A Lower Bound for Quantum Search of an Ordered List

Harry Buhrman* Ronald de Wolf'

June 21, 1999

Abstract

It is known that a quantum computer can search an unordered list of N items using
O(VN) look-ups, which is quadratically faster than any classical algorithm. We examine the
case where the list is ordered, and show that no quantum computer can do with fewer than

Q(v/1log N/loglog N) look-ups.

1 Introduction

Search is a basic operation in computer science and its complexity for classical computers has
been well studied [Knu98]. It is known that a classical randomized algorithm that searches for
some specific item in an unordered list of length N has to query at least N/2 items of the list in
order to have success probability > 2/3. In contrast, a quantum computer can make queries in
superposition and can search such a list using only O(v/N) queries [Gro96]. Tt is known that the
O(V/'N) is optimal [BBBV97, BBHT98, Zal97, BBC*98, Gro98]. If we do not want to allow a small
error probability then even a quantum computer needs N queries [BBC198].

Until recently, not much attention had been paid to the quantum complexity of searching a list
which is ordered according to some key-field of the items. Classically, we can search such a list with
only log N queries using binary search (each query can effectively halve the relevant part of the
list: looking at the key of the middle item of the list tells you whether the item you are searching
for is in the first or the second half of the list); log N is also the classical lower bound, even in
the bounded-error case. How much better can we do on a quantum computer? We show that a
quantum computer cannot improve this much more than a square-root: we prove a lower bound of
Q(v/1og N/ loglog N) queries for bounded-error quantum search in this setting. The proof shows
how searching an ordered list of NV items enables us to retrieve the whole contents of an ordered
list of log N bits. For the latter problem a tight bound is known [BBC'98, FGGS98a, vD98].

Our lower bound was the first for quantum ordered search (it first appeared in [BW98]). It has
recently been improved by means of a different proof technique to (log N)/2loglog N [FGGS98b]
and then to (log N)/12 — O(1) [Amb99]. Thus at most a linear speed-up is possible over classical
computers. Such a linear quantum speed-up is indeed possible: an upper bound of 0.53log N can
be achieved [FGGS99].

2 Definitions

In this section we briefly define the setting of quantum gate networks and queries.

*CWI, P.O. Box 94709, Amsterdam, The Netherlands. E-mail: buhrman@cwi.nl.
tOWI and University of Amsterdam. E-mail: rdewolf@cwi.nl.

A qubit is a superposition a|0) + a1|1) of both values of a classical bit. Similarly, a register of
m qubits is a superposition |¢) of all 2™ classical bitstrings of m bits, written

0= D alk).

ke{0,1}m

Here ay is a complex number, called the amplitude of state |k). The (Euclidean) norm of |¢) is
I'19) [I= /g Jax]?. The (Euclidean) distance between |¢) and |t) is || [¢) — [) ||. We use |0) to
denote the state where all qubits are zero. If b is a bit, b denotes its negation.

If we observe or measure |¢) we will see one and only one |k). The probability of seeing one
specific |k) is given by |ay|2. Hence we must have S kefo,1}m |oag|? = 1. After observing |¢) and
seeing |k), the superposition |¢) has collapsed to |k).

If we do not observe a state, quantum mechanics tells us that it will evolve unitarily. This
means that the vector of amplitudes is transformed according to a linear operator that preserves
norm (so the sum of the amplitudes squared remains 1). A unitary operator U always has an
inverse U~!, which equals its conjugate transpose U*. A quantum gate network working on m
qubits is like a classical circuit working on m classical bits, except that instead of AND, OR, and
NOT-gates we have quantum gates which operate unitarily on one or more qubits. A quantum gate
network transforms an initial state into a final state much in the way a classical circuit transforms
its input into one or more output bits. It is known that operations on one or two qubits at a
time are sufficient to build any unitary transformation [BBC*95]. The most common measure of
complexity of a quantum gate network is the number of elementary quantum gates it contains, but
in this paper we will disregard this and only count the number of queries. We will use the term
‘quantum algorithm’ loosely, to refer to a quantum network or a family of networks for different
input sizes.

