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Abstract

We study to what extent quantum algorithms can speed up solving convex optimization
problems. Following the classical literature we assume access to a convex set via various ora-
cles, and we examine the efficiency of reductions between the different oracles. In particular,
we show how a separation oracle can be implemented using Õ(1) quantum queries to a mem-
bership oracle, which is an exponential quantum speed-up over the Ω(n) membership queries
that are needed classically. We show that a quantum computer can very efficiently compute an
approximate subgradient of a convex Lipschitz function. Combining this with a simplification of
recent classical work of Lee, Sidford, and Vempala gives our efficient separation oracle. This in
turn implies, via a known algorithm, that Õ(n) quantum queries to a membership oracle suffice
to implement an optimization oracle (the best known classical upper bound on the number of
membership queries is quadratic). We also prove several lower bounds: Ω(

√
n) quantum sepa-

ration (or membership) queries are needed for optimization if the algorithm knows an interior
point of the convex set, and Ω(n) quantum separation queries are needed if it does not.
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1 Introduction

Optimization is a fundamental problem in mathematics and computer science, with many real-
world applications. As people try to solve larger and larger optimization problems, the efficiency of
optimization becomes more and more important, motivating us to find the best possible algorithms.
Recent experimental progress on building quantum computers draws attention to new approaches to
the problem: can we solve optimization problems more efficiently by exploiting quantum effects such
as superposition, interference, and entanglement? For many discrete optimization problems [Gro96,
DH96, Szeg04, DHHM06, AŠ06] significant speed-ups have been shown, but less is known about
continuous optimization problems.

One of the most successful continuous optimization paradigms is convex optimization, which
optimizes a convex function over a convex set that is given explicitly (by a set of constraints)
or implicitly (by an oracle). See Bubeck [Bub15] for a recent survey. Quantum algorithms for
convex optimization have been considered before. In 2008, Jordan [Jor08] described a faster quan-
tum algorithm for minimizing quadratic functions. Recently, for an important class of convex
optimization problems (semidefinite optimization) quantum speed-ups were achieved using algo-
rithms whose runtime scales polynomially with the desired precision and some geometric param-
eters [BS17, vAGGdW17, BKL+19, vAG19]. However, many convex optimization problems can
be solved classically using algorithms whose runtime scales logarithmically with the desired preci-
sion and the relevant geometric parameters. We are aware of only one quantum speed-up which
is partially in this regime, namely the very recent quantum interior point method of Kerenidis
and Prakash [KP18]. In this paper we look at general convex optimization problems, considering
algorithms that have such favorable logarithmic scaling with the precision.

The generic problem in convex optimization is minimizing a convex function f : K → R∪{∞},
where K ⊆ Rn is a convex set. We consider the setting where an interior point x0 ∈ int(K) is given
and radii r,R > 0 are known such that B(x0, r) ⊆ K ⊆ B(x0, R), where B(x0, r) is the Euclidean
ball of radius r centered at x0.

It is well-known that if the convex function is bounded on K, then we can equivalently consider
the problem of minimizing a linear function over a different convex set K ′ ⊆ Rn+1, namely the
epigraph K ′ = {(x, µ) : x ∈ K, f(x) ≥ µ} of f . Accessing K ′ is easy given access to K and f ,
and the parameters involved will be similar. Conversely, for any linear optimization problem over
an unknown convex set K, there is an equivalent optimization problem over a known convex set
(say, the ball), with an unknown bounded convex objective function f that can be evaluated easily
given access to K. From now on we therefore focus on optimizing a known linear function over an
unknown convex set.

We consider the setting where access to the convex set is given only in a black-box manner,
through an oracle. The five basic problems (oracles) in convex optimization identified by Grötschel,
Lovász, and Schrijver [GLS88] are: membership, separation, optimization, violation, and validity
(see Section 2 for the definitions). They showed that all five basic problems are polynomial-time
equivalent. That is, given an oracle O for one of these problems, one can implement an oracle for
any of the other problems using a polynomial number of calls to O and polynomially many other
elementary operations. Subsequent work made these polynomial-time reductions more efficient,
reducing the degree of the polynomials. Recently Lee et al. [LSV18], in the classical setting,
showed that with Õ

(
n2
)

calls1 to a membership oracle (and Õ
(
n3
)

other elementary arithmetic

1Here, and in the rest of the paper, the notation Õ(·) is used to hide polylogarithmic factors in n, r,R, ε.
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operations) one can solve an optimization problem. They did so by showing that Õ(n) calls to a
membership oracle suffice to do separation, and then composing this with the known fact [LSW15]
(see also [LSV18, Theorem 15]) that Õ(n) calls to a separation oracle suffice for optimization.

Our main result (Section 4) shows that on a quantum computer, Õ(1) calls to a membership
oracle suffice to implement a separation oracle, and hence (by the known classical reduction from
optimization to separation) Õ(n) calls to a membership oracle suffice for optimization.2 Lee et
al. [LSV18] use a geometric idea to reduce separation to finding an approximate subgradient of a
convex Lipschitz function. They then show that Õ(n) evaluations of a convex Lipschitz function
suffice to get an approximate subgradient. Our contributions here are twofold (Section 3 and 4).
We use the same geometric idea, but we provide a simpler way to compute an approximate sub-
gradient of a convex Lipschitz function (Section 3). We point out that this new algorithm is purely
classical. Besides being simpler, the main advantage of our algorithm is that it is suitable for a
quantum speed-up using known quantum algorithms (Jordan’s algorithm) for computing approxi-
mate (sub)gradients [Jor05, GAW19], which we show in Section 4. To show our quantum speed-up,
we have to extend Jordan’s quantum algorithm for gradient-computation to the case of convex
Lipschitz functions.

As a second set of results, in Section 5 we provide lower bounds on the number of membership or
separation queries needed to implement several other oracles. We show that our quantum reduction
from separation to membership indeed improves over the best possible classical reduction: Ω(n)
classical membership queries are needed to do separation.3 We only have partial results regarding
the optimality of the reduction from optimization to separation. In the setting where we are not
given an interior point of the set K, we can prove an essentially optimal Ω(n) lower bound on the
number of quantum queries to a separation oracle needed to do optimization, using the general
adversary bound. This lower bound implies that a quantum computer offers no query speed-up
over a classical computer for the task of finding an interior point.

However, for the case of quantum algorithms that do know an interior point, we are only able
to prove an Ω(

√
n) lower bound. In the classical setting, regardless of whether or not we know

an interior point, the reduction uses Θ̃(n) queries. This raises the interesting question of whether
knowing an interior point can lead to a better quantum algorithm. We therefore view closing the
gap between upper and lower bound as an important direction for future work.

Finally, we briefly mention (Section 6) how to obtain upper and lower bounds for some of
the other oracle reductions, using a convex polarity argument. As we show, in the setting where
we are given an interior point, the relation between membership and separation is analogous to
the relation between validity and optimization. In particular, our better quantum algorithm for
separation using membership queries implies that on a quantum computer Õ(1) queries to a validity
oracle suffice to implement an optimization oracle. That is, on a quantum computer, finding the
optimal value is equivalent to finding an optimizer. Also, the same polarity argument shows that

2Although not stated explicitly in our results, we also use Õ
(
n3
)

additional operations for optimization using

membership, like [LSV18]. This is because our quantum algorithm for separation uses only Õ(n) gates in addition to

the Õ(1) membership queries, and we use the same reduction from optimization to separation as [LSV18]. If queries
themselves have significant time complexity, then our algorithm does lead to a speedup in time complexity over the
best known classical algorithm. For example, if each membership query takes time Õ

(
n2
)

to implement, then our

quantum algorithm for optimization has time complexity Õ
(
n3
)
, while the classical algorithm will use time Õ

(
n4
)

because it uses Õ
(
n2
)

membership queries.
3We are not aware of an existing proof of this classical lower bound, but it may well be somewhere in the vast

literature on convex optimization.
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algorithms for optimization using separation are essentially equivalent to algorithms for separation
using optimization. In particular, this turns our lower bound on the number of separation queries
needed to implement an optimization oracle into a lower bound on the reverse direction.

MEM(K) SEP(K) OPT(K) VAL(K)

Classical:

Θ̃(n)

Θ(1)

Θ̃(n)

Θ̃(n)

Θ(1)

Θ̃(n)

MEM(K) SEP(K) OPT(K) VAL(K)

Quantum:

Θ̃(1)Θ̃(1)Θ̃(1)

Θ(1)

Õ(n)
Ω(n)∗Ω(n)∗Ω(n)∗

Ω(
√
n)Ω(
√
n)Ω(
√
n)

Õ(n)

Θ(1)

Θ̃(1)Θ̃(1)Θ̃(1)

Figure 1: The top and bottom diagram illustrate the relations between the basic (weak) oracles
for respectively classical and quantum queries, with boldface entries marking our new results. All
upper and lower bounds hold in the setting where we know an interior point of K, except the
∗-marked Ω(n) lower bound on the number of separation queries needed for optimization. Notice
the central symmetry of the diagrams, which is a consequence of polarity.

Figure 1 gives an informal presentation of our results; the upper bounds arise from oracle
reductions, the (change in) accuracy is ignored here for simplicity. The above-mentioned polarity
manifests itself in the central symmetry of the figure.

Related independent work. In independent simultaneous work, Chakrabarti, Childs, Li, and
Wu [CCLW18] discovered a similar upper bound as ours: combining the recent classical work of
Lee et al. [LSV18] with a quantum algorithm for computing gradients, they show how to implement
an optimization oracle via Õ(n) quantum queries to a membership oracle and to an oracle for the
objective function. Their proof stays quite close to [LSV18] while ours first simplifies some of the
technical lemmas of [LSV18], giving us a slightly simpler presentation and a better error-dependence
of the resulting algorithm.

2 Preliminaries

We use [n] := {1, 2, . . . , n}. For p ≥ 1, ε ≥ 0, and a set C ⊆ Rn we let

Bp(C, ε) = {x ∈ Rn : ∃y ∈ C such that ||x− y||p ≤ ε}

be the set of points of distance at most ε from C in the `p-norm. When C = {x} is a singleton set
we abuse notation and write Bp(x, ε). We overload notation by setting

Bp(C,−ε) = {x ∈ Rn : Bp(x, ε) ⊆ C}.

