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t. We present several appli
ations of quantum amplitude ampli�
ation for de
idingwhether all elements in the image of a given fun
tion are distin
t, for �nding an interse
tion oftwo sorted tables and for �nding a triangle in a graph. Our te
hniques generalize and improvethose of Brassard, H�yer, and Tapp. This shows that in the quantum world element distin
tness issigni�
antly easier than sorting, in 
ontrast to the 
lassi
al world.1. Introdu
tion. In the last de
ade, quantum 
omputing has be
ome a promi-nent and promising area of theoreti
al 
omputer s
ien
e. Realizing this promise re-quires two things: a
tually building a quantum 
omputer and dis
overing tasks wherea quantum 
omputer is signi�
antly faster than a 
lassi
al 
omputer. Here we are
on
erned with the se
ond issue. Few good quantum algorithms are known to date.The two main examples are Shor's algorithm for fa
toring [24℄, whi
h a
hieves an ex-ponential speed-up over the best known 
lassi
al fa
toring algorithms, and Grover'ssear
h algorithm [15℄, whi
h a
hieves a quadrati
 speed-up over 
lassi
al sear
h al-gorithms. Whereas the �rst so far has remained a seminal but somewhat isolatedresult, the se
ond has been applied as a building blo
k in quite a few other quantumalgorithms [6, 8, 9, 10, 21, 20, 7, 12℄.The se
urity of the widely used 
ryptosystem RSA is based on the assumption thatit is hard to fa
tor integers. Shor's algorithm solves pre
isely this task. In the same
avor, the se
urity of digital signatures is based on the assumption that it is diÆ
ultto �nd two items whi
h map to the same value for some parti
ular fun
tion. Thismotivates the resear
h on the quantum 
omplexity of this task. We de�ne di�erentvariants of this problem. Though we do not improve the bounds for the followingproblem, we de�ne it �rst to start our explanation. We use [N ℄ to denote f1; : : : ; Ng.Collision Probleminput f : [N ℄ ! [M ℄ whi
h is 2-to-1, i.e. 8i 2 [N ℄9!j 2 [N ℄; i 6= j :f(i) = f(j)output i; j 2 [N ℄ with i 6= j and f(i) = f(j)
omplexity Classi
ally the bounded-error query 
omplexity is �(N1=2).For a quantum 
omputer the bounded-error query 
omplexityis �(N1=3): In 1997 Brassard, H�yer, Tapp [8℄ gave a bounded-error quantum algorithm using O(N1=3) queries to f and in 2002Shi [23℄ showed the mat
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In the following problem we remove the assumption about the input. The birthdayparadox gives a simple relation between both problems. A random subset of size pNof the domain of any 2-to-1 fun
tion 
ontains with high probability a 
ollision pair.Therefore any bounded-error algorithm for Element Distin
tness using O(N�) queriesimplies a bounded-error algorithm for the Collision Problem using O(N�=2) queries.Element Distin
tnessinput f : [N ℄! [M ℄output i; j 2 [N ℄ with i 6= j and f(i) = f(j), or \all distin
t" if fis inje
tive
omplexity We present a bounded-error quantum algorithm whi
hmakes O(N3=4) queries. It dates from early 2000, and �rst ap-peared in [11℄. However, re
ently the bounded-error quantumquery 
omplexity was shown to be �(N2=3): The lower boundfollows from Shi [23℄ by the observation above and an algorithmmat
hing this bound was found in 2003 by Ambainis [3℄ using aquantum walk. The 
lassi
al bounded-error query 
omplexity is�(N) by a trivial redu
tion from the OR-problem: For an OR-instan
e x 2 f0; 1gN we de�ne the fun
tion f : [N+1℄! [N+1℄where f(N + 1) = 0 and for all i 2 [N ℄ f(i) = (1 � xi)i. NowOR(x) = 1 i� f 
ontains a 
ollision pair.The element distin
tness problem has been well studied 
lassi
ally [25, 18, 14, 5℄.It is parti
ularly interesting be
ause its 
lassi
al 
omplexity is related to that of sort-ing, whi
h is well known to require N logN+�(N) 
omparisons in the 
lassi
al world.If we sort f , we 
an de
ide element distin
tness by going through the sorted list on
e,whi
h gives a 
lassi
al upper bound of N logN +O(N) 
omparisons. Conversely, ele-ment distin
tness requires 
(N logN) 
omparisons in 
ase of 
lassi
al bounded-erroralgorithms (even in a mu
h stronger model [14℄), so sorting and element distin
tnessare essentially equally hard 
lassi
ally. On a quantum 
omputer, the best known up-per bound for sorting is 0:53 N logN 
omparisons [13℄, and su
h a linear speed-up isbest possible: quantum sorting requires 
(N logN) 
omparisons, even if one allowsa small probability of error [16℄. A

