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tWe 
ompare 
lassi
al and quantum query 
omplexities of total Boolean fun
tions. It isknown that for worst-
ase 
omplexity, the gap between quantum and 
lassi
al 
an be at mostpolynomial [3℄. We show that for average-
ase 
omplexity under the uniform distribution,quantum algorithms 
an be exponentially faster than 
lassi
al algorithms. Under non-uniformdistributions the gap 
an even be super-exponential. We also prove some general bounds foraverage-
ase 
omplexity and show that the average-
ase quantum 
omplexity of MAJORITYunder the uniform distribution is nearly quadrati
ally better than the 
lassi
al 
omplexity.1 Introdu
tionThe �eld of quantum 
omputation studies the power of 
omputers based on quantum me
hani
alprin
iples. So far, most quantum algorithms|and all physi
ally implemented ones|have operatedin the so-
alled bla
k-box setting. In the bla
k-box model, the input of the fun
tion f that we wantto 
ompute 
an only be a

essed by means of queries to a \bla
k-box". This returns the ith bit ofthe input when queried on i. The 
omplexity of 
omputing f is measured by the required numberof queries. In this setting we want quantum algorithms that use signi�
antly fewer queries thanthe best 
lassi
al algorithms. Examples of quantum bla
k-box algorithms that are provably betterthan any 
lassi
al algorithm 
an be found in [12, 25, 14, 7, 6, 9℄. Even Shor's quantum algorithmfor period-�nding, whi
h is the 
ore of his eÆ
ient fa
toring algorithm [24℄, 
an be viewed as abla
k-box algorithm [11℄.We restri
t our attention to 
omputing total Boolean fun
tions f on N variables. The query
omplexity of f depends on the kind of errors one allows. For example, we 
an distinguish betweenexa
t 
omputation, zero-error 
omputation (a.k.a. Las Vegas), and bounded-error 
omputation(Monte Carlo). In ea
h of these models, worst-
ase 
omplexity is usually 
onsidered: the 
omplexityis the number of queries required for the \hardest" input. Let D(f), R(f) and Q(f) denote�A preliminary version of this paper appeared in the Pro
eedings of 17th Annual Symposium on Theoreti
alAspe
ts of Computer S
ien
e (STACS'2000), Springer, LNCS 1770, 2000.yPart of this work was done when visiting Mi
rosoft Resear
h. Supported by Mi
rosoft Resear
h Fellowship andNSF Grant CCR-9800024.zPartially supported by the EU �fth framework proje
t QAIP, IST{1999{11234. Also aÆliated with the ILLC,University of Amsterdam. 1



the worst-
ase query 
omplexity of 
omputing f for 
lassi
al deterministi
 algorithms, 
lassi
alrandomized bounded-error algorithms, and quantum bounded-error algorithms, respe
tively. Morepre
ise de�nitions will be given in the next se
tion. Sin
e quantum bounded-error algorithms are atleast as powerful as 
lassi
al bounded-error algorithms, and 
lassi
al bounded-error algorithms areat least as powerful as deterministi
 algorithms, we have Q(f) � R(f) � D(f). The main quantumsu

ess here is Grover's algorithm [14℄. It 
an 
ompute the OR-fun
tion with bounded-error using�(pN) queries (whi
h is optimal [4, 5, 27℄). Thus Q(OR) 2 �(pN), whereas D(OR) = Nand R(OR) 2 �(N). This is the biggest gap known between quantum and 
lassi
al worst-
ase
omplexities for total fun
tions. (In 
ontrast, for partial Boolean fun
tions the gap 
an be mu
hbigger [12, 25, 11℄.) In fa
t, it is known that the gap between D(f) and Q(f) is at most polynomialfor every total f : D(f) 2 O(Q(f)6) [3℄. This is similar to the best known relation between 
lassi
aldeterministi
 and randomized algorithms: D(f) 2 O(R(f)3) [21℄.Given some probability distribution � on the set of inputs f0; 1gN one may also 
onsider average-
ase 
omplexity instead of worst-
ase 
omplexity. Average-
ase 
omplexity 
on
erns the expe
tednumber of queries needed when the input is distributed a