Whenever p is omitted it is assumed that p = 2.
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Recall that a function f : C → R is Lipschitz if there exists a constant L > 0 such that∣∣f(y′)− f(y)
∣∣ ≤ L∥∥y′ − y∥∥

2
for all y, y′ ∈ C.

We write that f is L-Lipschitz. The inner product between vectors v, w ∈ Rn is 〈v, w〉 = vTw.

Definition 1 (Subgradient). Let C ⊆ Rn be convex and let x be an element of the interior of C.
For a convex function f : C → R we denote by ∂f(x) the set of subgradients of f at x, i.e., those
vectors g satisfying

f(y) ≥ f(x) + 〈g, y − x〉 for all y ∈ C.

Note that in the above definition ∂f(x) 6= ∅ due to convexity.
If f : C → R is L-Lipschitz, then for any x in the interior of C and any g ∈ ∂f(x) we have

‖g‖ ≤ L, as follows. Consider a y ∈ C such that y − x = αg for some α > 0. Then since g is a
subgradient of f at x we have

α‖g‖2 = 〈g, y − x〉 ≤ f(y)− f(x) ≤ L‖y − x‖ = αL‖g‖, (1)

and therefore ‖g‖ ≤ L.
We will assume familiarity with quantum computing [NC00]. In particular, a standard quantum

oracle corresponds to a unitary transformation that acts on two (finite-dimensional) registers, where
the first register contains the query and the answer is added to the second register. For example,
a function evaluation oracle for f : X → Y would map |x, 0〉 to |x, f(x)〉, where |x〉 and |f(x)〉 are
basis states corresponding to binary representations of x and f(x) respectively. Unlike classical
algorithms, quantum computers can apply such an oracle to a superposition of different y’s. They
are also allowed to apply the inverse of a unitary oracle.

The standard quantum oracle described above models problems where there is a single correct
answer to a query. When there are multiple good answers (for instance, different good approxi-
mations to the correct value) and the oracle is only required to give a correct answer with high
probability, then we will work with the more liberal notion of relational quantum oracles.

Definition 2 (Relational quantum oracle). Let F : X → P(Y ) be a function, such that for each
x ∈ X the subset F(x) ⊆ Y is the set of valid answers to an x query. A relational quantum oracle
for F which answers queries with success probability ≥ 1− ρ, is a unitary that for all x ∈ X maps

U : |x, 0, 0〉 7→
∑
y∈Y

αx,y|x, y, ψx,y〉,

where |ψx,y〉 denotes some normalized quantum state and
∑

y∈F(x) |αx,y|2 ≥ 1− ρ. Thus measuring
the second register of U |x, 0, 0〉 gives a valid answer to the x query with probability at least 1− ρ.

This definition is very natural for cases where the oracle is implemented by a quantum algorithm
that produces a valid answer with probability ≥ 1− ρ.

2.1 Oracles for convex sets

The five basic oracles for a convex set K that we consider are as follows (in comparison with the
original [GLS88], we allow some error probability ρ in these oracles as in [LSV18]).
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Definition 3 (Membership oracle MEMε,ρ(K)). Queried with a vector y ∈ Rn, the oracle, with
success probability ≥ 1− ρ, correctly asserts one of the following

• y ∈ B(K, ε), or

• y 6∈ B(K,−ε).

Definition 4 (Separation oracle SEPε,ρ(K)). Queried with a vector y ∈ Rn, the oracle, with success
probability at least ≥ 1− ρ, correctly asserts one of the following

• y ∈ B(K, ε), or

• y 6∈ B(K,−ε),

and in the second case it returns a unit vector g ∈ Rn such that 〈g, x〉 ≤ 〈g, y〉 + ε for all x ∈
B(K,−ε).

Definition 5 (Optimization oracle OPTε,ρ(K)). Queried with a unit vector c ∈ Rn, the oracle,
with probability ≥ 1− ρ, does one of the following:

• it returns a vector y ∈ Rn such that y ∈ B(K, ε) and 〈c, x〉 ≤ 〈c, y〉+ ε for all x ∈ B(K,−ε),

• or it correctly asserts that B(K,−ε) is empty.

Note that the above optimization oracle corresponds to maximizing a linear function over a convex
set; we could equally well state it for minimization.

Definition 6 (Violation oracle VIOLε,ρ(K)). Queried with a unit vector c ∈ Rn and a real num-
ber γ, the oracle, with probability ≥ 1− ρ, does one of the following:

• it asserts that 〈c, x〉 ≤ γ + ε for all x ∈ B(K,−ε),

• or it finds a vector y ∈ B(K, ε) such that 〈c, y〉 ≥ γ − ε.

Definition 7 (Validity oracle VALε,ρ(K)). Queried with a unit vector c ∈ Rn and a real number γ,
the oracle, with probability ≥ 1− ρ, does one of the following:

• it asserts that 〈c, x〉 ≤ γ + ε for all x ∈ B(K,−ε),

• or it asserts that 〈c, y〉 ≥ γ − ε for some y ∈ B(K, ε).

If in the above definitions both ε and ρ are equal to 0, then we call the oracle strong. If either is
non-zero then we sometimes call it weak.

When we discuss membership queries, we will always assume that we are given a small ball which
lies inside the convex set. It is easy to see that without such a small ball one cannot obtain an
optimization oracle using only poly(n) classical queries to a membership oracle (see, e.g., [GLS88,
Sec. 4.1] or the example below). As the following example shows, the same holds for quantum
queries. We will use a reduction from a version of the well-studied search problem:

Given z ∈ {0, 1}N such that |z| = 1, find b ∈ [N ] such that zb = 1.

It is not hard to see that if the access to z is given via classical queries i 7→ zi, then Ω(N) queries
are needed. It is well known [BBBV97] that if we allow quantum queries, i.e., applications of the
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unitary |i〉|b〉 7→ |i〉|zi ⊕ b〉, then Ω(
√
N) queries are needed. Now let N = 2n and consider an

input z ∈ {0, 1}N to the search problem. Let b ∈ {0, 1}n be the index such that zb = 1. Consider
maximizing the linear function 〈e, z〉 (where e is the all-1 vector) over the set Kz =×n

i=1[bi−1/2, bi].
Clearly the optimal solution to this convex optimization problem, even with a small constant
additive error in the answer, gives the solution to the search problem. However, a membership
query is essentially equivalent to querying a bit of z and therefore Ω(

√
N) = Ω(2n/2) quantum

queries to the membership oracle are needed for optimization.

3 Computing approximate subgradients of convex Lipschitz func-
tions

Here we show how to compute an approximate subgradient (at 0) of a convex Lipschitz function.
That is, given a convex set C such that 0 ∈ int(C) and a convex function f : C → R, we show how
to compute a vector g̃ ∈ Rn such that f(y) ≥ f(0)+ 〈g̃, y〉−a‖y‖− b for some real numbers a, b > 0
that will be defined later (see Lemma 12 and Lemma 18). The idea of the classical algorithm given
in the next section is to pick a point z ∈ B∞(0, r1) uniformly at random and use the finite difference
∇(r2)f(z) (defined below) as an approximate subgradient of f at 0; the radii r1 and r2 need to be
chosen small to make the approximation good. This results in a slightly simplified version of the
algorithm of Lee et al. [LSV18]. In Section 3.2 we show how to improve on this classical algorithm
on a quantum computer.

3.1 Classical approach

Definition 8 (Finite difference gradient approximation). For a function f : C → R, and a point

x ∈ Rn such that B1(x, r) ⊆ C, and i ∈ [n], we define ∇(r)
i f(x) := f(x+rei)−f(x−rei)

2r , where
ei ∈ {0, 1}n is the vector that has a 1 only in its ith coordinate. Similarly we define

∇(r)f(x) :=
(
∇(r)

1 f(x),∇(r)
2 f(x), . . . ,∇(r)

n f(x)
)
.

Definition 9 (Finite difference Laplace approximation). For a function f : C → R, and a point

x ∈ Rn such that B1(x, r) ⊆ C, and i ∈ [n], we define ∆
(r)
i f(x) := f(x+rei)−2f(x)+f(x−rei)

r2
. Similarly

∆(r)f(x) :=
n∑
i=1

∆
(r)
i f(x).

Note that for a convex function we have ∆
(r)
i f(x) ≥ 0 for all x such that B1(x, r) ⊆ C.

The next two lemmas will be needed in the proof of the main result of this section, Lemma 12.
In Lemma 10 we give an upper bound on the deviation

∥∥g −∇(r2)f(z)
∥∥

1
of a finite difference

gradient approximation ∇(r2)f(z) from an actual subgradient g at the point z, in terms of the finite
difference Laplace approximation ∆(r2)f(z). Then, in Lemma 11 we show that in expectation, the
finite difference Laplace approximation is small. Together with Markov’s inequality this gives us
good control over the quality of a finite difference gradient approximation.

Lemma 10. If r2 > 0, z ∈ Rn, and f : B1(z, r2)→ R is convex, then

sup
g∈∂f(z)

∥∥∥g −∇(r2)f(z)
∥∥∥

1
≤ r2∆(r2)f(z)

2
.
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Proof. Fix a g ∈ ∂f(z). For every i ∈ [n], we have f(z+ r2ei) ≥ f(z) + 〈g, r2ei〉 = f(z) + r2gi, and,
similarly, f(z − r2ei) ≥ f(z)− r2gi. Rearranging gives

f(z)− f(z − r2ei)

r2︸ ︷︷ ︸
:=A

≤ gi ≤
f(z + r2ei)− f(z)

r2︸ ︷︷ ︸
:=B

.

Note that |gi − A+B
2 | ≤

B−A
2 for any three real numbers A ≤ gi ≤ B. Moreover, A+B

2 = ∇(r2)
i f(z)

and B − A = r2∆
(r2)
i f(z), thus

∣∣∣gi −∇(r2)
i f(z)

∣∣∣ ≤ r2∆
(r2)
i f(z)
2 . Now we can finish the proof by

summing this inequality over all i ∈ [n].