ordingly, our O(N3=4 logN) upper bound showsthat element distin
tness is signi�
antly easier than sorting for a quantum 
omputer,in 
ontrast to the 
lassi
al 
ase.In this paper we also give algorithms for related problems. Typi
ally, web sear
hengines like Google asso
iate to every word a list of pages 
ontaining it, sorted in orderof its page rank, and when the query is \Rolling Stones" for example, then the sear
hengine must output the interse
tion of the lists asso
iated to the words \Rolling" and\Stones". Now imagine a sear
h engine implemented on a quantum 
omputer. Thismotivates the following problem.List Interse
tioninput f; g : [N ℄! [M ℄ ea
h is monotone in
reasingoutput i; j 2 [N ℄ with i 6= j and f(i) = f(j), or \lists disjoint" ifthe images of f and g are disjoint
omplexity We present a bounded-error quantum algorithm whi
hmakes O(pN
log�N ) queries to f for some 
onstant 
 > 1. Atrivial lower bound 
(pN) 
an be obtained by a redu
tion fromthe OR-problem: given an OR-instan
e x 2 f0; 1gN , de�nef; g : [N ℄ ! [2N + 1℄ by f(i) = 2i + 1 and g(i) = 2i + xifor all i 2 [N ℄. Then f and g are ordered, and OR(x) = 1 i� the2



List Interse
tion problem has a solution. The same redu
-tion shows that the 
lassi
al bounded-error query 
omplexity is�(N).The fun
tion log?(N) is de�ned as the minimum number of iterated appli
a-tions of the logarithm fun
tion ne
essary to obtain a number less than or equal to 1:log?(N) = minfi � 0 j log(i)(N) � 1g, where log(i) = log Æ log(i�1) denotes the ithiterated appli
ation of log, and log(0) is the identity fun
tion. Even though 
log?(N) isexponential in log?(N), it is still very small in N , in parti
ular 
log?(N) 2 o(log(i)(N))for any 
onstant i � 1.To a fun
tion f : [N ℄ ! [M ℄ we 
an asso
iate a 
ollision graph G(V;E) withV = [N ℄ and (i; j) 2 E if i 6= j and f(i) = f(j). The Element Distin
tness problemsimply 
onsists of �nding an edge in G. An interesting problem is to ask whether G
ontains some �xed subgraph. A simple, yet non-trivial subgraph is the triangle, i.e.the 
omplete graph on 3 verti
es.Triangle Findinginput the symmetri
 adja
en
y matrix M : [n℄ � [n℄ ! f0; 1g of agraph with m edgesoutput u; v; w 2 [N ℄ su
h that M(u; v) = M(v; w) = M(w; u) = 1or \failure" if the graph 
ontains no triangle
omplexity We present a bounded-error quantum algorithm whi
hneeds O(n+pnm) queries. A better algorithm has been foundin 2003, with O(n1:3) bounded-error query quantum 
omplex-ity [19℄, while Yao [26℄ showed a lower bound of 
(n2=3 log1=6 n).Classi
ally a simple redu
tion from the OR-problem shows thatthe bounded-error query 
omplexity is �(n2), even if m = O(n).2. Preliminaries. We assume the reader is familiar with the formalism of quan-tum 
omputing, otherwise we refer to [22℄. The quantum ingredient of our algorithmsis amplitude ampli�
ation [7℄, whi
h generalizes quantum sear
h [15℄. The essen
e ofamplitude ampli�
ation 
an be summarized by the following theorem.Theorem 2.1 (Amplitude ampli�
ation). There exists a quantum algorithmQSear
h with the following property. Let A be any quantum algorithm that uses nomeasurements, and mapping j0i to a superposition Px2X �xjxi, for some set X. Letg : X ! f0; 1g be a fun
tion testing whether a basis state represents a solution or not.Let p be the su