We formalize a query on an ordered list as follows, abstracting from the specific contents of
the key field. The list is viewed as a list of N bits, X = (z¢,...,2n_1), and there is an unknown
number 7 such that z; = 1 iff § <4. We call ¢ the step of X. Here z; is the result of a comparison,
indicating whether the jth item on the list has a key-value smaller or equal to the value we are
looking for. The goal is to find the number 7, which is the point in the list where the looked-for
item resides, using as few queries as possible. In quantum network terms, a query corresponds to
a gate that maps

j.b,w) = |4, b® zj,w).

Thus the bit z; is XORed into some specific bit b of the input; w represents the workspace, which
remains unaffected. With some abuse of notation we denote this unitary transformation by X, and
sometimes call it a ‘black-box’.

In terms of linear algebra, a quantum gate network A with T queries can be viewed as follows:
first A applies some unitary operation Uy to the initial state, then it applies X, then it applies
another unitary operation Uy, another X, and so on up till Ur. Thus A corresponds to a unitary
transformation

A=UrXUr_1X... XU XUy.

Without loss of generality we fix the initial state to \6), independent of X. The U; are fixed unitary
transformations independent of X. The final state is thus a superposition A|0) which depends on
X only via the T' query gates.

3 Intuition

Before plunging into the technicalities of the proof let us briefly sketch the main idea, ignoring the
error probabilities for now. Suppose we have a quantum network S that uses T' queries to determine
the step ¢ of any ordered black-box X of N items. For ease of notation we assume N is a power of
2, so log N is an integer.

Suppose also that we are given a black-box Y of log N bits, and we want to determine its
contents. We can use S to do this, as follows. The sequence of bits in Y is the binary representation
of some number i € [0, N — 1]. Define X as the ordered black-box of size N where the step occurs
at position i: z; =1 for j <4 and x; = 0 for j > 7. Running $ on X would give us 4, and hence
Y. Unfortunately we do not have the possibility to query X; we can only query Y.

However, we can simulate an X-query using Y-queries. An X-query is basically a mapping from
a given number j to the bit z;, where z; = 1 iff j <. Both j and 7 are log N-bit numbers, and
the leftmost (= most significant) bit where their binary representations differ determines whether
4 < i. Using Grover’s algorithm we can find this bit using roughly \/log N queries to Y (which
holds i), and hence learn z;. Thus we can simulate an X-query by y/log N Y-queries.

Now if we replace each of the T' X-queries in S by such a simulation, we obtain a network with
roughly T - /log N Y-queries that computes i (and hence the whole Y'). Knowing Y would enable
us for instance to compute the PARITY of Y (i.e. whether the number of 1s in Y is odd), for which
a lower bound of (log N)/2 Y-queries is known [BBCT98, FGGS98a]. Hence roughly

T -vlogN >

and the lower bound on T follows. The following technical sections make this idea precise.

log N
2 3

4 Simulating Queries to an Ordered Black-Box

Our lower bound proof uses three technical lemmas which we prove first. The task of these lemmas
is to show that we can approximately simulate an ordered black-box X with step at ¢, using roughly
Vlog N queries to a black-box Y of log N bits that form the binary representation of i.

Since z; = 1 iff 7 <4, we can simulate an X-query if we are able to determine whether j < ¢
for given j. By a result of Diirr and Hoyer [DH96], there is a bounded-error quantum algorithm
that can find the minimum element of a list of n items using O(y/n) queries. We can use this
to find the leftmost bit where the binary representations of 7 and j differ, using O(v/log N) Y-
queries, thus determining whether 57 < 4. By standard techniques we can get the error probability
down to e = 1/log N by repeating the algorithm O(loglog N) times. We may assume without
loss of generality that this computation does not affect the input 5 and does not use intermediate
measurements. Thus we obtain:

Lemma 1 There exists a quantum algorithm A that makes O(v/log N loglog N) queries to a log N -
bit black-bozx Y, such that if Y represents the number i, then for every j € [0, N — 1] A maps

where z; = 1 if j < i and z; =0 if j > i, |8]*> < e =1/log N, and Vi; and Vi are unit-length
vectors that depend on i and j.

If we want to simulate an X-query, we must make sure that the simulation does not leave
behind used non-zero workspace, since this may destroy interference later on. Thus we must
somehow “clean-up” the vector |Vj;). The second lemma shows how to obtain an approximately
clean computation that uses no measurements (this is by now a standard technique and can be
found for instance in [BBBV97, CDNT98, BCW98]).