ording to �. If the hard inputs re
eivelittle �-probability, then average-
ase 
omplexity 
an be signi�
antly smaller than worst-
ase 
om-plexity. Let D�(f), R�(f), and Q�(f) denote the average-
ase analogues of D(f), R(f), and Q(f),respe
tively, to be de�ned more pre
isely in the next se
tion. Again Q�(f) � R�(f) � D�(f). Theobje
tive of this paper is to 
ompare these measures and to investigate the possible gaps betweenthem. Our main results are:� Under uniform �, Q�(f) and R�(f) 
an be super-exponentially smaller than D�(f).� Under uniform �, Q�(f) 
an be exponentially smaller than R�(f). Thus the polynomialrelation that holds between quantum and 
lassi
al query 
omplexities in the 
ase of worst-
ase 
omplexity [3℄ does not 
arry over to the average-
ase setting.� Under non-uniform � the gap 
an be even larger: we give distributions � where Q�(OR) is
onstant, whereas R�(OR) is almost pN .� For every f and �, R�(f) is lower bounded by the expe
ted blo
k sensitivity E�[bs(f)℄ andQ�(f) is lower bounded by E�[pbs(f)℄.� For the MAJORITY-fun
tion under uniform �, we have that Q�(f) 2 O(pN(logN)2) andQ�(f) 2 
(pN). In 
ontrast, R�(f) 2 
(N).� For the PARITY-fun
tion, the gap between Q� and R� 
an be quadrati
, but not more.Under uniform �, PARITY has Q�(f) 2 
(N).2 De�nitionsLet f : f0; 1gN ! f0; 1g be a Boolean fun
tion. This fun
tion is symmetri
 if f(X) only dependson jXj, the Hamming weight (the number of 1s) of X. We will in parti
ular 
onsider the followingsymmetri
 fun
tions: OR(X) = 1 i� jXj � 1; MAJ(X) = 1 i� jXj > N=2; PARITY(X) = 1 i� jXjis odd. If X 2 f0; 1gN is an input and S a set of (indi
es of) variables, we use XS to denote theinput obtained by 
ipping the values of the S-variables in X. The blo
k sensitivity bsX(f) of f onan input X is the maximal number b for whi
h there are b disjoint sets of variables S1; : : : ; Sb su
hthat f(X) 6= f(XSi) for all 1 � i � b. The blo
k sensitivity bs(f) of f is maxX bsX(f).2



We are interested in the question how many bits of the input have to be queried in order to
ompute f , either for the worst-
ase or average-
ase input. We assume familiarity with 
lassi
al
omputation and brie
y sket
h the de�nition of quantum query algorithms. For a general intro-du
tion to quantum 
omputing, see the book of Nielsen and Chuang [20℄. For more details about(quantum) query 
omplexity we refer to [10℄.An m-qubit state is a 2m-dimensional unit ve
tor of 
omplex numbers, writtenPx2f0;1gm �xjxi.The 
omplex number �x is 
alled the amplitude of the basis state jxi. A T -query quantum algorithm
orresponds to a unitary transformationA = UTOUT�1O : : : U1OU0:Here the Uj are unitary transformations on m qubits. These Uj are independent of the input. Ea
hO 
orresponds to a query to the input X 2 f0; 1gN , formalized as the unitary transformationji; b; zi ! ji; b � xi; zi:Here i 2 f1; : : : ; Ng, b 2 f0; 1g, � is addition modulo 2, and z 2 f0; 1gm�logN�1 is the workspa
e,whi
h remains una�e
ted by the query. Intuitively, O just gives us the bit xi when queried on i.We will sometimes use the word \ora
le" to refer to X as well as to the 
orresponding O. Theinitial state of the algorithm is the all-zero state j0mi. The �nal state is Aj0mi, whi
h depends onthe input X via the T queries that are made. A measurement of a dedi
ated output bit of the �nalstate will yield the output. It 
an be shown that this linear-algebrai
 quantum model is at least asstrong as 
lassi
al randomized 
omputation: any 
lassi
al T -query randomized algorithm 
an besimulated by a T -query quantum algorithm having the same error probabilities.As des
ribed above, the quantum algorithm will make exa
tly T queries on every inputX. Sin
ewe are interested in average-
ase number of queries and the required number of queries will dependon the input X, we need to allow the algorithm to give an output after fewer than T queries. Wewill do that by measuring, after ea
h Uj, a dedi
ated 
ag-qubit of the intermediate state at thatpoint (this measurement may alter the state). This bit indi
ates whether the algorithm is alreadyprepared to stop and output a value. If this bit is 1, then we measure the output bit, outputits value A(X) 2 f0; 1g and stop; if the 
ag-bit is 0 we let the algorithm 
ontinue with the nextquery O and Uj+1. Note that the number of queries that the algorithm makes on input X is nowa random variable, sin
e it depends on the probabilisti
 out
ome of measuring the 
ag-qubit afterea
h step. We use TA(X) to denote the expe
ted number of queries that A makes on input X. TheBoolean output A(X) of the algorithm is a random variable as well.We mainly fo
us on three kinds of algorithms for 
omputing f : 
lassi
al deterministi
, 
lassi
alrandomized bounded-error, and quantum bounded-error algorithms. Let D(f) denote the set of
lassi
al deterministi
 algorithms that 
ompute f . Let R(f) = f
lassi
al A j 8X 2 f0; 1gN :Pr[A(X) = f(X)℄ � 2=3g be the set of 
lassi
al randomized algorithms that 
ompute f withbounded error probability. The error probability 1=3 is not essential; it 
an be redu
ed to anysmall " by running the algorithm O(log(1=")) times and outputting the majority answer of thoseruns. Similarly we let Q(f) = fquantum A j 8X 2 f0; 1gN : Pr[A(X) = f(X)℄ � 2=3g be the setof bounded-error quantum algorithms for f . We de�ne the following worst-
ase 
omplexities:D(f) = minA2D(f) maxX2f0;1gN TA(X)R(f) = minA2R(f) maxX2f0;1gN TA(X)Q(f) = minA2Q(f) maxX2f0;1gN TA(X)3