Lemma 11. If 0 < r2 ≤ r1, and f : B∞(x, r1 + r2)→ R is convex and L-Lipschitz, then

E
z∈B∞(x,r1)

∆(r2)f(z) ≤ nL

r1
.

Proof. Below we show that E
z∈B∞(x,r1)

∆
(r2)
i f(z) ≤ L

r1
for all i ∈ [n], and then sum over i.

E
z∈B∞(x,r1)

∆
(r2)
i f(z) =

1

(2r1)n

∫
z∈B∞(x,r1)

f(z + r2ei)− 2f(z) + f(z − r2ei)

r2
2

dz

=
1

(2r1)n

∫
zj∈[xj−r1,xj+r1],

j∈[n],j 6=i

∫
zi∈[xi−r1,xi+r1]

f(z + r2ei)− 2f(z) + f(z − r2ei)

r2
2

dz

=
1

(2r1)n

∫
zj∈[xj−r1,xj+r1],

j∈[n],j 6=i

(∫
zi∈[xi−r1,xi−r1+r2]

f(z + r2ei)− f(z)

r2
2

dz

+

∫
zi∈[xi+r1−r2,xi+r1]

−f(z) + f(z − r2ei)

r2
2

dz
)

≤ 1

(2r1)n

∫
zj∈[xj−r1,xj+r1],

j∈[n],j 6=i

2Ldz =
L

r1
.

Note that the above lemma is stated and proved for continuous random variables, but the same
proof holds if we have a uniform hypergrid over the same hypercube, providing a discrete version
of the above result. In the discrete case, in order to get the same cancellations we need to assume
that both r1 and r2 are integer multiples of the grid spacing.

We are now ready to prove the main result of this section. Informally, the next lemma proves
that an approximate subgradient of a convex Lipschitz function f at 0 can be obtained by an
algorithm that outputs ∇(r2)f̃(z) for a random z close enough to 0, where f̃ is an approximate
version of f . In other words, this lemma gives us a classical algorithm to compute an approximate
subgradient of f using 2n classical queries to an approximate version of f .

Lemma 12. Let r1 > 0, L > 0, ρ ∈ (0, 1/3], δ ∈ (0, r1
√
nL/ρ], then r2 :=

√
δr1ρ√
nL
≤ r1. Suppose

f : C → R is a convex function that is L-Lipschitz on B∞(0, 2r1), and f̃ : B∞(0, 2r1)→ R is such

that
∥∥∥f̃ − f∥∥∥

∞
≤ δ. Then for a uniformly random z ∈ B∞(0, r1), with probability at least 1− ρ

f(y) ≥ f(0) +
〈
∇(r2)f̃(z), y

〉
− 3n

3
4

2

√
δL

ρr1
‖y‖ − 2L

√
nr1 for all y ∈ C.
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Proof. Let z ∈ B∞(0, r1) and g ∈ ∂f(z). Recall ‖g‖ ≤ L by Equation (1). Then for all y ∈ C

f(y) ≥ f(z) + 〈g, y − z〉

= f(z) + 〈g, y − z〉+
(〈
∇(r2)f(z), y

〉
−
〈
∇(r2)f(z), y

〉)
+ (f(0)− f(0))

= f(0) +
〈
∇(r2)f(z), y

〉
+ 〈g −∇(r2)f(z), y〉+ (f(z)− f(0)) + 〈g,−z〉

≥ f(0) +
〈
∇(r2)f(z), y

〉
−
∥∥∥g −∇(r2)f(z)

∥∥∥
1
‖y‖∞ − L‖z‖ − ‖g‖‖z‖

≥ f(0) +
〈
∇(r2)f(z), y

〉
−
∥∥∥g −∇(r2)f(z)

∥∥∥
1
‖y‖∞ − L

√
nr1 − L

√
nr1

≥ f(0) +
〈
∇(r2)f̃(z), y

〉
− δ
√
n

r2
‖y‖ −

∥∥∥g −∇(r2)f(z)
∥∥∥

1
‖y‖∞ − 2L

√
nr1.

Note that in the last line we switched from f to f̃ , using that ∇(r2)f(z) and ∇(r2)f̃(z) differ by at

most δ/r2 in each coordinate. Our choice of r2 gives δ
√
n

r2
= n

3
4

√
δL
ρr1

and by Lemma 10–11 we have

E
z∈B∞(x,r1)

∥∥∥g −∇(r2)f(z)
∥∥∥

1
≤ nLr2

2r1
=
n

3
4

2

√
δLρ

r1
.

By Markov’s inequality we get that
∥∥g −∇(r2)f(z)

∥∥
1
≤ n

3
4

2

√
δL
ρr1

with probability ≥ 1− ρ over the

choice of z. Plugging this bound on
∥∥g −∇(r2)f(z)

∥∥
1

into the above lower bound on f(y) concludes
the proof of the lemma.

3.2 Quantum improvements

In this section we show how to improve subgradient computation of convex functions via Jordan’s
quantum algorithm for gradient computation [Jor05]. We use the formulation given by Gilyén et
al. [GAW19, Lemma 20], for which we first introduce the following definition.

Definition 13 (Hyper-grid). For k ∈ N we define the following discretization of the interval
(−1/2, 1/2):

Gk :=

{
j

2k
− 1

2
+ 2−k−1 : j ∈ {0, . . . , 2k − 1}

}
⊂ (−1/2, 1/2).

Similarly we define the n-dimensional hyper-grid Gnk :=×[n]Gk.

Note that an element of Gnk can be represented using n× k (qu)bits. Basically, Jordan’s algorithm
just sets up a uniform superposition over all grid points, applies a “phase query” to f , and then a
quantum Fourier transform over each coordinate.

Lemma 14. (Jordan’s quantum gradient computation algorithm [GAW19, Lemma 20])
Let m ∈ N, c ∈ R and g ∈ Rn such that ‖g‖∞ ≤ 1/3. If h : Gnm → R is such that

|h(x)− 〈g, x〉 − c| ≤ 2−m

42π
, (2)

for 99.9% of the points x ∈ Gnm, then using a single query to a phase oracle O: |x〉 7→ e2πi2mh(x)|x〉
Jordan’s gradient computation algorithm outputs a vector v ∈ Rn such that:

Pr
[
|vi − gi| >22−m] ≤ 1/3 for every i ∈ [n].
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We now show that the above algorithm allows us to compute an approximate subgradient of
a function f , even if we are only given standard oracle access to a function f̃ which is sufficiently
close to f . In particular, we will assume we are given access to a standard unitary oracle of a
function f̃ : Gnm → R which satisfies |f̃(x) − f(x)| ≤ δ for all x ∈ Gnm. That is, we assume we are
given access to a unitary U acting as

U : |x〉|0〉 7→ |x〉|f̃(x)〉 (3)

Note that if we can classically efficiently evaluate f̃ , then it is well known that we can construct
such a unitary as a small quantum circuit (see [NC00, Sec. 1.4.1]).

The main idea is that, using one application of U , a phase gate corresponding to the output
register, and another application of U † to uncompute the function value, we can implement a phase
oracle for f̃ . Moreover, Equation (4) below will also hold for f̃ , with a slightly worse right-hand
side, since f is close to f̃ . A version of the following is proven in [GAW19, Theorem 21], for
completeness we sketch a proof.

Corollary 15 (Gradient computation using approximate function evaluation). Let δ,B, r, c ∈ R,
ρ ∈ (0, 1/3]. Let x0, g ∈ Rn with ‖g‖∞ ≤

B
r . Let m :=

⌈
log2

(
B

28πδ

)⌉
and suppose f : (x0 + rGnm)→

R is such that
|f(x0 + rx)− 〈g, rx〉 − c| ≤ δ (4)

for 99.9% of the points x ∈ Gnm, and we have access to a standard unitary oracle U , providing
O
(
log
(
B
δ

))
-bit fixed-point binary approximations f̃(z) s.t. |f̃(z)− f(z)| ≤ δ for all z ∈ (x0 + rGnm).

Then we can compute a vector g̃ ∈ Rn such that

Pr

[
‖g̃ − g‖∞ >

8 · 42πδ

r

]
≤ ρ,

with O
(
log
(
n
ρ

))
queries to U and U † and with gate complexity O

(
n log

(
n
ρ

)
log
(
B
δ

)
loglog

(
n
ρ

)
loglog

(
B
δ

))
.

Proof. As described above the corollary, we first implement a phase oracle for f̃ and then we apply
Jordan’s gradient computation algorithm (Lemma 14).

With a single query to U and its inverse we can implement a phase oracle O that acts as

O : |x〉 7→ e2πi M
3B
f̃(x0+rx)|x〉, where M := 3B

84πδ , and4 m := log2(M). Let h(x) := f̃(x0+rx)
3B , then

by (4) 99.9% of the points x ∈ Gnm satisfy
∣∣h(x)−

〈
r

3B g, x
〉
− c

3B

∣∣ ≤ 2δ
3B = 1

42πM . Since
∥∥ r

3B g
∥∥
∞ ≤

1
3 ,

by Lemma 14 we can compute a vector v ∈ Rn which is a coordinatewise 4
M -approximator of r

3B g:

for each i ∈ [n] we have
∣∣gi − 3B

r vi
∣∣ ≤ 12B

rM = 8·42πδ
r with probability at least 2

3 .
Note that the above success probability is per coordinate of g. However, repeating the whole

procedure O
(
log(nρ )

)
times and taking the median of the resulting vectors coordinatewise gives a

gradient approximator g̃ with the desired approximation quality with probability at least 1 − ρ.
For the proof of the gate complexity we refer5 to [GAW19, Theorem 21] where the complexity of
Jordan’s algorithm is analyzed in detail.

4We can assume without loss of generality that the upper bound B is such that M is a power of two.
5The correspondence with the parametrization of [GAW19, Theorem 21] is ε↔ 8·42πδ

r
, M ↔ B

r
.
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Remark. With essentially the same approach, the above corollary of Jordan’s quantum gradient
computation algorithm can also be proven in the setting where our access to an approximation of
f is not given by a standard quantum oracle but by a relational quantum oracle, see Appendix A
for both the definition of this type of approximation to f and a proof of this corollary.