ess probability of A, i.e. p2 =Px:g(x)=1 j�xj2. Let Sg be an operatorimplementing g s.t. Sgjxi = (�1)g(x)jxi for every x 2 X. Then algorithm QSear
h�nds a solution using an expe
ted number of O(1=pp) appli
ations of A, A�1 and Sgif p > 0, and otherwise runs forever.Note that when an algorithm A does make measurements during its 
omputationthen there is a standard tri
k whi
h transforms it into an equivalent algorithm A0whi
h does not. We repla
e every measurement with an operator writing the value,whi
h would be the result of the measurement, in a new register, whi
h initially wasall zero. In the rest of the 
omputation, every 
omputation depending on the resultof the measurement will depend rather on the 
ontent of this register.QSear
h works by iterating the unitary transformation Q = �AS0A�1Sg anumber of times, starting with initial state Aj0i. The operator S0 is de�ned as S0j0i =�j0i and S0jxi = jxi for all x 6= 0. The analysis of [7℄ shows that a measurement after�(1=pp) iterations of Q yields a solution with probability 
lose to 1. The algorithmQSear
h does not need to know the value of p in advan
e, but if p is known, then aslight modi�
ation �nds a solution with 
ertainty using O(1=pp) appli
ations of A,3



A�1 and Sg.Grover's algorithm for sear
hing a spa
e of N items is a spe
ial 
ase of ampli-tude ampli�
ation, where A is the Hadamard transform on ea
h qubit. This A hasprobability p � 1=N of �nding a solution (if there is at least one), so amplitude am-pli�
ation implies an O(pN) quantum algorithm for sear
hing the spa
e. We refer tothis pro
ess as \quantum sear
hing".3. Element Distin
tness.Algorithm: Find a 
ollision pair in f : [N ℄! [M ℄1. Partition the domain of f into disjoint sets S1; : : : ; SpN of size O(pN) ea
h.2. Apply amplitude ampli�
ation to the following inner blo
k(a) Sele
t a random subset Sk of the partition.(b) Query all values f(i) for i 2 Sk, and build a binary sear
h tree over theset f(Sk) := ff(i) : i 2 Skg. If Sk 
ontains a 
ollision pair, output it.(
) Otherwise sear
h j 2 [N ℄nSk su
h that f(j) 2 f(Sk). Use the quantumsear
h pro
edure whi
h su

eeds with probability at least 1=2 providedSk 
ontains one element of a 
ollision pair. In 
ase of su

ess, outputthe 
ollision pair.Theorem 3.1. If f has a 
ollision pair i; j then the previous algorithm �nds itafter an expe
ted number of O(N3=4) queries to f .Proof. With probability at least 1=pN , step 2a sele
ts a subset 
ontaining i orj. Suppose this is the 
ase. Then either the set 
ontains a 
ollision pair or it doesnot. If it does, then step 2b �nds it, and if it does not, then with probability at least1=2, step 2
 �nds a 
ollision pair. Therefore amplitude ampli�
ation will run O(N1=4)expe
ted number times the inner loop until su