D(f) is also known as the de
ision tree 
omplexity of f and R(f) as the bounded-error de
ision tree
omplexity of f . Sin
e quantum 
omputation generalizes randomized 
omputation and randomized
omputation generalizes deterministi
 
omputation, we have Q(f) � R(f) � D(f) � N for all f .The three worst-
ase 
omplexities are polynomially related: D(f) 2 O(R(f)3) [21℄ and D(f) 2O(Q(f)6) [3℄ for all total f .Let � : f0; 1gN ! [0; 1℄ be a probability distribution. We de�ne the average-
ase 
omplexity ofan algorithm A with respe
t to a distribution � as:T �A = XX2f0;1gN �(X)TA(X):The average-
ase deterministi
, randomized, and quantum 
omplexities of f with respe
t to � areD�(f) = minA2D(f) T �AR�(f) = minA2R(f) T �AQ�(f) = minA2Q(f) T �ANote that the algorithms still have to satisfy the appropriate output requirements (su
h as out-putting f(X) with probability � 2=3 in 
ase of R� or Q�) on all inputs X, even on X that have�(X) = 0. Clearly Q�(f) � R�(f) � D�(f) � N for all � and f . Our goal is to examine how largethe gaps between these measures 
an be, in parti
ular for the uniform distribution unif (X) = 2�N .The above treatment of average-
ase 
omplexity is the standard one used in average-
ase anal-ysis of algorithms [26℄. One 
ounter-intuitive 
onsequen
e of these de�nitions, however, is that theaverage-
ase performan
e of polynomially related algorithms 
an be superpolynomially apart (wewill see this happen in Se
tion 5). This seemingly paradoxi
al e�e
t makes these de�nitions un-suitable for dealing with polynomial-time redu
ibilities and average-
ase 
omplexity 
lasses, whi
his what led Levin to his alternative de�nition of \polynomial time on average" [16℄.1 Nevertheless,we feel our de�nitions are the appropriate ones for our query 
omplexity setting: they are just theaverage numbers of queries that one needs when the input is drawn a

ording to distribution �.3 Super-Exponential Gap between Dunif(f) and Qunif(f)Before 
omparing the power of 
lassi
al and quantum 
omputing, we �rst 
ompare the power ofdeterministi
 and bounded-error algorithms. It is not hard to show that Dunif(f) 
an be mu
hlarger then Runif(f) and Qunif(f):Theorem 3.1 De�ne f on N variables su
h that f(X) = 1 i� jXj � N=10. Then Qunif(f) andRunif(f) are O(1) and Dunif(f) 2 
(N).Proof. Suppose we randomly sample k bits of the input. Let a = jXj=N denote the fra
tion of1s in the input and ~a the fra
tion of 1s in the sample. The Cherno� bound (see e.g. [1℄) impliesthat there is a 
onstant 
 > 0 su
h thatPr[~a < 2=10 j a � 3=10℄ � 2�
k:Now 
onsider the following randomized algorithm for f :1We thank Umesh Vazirani for drawing our attention to this.4



1. Let i = 100.2. Sample ki = i=
 bits. If the fra
tion ~ai of 1s is � 2=10, then output 1 and stop.3. If i < logN , then in
rease i by 1 and repeat step 2.4. If i � logN , then 
ount jXj exa
tly using N queries and output the 
orre
t answer.It is easy to see that this is a bounded-error algorithm for f . Let us bound its average-
ase
omplexity under the uniform distribution.If a � 3=10, the expe
ted number of queries for step 2 islogNXi=100Pr[~a1 � 2=10; : : : ; ~ai�1 � 2=10 j a � 3=10℄ � i
 �logNXi=100Pr[~ai�1 � 2=10 j a � 3=10℄ � i
 � logNXi=100 2�(i�1) � i
 2 O(1):The probability that step 4 is needed (given a � 3=10) is at most 2�
 logN=
 = 1=N . This adds1NN = 1 to the expe
ted number of queries.Under the uniform distribution, the probability of the event a < 3=10 is at most 2�
0N for some
onstant 
0. This 
ase 
ontributes at most 2�
0N (N + (logN)2) 2 o(1) to the expe
ted number ofqueries. Thus in total the algorithm uses O(1) queries on average, hen
e Runif(f) 2 O(1). Sin
eQunif(f) � Runif(f), we also have Qunif(f) 2 O(1).Sin
e a deterministi
 
