f0;1gm �xjxi.The omplex number �x is alled the amplitude of the basis state jxi. A T -query quantum algorithmorresponds to a unitary transformationA = UTOUT�1O : : : U1OU0:Here the Uj are unitary transformations on m qubits. These Uj are independent of the input. EahO orresponds to a query to the input X 2 f0; 1gN , formalized as the unitary transformationji; b; zi ! ji; b � xi; zi:Here i 2 f1; : : : ; Ng, b 2 f0; 1g, � is addition modulo 2, and z 2 f0; 1gm�logN�1 is the workspae,whih remains una�eted by the query. Intuitively, O just gives us the bit xi when queried on i.We will sometimes use the word \orale" to refer to X as well as to the orresponding O. Theinitial state of the algorithm is the all-zero state j0mi. The �nal state is Aj0mi, whih depends onthe input X via the T queries that are made. A measurement of a dediated output bit of the �nalstate will yield the output. It an be shown that this linear-algebrai quantum model is at least asstrong as lassial randomized omputation: any lassial T -query randomized algorithm an besimulated by a T -query quantum algorithm having the same error probabilities.As desribed above, the quantum algorithm will make exatly T queries on every inputX. Sinewe are interested in average-ase number of queries and the required number of queries will dependon the input X, we need to allow the algorithm to give an output after fewer than T queries. Wewill do that by measuring, after eah Uj, a dediated ag-qubit of the intermediate state at thatpoint (this measurement may alter the state). This bit indiates whether the algorithm is alreadyprepared to stop and output a value. If this bit is 1, then we measure the output bit, outputits value A(X) 2 f0; 1g and stop; if the ag-bit is 0 we let the algorithm ontinue with the nextquery O and Uj+1. Note that the number of queries that the algorithm makes on input X is nowa random variable, sine it depends on the probabilisti outome of measuring the ag-qubit aftereah step. We use TA(X) to denote the expeted number of queries that A makes on input X. TheBoolean output A(X) of the algorithm is a random variable as well.We mainly fous on three kinds of algorithms for omputing f : lassial deterministi, lassialrandomized bounded-error, and quantum bounded-error algorithms. Let D(f) denote the set oflassial deterministi algorithms that ompute f . Let R(f) = flassial A j 8X 2 f0; 1gN :Pr[A(X) = f(X)℄ � 2=3g be the set of lassial randomized algorithms that ompute f withbounded error probability. The error probability 1=3 is not essential; it an be redued to anysmall " by running the algorithm O(log(1=")) times and outputting the majority answer of thoseruns. Similarly we let Q(f) = fquantum A j 8X 2 f0; 1gN : Pr[A(X) = f(X)℄ � 2=3g be the setof bounded-error quantum algorithms for f . We de�ne the following worst-ase omplexities:D(f) = minA2D(f) maxX2f0;1gN TA(X)R(f) = minA2R(f) maxX2f0;1gN TA(X)Q(f) = minA2Q(f) maxX2f0;1gN TA(X)3



D(f) is also known as the deision tree omplexity of f and R(f) as the bounded-error deision treeomplexity of f . Sine quantum omputation generalizes randomized omputation and randomizedomputation generalizes deterministi omputation, we have Q(f) � R(f) � D(f) � N for all f .The three worst-ase omplexities are polynomially related: D(f) 2 O(R(f)3) [21℄ and D(f) 2O(Q(f)6) [3℄ for all total f .Let � : f0; 1gN ! [0; 1℄ be a probability distribution. We de�ne the average-ase omplexity ofan algorithm A with respet to a distribution � as:T �A = XX2f0;1gN �(X)TA(X):The average-ase deterministi, randomized, and