
Quantum Information and Computation, Vol. 0, No. 0 (2003) 000–000
c© Rinton Press

Optimizing the Number of Gates in Quantum Search

Srinivasan Arunachalama

QuSoft, CWI, Amsterdam, the Netherlands
srinivasan1390@gmail.com

Ronald de Wolf b

QuSoft, CWI and University of Amsterdam, the Netherlands
rdewolf@cwi.nl

Received (October 18, 2016)
Revised (February 1, 2017)

In its usual form, Grover’s quantum search algorithm uses O(
√
N) queries and O(

√
N logN) other

elementary gates to find a solution in an N -bit database. Grover in 2002 showed how to reduce the
number of other gates to O(

√
N log logN) for the special case where the database has a unique

solution, without significantly increasing the number of queries. We show how to reduce this further
to O(

√
N log(r) N) gates for every constant r, and sufficiently large N . This means that, on average,

the circuits between two queries barely touch more than a constant number of the logN qubits on
which the algorithm acts. For a very large N that is a power of 2, we can choose r such that the
algorithm uses essentially the minimal number π

4

√
N of queries, and only O(

√
N log(log?N))

other gates.

Keywords: Quantum computing, Quantum search, Gate complexity.

Communicated by: to be filled by the Editorial

1 Introduction

One of the main successes of quantum algorithms so far is Grover’s database search algorithm [1, 2].
Here a database of size N is modeled as a binary string x ∈ {0, 1}N , whose bits are indexed by
i ∈ {0, . . . , N − 1}. A solution is an index i such that xi = 1. The goal of the search problem is to
find such a solution given access to the bits of x. If our database has Hamming weight |x| = 1, we
say it has a unique solution.

The standard version of Grover’s algorithm finds a solution with high probability using O(
√
N)

database queries andO(
√
N logN) other elementary gates. It starts from a uniform superposition over

all database-indices i, and then applies O(
√
N) identical “iterations,” each of which uses one query

and O(logN) other elementary gates. Together these iterations concentrate most of the amplitude on
the solution(s). A measurement of the final state then yields a solution with high probability. For the
special case of a database with a unique solution its number of iterations (= number of queries) is
essentially π

4

√
N , and Zalka [3] showed that this number of queries is optimal. Grover’s algorithm, in

aSupported by ERC Consolidator Grant QPROGRESS.
bPartially supported by ERC Consolidator Grant QPROGRESS and by the European Commission FET-Proactive project Quan-
tum Algorithms (QALGO) 600700.

1

2 Optimizing the Number of Gates in Quantum Search

various forms and generalizations, has been applied as a subroutine in many other quantum algorithms,
and is often the main source of speed-up for those. See for example [4, 5, 6, 7, 8, 9].

In [10], Grover gave an alternative algorithm to find a unique solution using slightly more (but still
(π4 + o(1))

√
N) queries, and only O(

√
N log logN) other elementary gates. The algorithm is more

complicated than the standard Grover algorithm, and no longer consists ofO(
√
N) identical iterations.

Still, it acts on O(logN) qubits, so on average a unitary sitting between two queries acts on only a
tiny O(log logN/ logN)-fraction of the qubits. It is quite surprising that such mostly-very-sparse
unitaries suffice for quantum search.

In this paper we show how Grover’s reduction in the number of gates can be improved further:
for every fixed r, and sufficiently large N , we give a quantum algorithm that finds a unique solution
in a database of size N using O(

√
N) queries and O(

√
N log(r)N) other elementary gates.cTo be

concrete about the latter, we assume that the set of elementary gates at our disposal is the Toffoli
(controlled-controlled-NOT) gate, and all one-qubit unitary gates.

Our approach is recursive: we build a quantum search algorithm for a larger database using ampli-
tude amplification on a search algorithm for a smaller database.dLet us sketch this in a bit more detail.
Suppose we have an increasing sequence of database-sizes N1, . . . , Nr = N , where Ni+1 ≈ 2

√
Ni

(of course, N needs to be sufficiently large for such a sequence to exist). The basic Grover algorithm
can search a database of size N1 using

Q1 = O(
√
N1), E1 = O(

√
N1 logN1)

queries and gates, respectively. We can build a search algorithm for database-size N2 as follows.
Think of the N2-sized database as consisting of N2/N1 N1-sized databases; we can just pick one
such N1-sized database at random, use the smaller algorithm to search for a solution in that database,
and then use O(