lassi
al algorithm for f must be 
orre
t on every input X, it is easy tosee that it must make at least N=10 queries on every input, hen
e Dunif(f) � N=10. 2A

ordingly, we 
an have huge gaps between Dunif(f) and Qunif(f). However, this example tellsus nothing about the gaps between quantum and 
lassi
al bounded-error algorithms. In the nextse
tion we exhibit an f where Qunif(f) is exponentially smaller than the 
lassi
al bounded-error
omplexity Runif(f).4 Exponential Gap between Runif(f) and Qunif(f)4.1 The Fun
tionWe use the following modi�
ation of Simon's problem [25℄:2Input: X = (x1; : : : ; x2n), where ea
h xi 2 f0; 1gn.Output: f(X) = 1 i� there is a non-zero k 2 f0; 1gn su
h that for all i 2 f0; 1gn we have xi�k = xi.Here we treat i 2 f0; 1gn both as an n-bit string and as a number between 1 and 2n, and �denotes bitwise XOR. Note that this fun
tion is total (unlike Simon's). Formally, f is not a Booleanfun
tion be
ause the variables are f0; 1gn-valued. However, we 
an repla
e every variable xi by nBoolean variables and then f be
omes a Boolean fun
tion of N = n2n variables. The number ofqueries needed to 
ompute the Boolean fun
tion is at least the number of queries needed to 
omputethe fun
tion with f0; 1gn-valued variables (be
ause we 
an simulate a query to the Boolean ora
leby means of a query to the f0; 1gn-valued input-variables, just ignoring the n� 1 bits that we are2The preprint [15℄ independently proves a related but in
omparable result about another Simon-modi�
ation.5



not interested in) and at most n times the number of queries to the f0; 1gn-valued ora
le (be
auseone f0; 1gn-valued query 
an be simulated using n Boolean queries). As the numbers of queries areso 
losely related, it does not make a big di�eren
e whether we use the f0; 1gn-valued ora
le or theBoolean ora
le. For simpli
ity we 
ount queries to the f0; 1gn-valued ora
le.We are interested in the average-
ase 
omplexity of this fun
tion. The main result is thefollowing exponential gap, to be proven in the next se
tions:Theorem 4.1 For f as above, Qunif (f) � 22n+ 1 and Runif (f) 2 
(2n=2).4.2 Quantum Upper BoundThe quantum algorithm is similar to Simon's. Start with the 2-register superpositionPi2f0;1gn jiij0i(for 
onvenien
e we ignore normalizing fa
tors). Apply the ora
le on
e to obtainXi2f0;1gn jiijxii:Measuring the se
ond register gives some j and 
ollapses the �rst register toXi:xi=j jii:A Hadamard transform H maps bits jbi ! 1p2(j0i + (�1)bj1i). Applying this to ea
h qubit of the�rst register gives Xi:xi=j Xi02f0;1gn(�1)(i;i0)ji0i: (1)Here (a; b) denotes inner produ
t mod 2; if (a; b) = 0 we say a and b are orthogonal.If f(X) = 1, then there is a non-zero k su
h that xi = xi�k for all i. In parti
ular, xi = j i�xi�k = j. Then the �nal state (1) 
an be rewritten asXi02f0;1gn Xi:xi=j(�1)(i;i0)ji0i = Xi02f0;1gn0� Xi:xi=j 12((�1)(i;i0) + (�1)(i�k;i0))1A ji0i= Xi02f0;1gn0� Xi:xi=j (�1)(i;i0)2 (1 + (�1)(k;i0))1A ji0i:Noti
e that ji0i has non-zero amplitude only if (k; i0) = 0. Hen
e if f(X) = 1, then measuring the�nal state gives some i0 orthogonal to the unknown k.To de
ide if f(X) = 1, we repeat the above pro
ess m = 22n times. Let i1; : : : ; im 2 f0; 1gn bethe results of the m measurements. If f(X) = 1, there must be a non-zero k that is orthogonal toall ir. Compute the subspa
e S � f0; 1gn that is generated by i1; : : : ; im (i.e. S is the set of binaryve
tors obtained by taking linear 
ombinations of i1; : : : ; im over GF (2)). If S = f0; 1gn, then theonly k that is orthogonal to all ir is k = 0n, so then we know that f(X) = 0. If S 6= f0; 1gn, wejust query all 2n values x0:::0; : : : ; x1:::1 and then 
ompute f(X). Of 
ourse, this latter step is veryexpensive, but it is needed only rarely:Lemma 4.2 Assume that X = (x0:::0; : : : ; x1:::1) is 
hosen uniformly at random from f0; 1gN .Then, with probability at least 1� 2�n, f(X) = 0 and the measured i1; : : : ; im generate f0; 1gn.6