Lemma 2 Suppose A is a quantum algorithm that uses T'Y -queries and for every j € [0, N — 1]
maps
19, 0) = alj, ;) |Vij) + Bl 77)[Vi)),
where |8 < e and Vij and V}; have unit length.
Then there exists a quantum algorithm A’ that uses 2T Y -queries and maps

30,0 = 15,6 @ 25, 0) + 15} Wiga),
where || [Wij) |< V2e, for every i,j, and b € {0,1}.

Proof The idea is the familiar “compute, copy answer, uncompute”-sequence. For ease of notation
we assume b follows the workspace 0 instead of preceding it. Thus we can write

Alj,0,b) = alj, ;)| Vij)[b) + Bl7,)| Vi;)|b).
Applying a controlled-not operation which XORs the answer bit into b, we get

alj, z)|Vij)|b @ ;) + B3, 77) Vi) |b @ T5) =

(alds 2} Vig) + B3 DIV) [b @ 25) + B3, T Vi b @ 75) — B3 7)IViy) b @).
Applying A~ @ T gives
1506 @) + (A" @ 1) (813,77 |V)) b & T5) — Bl1, Z7) Vi) b & 25))
Because A and hence also A~! do not change j, this superposition can be written as
15,0,b @ 25) + 1) Wijn),

for some vector |Wjj;;). Now

W) | = 1) Wig) | (1)
= | (A e 1) (857 Vb e) - Bl Vib@) | (2)
= |1 Bl5,75) Vi) b @ T5) — B3, 7)|Vij) b @ z;) | (3)
= \/IB2+|- B2 (4)
< Ve (5)

Here (1) holds because |j) has norm 1. Equality between (2) and (3) holds because A~! ® I is
unitary and hence preserves norm. Equality between (3) and (4) holds because the two vectors
7,77)|Vi;) b @ T;) and |4, T5)|V];)|b @ z;) in (3) have norm 1 and are orthogonal (they differ in the
last bit).

Accordingly, the quantum algorithm A’ which first applies A, then XORs the answer-bit into b,
and then applies A~! satisfies the lemma. O

We have now shown that we can “cleanly” simulate the operation of black-box X on a basis
state |7,b,0). It remains to show that the simulation also works well on superpositions of basis
states. The next lemma proves this, using an idea from [CDNT98].

Lemma 3 Let X and X be unitary transformations such that

X :[5.5,0) = [j.b @ ;,0)
X :17,0,0) = |, b @ x;,0) + [7)| Wijp)

IF | (Wigs) II< & for every i,3,b and |¢) = X 5, b,0) has norm 1, then || X|¢) — X|g) || < ev/2.

Proof
I X|9) = Xlg) | = | ijajbwwm | (6)
= | iaj0|j)|Wij0> + 2 @l Wign) || (7)
< | iaj0|j>|Wz‘j0> | +JH > o) Wign) | (8)

J J
- \/Z aol? | 1) Wigo) 12+ \/Z a2 115 Wign) |2)
J J

< e D legol e [oy (10)
j j
V2

< . (11)

The step from (7) to (8) is the triangle inequality. The step from (8) to (9) holds because the
states |j)[Wiz) in 32 ajplj)|Wijp) are all orthogonal. The last inequality holds because Y, Jovjo| +

Zj\aﬂ\Q:land Va++T—a <2 forallac0,1]. O

5 Lower Bound for Ordered Search

Theorem 1 A bounded-error quantum algorithm for search of an ordered list of N items must use
at least Q(y/log N /loglog N) queries.

Proof Suppose we have a bounded-error network S for search that uses T' queries to find the step
i hidden in an ordered black-box X. Since log N queries are sufficient for this (classical binary
search), we can assume T' < log N. We will show how we can get from S to a network S that
determines the whole contents of an arbitrary black-box Y of log N bits with high probability,
using only T - O(y/log N loglog N) queries to Y. This would allow us to compute the PARITY-
function of Y (i.e. whether or not Y contains odd many 1s) with small error probability. Since we
have a (log N)/2 lower bound for the latter ([BBCT98, Proposition 6.4] and [FGGS98a]), we have

log N
2 ?

T - O(y/log Nloglog N) >

from which the theorem follows.