In terms of applications, we want to point out that if the membership oracle used in Section 4
comes from a deterministic algorithm, then we get a standard quantum oracle. Only when the
membership oracle itself is relational (for example, when it is itself computed by a bounded-error
quantum algorithm) do we need the more general setting of Appendix A.

In order to apply the above corollary, we need to find some function which is sufficiently close to
linear. Fortunately, convex Lipschitz functions can be very well approximated by linear functions
over most small-enough regions. Similarly to the classical case (Lemma 12) we make this claim
quantitative using Lemma 11. In order to apply the more efficient quantum gradient computation
of Corollary 15 we also need the following two lemmas to ensure that Equation (4) holds.

Lemma 16. Let S ⊆ Rn be such that S = −S, and let conv(S) denote the convex hull of S. If
f : conv(S)→ R is a convex function, f(0) = 0, and |f(s)| ≤ δ for all s ∈ S, then

|f(s′)| ≤ δ for all s′ ∈ conv(S).

Proof. Since f is convex and f(s) ≤ δ for all s ∈ S we immediately get that f(s′) ≤ δ for all s′ ∈
conv(S). Because f(0) = 0 and S = −S, due to convexity we get that f(s′) ≥ −f(−s′) ≥ −δ.

Lemma 17. If r2 > 0, z ∈ Rn and f : B1(z, r2)→ R is convex, then

sup
y∈B1(0,r2)

∣∣∣f(z + y)− f(z)−
〈
y,∇(r2)f(z)

〉∣∣∣ ≤ r2
2∆(r2)f(z)

2
.

Proof. Let d(y) := f(z + y) − f(z) −
〈
y,∇(r2)f(z)

〉
be the difference between f(z + y) and its

linear approximator. Let S := {±r2ei : i ∈ [n]}. It is easy to see that d(0) = 0, S = −S, and
conv(S) = B1(0, r2). Also, for all s ∈ S we have |d(s)| ≤ r2

2∆(r2)f(z)/2:

d(±r2ei) = f(z ± r2ei)− f(z)−
〈
±r2ei,∇(r2)f(z)

〉
= f(z ± r2ei)− f(z)∓ r2∇(r2)

i f(z)

= f(z ± r2ei)− f(z)∓ f(z + r2ei)− f(z − r2ei)

2

=
f(z + r2ei)− 2f(z) + f(z − r2ei)

2

= r2
2∆

(r2)
i f(z)/2 ≤ r2

2∆(r2)f(z)/2.

Therefore Lemma 16 implies that supy∈B1(0,r2) |d(y)| ≤ r2
2∆(r2)f(z)/2.

We can now state the main result of this section, the quantum analogue of Lemma 12.

Lemma 18. Let r1 > 0, L > 0, ρ ∈ (0, 1/3], and suppose δ ∈ (0, r1nL/ρ], then r2 :=
√

δr1ρ
nL ≤ r1.

Suppose f : C → R is a convex function that is L-Lipschitz on B∞(0, 2r1), and we have quantum

10



query access6 to f̃ , which is a δ-approximate version of f , via a unitary U over a (fine-enough)
hypergrid of B∞(0, 2r1). Then we can compute a g̃ ∈ Rn using O(log(n/ρ)) queries to U , such that
with probability ≥ 1− ρ, we have

f(y) ≥ f(0) + 〈g̃, y〉 − (23n)2

√
δL

ρr1
‖y‖ − 2L

√
nr1 for all y ∈ C.

Proof. The quantum algorithm works roughly as follows. It first picks a uniformly7 random z ∈
B∞(0, r1). Then it uses Jordan’s quantum algorithm to compute an approximate gradient at z by
approximately evaluating f in superposition over a discrete hypergrid of B∞(z, r2/n). This then
yields an approximate subgradient of f at 0.

We now work out this rough idea. Since B∞(z, r2/n) ⊆ B1(z, r2), Lemma 17 implies

sup
y∈B∞(0,r2/n)

∣∣∣f(z + y)− f(z)−
〈
y,∇(r2)f(z)

〉∣∣∣ ≤ r2
2∆(r2)f(z)

2
. (5)

Also as shown by Lemma 11 and Markov’s inequality we have

∆(r2)f(z) ≤ 2nL

ρr1
(6)

with probability ≥ 1− ρ/2 over the choice of z. If z is such that Equation (6) holds, then we get

sup
y∈B∞(0,r2/n)

∣∣∣f(z + y)− f(z)−
〈
y,∇(r2)f(z)

〉∣∣∣ ≤ nLr2
2

ρr1
= δ.

Now apply the quantum algorithm of Corollary 15 with r = 2r2/n, c = f(z), g = ∇(r2)f(z),
and B = Lr. This uses O(log(n/ρ)) queries to U , and with probability ≥ 1 − ρ/2 computes an
approximate gradient g̃ such that∥∥∥∇(r2)f(z)− g̃

∥∥∥
∞
≤ 8 · 42πn

2r2
· δ = 4 · 42 · π

√
δn3L

ρr1
. (7)

Also, if z is such that Equation (6) holds, then by Lemma 10 we get that

sup
g∈∂f(z)

∥∥∥∇(r2)f(z)− g
∥∥∥

1
≤ r2∆(r2)f(z)

2
≤ nLr2

ρr1
=

√
δnL

ρr1
,

and therefore by the triangle inequality and Equation (7) we get that

sup
g∈∂f(z)

‖g − g̃‖∞ ≤ sup
g∈∂f(z)

∥∥∥g −∇(r2)f(z)
∥∥∥
∞

+
∥∥∥∇(r2)f(z)− g̃

∥∥∥
∞

≤ sup
g∈∂f(z)

∥∥∥g −∇(r2)f(z)
∥∥∥

1
+
∥∥∥∇(r2)f(z)− g̃

∥∥∥
∞

≤

√
δnL

ρr1
+ 4 · 42 · π

√
δn3L

ρr1
< 232

√
δn3L

ρr1
.

6Using Corollary 29 instead of Corollary 15 shows that a relational quantum oracle also suffices as input.
7A discrete quantum computer strictly speaking cannot do this, but (as noted after Lemma 11) a uniformly random

point from a fine enough hypergrid suffices.
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Thus with probability at least 1− ρ, for all y ∈ C and for all g ∈ ∂f(z) we have that

f(y) ≥ f(z) + 〈g, y − z〉
= f(0) + 〈g̃, y〉+ 〈g − g̃, y〉+ (f(z)− f(0)) + 〈g,−z〉
≥ f(0) + 〈g̃, y〉 − |〈g − g̃, y〉| − L‖z‖ − ‖g‖‖z‖
≥ f(0) + 〈g̃, y〉 − ‖g − g̃‖∞‖y‖1 − L

√
nr1 − L

√
nr1 (by (1))

≥ f(0) + 〈g̃, y〉 − 232

√
δn3L

ρr1
‖y‖1 − 2L

√
nr1

≥ f(0) + 〈g̃, y〉 − (23n)2

√
δL

ρr1
‖y‖ − 2L

√
nr1.

4 Algorithms for separation using membership queries

Let K ⊆ Rn be a convex set such that B(0, r) ⊆ K ⊆ B(0, R). Given a membership oracle8

MEMε,0(K) as in Definition 3, we construct a separation oracle SEPη,ρ(K) as in Definition 4. Let
x be the point we want to separate from K. We first make a membership query to x itself, receiving
answer x ∈ B(K, ε) or x 6∈ B(K,−ε). Suppose x 6∈ B(K,−ε), then we need to find a hyperplane
that approximately separates x from K. Due to the rotational symmetry of the separation problem,
for ease of notation we assume that x = −‖x‖en.9 For this x define h : Rn−1 → R ∪ {∞} as

h(y) := inf
(y,yn)∈K

yn.

Our h is a bit different from the one used in [LSV18], but we can show that it has many of the
same properties. Since K is a convex set, h is a convex function over Rn−1. As we show below,
the function h is also Lipschitz (Lemma 19) and we can approximately compute its value using
binary search with Õ(1) classical queries to a membership oracle (Lemma 20). Furthermore, an
approximate subgradient of h at 0 allows to construct a hyperplane approximately separating x
from K (Lemma 21). Combined with the results of Section 3 this leads to the main results of this
section, Theorems 22 and 23, which show how to efficiently construct a separation oracle using
classical (resp. quantum) queries to a membership oracle.

Analogously to [LSV18, Lemma 12] we first show that our h is Lipschitz.

Lemma 19. For every δ ∈ (0, r), h is R
r−δ -Lipschitz on B(0, δ) ⊆ Rn−1, that is, we have

|h(y′)− h(y)| ≤ R

r − δ
∥∥y′ − y∥∥ for all y, y′ ∈ B(0, δ).

8For simplicity we assume throughout this section that the membership oracle succeeds with certainty (i.e., its
error probability is 0). This is easy to justify: suppose we have a classical T -query algorithm, which uses MEMε,0(K)
queries and succeeds with probability at least 1− ρ. If we are given access to a MEMε, 1

3
(K) oracle instead, then we

can create a MEMε, ρ
T

(K) oracle by O(log(T/ρ)) queries to MEMε, 1
3
(K) and taking the majority of the answers. Then

running the original algorithm with MEMε, ρ
T

(K) will fail with probability at most 2ρ. Therefore the assumption of
a membership oracle with error probability 0 can be removed at the expense of only a small logarithmic overhead in
the number of queries. A similar argument works for the quantum case.

9For the query complexity this is without loss of generality, since we can always apply a rotation to all the points
such that this holds. If we instead consider the computational cost of our algorithm, then we have to take into account
the cost of this rotation and its inverse. Note, however, that this rotation can always be written as the product of n
rotations on only 2 coordinates, and hence can be applied in Õ(n) additional steps.
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Proof. Observe that for all y ∈ B(0, r) we have −R ≤ h(y) ≤ 0, because B(0, r) ⊆ K ⊆ B(0, R).