Proof. It 
an be shown by a small modi�
ation of [1, Theorem 5.1, p.91℄ that with probability atleast 1� 2�
2n (
 > 0), there are at least 2n=8 values j su
h that xi = j for exa
tly one i 2 f0; 1gn(and hen
e f(X) = 0). We assume that this is the 
ase in the following.If i1; : : : ; im generate a proper subspa
e of f0; 1gn, then there is a non-zero k 2 f0; 1gn that isorthogonal to this subspa
e. We estimate the probability that this happens. Consider some �xednon-zero ve
tor k 2 f0; 1gn. The probability that i1 and k are orthogonal is at most 1516 , as follows.With probability at least 1/8, the measurement of the se
ond register gives j su
h that f(i) = j fora unique i. In this 
ase, the measurement of the �nal superposition (1) gives a uniformly randomi0. The probability that a uniformly random i0 has (k; i0) 6= 0 is 1/2. Therefore, the probabilitythat (k; i1) = 0 is at most 1� 18 � 12 = 1516 .The ve
tors i1; : : : ; im are 
hosen independently. Therefore, the probability that k is orthogonalto ea
h of them is at most (1516 )m = (1516)22n < 2�2n. There are 2n � 1 possible non-zero k, so theprobability that there is a k whi
h is orthogonal to ea
h of i1; : : : ; im, is � (2n � 1)2�2n < 2�n. 2Note that this algorithm is a
tually a zero-error algorithm: it always outputs the 
orre
t answer.Its expe
ted number of queries on a uniformly random input is at most m = 22n for generatingi1; : : : ; im and at most 12n 2n = 1 for querying all the xi if the �rst step does not give i1; : : : ; imthat generate f0; 1gn. This 
ompletes the proof of the �rst part of Theorem 4.1. In 
ontrast, inthe appendix we show that the worst-
ase zero-error quantum 
omplexity of f is 
(N), whi
h isnear-maximal.4.3 Classi
al Lower BoundLet D1 be the uniform distribution over all inputs X 2 f0; 1gN and D2 be the uniform distributionover all X for whi
h there is a unique k 6= 0 su
h that xi = xi�k (and hen
e f(X) = 1). We say analgorithm A distinguishes between D1 and D2 if the average probability that A outputs 0 is � 2=3under D1 and the average probability that A outputs 1 is � 2=3 under D2.Lemma 4.3 If there is a bounded-error algorithm A that 
omputes f with m = T unifA queries onaverage, then there is an algorithm that distinguishes between D1 and D2 and uses O(m) querieson all inputs.Proof. Without loss of generality we assume A has error probability � 1=10. To distinguish D1and D2, we run A until it stops or makes 10m queries. If it stops, we output the result of A. If itmakes 10m queries and has not stopped yet, we output 1.Under D1, the probability that A outputs 1 is at most 1=10 + o(1) (1=10 is the maximumprobability of error on an input with f(X) = 0 and o(1) is the probability of getting an input withf(X) = 1), so the probability that A outputs 0 is at least 9=10 � o(1). The average probability(under D1) that A does not stop before 10m queries is at most 1=10, for otherwise the averagenumber of queries would be more than 110 (10m) = m. Therefore the probability under D1 that Aoutputs 0 after at most 10m queries, is at least (9=10� o(1))� 1=10 = 4=5� o(1). In 
ontrast, theD2-probability that A outputs 0 is � 1=10 be
ause f(X) = 1 for any input X from D2. This showsthat we 
an distinguish D1 from D2. 2Lemma 4.4 A 
lassi
al randomized algorithm A that makes m 2 o(2n=2) queries 
annot distinguishbetween D1 and D2. 7