ess. Ea
h of step 2b and step 2
 useO(pN) queries, from whi
h we 
on
lude the 
laimed 
omplexity.A weaker model is the 
omparison model, where we are only allowed to askquery f(i) � f(j) for given indi
es i; j, rather than the a
tual values f(i); f(j). Theprevious algorithm 
an be adapted to that model with the pri
e of an O(logN) fa
torin steps 2b and 2
. In 
ontrast, for 
lassi
al (exa
t or bounded-error) algorithms,element distin
tness is as hard as sorting and requires �(N logN) 
omparisons.4. List interse
tion. We are given two monotone in
reasing fun
tions f; g :[N ℄ ! [M ℄ and sear
h for i; j 2 [N ℄ su
h that f(i) = g(j). A simple algorithmwould be to make a quantum sear
h for i 2 [N ℄ su
h that there exists j 2 [N ℄ withf(i) = g(j). The quantum sear
h of i will need O(pN) iterations and the binarysear
h of j O(logN) queries. This gives a bounded-error quantum algorithm usingO(pN logN) queries. We now show how to get rid of most of the log fa
tor byexploiting the fa
t that both fun
tions are monotone in
reasing.Our quantum algorithm solves the problem using O�pN
log?(N)� 
omparisons forsome 
onstant 
 > 0. We de�ne a set of subproblems su
h that the original problem(f; g) 
ontains a 
ollision pair if and only if at least one of the subproblems 
ontainsone. We then solve the original problem by running the subproblems in quantumparallel and applying amplitude ampli�
ation.Let 1 � r < N be an integer. For the purpose of de�ning subproblems we extendthe fun
tions f and g to the domain [1; N+r℄, mapping f(N+i) = maxff(N); g(N)g+i and g(N+i) = f(N+i)+r for all 1 � i � r, extending at the same time the range off and g to [M +2r℄. We also de�ne the insertion point of some integer x < h(N +1)in a monotone in
reasing fun
tion h : [N + r℄! [M +2r℄ as the smallest index i su
hthat h(i) � x. 4



We de�ne 2 �Nr � subproblems as follows. For ea
h 0 � i � dN=re�1, 
onsider thesubproblem (fi; g0i) where fi denotes the restri
tion of f to subdomain [ir+1; (i+1)r℄,and g0i the restri
tion of g to [j; j + r � 1℄ where j is the insertion point of f(ir + 1)in g.Similarly, for ea
h 0 � j � dN=re � 1, let be the subproblem (f 0j ; gj) where gjdenotes the restri
tion of g to [jr+1; (j+1)r℄, and f 0j the restri
tion of f to [i; i+r�1℄where i is the insertion point of g(jr + 1) in f .Lemma 4.1. If i; j 2 [N ℄ is a 
ollision pair for (f; g) then it is also a 
ollisionpair for one of the subproblems.Proof. Let be k = bi=r
 + 1 and k0 be the insertion point of f(k) in g. Ifj 2 [k0; k0 + r � 1℄ then (i; j) is also a 
ollision pair for the subproblem (fk; g0k).Otherwise let be ` = bj=r
+ 1. We have f(k) � g(`) � f(i). Therefore the insertionpoint `0 of g(`) in f satis�es i 2 [`0; `0+ r� 1℄, from whi
h we 
on
lude that (i; j) is a
ollision pair for the subproblem (f 0̀; g`).Theorem 4.2. There exists a quantum algorithm that outputs a 
ollision pairbetween f and g with probability at least 23 provided one exists, using O�pN
log?(N)�queries, for some 
onstant 
 > 1.Proof. Let T (N) denote the worst-
ase number of queries required if f and g havedomain of size N . We show thatT (N) � 
0rNr �dlog(N + 1)e+ T (r)�; (4.1)for some (small) 
onstant 
0. Let 0 � i � dN=re � 1 and 
onsider the subproblem(fi; g0i). To �nd the insertion point of f(bi=r
+ 1) in g we need dlog(N + 1)e queriesby using binary sear
h. Then we need additional T (r) queries at most to �nd a
ollision pair for (fi; g0i). There are 2 �Nr � subproblems, so by applying amplitudeampli�
ation we 
an �nd a 
ollision pair among any one of them with probability atleast 23 , provided there is one, using the number of queries 
laimed in equation (4.1).We pi
k r = dlog2(N)e. Sin
e T (r) � 
(pr) = 
(logN), equation (4.1) impliesT (N) � 
00rNr T (r); (4.2)for some 
onstant 
00. Furthermore, our 
hoi
e of r implies that the depth of the re-
ursion de�ned by equation (4.2) is on the order of log?(N), so unfolding the re
ursiongives the theorem.5. Triangle-�nding. Finally we 
onsider a related sear
h problem. Consideran undire
ted graph G = (V;E) on jV j = n nodes with jEj = m edges. There areN = �n2� edge slots in E, whi
h we 
an query in a bla
k box fashion (see also [10,Se
tion 7℄). The goal is now to �nd distin
t verti
es a; b; 
 2 V su
h that (a; b); (a; 
);(b; 
) 2 E. Sin
e there are �n3� triples a; b; 
, and we 
an de
ide whether a giventriple is a triangle using 3 queries, we 
an use Grover's algorithm to �nd a trianglein O(n3=2) queries. Below we give an algorithm whi
h has the same 
omplexity fordense graphs m = O(n2) but is more eÆ
ient for sparse graphs. In parti
ular whenm = O(n), then the algorithm uses only O(n) queries, while any 
lassi
al bounded-error algorithm needs 
(n2) queries by a sensitivity argument for distinguishing thestar graph, with the same graph augmented by a single edge.5