Let y, y′ ∈ B(0, δ) be arbitrary, and let z = y′−y
‖y′−y‖ . Observe that y + (‖y′ − y‖+ (r − δ))z =

y′ + (r − δ)z ∈ B(0, r), and that

y′ =
‖y′ − y‖

‖y′ − y‖+ (r − δ)
(y′ + (r − δ)z) +

r − δ
‖y′ − y‖+ (r − δ)

y,

and therefore due to convexity

h(y′)− h(y) ≤
[
h
(
y′ + (r − δ)z

)
− h(y)

] ‖y′ − y‖
‖y′ − y‖+ (r − δ)

≤ R

r − δ
∥∥y′ − y∥∥.

Now we show how to compute the value of h using membership queries to K.

Lemma 20. For all y ∈ B
(
0, r2
)
⊂ Rn−1 we can compute a δ-approximation of h(y) with O

(
log
(
R
δ

))
queries to a MEMε,0(K) oracle, where ε ≤ r

3Rδ.

Proof. Let y ∈ B(0, r2), then (y, h(y)) is a boundary point of K by the definition of h. Note
that h(y) ∈ [−R,−r/2], our goal is to perform binary search over this interval to find a good
approximation of h(y). Suppose yn ≤ − r

2 is our current guess for h(y). We first show that

(a) if (y, yn) ∈ B(K, ε), then yn ≥ h(y)− δ, and

(b) if (y, yn) 6∈ B(K,−ε), then yn ≤ h(y) + 2
3δ.

For the proof of (a) consider a g ∈ ∂h(y). Since g is a subgradient we have that h(z) ≥
h(y) + 〈g, z − y〉 for all z ∈ Rn−1. Hence, for all z ∈ Rn−1 and zn such that (z, zn) ∈ K we have〈(

−g
1

)
,

(
y

h(y)

)〉
≤
〈(
−g
1

)
,

(
z

h(z)

)〉
≤
〈(
−g
1

)
,

(
z
zn

)〉
where the first inequality is a rewriting of the subgradient inequality and the second inequality uses
that zn ≥ h(z) since (z, zn) ∈ K. Since (y, yn) ∈ B(K, ε) it follows from the above inequality that〈(

−g
1

)
,

(
y
yn

)〉
≥
〈(
−g
1

)
,

(
y

h(y)

)〉
− ε
∥∥∥∥(−g1

)∥∥∥∥ ≥ 〈(−g1
)
,

(
y

h(y)

)〉
− ε(‖g‖+ 1).

Lemma 19 together with the argument of Equation (1) implies that ‖g‖ ≤ 2R
r . Since

ε(‖g‖+ 1) ≤ ε
(

2R

r
+ 1

)
≤ ε3R

r
≤ δ,

we obtain the inequality of (a).
For (b), consider the convex set C which is the convex hull of B((y, 0), r/2) and (y, h(y)). Note

that B(C,−ε) is the convex hull of B((y, 0), r/2− ε) and
(
y, h(y)

(
1− 2ε

r

))
. Since C ⊆ K, we have

B(C,−ε) ⊆ B(K,−ε). Therefore (y, yn) 6∈ B(K,−ε) implies (y, yn) /∈ B(C,−ε), and

yn ≤ h(y)

(
1− 2ε

r

)
= h(y)− ε2h(y)

r
≤ h(y) + ε

2R

r
≤ h(y) +

2

3
δ.

Now we can analyze the binary search algorithm. By making O
(
log
(
R
δ

))
MEMε,0(K) queries

to points of the form (y, z), we can find a value yn ∈ [−R,− r
2 ] such that (y, yn) ∈ B(K, ε) but

(y, yn − δ
3) 6∈ B(K,−ε). By (a)-(b) we get that |h(y)− yn| ≤ δ.
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The following lemma shows how to convert an approximate subgradient of h to a hyperplane
that approximately separates x from K.

Lemma 21. Suppose −‖x‖en = x /∈ B(K,−ε), and g̃ ∈ Rn−1 is an approximate subgradient of h
at 0, meaning that for some a, b ∈ R and for all y ∈ Rn−1

h(y) ≥ h(0) + 〈g̃, y〉 − a‖y‖ − b,

then s := (−g̃,1)
‖(−g̃,1)‖ satisfies 〈s, z〉 ≥ 〈s, x〉 − aR+b

‖(−g̃,1)‖ −
2R
r

ε
‖(−g̃,1)‖ for all z ∈ K.

Proof. Let us introduce the notation z = (y, zn) and s′ := (−g̃, 1) = ‖(−g̃, 1)‖s, then

〈
s′, z

〉
= zn−〈g̃, y〉 ≥ h(y)−〈g̃, y〉 ≥ h(0)−a‖y‖−b ≥ −‖x‖− 2R

r
ε−aR−b =

〈
s′, x

〉
−aR−b− 2R

r
ε,

where the last inequality used claim (b) from the proof of Lemma 20.

We now construct a separation oracle using Õ(n) classical queries to a membership oracle. In
particular, for an η-precise separation oracle, we require an ε-precise membership oracle with

ε =
η

676
n−2

( r
R

)3( η
R

)2
ρ

The analogous result in [LSV18, Theorem 14] uses the stronger assumption10

ε ≈ η

8 · 106
n−

7
2

( r
R

)6( η
R

)2
ρ3.

Compared to this, our result scales better in terms of n, rR and ρ.

Theorem 22. Let K be a convex set satisfying B(0, r) ⊆ K ⊆ B(0, R). For any η ∈ (0, R] and

ρ ∈ (0, 1/3], we can implement the oracle SEPη,ρ(K) using O
(
n log

(
n
ρ
R
η
R
r

))
classical queries to a

MEMε,0(K) oracle, where ε ≤ η(26n)−2
(
r
R

)3( η
R

)2
ρ.

Proof. Let x 6∈ B(K,−ε) be the point we want to separate from K. Let δ := η n
−2

9·24

(
r
R ·

η
R

)2
ρ,

then ε ≤ r
3Rδ. By Lemma 20 we can evaluate h to within error δ using O

(
log
(
R
δ

))
queries to a

MEMε,0(K) oracle. By Lemma 19 we know that h is 2R
r -Lipschitz on B(0, r/2). Let us choose

r1 := r
12
√
n
η
R , then r1

√
n ≤ r

4 , therefore B∞(0, 2r1) ⊆ B(0, r/2). Also note that δ ≤ η
6ρ = 2r1

√
nR

ρr .

Hence by Lemma 12, using O
(
n log

(
R
δ

))
queries to a MEMε,0(K) oracle, we can compute an

approximate subgradient g̃ such that with probability at least 1− ρ we have

h(y) ≥ h(0) + 〈g̃, y〉 − 3n
3
4

2

√
δ2R

ρr1r
‖y‖ − 4R

r

√
nr1 for all y ∈ Rn−1.

Substituting the value of r1 and δ we get h(y) ≥ h(0) + 〈g̃, y〉 − η
2R‖y‖ −

η
3 , which by Lemma 21

gives an s such that 〈s, z〉 ≥ 〈s, x〉 − 5
6η −

2R
r ε ≥ 〈s, x〉 − η for all z ∈ K

10It seems that Lee et al. [LSV18, Algorithm 1] did not take into account the change in precision analogous to our
Lemma 20, therefore one would probably need to worsen their exponent of r

R
from 6 to 7.
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Finally, we give a proof of our main result: we construct a separation oracle using Õ(1) quantum
queries to a membership oracle.

Theorem 23. Let K be a convex set satisfying B(0, r) ⊆ K ⊆ B(0, R). For any η ∈ (0, R] and

ρ ∈ (0, 1/3], we can implement the oracle SEPη,ρ(K) using O
(

log
(
n
ρ

)
log
(
n
ρ
R
η
R
r

))
quantum queries

to a MEMε,0(K) oracle, where ε ≤ η(58n)−
9
2

(
r
R

)3( η
R

)2
ρ.

Proof. Let x 6∈ B(K,−ε) be the point we want to separate from K. Let δ := η 23−4

4·24 n
− 9

2

(
r
R ·

η
R

)2
ρ,

then ε ≤ r
3Rδ. By Lemma 20 we can evaluate h to within error δ using O

(
log
(
R
δ

))
queries to a

MEMε,0(K) oracle. By Lemma 19 we know that h is 2R
r -Lipschitz on B(0, r/2). Let us choose

r1 := r
12
√
n
η
R , then r1

√
n ≤ r

4 , therefore B∞(0, 2r1) ⊆ B(0, r/2). Also note that δ ≤ η
6ρ = 2r1nR

ρr .

Hence by Lemma 18, using O
(

log
(
n
ρ

)
log
(
R
δ

))
queries to a MEMε,0(K) oracle, we can compute an

approximate subgradient g̃ such that with probability at least 1− ρ we have

h(y) ≥ h(0) + 〈g̃, y〉 − (23n)2

√
2δR

ρr1r
‖y‖ − 4R

r

√
nr1 for all y ∈ Rn−1.

Substituting the value of r1 and δ we get h(y) ≥ h(0) + 〈g̃, y〉 − η
2R‖y‖ −

η
3 , which by Lemma 21

gives an s such that 〈s, z〉 ≥ 〈s, x〉 − 5
6η −

2R
r ε ≥ 〈s, x〉 − η for all z ∈ K.

5 Lower bounds

For a convex set K satisfying B(0, r) ⊆ K ⊆ B(0, R), we have shown in Theorem 23 that one can
implement a SEP(K) oracle with Õ(1) quantum queries to a MEM(K) oracle if the membership
oracle is sufficiently precise. In this section we first show that this is exponentially better than
what can be achieved using classical access to a membership oracle. We also investigate how many
queries to a membership/separation oracle are needed in order to implement an optimization oracle.
Our results are as follows.

• We show that Ω(n) classical queries to a membership oracle are needed to implement a weak
separation oracle.

• We show that Ω(n) classical (resp. Ω(
√
n) quantum) queries to a separation oracle are needed

to implement a weak optimization oracle; even when we know an interior point in the set.

• We show an Ω(n) lower bound on the number of classical and/or quantum queries to a
separation oracle needed to optimize over the set when we do not know an interior point.