√
N2/N1) rounds of amplitude amplification to boost (to 1) the N1/N2 probability

that our randomly chosen N1-sized database happened to contain the unique solution. Each round
of amplitude amplification involves one application of the smaller algorithm, one application of its
inverse, a reflection through the logN2-qubit all-0 state, and one more query. This gives a search
algorithm for an N2-sized database that uses

Q2 = O

(√
N2

N1
Q1

)
= O(

√
N2), E2 = O

(√
N2

N1
(E1 + logN2)

)

queries and gates respectively. Note that by our choice of N2 ≈ 2
√
N1 , we have E1 ≥ logN2, so

E2 = O(
√
N2/N1E1). Repeating this construction gives a recursion

Qi+1 = O

(√
Ni+1

Ni
Qi

)
, Ei+1 = O

(√
Ni+1

Ni
Ei

)
.

cThe constant in the O(·) for the number of gates depends on r. The iterated binary logarithm is defined as log(s+1) =

log ◦ log(s), where log(0) is the identity function. The function log?N is the number of times the binary logarithm must be
iteratively applied to N to obtain a number that is at most 1: log?N = min{r ≥ 0 : log(r) N ≤ 1}.
dThe idea of doing recursive applications of amplitude amplification to search increasingly larger database-sizes is reminiscent
of the algorithm of Aaronson and Ambainis [11] for searching an N -element database that is arranged in a d-dimensional grid.
However, their goal was to design a search algorithm for the grid with nearest-neighbor gates and with optimal number of
queries (they succeeded for d > 2). It was not to optimize the number of gates. If one writes out their algorithm as a quantum
circuit, it still has roughly

√
N logN gates.

S. Arunachalam and R. de Wolf 3

The constant factor in the O(·) blows up by a constant factor in each recursion, so after r steps this
unfolds to

Qr = O(exp(r)
√
N), Er = O(exp(r)

√
N logN1).

Since N1, . . . , Nr = N is (essentially) an exponentially increasing sequence, we have logN1 =

O(log(r)N).
The result we prove in this paper is stronger: it does not have the exp(r) factor. Tweaking the

above idea to avoid this factor is somewhat delicate, and will take up the remainder of this paper. In
particular, in order to get close to the optimal query complexity π

4

√
N , it is important (and different

from Grover’s approach) that the intermediate amplitude amplification steps do not boost the success
probability all the way to 1. The reason is that amplitude amplification is less efficient when boosting
large success probabilities to 1 than when boosting small success probabilities to somewhat larger
success probabilities. Our final algorithm will boost the success probability to 1 only at the very end,
after all r recursion steps have been done. Because the calculations involved are quite fragile, and
tripped us up multiple times, the proofs in the body of the paper are given in much detail.

IfN is a power of 2, then choosing r = log?N in our result and being careful about the constants,
we get an exact quantum algorithm for finding a unique solution using essentially the optimal π4

√
N

queries, and O(
√
N log(log?N)) elementary gates. Note that our algorithm on average uses only

O(log(log?N)) elementary gates in between two queries, which is barely more than constant. Once
in a while a unitary acts on many more qubits, but the average is only O(log(log?N)).

Possible objections. To pre-empt the critical reader, let us mention two objections one may raise
against the fine-grained optimization of the number of elementary gates that we do here. First, one
query acts on logN qubits, and when itself implemented using elementary gates, any oracle that’s
worth its salt would require Ω(logN) gates. Since Ω(

√
N) queries are necessary, a fair way of

counting would say that just the queries themselves already have “cost” Ω(
√
N logN), rendering

our (and Grover’s [10]) gate-optimizations moot. Second, to do exact amplitude amplification in
our recursion steps, we allow infinite-precision single-qubit phase gates. This is not realistic, as in
practice such gates would have to be approximated by more basic gates. Our reply to both would
be: fair enough, but we still find it quite surprising that query-efficient search algorithms only need to
act on a near-constant number of qubits in between the queries on average. It is interesting that after
nearly two decades of research on quantum search, the basic search algorithm can still be improved in
some ways. It may even be possible to optimize our results further to use O(

√
N) elementary gates,

which would be even more surprising.