quantum omplexities of f with respet to � areD�(f) = minA2D(f) T �AR�(f) = minA2R(f) T �AQ�(f) = minA2Q(f) T �ANote that the algorithms still have to satisfy the appropriate output requirements (suh as out-putting f(X) with probability � 2=3 in ase of R� or Q�) on all inputs X, even on X that have�(X) = 0. Clearly Q�(f) � R�(f) � D�(f) � N for all � and f . Our goal is to examine how largethe gaps between these measures an be, in partiular for the uniform distribution unif (X) = 2�N .The above treatment of average-ase omplexity is the standard one used in average-ase anal-ysis of algorithms [26℄. One ounter-intuitive onsequene of these de�nitions, however, is that theaverage-ase performane of polynomially related algorithms an be superpolynomially apart (wewill see this happen in Setion 5). This seemingly paradoxial e�et makes these de�nitions un-suitable for dealing with polynomial-time reduibilities and average-ase omplexity lasses, whihis what led Levin to his alternative de�nition of \polynomial time on average" [16℄.1 Nevertheless,we feel our de�nitions are the appropriate ones for our query omplexity setting: they are just theaverage numbers of queries that one needs when the input is drawn aording to distribution �.3 Super-Exponential Gap between Dunif(f) and Qunif(f)Before omparing the power of lassial and quantum omputing, we �rst ompare the power ofdeterministi and bounded-error algorithms. It is not hard to show that Dunif(f) an be muhlarger then Runif(f) and Qunif(f):Theorem 3.1 De�ne f on N variables suh that f(X) = 1 i� jXj � N=10. Then Qunif(f) andRunif(f) are O(1) and Dunif(f) 2 
(N).Proof. Suppose we randomly sample k bits of the input. Let a = jXj=N denote the fration of1s in the input and ~a the fration of 1s in the sample. The Cherno� bound (see e.g. [1℄) impliesthat there is a onstant  > 0 suh thatPr[~a < 2=10 j a � 3=10℄ � 2�k:Now onsider the following randomized algorithm for f :1We thank Umesh Vazirani for drawing our attention to this.4



1. Let i = 100.2. Sample ki = i= bits. If the fration ~ai of 1s is � 2=10, then output 1 and stop.3. If i < logN , then inrease i by 1 and repeat step 2.4. If i � logN , then ount jXj exatly using N queries and output the orret answer.It is easy to see that this is a bounded-error algorithm for f . Let us bound its average-aseomplexity under the uniform distribution.If a � 3=10, the expeted number of queries for step 2 islogNXi=100Pr[~a1 � 2=10; : : : ; ~ai�1 � 2=10 j a � 3=10℄ � i �logNXi=100Pr[~ai�1 � 2=10 j a � 3=10℄ � i � logNXi=100 2�(i�1) � i 2 O(1):The probability that step 4 is needed (given a � 3=10) is at most 2� logN= = 1=N . This adds1NN = 1 to the expeted number of queries.Under the uniform distribution, the probability of the event a < 3=10 is at most 2�0N for someonstant 0. This ase ontributes at most 2�0N (N + (logN)2) 2 o(1) to the expeted number ofqueries. Thus in total the algorithm uses O(1) queries on average, hene Runif(f) 2 O(1). SineQunif(f) � Runif(f), we also have Qunif(f) 2 O(1).Sine a deterministi lassial algorithm for f must be orret on every input X, it is easy tosee that it must make at least N=10 queries on every input, hene Dunif(f) � N=10. 