Proof. For a random input from D1, the probability that all answers to m queries are di�erent is1 � �1� 12n� � � ��1� (m� 1)2n � � 1� m�1Xi=1 i2n = 1� m(m� 1)2n+1 = 1� o(1):For a random input from D2, the probability that there is an i su
h that A queries both xi andxi�k (k is the hidden ve
tor) is � �m2 �=(2n � 1) 2 o(1), sin
e:1. for every pair of distin
t i; j, the probability that i = j � k is 1=(2n � 1)2. sin
e A queries only m of the xi, it queries only �m2 � distin
t pairs i; jIf no pair xi, xi�k is queried, the probability that all answers are di�erent is1 � �1� 12n�1� � � ��1� (m� 1)2n�1 � = 1� o(1):It is easy to see that all sequen
es of m di�erent answers are equally likely. Therefore, for bothdistributionsD1 and D2, we get a uniformly random sequen
e ofm di�erent values with probability1� o(1) and something else with probability o(1). Thus A 
annot \see" the di�eren
e between D1and D2 with suÆ
ient probability to distinguish between them. 2The se
ond part of Theorem 4.1 now follows: a 
lassi
al algorithm that 
omputes f with anaverage number of m queries 
an be used to distinguish between D1 and D2 with O(m) queries(Lemma 4.3), but then O(m) 2 
(2n=2) (Lemma 4.4).5 Super-Exponential Gap for Non-Uniform �The last se
tion gave an exponential gap between Q� and R� under uniform �. Here we showthat the gap 
an be even larger for non-uniform �. Consider the average-
ase 
omplexity of theOR-fun
tion. It is easy to see that Dunif (OR), Runif (OR), and Qunif (OR) are all O(1), sin
e theaverage input will have many 1s under the uniform distribution. Now we give some examples ofnon-uniform distributions � where Q�(OR) is super-exponentially smaller than R�(OR):Theorem 5.1 If � 2 (0; 1=2) and �(X) = 
=� NjXj�(jXj+1)�(N +1)1�� (
 � 1�� is a normalizing
onstant), then R�(OR) 2 �(N�) and Q�(OR) 2 �(1).Proof. Any 
lassi
al algorithm for OR requires �(N=(jXj + 1)) queries on an input X. Theupper bound follows from random sampling, the lower bound from a blo
k-sensitivity argument [21℄.Hen
e (omitting the intermediate �s):R�(OR) =XX �(X) NjXj + 1 = NXt=0 
N�(t+ 1)�+1 2 �(N�);where the last step 
an be shown by approximating the sum over t with an integral. Similarly, fora quantum algorithm �(pN=(jXj + 1)) queries are ne
essary and suÆ
ient on an input X [14, 5℄,so Q�(OR) =XX �(X)s NjXj + 1 = NXt=0 
N��1=2(t+ 1)�+1=2 2 �(1):8



2In parti
ular, for � = 1=2 � " we have the very large gap of O(1) quantum versus 
(N1=2�")
lassi
al. Note that we obtain this super-exponential gap by weighing the 
omplexity of two algo-rithms (
lassi
al and quantum OR-algorithms) whi
h are only quadrati
ally apart on ea
h inputX. This is the phenomenon we referred to at the end of Se
tion 2.6 General Bounds for Average-Case ComplexityIn this se
tion we prove some general bounds. First we make pre
ise the intuitively obvious fa
tthat if an algorithm A is faster on every input than another algorithm B, then it is also faster onaverage under any distribution:Theorem 6.1 If � : R ! R is a 
on
ave fun
tion and TA(X) � �(TB(X)) for all X, thenT �A � � (T �B) for every �.Proof. By Jensen's inequality, if � is 
on
ave then E�[�(T )℄ � �(E�[T ℄), hen
eT �A = XX2f0;1gN �(X)TA(X) � XX2f0;1gN �(X)�(TB(X)) � �0� XX2f0;1gN �(X)TB(X)1A = � (T �B) : 2In words: taking the average 
annot make the 
omplexity-gap between two algorithms smaller.For instan
e, if TA(X) � pTB(X) (say, A is Grover's algorithm and B is a 
lassi
al algorithm forOR), then T �A � qT �B . On the other hand, taking the average 
an make the gap mu
h larger, aswe saw in Theorem 5.1: the quantum algorithm for OR runs only quadrati
ally faster than any
lassi
al algorithm on ea
h input, but the average-
ase gap between quantum and 
lassi
al 
an bemu
h bigger than quadrati
.We now prove a general lower bound on R� and Q�. The 
lassi
al 
ase of the following lemmawas shown in [21℄, the quantum 
ase in [3℄:Lemma 6.2 Let A be a bounded-error algorithm for some fun
tion f . If A is 
lassi
al thenTA(X) 2 
(bsX(f)), and if A is quantum then TA(X) 2 
(pbsX(f)).A lower bound in terms of the �-expe
ted blo
k sensitivity follows:Theorem 6.3 For all f , �: R�(f) 2 
(E�[bsX(f)℄) and Q�(f) 2 
(E�[pbsX(f)℄).7 Average-Case Complexity of MAJORITYHere we examine the average-
ase 
omplexity of the MAJORITY-fun
tion. The hard inputs formajority o

ur when t = jXj � N=2. Any quantum algorithm needs 
(N) queries for su
hinputs [3℄. Sin
e the uniform distribution puts most probability on the set of X with jXj 
loseto N=2, we might expe
t an 
(N) average-
ase 
omplexity as well. However, we will prove thatthe 
omplexity is nearly pN . For this we need the following result about approximate quantum
ounting, whi
h is Theorem 13 of [6℄ (this is the up
oming journal version of [8℄ and [17℄; seealso [18, Theorem 1.10℄): 9