2 Preliminaries

Let [n] = {1, . . . , n}. We use the binary logarithm throughout this paper. We will typically assume
for simplicity that the database-sizeN is a power of 2, N = 2n, so we can identify indices i with their
binary representation i1 . . . in ∈ {0, 1}n. We can access the database by means of queries. A query
corresponds to the following unitary map on n+ 1 qubits:

Ox : |i, b〉 7→ |i, b⊕ xi〉,

where i ∈ {0, . . . , N − 1} and b ∈ {0, 1}. Given access to an oracle of the above type, we can
make a phase query Ox,± : |i〉 → (−1)xi |i〉 as follows: start with |i, 1〉 and apply the Hadamard gate

H = 1√
2

(
1 1
1 −1

)
to the last qubit to obtain |i〉|−〉, where |−〉 = (|0〉 − |1〉)/

√
2. Apply Ox

4 Optimizing the Number of Gates in Quantum Search

to |i〉|−〉 to obtain (−1)xi |i〉|−〉. Finally, apply the Hadamard gate to the last qubit, sending the state
to (−1)xi |i, 1〉.

Let Dn = 2|0n〉〈0n|− Id be the n-qubit unitary that reflects through |0n〉. It is not hard to see that
this can be implemented using O(n) elementary gates and n − 1 ancilla qubits that all start and end

in |0〉 (and that we often will not even write explicitly). Specifically, one can apply X =

(
0 1
1 0

)
gates to each of the n qubits, then use n − 1 Toffoli gates into n − 1 ancilla qubits to compute the
logical AND of the first n qubits, then apply−Z to the last qubit (which negates the basis states where
this AND is 0), and reverse the Toffolis and Xs.

Amplitude amplification is a technique that can be used to efficiently boost quantum search algo-
rithms with a known success probability a to higher success probability. We will invoke the following
theorem from [2] in the proof of Theorem 2 later. For the sake of completeness we include a proof in
the appendix.

Theorem 1 LetN = 2n. Suppose there exists a unitary quantum algorithmA that finds a solution
in database x ∈ {0, 1}N with known probability a, in the sense that measuringA|0n〉 yields a solution

with probability exactly a. Let a′ ∈ [a, 1] and w = d arcsin(
√
a′)

2 arcsin(
√
a)
− 1

2e. Then there exists a quantum
algorithm B that finds a solution with probability exactly a′ usingw+1 applications of algorithmA,w
applications of A−1, w additional queries, and 4w(n + 2) additional elementary gates. In total, B
uses (2w + 1)Q+ w queries and w(4n+ 2E + 8) + E elementary gates.

A very simply algorithm to which we can apply this theorem is A = H⊗n. If our N -bit database
has a unique solution, then the success probability is a = 1/N . Let a′ = 1/k for some integer k ≥ 2.
Then, Theorem 1 implies an algorithm C(1) that finds a solution with probability exactly 1/k using w
queries and at most O(w logN) other elementary gates, where w ≤ d

√
N(1+1/k)

2
√
k

− 1
2e (this upper

bound on w follows because arcsin(z) ≥ z, and sin(1+1/k√
k

) ≥ 1√
k

since sin(z) ≥ z − z3/6 for
z ≥ 0).

In order to amplify the probability of an algorithm from 1/k to 1 we use the following corollary.
Corollary 1 Let k ≥ 2, n be integers, N = 2n. Suppose there exists a quantum algorithm D that
finds a unique solution in an N -bit database with probability exactly 1/k using Q ≥

√
k queries

and E elementary gates. Then there exists a quantum algorithm that finds the unique solution with
probability 1 using at most π2Q

√
k(1 + 2√

k
)2 queries and O(

√
k(n+ E)) elementary gates.

Proof: Applying Theorem 1 to algorithm D with a = 1/k, a′ = 1, we obtain an algorithm that
succeeds with probability 1 using at most w′(2Q+ 1) +Q queries and O(w′(n+ E)) gates, where

w′ =
⌈ arcsin(1)

2 arcsin(1/
√
k)
− 1

2

⌉
≤ π

4
(
√
k + 1),

using arcsin(x) ≥ x and dπ4
√
k − 1

2e ≤
π
4 (
√
k + 1). Hence, the total number of queries in this new

algorithm is at most

π

4
(
√
k + 1)(2Q+ 1) +Q =

π

2
Q(
√
k + 1)

(
1 +

1

2Q
+

2

π(
√
k + 1)

)
≤ π

2
Q(
√
k + 1)(1 +

2√
k

)

≤ π

2
Q
√
k(1 +

2√
k

)2,

S. Arunachalam and R. de Wolf 5

where we used Q ≥
√
k and π(

√
k + 1) ≥ 2

√
k in the first inequality. The total number of gates is

O(
√
k(n+ E)).