2Aordingly, we an have huge gaps between Dunif(f) and Qunif(f). However, this example tellsus nothing about the gaps between quantum and lassial bounded-error algorithms. In the nextsetion we exhibit an f where Qunif(f) is exponentially smaller than the lassial bounded-erroromplexity Runif(f).4 Exponential Gap between Runif(f) and Qunif(f)4.1 The FuntionWe use the following modi�ation of Simon's problem [25℄:2Input: X = (x1; : : : ; x2n), where eah xi 2 f0; 1gn.Output: f(X) = 1 i� there is a non-zero k 2 f0; 1gn suh that for all i 2 f0; 1gn we have xi�k = xi.Here we treat i 2 f0; 1gn both as an n-bit string and as a number between 1 and 2n, and �denotes bitwise XOR. Note that this funtion is total (unlike Simon's). Formally, f is not a Booleanfuntion beause the variables are f0; 1gn-valued. However, we an replae every variable xi by nBoolean variables and then f beomes a Boolean funtion of N = n2n variables. The number ofqueries needed to ompute the Boolean funtion is at least the number of queries needed to omputethe funtion with f0; 1gn-valued variables (beause we an simulate a query to the Boolean oraleby means of a query to the f0; 1gn-valued input-variables, just ignoring the n� 1 bits that we are2The preprint [15℄ independently proves a related but inomparable result about another Simon-modi�ation.5



not interested in) and at most n times the number of queries to the f0; 1gn-valued orale (beauseone f0; 1gn-valued query an be simulated using n Boolean queries). As the numbers of queries areso losely related, it does not make a big di�erene whether we use the f0; 1gn-valued orale or theBoolean orale. For simpliity we ount queries to the f0; 1gn-valued orale.We are interested in the average-ase omplexity of this funtion. The main result is thefollowing exponential gap, to be proven in the next setions:Theorem 4.1 For f as above, Qunif (f) � 22n+ 1 and Runif (f) 2 
(2n=2).4.2 Quantum Upper BoundThe quantum algorithm is similar to Simon's. Start with the 2-register superpositionPi2f0;1gn jiij0i(for onveniene we ignore normalizing fators). Apply the orale one to obtainXi2f0;1gn jiijxii:Measuring the seond register gives some j and ollapses the �rst register toXi:xi=j jii:A Hadamard transform H maps bits jbi ! 1p2(j0i + (�1)bj1i). Applying this to eah qubit of the�rst register gives Xi:xi=j Xi02f0;1gn(�1)(i;i0)ji0i: (1)Here (a; b) denotes inner produt mod 2; if (a; b) = 0 we say a and b are orthogonal.If f(X) = 1, then there is a non-zero k suh that xi = xi�k for all i. In partiular, xi = j i�xi�k = j. Then the �nal state (1) an be rewritten asXi02f0;1gn Xi:xi=j(�1)(i;i0)ji0i = Xi02f0;1gn0� Xi:xi=j 12((�1)(i;i0) + (�1)(i�k;i0))1A ji0i= Xi02f0;1gn0� Xi:xi=j (�1)(i;i0)2 (1 + (�1)(k;i0))1A ji0i:Notie that ji0i has non-zero amplitude only if (k; i0) = 0. Hene if f(X) = 1, then measuring the�nal state gives some i0 orthogonal to the unknown k.To deide if f(X) = 1, we repeat the above proess m = 22n times. Let i1; : : : ; im 2 f0; 1gn bethe results of the m measurements. If f(X) = 1, there must be a non-zero k that is orthogonal toall ir. Compute the subspae S � f0; 1gn that is generated by i1; : : : ; im (i.e. S is the set of binaryvetors obtained by taking linear ombinations of i1; : : : ; im over GF (2)). If S = f0; 1gn, then theonly k that is orthogonal to all ir is k = 0n, so then we know that f(X) = 0. If S 6= f0; 1gn, wejust query all 2n values x0:::0; : : : ; x1:::1 and then ompute f(X). Of ourse, this latter step is veryexpensive, but it is needed only rarely:Lemma 4.2 Assume that X = (x0:::0; : : : ; x1:::1) is hosen uniformly at random from f0; 1gN .Then, with probability at least 1� 2�n, f(X) = 0 and the measured i1; : : : ; im generate f0; 1gn.6