In this section we will always assume that the input oracle is a strong oracle but the output oracle
is allowed to be a weak oracle with error ε. Furthermore, we will make sure that R, 1/r, and 1/ε
are all upper bounded by a polynomial in n. This guarantees that the lower bound is based on the
dimension of the problem, not the required precision.
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5.1 Classical lower bound on the number of MEM queries needed for SEP

Here we show that a separation query can provide Ω(n) bits of information about the underlying
convex set K; since a classical membership query returns a 0 or a 1 and hence can give at most 1
bit of information11, this theorem immediately implies a lower bound of Ω(n) on the number of
classical membership queries needed to implement one separation query.

Theorem 24. Let ε ≤ 39
1600 . There exist a set of m = 2Ω(n) convex sets K1, . . . ,Km and points

y, x0 ∈ Rn such that B(x0, 1/3) ⊆ Ki ⊆ B(x0, 2
√
n) for all i ∈ [m], and such that the result of a

classical query to SEPε,0(Ki) with the point y correctly identifies i.

Proof. Let h1, . . . , hm ∈ Rn be a set of m = 2Ω(n) entrywise non-negative unit vectors such that
〈hi, hj〉 ≤ 0.51 for all distinct i, j ∈ [m]. Such a set of m vectors can for instance be constructed
from a good error-correcting code that encodes Ω(n)-bit words into n-bit codewords with pairwise
Hamming distance close to n/2.

Now pick an i ∈ [m] and define K̂i := {x : 〈hi, x〉 ≤ 0} ∩ B(0,
√
n) and Ki := B(K̂i, ε). Then

K̂i = B(Ki,−ε). We claim that a query to SEPε,0(Ki) with the point y = 3εe ∈ Rn will identify hi.
First note that y 6∈ B(Ki, ε), since K̂i does not contain any entrywise positive vectors and y has
distance at least 3ε from all vectors that have at least one non-positive entry. Hence a separation
query with y will return a unit vector g such that for all x ∈ K̂i

〈g, x〉 ≤ 〈g, y〉+ ε ≤ ‖g‖ · ‖y‖+ ε ≤ (3
√
n+ 1)ε ≤ 4

√
nε. (8)

Now consider the specific point x that is the projection of g onto h⊥i (the hyperplane orthogonal
to hi) scaled by a factor

√
n, i.e., x =

√
n(g − 〈g, hi〉hi). Since 〈hi, x〉 = 0 and ‖x‖ ≤

√
n, we have

x ∈ K̂i. Therefore (8) gives the following inequality

√
n(1− 〈g, hi〉2) = 〈g, x〉 ≤ 4

√
nε.

Hence |〈g, hi〉| ≥
√

1− 4ε ≥ 19
20 . This implies that g−hi or g+hi has length at most

√
2− 2|〈g, hi〉| ≤√

1
10 ; assume the former for simplicity. Now for all j 6= i we have

|〈g, hj〉| ≤ |〈g − hi, hj〉|+ |〈hi, hj〉| ≤
√

1

10
+ 0.51 <

9

10
.

Hence g uniquely identifies hi. Finally, for x0 = −e/3 we have B(x0, 1/3) ⊆ Ki ⊆ B(x0, 2
√
n).

5.2 Lower bound on number of SEP queries for OPT (given an interior point)

We now consider lower bounding the number of quantum queries to a separation oracle needed to
do optimization. In fact, we prove a lower bound on the number of separation queries needed for
validity, which implies the same bound on optimization. We will use a reduction from a version12

of the well-studied search problem:

Given z ∈ {0, 1}n such that either |z| = 0 or |z| = 1, decide which of the two holds.

11This is not true for quantum membership queries!
12Note that this is a slightly different version from the one used in Section 2.1.
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It is not hard to see that if the access to z is given via classical queries, then Ω(n) queries are
needed. It is well known [BBBV97] that if we allow quantum queries, then Ω(

√
n) queries are

needed (i.e., Grover’s quantum search algorithm [Gro96] is optimal). We use this problem to show
that there exist convex sets for which it is hard to construct a weak validity oracle, given a strong
separation oracle. Since a separation oracle can be used as a membership oracle, this gives the
same hardness result for constructing a weak validity oracle from a strong membership oracle.

Theorem 25. Let 0 < ρ ≤ 1/3. Let A be an algorithm that can implement a VAL(4n)−1,ρ(K)
oracle for every convex set K (with B(x0, r) ⊆ K ⊆ B(x0, R)) using only queries to a SEP0,0(K)
oracle, and unitaries that are independent of K. Then the following statements are true, even when
we restrict to convex sets K with r = 1/3 and R = 2

√
n:

• if the queries to SEP0,0(K) are classical, then the algorithm uses Ω(n) queries.

• if the queries to SEP0,0(K) are quantum, then the algorithm uses Ω(
√
n) queries.

Proof. Let z ∈ {0, 1}n have Hamming weight |z| = 0 or |z| = 1. We construct a set Kz in such a
way that solving the weak validity problem solves the search problem for z, while separation queries
for Kz can be answered using a single query to z. The known classical and quantum lower bounds
on the search problem then imply the two claims of the theorem, respectively.

Define Kz := ×ni=1[−1, zi]. We first show how to implement a strong separation oracle using a
single query to z. Suppose the input is the point y. The strong separation oracle works as follows:

1. If y ∈ [−1, 0]n, then return the statement that y ∈ B(Kz, 0) = Kz.

2. If y 6∈ [−1, 1]n, then return a hyperplane that separates y from [−1, 1]n (and hence from Kz).

3. Let i be such that yi > 0. Query zi.

(a) If zi = 1 and i is the only index such that yi > 0, then return that y ∈ B(Kz, 0) = Kz.

(b) If zi = 1 and there is a j 6= i such that yj > 0, return separating hyperplane xj ≤ yj .
(c) If zi = 0, then return the separating hyperplane xi ≤ yi.

It remains to show that a query to a weak validity oracle with accuracy ε = 1
4n can solve the

search problem on z. We show that a validity query over Kz with the direction c = 1√
n

(1, . . . , 1) ∈
Rn and value γ = 1

2
√
n

solves the search problem:

• If |z| = 0, then we claim validity will return that 〈c, x〉 ≤ γ + ε holds for all x ∈ B(K0,−ε).
Indeed, we show there is no x ∈ B(K0, ε) with 〈c, x〉 ≥ γ − ε. For all points x ∈ K0 we have
〈c, x〉 ≤ 0. Thus, for all points x ∈ B(K0, ε) we have 〈c, x〉 ≤ ε < γ − ε.

• If |z| = 1, then we claim validity will return that 〈c, x〉 ≥ γ − ε holds for some x ∈ B(Kz, ε).

Indeed, we show there is an x ∈ B(Kz,−ε) for which 〈c, x〉 > γ+ε. The point z ∈ Kz satisfies
〈z, c〉 = 1√

n
and therefore x = z − εe ∈ B(Kz,−ε) satisfies 〈c, x〉 = 1√

n
−
√
nε > γ + ε.

Finally, we observe that if we set x0 = (−1/2, . . . ,−1/2), then B(x0,
1
3) ⊆ Kz ⊆ B(x0, 2

√
n).
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5.3 Lower bound on number of SEP queries for OPT (without interior point)

We now lower bound the number of quantum queries to a separation oracle needed to solve the
optimization problem, if our algorithm does not already know an interior point of K. In fact we
prove a lower bound on finding a point in K using separation queries, which implies the lower
bound on the number of separation queries needed for optimization.

We prove our lower bound by a reduction to the problem of learning z with first-difference
queries. Here one needs to find an initially unknown n-bit binary string z via a guessing game. For
a given guess g ∈ {0, 1}n a query returns the first index in [n] for which the binary strings z and g
differ (or it returns n+ 1 if z = g). The goal is to recover z with as few guesses as possible. First
we prove an Ω(n) quantum query lower bound for this problem.13

Theorem 26 (Quantum lower bound for learning z with first-difference queries). Let z ∈ {0, 1}n
be an unknown string accessible by an oracle acting as Oz|g, b〉 = |g, b ⊕ f(g, z)〉, where f(g, z) is
the first index for which z and g differ, more precisely f(g, z) = min{i ∈ [n] : gi 6= zi} if g 6= z and
f(g, z) = n+ 1 otherwise. Then every quantum algorithm that outputs z with high probability uses
at least Ω(n) queries to Oz.

Proof. We will use the general adversary bound [HLŠ07]. For this problem, we call Γ ∈ R2n×2n an
adversary matrix if it is a non-zero matrix with zero diagonal whose rows and columns are indexed
by all z ∈ {0, 1}n. For g ∈ {0, 1}n let us define ∆g ∈ {0, 1}2

n×2n such that the [z, z′] entry of ∆g

is 0 if and only if f(g, z) = f(g, z′). The general adversary bound tells us that for any adversary
matrix Γ, the quantum query complexity of our problem is

Ω

(
‖Γ‖

maxg∈{0,1}n‖Γ ◦∆g‖

)
, (9)

where “◦” denotes the Hadamard product and ‖·‖ the operator norm.
We claim that Equation (9) gives a lower bound of Ω(n) for the adversary matrix Γ defined as

Γ[z, z′] =

{
2f(z,z′) if z 6= z′

0 if z = z′

It is easy to see that Γ is indeed an adversary matrix since it is zero on the diagonal and non-zero
everywhere else. Furthermore, the all-one vector e is an eigenvector of Γ with eigenvalue n2n:

(Γe)z =
∑

z′∈{0,1}n
Γ[z, z′] =

n∑
d=1

2d · |{z′ ∈ {0, 1}n : f(z, z′) = d}| =
n∑
d=1

2d2n−d = n2n.

So Γe = n2ne and hence ‖Γ‖ ≥ n2n.
From the definition of ∆g it follows that

(Γ ◦∆g)[z, z
′] = 2f(z,z′)χ[f(g,z) 6=f(g,z′)],

13Note that this is a strengthening of the Ω(n) quantum query lower bound for binary search on a space of size 2n

by Ambainis [Amb99], since first-difference queries are at least as strong as the queries one makes in binary search.
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where χ[f(g,z)6=f(g,z′)] stands for the indicator function of the condition f(g, z) 6= f(g, z′). Let
Γg := Γ ◦∆g. We will show an upper bound on ‖Γg‖. We decompose Γg in an “upper-triangular”
and a “lower-triangular” part:

ΓUg [z, z′] := 2f(z,z′)χ[f(g,z)<f(g,z′)] = 2f(g,z)χ[f(g,z)<f(g,z′)], (10)

ΓLg [z, z′] := 2f(z,z′)χ[f(g,z′)<f(g,z)] = 2f(g,z′)χ[f(g,z′)<f(g,z)].