Algorithm: Find a triangle1. Use the bounded-error quantum 
ounting pro
edure from [7, Theorem 18℄ toget a fa
tor-2 estimation m0 of the number of edges m, with O(n) expe
tednumber of queries.2. Apply amplitude ampli�
ation to the following inner blo
k, interrupting ifafter O(pm0) 
alls to the inner blo
k(a) Use quantum sear
h to �nd an edge (a; b) 2 E among all �n2� potentialedges, using at most O(n=pm0) queries.(b) Use quantum sear
h to �nd a node 
 2 V su
h that a; b; 
 is a triangle,using at most (n) queries.3. Repeat until a triangle is foundQuantum sear
h of an edge (a; b) 2 E su

eeds after O(n=pm) expe
ted numberof queries. Sin
e amplitude ampli�
ation forbids any observation in the inner blo
k,we need step 2 to get an estimation of m, whi
h determines the number of queriesafter whi
h step 2a will be interrupted.Theorem 5.1. If the graph 
ontains a triangle, then the previous algorithm �ndsone after O(n +pnm) expe
ted number of queries.Proof. Suppose step 2 �nds the 
orre
t estimation of m. Suppose the graph
ontains a triangle. Let an edge be golden if it is part of a triangle. Then step 2a�nds one with probability at least 1=2m. Given this event step 2b �nds a trianglewith probability at least 1=2. Therefore if amplitude ampli�
ation step su

eeds withprobability at least 1=2.Step 2 su

eeds with probability at least 1=2, so the total algorithm needs only a
onstant expe
ted number of repetitions.Ea
h iteration 
osts O(n + pnm0) queries, where m0 is the random out
ome ofstep 2 with expe
tation m. This establishes the 
laimed 
omplexity.6. Con
luding remarks. An interesting related problem that is still wide openis the issue of time-spa
e tradeo�s for element distin
tness. Su
h tradeo�s have beenstudied for 
lassi
al algorithms by Yao [25℄, Ajtai [2℄, Beame, Saks, Sun, and Vee [5℄,and others. In parti
ular, Yao shows that the time-spa
e produ
t of any 
lassi
al de-terministi
 
omparison-based bran
hing program solving element distin
tness satis�esTS � 
(N2�"(N)), where "(N) = 5=plnN . An upper bound TS = O((N logN)2) isa
hievable 
lassi
ally.Ignoring logarithmi
 fa
tors, the quantum algorithm presented here uses timeT = N3=4 and spa
e S = N1=2. An alternative quantum algorithm is to sear
h thespa
e of all �N2 � (x; y)-pairs to try and �nd a 
ollision. This algorithm has roughlyT = N and S = logN . Thirdly, Ambainis's new algorithm has T = N2=3 andS = N2=3. All these algorithms satisfy T 2S � N2. In fa
t, for every spa
e boundS less than N2=3, one 
an �nd an algorithm whose time (or query) 
omplexity Tsatis�es T 2S � N2. We 
onje
ture that this 
lose to optimal. Proving this would bevery interesting, sin
e no non-trivial quantum time-spa
e tradeo� lower bounds areknown for any de
ision problem (some tradeo�s for multiple-output problems may befound in [17℄). REFERENCES[1℄ S. Aaronson, Quantum lower bound for the 
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