Proof. It an be shown by a small modi�ation of [1, Theorem 5.1, p.91℄ that with probability atleast 1� 2�2n ( > 0), there are at least 2n=8 values j suh that xi = j for exatly one i 2 f0; 1gn(and hene f(X) = 0). We assume that this is the ase in the following.If i1; : : : ; im generate a proper subspae of f0; 1gn, then there is a non-zero k 2 f0; 1gn that isorthogonal to this subspae. We estimate the probability that this happens. Consider some �xednon-zero vetor k 2 f0; 1gn. The probability that i1 and k are orthogonal is at most 1516 , as follows.With probability at least 1/8, the measurement of the seond register gives j suh that f(i) = j fora unique i. In this ase, the measurement of the �nal superposition (1) gives a uniformly randomi0. The probability that a uniformly random i0 has (k; i0) 6= 0 is 1/2. Therefore, the probabilitythat (k; i1) = 0 is at most 1� 18 � 12 = 1516 .The vetors i1; : : : ; im are hosen independently. Therefore, the probability that k is orthogonalto eah of them is at most (1516 )m = (1516)22n < 2�2n. There are 2n � 1 possible non-zero k, so theprobability that there is a k whih is orthogonal to eah of i1; : : : ; im, is � (2n � 1)2�2n < 2�n. 2Note that this algorithm is atually a zero-error algorithm: it always outputs the orret answer.Its expeted number of queries on a uniformly random input is at most m = 22n for generatingi1; : : : ; im and at most 12n 2n = 1 for querying all the xi if the �rst step does not give i1; : : : ; imthat generate f0; 1gn. This ompletes the proof of the �rst part of Theorem 4.1. In ontrast, inthe appendix we show that the worst-ase zero-error quantum omplexity of f is 
(N), whih isnear-maximal.4.3 Classial Lower BoundLet D1 be the uniform distribution over all inputs X 2 f0; 1gN and D2 be the uniform distributionover all X for whih there is a unique k 6= 0 suh that xi = xi�k (and hene f(X) = 1). We say analgorithm A distinguishes between D1 and D2 if the average probability that A outputs 0 is � 2=3under D1 and the average probability that A outputs 1 is � 2=3 under D2.Lemma 4.3 If there is a bounded-error algorithm A that omputes f with m = T unifA queries onaverage, then there is an algorithm that distinguishes between D1 and D2 and uses O(m) querieson all inputs.Proof. Without loss of generality we assume A has error probability � 1=10. To distinguish D1and D2, we run A until it stops or makes 10m queries. If it stops, we output the result of A. If itmakes 10m queries and has not stopped yet, we output 1.Under D1, the probability that A outputs 1 is at most 1=10 + o(1) (1=10 is the maximumprobability of error on an input with f(X) = 0 and o(1) is the probability of getting an input withf(X) = 1), so the probability that A outputs 0 is at least 9=10 � o(1). The average probability(under D1) that A does not stop before 10m queries is at most 1=10, for otherwise the averagenumber of queries would be more than 110 (10m) = m. Therefore the probability under D1 that Aoutputs 0 after at most 10m queries, is at least (9=10� o(1))� 1=10 = 4=5� o(1). In ontrast, theD2-probability that A outputs 0 is � 1=10 beause f(X) = 1 for any input X from D2. This showsthat we an distinguish D1 from D2. 2Lemma 4.4 A lassial randomized algorithm A that makes m 2 o(2n=2) queries annot distinguishbetween D1 and D2. 7