So Γg = ΓUg + ΓLg and ΓUg = (ΓLg )T . Hence by the triangle inequality we have

‖Γg‖ ≤
∥∥ΓUg

∥∥+
∥∥ΓLg

∥∥ = 2
∥∥ΓUg

∥∥. (11)

It thus suffices to upper bound
∥∥ΓUg

∥∥. Notice that as (10) shows, ΓUg [z, z′] only depends on the

values f(g, z), f(g, z′). Since the range of f(g, · ) is [n+1], we can think of ΓUg as an (n+1)×(n+1)
block-matrix, where the blocks are determined by the values of f(g, z) and f(g, z′), and within a
block all matrix elements are the same. Also observe that for all k ∈ [n] there are 2n−k bitstrings
y ∈ {0, 1}n such that f(g, y) = k, which tells us the sizes of the blocks. Motivated by these
observations we define an orthonormal set of vectors in R2n by vn+1 := eg, and for all k ∈ [n]

vk :=
∑

y:f(g,y)=k

ey√
2n−k

.

Since the row and column spaces of ΓUg are spanned by {vk : k ∈ [n + 1]}, we can reduce ΓUg to a
(n+ 1)× (n+ 1)-dimensional matrix G:

ΓUg =

(
n+1∑
k=1

vkv
T
k

)
ΓUg

(
n+1∑
`=1

v`v
T
`

)
=

(
n+1∑
k=1

vke
T
k

)(
n+1∑
k=1

ekv
T
k

)
ΓUg

(
n+1∑
`=1

v`e
T
`

)
︸ ︷︷ ︸

G:=

(
n+1∑
`=1

e`v
T
`

)
.

It follows from the above identity, together with the orthonormality of {v1, . . . , vn, vn+1}, that

∥∥ΓUg
∥∥ =

∥∥∥∥∥
(
n+1∑
k=1

ekv
T
k

)
ΓUg

(
n+1∑
`=1

v`e
T
`

)∥∥∥∥∥ = ‖G‖. (12)

G ∈ R(n+1)×(n+1) is a strictly upper-triangular matrix, with the following entries for k, ` ∈ [n]:

G[k, `] = vTk ΓUg v`

=

 ∑
z:f(g,z)=k

eTz√
2n−k

ΓUg

 ∑
z′:f(g,z′)=`

ez′√
2n−`


=

2
k+`
2

2n

 ∑
z:f(g,z)=k

eTz

ΓUg

 ∑
z′:f(g,z′)=`

ez′


=

2
k+`
2

2n

∑
z:f(g,z)=k

∑
z′:f(g,z′)=`

ΓUg [z, z′]
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By Equation (10) this is further equal to

G[k, `] =
2
k+`
2

2n

∑
z:f(g,z)=k

∑
z′:f(g,z′)=`

2kχ[k<`]

=
2
k+`
2

2n
2n−k2n−`2kχ[k<`]

= 2n−
`−k
2 χ[k<`].

Similarly for ` = n + 1 we get that G[k, `] =
√

2 2n−
`−k
2 χ[k<`] for all k ∈ [n + 1]. For each d ∈ [n]

define Gd ∈ R(n+1)×(n+1) such that Gd[k, `] = G[k, `]χ[d=`−k]. This Gd is only non-zero on a non-
main diagonal (namely the (k, `)-entries where d = ` − k), and its non-zero entries are all upper

bounded by
√

2 2n2−
d
2 . We have G =

∑n
d=1Gd and therefore

‖G‖ ≤
n∑
d=1

‖Gd‖ =

n∑
d=1

√
2 2n2−

d
2 = 2n

n−1∑
d=0

(
√

2)−d ≤ 2n

1− 1/
√

2
≤ 2n+2. (13)

Inequalities (11)-(13) give that ‖Γg‖ ≤ 2n+3 and hence (9) yields a lower bound of Ω
(
n2n

2n+3

)
= Ω(n)

on the number of quantum queries to Oz needed to learn z.

Theorem 27. Finding a point in B∞(K, 1/7) for an unknown convex set K such that K ⊆
B∞(0, 2) ⊆ Rn requires Ω(n) quantum queries to a separation oracle SEP0,0(K), even if we are
promised there exists some unknown x ∈ Rn such that B∞(x, 1/3) ⊆ K.

Proof. We will prove an Ω(n) quantum query lower bound for this problem by a reduction from
learning with first-difference queries. Let z ∈ {0, 1}n be an unknown binary string, and let us define
Kz := B∞(z, 1/3) ⊂ Rn as a small box around the corner of the hypercube corresponding to z.
Then clearly Kz ⊂ B∞(0, 2), and finding a point close enough to Kz is enough to recover z.

We can also easily reduce a separation oracle query to a first-difference query to z, as follows.
Suppose y is the vector we query:

1. If y is outside [−1/3, 4/3]n, then output a hyperplane separating y from [−1/3, 4/3]n.

2. If y is in [−1/3, 4/3]n, then let g be the nearest corner of the hypercube.

3. Let i be the result of a first-difference query to z with g.

(a) If z = g, then we know Kz exactly, so we can find a separating hyperplane or conclude
that y ∈ Kz.

(b) If z 6= g, then return ei if gi = 1, and −ei if gi = 0.

Hence our Ω(n) quantum lower bound on learning z with first-difference queries implies an Ω(n)
lower bound on the number of quantum queries to a separation oracle needed for finding a point
in a convex set.

Since optimization over a set K gives a point in the set K, this also implies a lower bound on
the number of separation queries needed for optimization. This theorem is tight up to logarithmic
factors, since it is known that Õ(n) classical separation queries suffice for optimization, even without
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knowing a point in the convex set. Finally we remark that, due to our improved algorithm for
optimization using validity queries, this also gives an Ω̃(n) lower bound on the number of separation
queries needed to implement validity.14

6 Consequences of convex polarity

Here we justify the central symmetry of Figure 1 using the results of Grötschel, Lovász, and
Schrijver [GLS88, Section 4.4]. We first need to recall the definition and some basic properties of
the polar K∗ of a set K ⊆ Rn. This is the closed convex set defined as follows:

K∗ = {y ∈ Rn : 〈y, x〉 ≤ 1 for all x ∈ K}.

It is straightforward to verify that if B(0, r) ⊆ K ⊆ B(0, R), then B(0, 1/R) ⊆ K∗ ⊆ B(0, 1/r),
moreover (K∗)∗ = K for closed convex sets.15 For the remainder of this section we assume that K
is a closed convex set such that B(0, r) ⊆ K ⊆ B(0, R).

We will observe that for the polar K∗ of a set K the following holds:

MEM(K∗)↔ VAL(K), SEP(K∗)↔ VIOL(K), (14)

where MEM(K∗)↔ VAL(K) means we can implement a weak validity oracle for K using a single
query to a weak membership oracle for K∗, and vice versa. Since VIOL(K) and OPT(K) are
equivalent up to Θ̃(1) reductions (via binary search), this justifies the central symmetry of Fig-
ure 1, because it shows that algorithms that implement VIOL(K) given VAL(K) are equivalent
to algorithms that implement SEP(K∗) given MEM(K∗), and similarly algorithms that implement
SEP(K) given VIOL(K) are equivalent to algorithms that implement VIOL(K∗) given SEP(K∗).

Grötschel, Lovász, and Schrijver [GLS88, Section 4.4] showed that the weak membership prob-
lem for K∗ can be solved using a single query to a weak validity oracle for K, and that the weak
separation problem for K∗ can be solved using a single query to a weak violation oracle for K. Us-
ing similar arguments one can show the reverse directions as well, which justifies (14). Here we only
motivate the equivalences between the above-mentioned weak oracles by showing the equivalence
of the strong oracles (i.e., where ρ and ε are 0).

Strong membership on K∗ is equivalent to strong validity on K. First, for a given vector
c ∈ Rn and a γ > 0 observe the following:

c

γ
6∈ int(K∗) ⇐⇒ ∃y ∈ K s.t. 〈c/γ, y〉 ≥ 1 ⇐⇒ ∃y ∈ K s.t. 〈c, y〉 ≥ γ.

Hence, a strong membership query to K∗ with a point c can be implemented by querying a strong
validity oracle for K with the vector c and the value 1. Likewise, a strong validity query to K with
a point c and value16 γ > 0 can be implemented using a strong membership query to K∗ with c/γ.

14It is easy to modify Theorem 26 to prove a lower bound on computing the majority of z, which would imply an
Ω(n) lower bound on the number of separation queries needed to implement a validity oracle, without the log factors.

15Note that K∗ is a dual representation of the convex set K. Each point in K∗ corresponds to a (normalized) valid
inequality for K. This duality is not to be confused with Lagrangian duality.

16Observe that queries with value γ ≤ 0 can be answered trivially, since 0 ∈ K.
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Strong separation on K∗ is equivalent to strong violation on K. To implement a strong
separation query on K∗ for a vector y ∈ Rn we do the following. Query the strong violation oracle
for K with y and the value 1. If the answer is that 〈y, x〉 ≤ 1 for all x ∈ K, then y ∈ K∗. If instead
we are given a vector x ∈ K with 〈y, x〉 ≥ 1, then x separates y from K∗ (indeed, for all z ∈ K∗,
we have 〈z, x〉 ≤ 1 ≤ 〈y, x〉).

For the reverse direction, to implement a strong violation oracle for K on the vector c and
value16 γ > 0 we do the following. Query the strong separation oracle for K∗ with the point c/γ. If
the answer is that c/γ ∈ K∗ then 〈c, x〉 ≤ γ for all x ∈ K. If instead we are given a non-zero vector
y ∈ Rn that satisfies 〈c/γ, y〉 ≥ 〈z, y〉 for all z ∈ K∗, then ỹ = y/〈c/γ, y〉 will be a valid answer for
the strong violation oracle for K. Indeed, we have ỹ ∈ K because 〈z, ỹ〉 ≤ 1 for all z ∈ K∗ and
K = (K∗)∗, and by construction 〈c, ỹ〉 = γ.