Theorem 7.1 (Brassard, H�yer, Mos
a, Tapp) There exists a quantum algorithm QCountwith the following property. For every N -bit input X (with t = jXj) and number of queries T , andany integer k � 1, QCount uses T queries and outputs a number ~t su
h thatjt� ~tj � 2�kpt(N � t)T + �2k2 NT 2with probability at least 8=�2 if k = 1 and probability � 1� 1=2(k � 1) if k > 1.Using repeated appli
ations of this quantum 
ounting routine we 
an obtain a quantum algo-rithm for majority that is fast on average:Theorem 7.2 Qunif(MAJ) 2 O(pN(logN)2).Proof. For all i 2 f1; : : : ; logNg, de�ne Ai = fX j N=2i+1 < jjXj �N=2j � N=2ig. Theprobability under the uniform distribution of getting an input X 2 Ai is �(Ai) 2 O(pN=2i), sin
ethe number of inputs X with k 1s is �Nk � 2 O(2N=pN) for all k. The idea of our algorithm isto have logN runs of the quantum 
ounting algorithm, with in
reasing numbers of queries, su
hthat the majority value of inputs from Ai is probably dete
ted around the ith 
ounting stage. Wewill use Ti = 100 � 2i logN queries in the ith 
ounting stage. Our MAJORITY-algorithm is thefollowing:For i = 1 to logN do:quantum 
ount jXj using Ti queries (
all the estimate ~ti)if jeti �N=2j > N=2i, then output whether eti > N=2 and stop.Classi
ally 
ount jXj using N queries and output its majority.Let us analyze the behavior of the algorithm on an input X 2 Ai. For t = jXj, we have jt�N=2j 2(N=2i+1; N=2i℄. By Theorem 7.1, with probability > 1 � 1=10 logN we have ���eti � t��� � N=2i, sowith probability (1 � 1=10 logN)logN � e�1=10 > 0:9 we have ���eti � t��� � N=2i for all 1 � i � N .This ensures that the algorithm outputs the 
orre
t value with high probability.We now bound the expe
ted number of queries the algorithm needs on input X. Consider the(i+ 2)nd 
ounting stage. With probability 1� 1=10 logN we will have j~ti+2 � tj � N=2i+2. In this
ase the algorithm will terminate, be
ausej~ti+2 �N=2j � jt�N=2j � j~ti+2 � tj > N=2i+1 �N=2i+2 = N=2i+2:Thus with high probability the algorithm needs no more than i + 2 
ounting stages on input X.Later 
ounting stages take exponentially more queries (Ti+2+j = 2jTi+2), but are needed only withexponentially de
reasing probability O(1=2j logN): the probability that j~ti+2+j � tj > N=2i+2 goesdown exponentially with j pre
isely be
ause the number of queries goes up exponentially. Similarly,the last step of the algorithm (
lassi
al 
ounting) is needed only with negligible probability.Now the expe
ted number of queries on input X 
an be upper bounded byi+2Xj=1Ti + logNXk=i+3Tk �O� 12k�i�3 logN � < 100 � 2i+3 logN + logNXk=i+3 100 � 2i+3 2 O(2i logN):Therefore under the uniform distribution the average expe
ted number of queries 
an be upperbounded by PlogNi=1 �(Ai)O(2i logN) 2 O(pN(logN)2): 2The nearly mat
hing lower bound is: 10



Theorem 7.3 Qunif(MAJ) 2 
(pN).Proof. Let A be a bounded-error quantum algorithm for MAJORITY. It follows from theworst-
ase results of [3℄ that A uses 
(N) queries on the hardest inputs, whi
h are the X withjXj = N=2� 1. Sin
e the uniform distribution puts 
(1=pN) probability on the set of su
h X, theaverage-
ase 
omplexity of A is at least 
(1=pN)
(N) = 
(pN). 2What about the 
lassi
al average-
ase 
omplexity of MAJORITY? Alonso, Reingold, andS
hott [2℄ prove the bound Dunif(MAJ) = 2N=3 � p8N=9� + O(logN) for deterministi
 