Proof. For a random input from D1, the probability that all answers to m queries are di�erent is1 � �1� 12n� � � ��1� (m� 1)2n � � 1� m�1Xi=1 i2n = 1� m(m� 1)2n+1 = 1� o(1):For a random input from D2, the probability that there is an i suh that A queries both xi andxi�k (k is the hidden vetor) is � �m2 �=(2n � 1) 2 o(1), sine:1. for every pair of distint i; j, the probability that i = j � k is 1=(2n � 1)2. sine A queries only m of the xi, it queries only �m2 � distint pairs i; jIf no pair xi, xi�k is queried, the probability that all answers are di�erent is1 � �1� 12n�1� � � ��1� (m� 1)2n�1 � = 1� o(1):It is easy to see that all sequenes of m di�erent answers are equally likely. Therefore, for bothdistributionsD1 and D2, we get a uniformly random sequene ofm di�erent values with probability1� o(1) and something else with probability o(1). Thus A annot \see" the di�erene between D1and D2 with suÆient probability to distinguish between them. 2The seond part of Theorem 4.1 now follows: a lassial algorithm that omputes f with anaverage number of m queries an be used to distinguish between D1 and D2 with O(m) queries(Lemma 4.3), but then O(m) 2 
(2n=2) (Lemma 4.4).5 Super-Exponential Gap for Non-Uniform �The last setion gave an exponential gap between Q� and R� under uniform �. Here we showthat the gap an be even larger for non-uniform �. Consider the average-ase omplexity of theOR-funtion. It is easy to see that Dunif (OR), Runif (OR), and Qunif (OR) are all O(1), sine theaverage input will have many 1s under the uniform distribution. Now we give some examples ofnon-uniform distributions � where Q�(OR) is super-exponentially smaller than R�(OR):Theorem 5.1 If � 2 (0; 1=2) and �(X) = =� NjXj�(jXj+1)�(N +1)1�� ( � 1�� is a normalizingonstant), then R�(OR) 2 �(N�) and Q�(OR) 2 �(1).Proof. Any lassial algorithm for OR requires �(N=(jXj + 1)) queries on an input X. Theupper bound follows from random sampling, the lower bound from a blok-sensitivity argument [21℄.Hene (omitting the intermediate �s):R�(OR) =XX �(X) NjXj + 1 = NXt=0 N�(t+ 1)�+1 2 �(N�);where the last step an be shown by approximating the sum over t with an integral. Similarly, fora quantum algorithm �(pN=(jXj + 1)) queries are neessary and suÆient on an input X [14, 5℄,so Q�(OR) =XX �(X)s NjXj + 1 = NXt=0 N��1=2(t+ 1)�+1=2 2 �(1):8



2In partiular, for � = 1=2 � " we have the very large gap of O(1) quantum versus 
(N1=2�")lassial. Note that we obtain this super-exponential gap by weighing the omplexity of two algo-rithms (lassial and quantum OR-algorithms) whih are only quadratially apart on eah inputX. This is the phenomenon we referred to at the end of Setion 2.6 General Bounds for Average-Case ComplexityIn this setion we prove some general bounds. First we make preise the intuitively obvious fatthat if an algorithm A is faster on every input than another algorithm B, then it is also faster onaverage under any distribution:Theorem 6.1 If � : R ! R is a onave funtion and TA(X) � �(TB(X)) for all X, thenT �A � � (T �B) for every �.Proof. By Jensen's inequality, if � is onave then E�[�(T )℄ � �(E�[T ℄), heneT �A = XX2f0;1gN �(X)TA(X) � XX2f0;1gN �(X)�(TB(X)) � �0� XX2f0;1gN �(X)TB(X)1A = � (T �B) : 2In words: taking the average annot make the omplexity-gap between two algorithms smaller.For instane, if TA(X) � pTB(X) (say, A is Grover's algorithm and B is a lassial algorithm forOR), then T �A � qT �B . On the other hand, taking the average an make the gap muh larger, aswe saw in Theorem 5.1: the quantum algorithm for OR runs only quadratially faster than anylassial algorithm on eah input, but the average-ase gap between quantum and lassial an bemuh bigger than quadrati.We now prove a general lower bound on R� and Q�. The lassial ase of the following lemmawas shown in [21℄, the quantum ase in [3℄:Lemma 6.2 Let A be a bounded-error algorithm for some funtion f . If A is lassial thenTA(X) 2 
(bsX(f)), and if A is quantum then TA(X) 2 
(pbsX(f)).A lower bound in terms of the �-expeted blok sensitivity follows:Theorem 6.3 For all f , �: R�(f) 2 