7 Discussion and future work

We mention several open problems for future work:

• Our current implementation of an optimization query using Õ(n) quantum membership
queries is quadratically better than the best known classical randomized algorithm, which
uses roughly n2 membership queries. However, to the best of our knowledge it is open
whether this quadratic classical bound is optimal (a quadratic classical lower bound is known
for deterministic algorithms [Yao75]).

• Can we improve our Ω(
√
n) lower bound on the number of separation (or membership) queries

needed to implement an optimization oracle when our algorithm knows a point in K? We
conjecture that the correct bound is Θ̃(n), in which case knowing a point in K does not confer
much benefit for query complexity.

• Are there interesting convex optimization problems where separation is much harder than
membership for classical computers? Such problems would be good candidates for quantum
speed-up in optimization in the real, non-oracle setting. It is known that given a deterministic
algorithm for a function, an algorithm with roughly the same complexity can be constructed
to compute the gradient of that function [GW08], so for deterministic oracles separation is not
much harder than membership queries. This, however, still leaves randomized and quantum
membership oracles to be considered.

• The algorithms that give an Õ(n) upper bound on the number of separation queries for
optimization (for example [LSW15, Theorem 42]) give the best theoretical results for many
convex optimization problems. However, due to the large constants in these algorithms they
are rarely used in a practical setting. A natural question is whether the algorithms used in
practice lend themselves to quantum speed-ups as well. Very recent work by Kerenidis and
Prakash [KP18] on quantum interior point methods is a first step in this direction.
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[DHHM06] Christoph Dürr, Mark Heiligman, Peter Høyer, and Mehdi Mhalla. Quantum query
complexity of some graph problems. SIAM Journal on Computing, 35(6):1310–1328,
2006. arXiv: quant-ph/0401091

[GAW19] András Gilyén, Srinivasan Arunachalam, and Nathan Wiebe. Optimizing quantum
optimization algorithms via faster quantum gradient computation. In Proceedings of
the 30th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1425–1444,
2019. arXiv: 1711.00465

23

http://dx.doi.org/10.1109/SFFCS.1999.814606
http://dx.doi.org/10.1109/SFFCS.1999.814606
https://arxiv.org/abs/quant-ph/9902053
http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.94
http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.94
https://arxiv.org/abs/1804.05058
http://dx.doi.org/10.1109/FOCS.2017.44
http://dx.doi.org/10.1109/FOCS.2017.44
https://arxiv.org/abs/1705.01843
http://dx.doi.org/10.1007/11672142_13
http://dx.doi.org/10.1007/11672142_13
https://arxiv.org/abs/quant-ph/0508205
http://dx.doi.org/10.1137/S0097539796300933
https://arxiv.org/abs/quant-ph/9701001
https://arxiv.org/abs/1710.02581
http://dx.doi.org/10.1109/FOCS.2017.45
http://dx.doi.org/10.1109/FOCS.2017.45
https://arxiv.org/abs/1609.05537
https://arxiv.org/abs/1405.4980
https://arxiv.org/abs/1809.01731
https://arxiv.org/abs/quant-ph/9607014
http://dx.doi.org/10.1137/050644719
http://dx.doi.org/10.1137/050644719
https://arxiv.org/abs/quant-ph/0401091
http://dx.doi.org/10.1137/1.9781611975482.87
http://dx.doi.org/10.1137/1.9781611975482.87
https://arxiv.org/abs/1711.00465
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A Quantum gradient computation using relational oracles

In this appendix we extend the result of Corollary 15 to functions given by a relational input oracle.
As a direct consequence this shows that the algorithm from Theorem 23 also works when the input
is given as a relational membership oracle instead of a standard oracle.
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Definition 28 (Unitary δ-approximator). Let X be a finite set and let Y denote a set of fixed-point
b-bit numbers. Let f : X → Y be a function. We say that a relational quantum oracle U on X is
a b-bit unitary δ-approximator of f if the valid answers for each x ∈ X differ at most δ from f(x)
(i.e., F(x) = {y ∈ Y : |f(x)− y| ≤ δ}), and the success probability is at least 2

3 .

Corollary 29 (Gradient computation using a unitary δ-approximator). Let δ,B, r, c ∈ R, ρ ∈
(0, 1/3]. Let x0, g ∈ Rn with ‖g‖∞ ≤

B
r . Let m :=

⌈
log2

(
B

28πδ

)⌉
and suppose f : (x0 + rGnm) → R

is such that
|f(x0 + rx)− 〈g, rx〉 − c| ≤ δ

for 99.9% of the points x ∈ Gnm, and we have access to U , an O
(
log
(
B
δ

))
-bit unitary δ-approximator

of f over the domain (x0 + rGnm). Then we can compute a vector g̃ ∈ Rn such that

Pr

[
‖g̃ − g‖∞ >

8 · 42πδ

r

]
≤ ρ,

with O
(
log
(
n
ρ

))
queries to U and U † and with gate complexity O

(
n log

(
n
ρ

)
log
(
B
δ

)
loglog

(
n
ρ

)
loglog

(
B
δ

))
.

Proof. The algorithm is the same as in the less general Corollary 15 presented in Section 3.2, we
just need to analyze it a bit more carefully. The main idea is still to implement an approximate

version of the phase oracle O : |x, 0, 0〉 7→ e2πi M
3B
f(x0+rx)|x, 0, 0〉, and then use Jordan’s gradient

computation algorithm. We approximate O by first approximately computing f using U , then

applying17 a controlled phase operation cP acting as cP: |y〉 7→ e2πi M
3B
y|y〉 (where M = 3B

84πδ as in
the proof of Corollary 15), and finally applying U † to approximately uncompute f .

We can assume without loss of generality that our unitary δ-approximator is such that the
probability of |f(x)− y| > δ is at most 1

1200 . If this is not the case, we can improve the success
probability by querying U a few times and taking the median of the results.

Let us define F(x) := {y ∈ Y : |f(x)− y| ≤ δ} as in Definition 28. Observe that∥∥∥O|x, 0, 0〉 − U †(I ⊗ cP⊗ I)U |x, 0, 0〉
∥∥∥2

=
∥∥∥(I ⊗ (e2πi M

3B
f(x0+rx)I − cP)⊗ I

)
U |x, 0, 0〉

∥∥∥2

=

∥∥∥∥∥∥
∑
y∈Y

(
e2πi M

3B
f(x0+rx) − e2πi M

3B
y
)
αx,y|x, y, ψx,y〉

∥∥∥∥∥∥
2

.

17If y is a b-bit fixed-point binary number, then this can be implemented using b single-qubit phase gates as
follows: we can assume without loss of generality that y = a0 + a ·

∑b
j=1 yj2

j for some fixed a0, a ∈ R. Then

e2πi
M
3B

y = e2πi
M
3B

a0
∏b
j=1 e

2πi M
3B

ayj2
j

. The global phase is irrelevant, and the other phase factors can be implemented

by using b single-qubit phase gates, each acting as |yj〉 7→ e2πi
M
3B

ayj2
j

|yj〉.
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We bound the above quantity in two parts using the triangle inequality as follows:∥∥∥∥∥∥
∑

y∈Y \F(x)

(
e2πi M

3B
f(x0+rx) − e2πi M

3B
y
)
αx,y|x, y, ψx,y〉

∥∥∥∥∥∥
2

≤
∑

y∈Y \F(x)

|2αx,y|2 ≤
1

300
;

∥∥∥∥∥∥
∑

y∈F(x)

(
e2πi M

3B
f(x0+rx) − e2πi M

3B
y
)
αx,y|x, y, ψx,y〉

∥∥∥∥∥∥
2

≤
∑

y∈F(x)

∣∣∣∣2πi M3B (f(x0 + rx)− y)αx,y

∣∣∣∣2

≤
∑
y∈Yx

∣∣∣∣2πi M3Bδ
∣∣∣∣2|αx,y|2

≤
∣∣∣∣2πi M3Bδ

∣∣∣∣2 =
1

422
.

Thus for all x ∈ Gnm we have that∥∥∥O|x, 0, 0〉 − U †(I ⊗ cP⊗ I)U |x, 0, 0〉
∥∥∥ ≤√ 1

300
+

1

422
<

1

16
. (15)

We can assume without loss of generality that our approximate phase oracle does not change
the value of the input register. Otherwise we can just copy |x〉 to another register, then apply our
approximate phase oracle on the second copy, then (approximately) erase the second copy of |x〉
using mod 2 bitwise addition with the first copy. Under this assumption by (15) we get that∥∥∥O|ψ〉 − U †(I ⊗ cP⊗ I)U |ψ〉

∥∥∥ < 1

16
, for any quantum state |ψ〉 =

∑
x∈Gnm

αx|x, 0, 0〉. (16)

From now on the proof is the same as the proof of Corollary 15. In that proof we showed that if
we use the phase oracle O in Jordan’s gradient computation algorithm, then we would get a gradient
estimate where each individual coordinate has the required approximation quality with probability
at least 2

3 . Equation (16) implies that if instead we use our approximate implementation of the
phase oracle, U †(I ⊗ cP ⊗ I)U , then the outcome probability distribution changes by at most 1

16
in total variation distance. So one run of Jordan’s algorithm using this approximate phase oracle
still outputs a vector v ∈ Rn such that

Pr

[∣∣∣∣gi − 3B

r
vi

∣∣∣∣ > 8 · 42πδ

r

]
≤ 1

3
+

1

16
<

2

5
for every i ∈ [n].

As in the proof of Corollary 15, repeating the whole procedure O
(

log(nρ )
)

times, and taking the

median of the resulting vectors coordinatewise, gives a gradient approximator g̃ of the desired qual-
ity. The gate complexity analysis follows from [GAW19, Theorem 21], noting that each controlled
phase operation cP can be implemented using O

(
log
(
B
δ

))
single-qubit phase gates.
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