So let Y be an arbitrary black-box of log N bits. It represents a number i € {0,...,N — 1}.
Let X = (z0,...,2n—1) be the ordered black-box with step at i, so z; = 1 iff j <4. The network
S, when allowed to make queries to X, outputs the number ¢ with high probability. X maps

‘j: ba 6) — |],b@$3,6>

Since z; = 1 iff 7 < 4, Lemmas 1 and 2 imply that there is a quantum network X that uses
O(Vlog N loglog N) queries to Y and maps

19,6,0) — |4,b @ z,0) + 7)) Wigb)s

where || [Wij) [[< n/log N for all i, j, b, for some small fixed 7 of our choice (7 = 0.1 suffices).

Let S be obtained from § by replacing all T X-gates by X-networks. Note that S contains
T - O(y/log N log log N) queries to Y. Consider the way S acts on initial state |0), compared to S.
Each replacement of X by X introduces an error, but each of these errors is at most nv2/log N in
Euclidean norm by Lemma 3. Using the triangle inequality and the unitarity of the transformations
in S and S, it is easy to show that these T errors add at most linearly (see for instance [BBBV97,
p.1515)). Hence the final states after S and S will be close together:

I S10) = S10) |< Tnv2/log N < nv/2.

Since observing the final state $|0) yields the number 4 with high probability, observing S|0) will
also yield ¢ with high probability. Thus the network S allows us to learn ¢ and hence the whole

black-box Y. O
References
[Amb99] A. Ambainis. A better lower bound for quantum algorithms searching an ordered list.

Available at the LANL preprint archive, quant-ph/9902053, 14 Feb 1999.

[BBBVY97] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses
of quantum computing. SIAM Journal on Computing, 26(5):1510-1523, 1997. quant-
ph/9701001.

[BBC'95] A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator,
J. Smolin, and H. Weinfurter. Elementary gates for quantum computation. Physical
Review A, 52:3457-3467, 1995. quant-ph/9503016.

[BBC'98] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by
polynomials. In Proceedings of 39th FOCS, pages 352-361, 1998. quant-ph/9802049.

[BBHT98] M. Boyer, G. Brassard, P. Hgyer, and A. Tapp. Tight bounds on quantum searching.
Fortschritte der Physik, 46(4-5):493-505, 1998. Earlier version in Physcomp’96. quant-
ph/9605034.

[BCW98] H. Buhrman, R. Cleve, and A. Wigderson. Quantum vs. classical communication and
computation (preliminary version). In Proceedings of 30th STOC, pages 63-68, 1998.
quant-ph/9802040.

[BW9S]

[CDNT98]

[DHY6]

[FGGS98al

[FGGS98b)

[FGGS99]

[Gro96]

[Gro98]

[Knu98]

[vD98]

(Zal97]

H. Buhrman and R. de Wolf. Lower bounds for quantum search and derandomization.
quant-ph/9811046, 18 Nov 1998.

R. Cleve, W. van Dam, M. Nielsen, and A. Tapp. Quantum entanglement and the
communication complexity of the inner product function. In Proceedings of 1st NASA
QCQC conference, volume 1509 of Lecture Notes in Computer Science. Springer, 1998.
quant-ph/9708019.

C. Diirr and P. Hgyer. A quantum algorithm for finding the minimum. quant-
ph/9607014, 18 Jul 1996.

E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. A limit on the speed of quantum
computation in determining parity. quant-ph/9802045, 16 Feb 1998.

E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. A limit on the speed of quantum
computation for insertion into an ordered list. quant-ph/9812057, 18 Dec 1998.

E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. Invariant quantum algorithms for
insertion into an ordered list. quant-ph/9901059, 19 Jan 1999.

L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of 28th STOC, pages 212-219, 1996. quant-ph/9605043.

L. K. Grover. How fast can a quantum computer search? quant-ph/9809029, 10 Sep
1998.

D. E. Knuth. The Art of Computer Programming. Volume 3: Sorting and Searching.
Addison-Wesley, second edition, 1998.

W. van Dam. Quantum oracle interrogation: Getting all information for almost half
the price. In Proceedings of 39th FOCS, pages 362-367, 1998. quant-ph/9805006.

Ch. Zalka. Grover’s quantum searching algorithm is optimal. quant-ph/9711070, 26
Nov 1997.