(E�[bsX(f)℄) and Q�(f) 2 
(E�[pbsX(f)℄).7 Average-Case Complexity of MAJORITYHere we examine the average-ase omplexity of the MAJORITY-funtion. The hard inputs formajority our when t = jXj � N=2. Any quantum algorithm needs 
(N) queries for suhinputs [3℄. Sine the uniform distribution puts most probability on the set of X with jXj loseto N=2, we might expet an 
(N) average-ase omplexity as well. However, we will prove thatthe omplexity is nearly pN . For this we need the following result about approximate quantumounting, whih is Theorem 13 of [6℄ (this is the upoming journal version of [8℄ and [17℄; seealso [18, Theorem 1.10℄): 9



Theorem 7.1 (Brassard, H�yer, Mosa, Tapp) There exists a quantum algorithm QCountwith the following property. For every N -bit input X (with t = jXj) and number of queries T , andany integer k � 1, QCount uses T queries and outputs a number ~t suh thatjt� ~tj � 2�kpt(N � t)T + �2k2 NT 2with probability at least 8=�2 if k = 1 and probability � 1� 1=2(k � 1) if k > 1.Using repeated appliations of this quantum ounting routine we an obtain a quantum algo-rithm for majority that is fast on average:Theorem 7.2 Qunif(MAJ) 2 O(pN(logN)2).Proof. For all i 2 f1; : : : ; logNg, de�ne Ai = fX j N=2i+1 < jjXj �N=2j � N=2ig. Theprobability under the uniform distribution of getting an input X 2 Ai is �(Ai) 2 O(pN=2i), sinethe number of inputs X with k 1s is �Nk � 2 O(2N=pN) for all k. The idea of our algorithm isto have logN runs of the quantum ounting algorithm, with inreasing numbers of queries, suhthat the majority value of inputs from Ai is probably deteted around the ith ounting stage. Wewill use Ti = 100 � 2i logN queries in the ith ounting stage. Our MAJORITY-algorithm is thefollowing:For i = 1 to logN do:quantum ount jXj using Ti queries (all the estimate ~ti)if jeti �N=2j > N=2i, then output whether eti > N=2 and stop.Classially ount jXj using N queries and output its majority.Let us analyze the behavior of the algorithm on an input X 2 Ai. For t = jXj, we have jt�N=2j 2(N=2i+1; N=2i℄. By Theorem 7.1, with probability > 1 � 1=10 logN we have ���eti � t��� � N=2i, sowith probability (1 � 1=10 logN)logN � e�1=10 > 0:9 we have ���eti � t��� � N=2i for all 1 � i � N .This ensures that the algorithm outputs the orret value with high probability.We now bound the expeted number of queries the algorithm needs on input X. Consider the(i+ 2)nd ounting stage. With probability 1� 1=10 logN we will have j~ti+2 � tj � N=2i+2. In thisase the algorithm will terminate, beausej~ti+2 �N=2j � jt�N=2j � j~ti+2 � tj > N=2i+1 �N=2i+2 = N=2i+2:Thus with high probability the algorithm needs no more than i + 2 ounting stages on input X.Later ounting stages take exponentially more queries (Ti+2+j = 2jTi+2), but are needed only withexponentially dereasing probability O(1=2j logN): the probability that j~ti+2+j � tj > N=2i+2 goesdown exponentially with j preisely beause the number of queries goes up exponentially. Similarly,the last step of the algorithm (lassial ounting) is needed only with negligible probability.Now the expeted number of queries on input X an be upper bounded byi+2Xj=1Ti + logNXk=i+3Tk �O� 12k�i�3 logN � < 100 � 2i+3 logN + logNXk=i+3 100 � 2i+3 2 O(2i logN):Therefore under the uniform distribution the average expeted number of queries an be upperbounded by PlogNi=1 �(Ai)O(2i logN) 2 O(pN(logN)2): 2The nearly mathing lower bound is: 10



Theorem 7.3 Qunif(MAJ) 2 
(pN).Proof. Let A be a bounded-error quantum algorithm for MAJORITY. It follows from theworst-ase results of [3℄ that A uses 