The following easy fact will be helpful to get rid of some of the ceilings that come from Theorem 1.

Fact 1 If k ≥ 2 and α ≥ k, then dα2 (1 + 1
k)− 1

2e ≤
α
2 (1 + 2

k).

Fact 2 If k ≥ 3 and i ≥ 2, then (2i+ 8) log k < ki+1.

Proof: Fixing i = 2, it is easy to see that 12 log k < k3 for k ≥ 3. Similarly, fix k = 3 and
observe that (2i + 8) log 3 < 3i+1 for all i ≥ 2. This implies the result for all k ≥ 3 and i ≥ 2,
because the right-hand side grows faster than the left-hand side in both i and k.

3 Improving the gate complexity for quantum search

In this section we give our main result, which will be proved by recursively applying the following the-
orem.

Theorem 2 Let k ≥ 4, n ≥ m + 2 log k be integers, M = 2m and N = 2n. Suppose there
exists a quantum algorithm G that finds a unique solution in an M -bit database with a known success
probability that is at least 1/k, using Q ≥ k + 2 queries and E other elementary gates. Then
there exists a quantum algorithm that finds a unique solution in an N -bit database with probability
exactly 1/k, using Q′ queries and E′ other elementary gates where,

Q′ ≤ Q
√
N/M(1 + 4/k), E

√
N/M ≤ E′ ≤ (3n+ E)

√
N/M(1 + 3/k).

Proof: Consider the following algorithm A:

1. Start with |0n〉.

2. Apply the Hadamard gate to the first n−m qubits, leaving the lastm qubits as |0m〉. The result-
ing state is a uniform superposition over the first n−m qubits 1√

N/M

∑
y∈{0,1}n−m |y〉|0m〉.

3. Apply the unitary G to the last m qubits (using queries to x, with the first n −m address bits
fixed).

The final state of algorithm A is

(H⊗(n−m) ⊗ G)|0n〉 =
1√
N/M

∑
y∈{0,1}n−m

|y〉G|0m〉.

The state |y〉G|0m〉 depends on y, because here G restricts to the M -bit database that corresponds
to the bits in x whose n-bit address starts with y. Let t be the n-bit address corresponding to the
unique solution in the database x ∈ {0, 1}N . Then the probability of observing |t1 . . . tn〉 in the state
|t1 . . . tn−m〉G|0m〉 is at least 1/k. Suppose

√
a is the amplitude of t in the final state after A, then

we have that a ≥ M
kN . The total number of queries of algorithm A is Q (from Step 3) and the total

number of elementary gates is n−m+ E (from Steps 2 and 3).
Applying Theorem 1 to algorithm A by choosing a′ = 1/k, we obtain an algorithm B using at

most w(2Q+ 1) +Q queries and w(4n+ 2E + 8) + E gates (from Theorem 1), where

w =
⌈ arcsin(

√
a′)

2 arcsin(
√
a)
− 1

2

⌉
≤
⌈√1/k(1 + 1/k)

2
√
a

− 1

2

⌉
≤
⌈√N(1 + 1/k)

2
√
M

− 1

2

⌉
≤
√
N(1 + 2/k)

2
√
M

,

6 Optimizing the Number of Gates in Quantum Search

where the first inequality uses sin(1+1/k√
k

) ≥ 1√
k

(since sin(z) ≥ z − z3/6 for z ≥ 0), the second

inequality follows from arcsin(z) ≥ z and the third inequality uses Fact 1 (
√
N/M ≥ k because

n ≥ m+ 2 log k).
The total number of queries in algorithm B is at most

w(2Q+ 1) +Q ≤ Q
√
N/M(1 + 2/k) +

1

2

√
N/M(1 + 2/k) +Q

≤ Q
√
N/M(1 + 2/k) +

Q

2k

√
N/M +

Q

k

√
N/M

≤ Q
√
N/M(1 + 4/k)

where we used Q ≥ k+2 and
√
N/M ≥ k ≥ 4 in the second inequality. The number of gates in B is

w(4n+ 2E + 8) + E ≤
√
N/M(1 + 2/k)(2n+ E + 4) + E ≤ (3n+ E)

√
N/M(1 + 3/k),

where we used
√
N/M ≥ 4 in the second inequality.