lassi-
al 
omputers. We 
an also prove a linear lower bound for the bounded-error 
lassi
al 
omplexity,using the following lemma:Lemma 7.4 Let � 2 f1; : : : ;pNg. Any 
lassi
al bounded-error algorithm that 
omputes MAJOR-ITY on inputs X with jXj 2 fN=2; N=2 +�g must make 
(N) queries on all su
h inputs.Proof. We will prove the lemma for � = pN , whi
h is the hardest 
ase. We assume withoutloss of generality that the algorithm queries its input X at T (X) random positions, and outputs 1if the fra
tion of 1s in its sample is at least (N=2+�)=N = 1=2+1=pN . We do not 
are what thealgorithm outputs otherwise. Consider an input X with jXj = N=2. The algorithm uses T = T (X)queries and should output 0 with probability at least 2=3. Thus the probability of output 1 on Xmust be at most 1=3, in parti
ularPr[ at least T (1=2 + 1=pN) 1s in sample of size T ℄ � 1=3:Sin
e the T queries of the algorithm 
an be viewed as sampling without repla
ement from a set
ontaining N=2 1s and N=2 0s, this error probability is given by the hypergeometri
 distributionPr[ at least T (1=2 + 1=pN) 1s in sample of size T ℄ = TXi=T (1=2+1=pN) N=2i ! �  N=2T � i! NT ! :We 
an approximate the hypergeometri
 distribution using the normal distribution, see e.g. [19℄.Let zk = (2k � T )=pT and �(z) = R z�1 1p2�e�t2=2dt, then the above probability approa
hes�(zT )� �(zT (1=2+1=pN)):Note that �(zT ) = �(pT )! 1 and that �(zT (1=2+1=pN)) = �(2pT=N )! 1=2 if T 2 o(N). Thuswe 
an only avoid having an error probability 
lose to 1/2 by using T 2 
(N) queries on X withjXj = N=2. A similar argument shows that we must also use 
(N) queries if jXj = N=2 +�. 2It now follows that:Theorem 7.5 Runif(MAJ) 2 
(N).Proof. The previous lemma shows that any algorithm for MAJORITY needs 
(N) queries oninputs X with jXj 2 [N=2; N=2 + pN ℄. Sin
e the uniform distribution puts 
(1) probability onthe set of su
h X, the theorem follows. 2A

ordingly, on average a quantum 
omputer 
an 
ompute MAJORITY almost quadrati
allyfaster than a 
lassi
al 
omputer, whereas for the worst-
ase input quantum and 
lassi
al 
omputersare about equally fast (or slow). 11



8 Average-Case Complexity of PARITYFinally we prove some results for the average-
ase 
omplexity of PARITY. This is in many waysthe hardest Boolean fun
tion. Firstly, bsX(f) = N for all X, hen
e by Theorem 6.3:Corollary 8.1 For every �, R�(PARITY) 2 
(N) and Q�(PARITY) 2 
(pN).With high probability we 
an obtain an exa
t 
ount of jXj, using O(p(jXj+ 1)N ) quantumqueries [6℄. Combining this with a � that puts O(1=pN) probability on the set of all X withjXj > 1 and distributes the remaining probability arbitrarily over the X with jXj � 1, we obtaina distribution � su
h that Q�(PARITY) 2 O(pN).We 
an prove Q�(PARITY) � N=6 for any � by the following algorithm: with probability 1=3output 1, with probability 1=3 output 0, and with probability 1=3 run the exa
t quantum algorithmfor PARITY, whi
h has worst-
ase 
omplexity N=2 [3, 13℄. This algorithm has su

ess probability2=3 on every input and has expe
ted number of queries equal to N=6.More than a linear speed-up on average is not possible if � is uniform:Theorem 8.2 Qunif(PARITY) 2 
(N).Proof. Let A be a bounded-error quantum algorithm for PARITY. Let B be an algorithm that
ips ea
h bit of its input X with probability 1=2, re
ords the number b of a
tual bit
ips, runs Aon the 
hanged input Y , and outputs A(Y ) + b mod 2. It is easy to see that B is a bounded-erroralgorithm for PARITY and that it uses an expe
ted number of T �A queries on every input. Usingstandard te
hniques, we 
an turn this into an algorithm for PARITY with worst-
ase O(T �A) queries.Sin
e the worst-
ase lower bound for PARITY is N=2 [3, 13℄, the theorem follows. 2A
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tion 4. (We 
ount binary queriesthis time.) Consider a quantum algorithm that makes at most T queries and that, for every X,outputs either the 
orre
t output f(X) or, with probability � 1=2, outputs \in
on
lusive". We usethe following lemma from [3℄:Lemma A.1 The probability that a T -query quantum algorithm outputs 1 
an be written as amultilinear N -variate polynomial P (X) of degree at most 2T .Consider the polynomial P indu
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h 1-inputsfor f is the number of ways to 
hoose k 2 f0; 1gn �f0ng, times the number of ways to 
hoose 2n=2independent xi 2 f0; 1gn, whi
h is (2n � 1) � (2n)2n=2 < 2n(2n=2+1). A

ordingly, the fra
tion of1-inputs among all 2N inputs X is < 2n(2n=2+1)=2n2n = 2�n(2n=2�1). These X are exa
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e T � d=2 � n(2n=4 � 2) � N=4. Thus we have provedthat the worst-
ase zero-error quantum 
omplexity of f is near-maximal:Theorem A.3 Q0(f) 2 
(N). 14