(N) queries on the hardest inputs, whih are the X withjXj = N=2� 1. Sine the uniform distribution puts 
(1=pN) probability on the set of suh X, theaverage-ase omplexity of A is at least 
(1=pN)
(N) = 
(pN). 2What about the lassial average-ase omplexity of MAJORITY? Alonso, Reingold, andShott [2℄ prove the bound Dunif(MAJ) = 2N=3 � p8N=9� + O(logN) for deterministi lassi-al omputers. We an also prove a linear lower bound for the bounded-error lassial omplexity,using the following lemma:Lemma 7.4 Let � 2 f1; : : : ;pNg. Any lassial bounded-error algorithm that omputes MAJOR-ITY on inputs X with jXj 2 fN=2; N=2 +�g must make 
(N) queries on all suh inputs.Proof. We will prove the lemma for � = pN , whih is the hardest ase. We assume withoutloss of generality that the algorithm queries its input X at T (X) random positions, and outputs 1if the fration of 1s in its sample is at least (N=2+�)=N = 1=2+1=pN . We do not are what thealgorithm outputs otherwise. Consider an input X with jXj = N=2. The algorithm uses T = T (X)queries and should output 0 with probability at least 2=3. Thus the probability of output 1 on Xmust be at most 1=3, in partiularPr[ at least T (1=2 + 1=pN) 1s in sample of size T ℄ � 1=3:Sine the T queries of the algorithm an be viewed as sampling without replaement from a setontaining N=2 1s and N=2 0s, this error probability is given by the hypergeometri distributionPr[ at least T (1=2 + 1=pN) 1s in sample of size T ℄ = TXi=T (1=2+1=pN) N=2i ! �  N=2T � i! NT ! :We an approximate the hypergeometri distribution using the normal distribution, see e.g. [19℄.Let zk = (2k � T )=pT and �(z) = R z�1 1p2�e�t2=2dt, then the above probability approahes�(zT )� �(zT (1=2+1=pN)):Note that �(zT ) = �(pT )! 1 and that �(zT (1=2+1=pN)) = �(2pT=N )! 1=2 if T 2 o(N). Thuswe an only avoid having an error probability lose to 1/2 by using T 2 
(N) queries on X withjXj = N=2. A similar argument shows that we must also use 
(N) queries if jXj = N=2 +�. 2It now follows that:Theorem 7.5 Runif(MAJ) 2 
(N).Proof. The previous lemma shows that any algorithm for MAJORITY needs 
(N) queries oninputs X with jXj 2 [N=2; N=2 + pN ℄. Sine the uniform distribution puts 
(1) probability onthe set of suh X, the theorem follows. 2Aordingly, on average a quantum omputer an ompute MAJORITY almost quadratiallyfaster than a lassial omputer, whereas for the worst-ase input quantum and lassial omputersare about equally fast (or slow). 11



8 Average-Case Complexity of PARITYFinally we prove some results for the average-ase omplexity of PARITY. This is in many waysthe hardest Boolean funtion. Firstly, bsX(f) = N for all X, hene by Theorem 6.3:Corollary 8.1 For every �, R�(PARITY) 2 
(N) and Q�(PARITY) 2 
(pN).With high probability we an obtain an exat ount of jXj, using O(p(jXj+ 1)N ) quantumqueries [6℄. Combining this with a � that puts O(1=pN) probability on the set of all X withjXj > 1 and distributes the remaining probability arbitrarily over the X with jXj � 1, we obtaina distribution � suh that Q�(PARITY) 2 O(pN).We an prove Q�(PARITY) � N=6 for any � by the following algorithm: with probability 1=3output 1, with probability 1=3 output 0, and with probability 1=3 run the exat quantum algorithmfor PARITY, whih has worst-ase omplexity N=2 [3, 13℄. This algorithm has suess probability2=3 on every input and has expeted number of queries equal to N=6.More than a linear speed-up on average is not possible if � is uniform:Theorem 8.2 Qunif(PARITY) 2 
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