It is not hard to see that the number of gates in B is at least E
√
N/M .

Applying Theorem 1 once to an algorithm that finds the unique solution in an M -bit database
with probability 1/ log logN , we get the following corollary, which was essentially the main result of
Grover [10].

Corollary 2 Let n ≥ 25 and N = 2n. There exists a quantum algorithm that finds a unique solution
in a database of sizeN with probability 1, using at most (π4 +o(1))

√
N queries andO(

√
N log logN)

other elementary gates.

Proof: Let m = dlog(n2k3)e and k = log logN . Let C(1) be the algorithm (described after
Theorem 1) on an M -bit database with M = 2m that finds the solution with probability 1/k. Observe
that k ≥ 4 and m + 2 log k ≤ log(2n2k5) ≤ n (where the last inequality is true for n ≥ 25), hence
we can apply Theorem 2 using C(1) as our base algorithm. This gives an algorithm C(2) that finds the
solution with probability exactly 1/k. The total number of queries in algorithm C(2) is at most

⌈√M(1 + 1/k)

2
√
k

− 1

2

⌉
·
(√

N/M(1 + 4/k)
)
≤
√
M(1 + 2/k)

2
√
k

√
N/M(1 + 4/k)

≤
√
N

4k
(1 + 4/k)2,

where the expression on the left is the contribution from Theorem 2. The first inequality above follows
from Fact 1 (since m ≥ 4 log k). The total number of gates in C(2) is

O
((

3n+
⌈√M(1 + 1

k)

2
√
k

− 1

2

⌉
logM

)√N

M
(1 +

3

k
)
)

≤ O
(√N

k

(3n
√
k(1 + 3/k)√
M

+ (1 + 3/k)2 logM
))

≤ O
(√N

k

(3

k
+ (1 + 3/k)2 logM

))
≤ O

(√N

k

(
1 +

3

k

)3
log logN

)
,

S. Arunachalam and R. de Wolf 7

where we used Fact 1 in the first inequality, n
√
k(1 + 3/k) ≤

√
M/k (since m ≥ log(n2k3)) in

the second inequality and logM = O(log logN) in the last inequality. Applying Corollary 1 to
algorithm C(2), we obtain an algorithm that succeeds with probability 1 using at most

π

2

(√N

4k
(1 +

4

k
)2
)
·
(√

k(1 +
2√
k

)2
)
≤ π

4

√
N
(

1 +
4√
k

)4
queries and

O
(
n
√
k +
√
N
(

1 +
3

k

)3
log logN

)
≤ O

(√
N
(

1 +
3

k

)3
log logN

)
gates, since n

√
k ≤

√
N log logN (which is true for n ≥ 25). Since k = log logN , it follows that

the query complexity is at most (π4 + o(1))
√
N and the gate complexity is O(

√
N log logN).

We can now use Theorem 2 recursively by starting from the improved algorithm from Corollary 2.
This gives query complexity O(

√
N) and gate complexity O(

√
N log log logN). Doing this multiple

times and being careful about the constant (which grows in each step of the recursion), we obtain the
following result:

Theorem 3 Let k be a power of 2 and N a sufficiently large power of 2. For every r ∈ [log?N],
k ∈ {4, . . . , log logN}, there exists a quantum algorithm that finds a unique solution in a database
of size N with probability exactly 1/k, using at most√
N

4k
(1+4/k)r queries and O

(√
N

k
(1 + 6/k)2r−1 max{log k, log(r)N}

)
other elementary gates.

Proof: We begin by defining a sequence of integers n1, . . . , nr such that nr = logN and ni−1 =

max{(2i + 6) log k, dlog(n2i k
3)e} for i ∈ {2, . . . , r}. Note that n1 ≥ 10 log k ≥ 20 (since k ≥ 4).

We first prove the following claim about this sequence.
Claim 1 If i ∈ {2, . . . , r}, then ni−1 + 2 log k ≤ ni .

Proof: We use downward induction on i. For the base case i = r, note that nr = logN . Firstly,
note that (2r + 6) log k ≤ dlog(n2rk

3)e for sufficiently large N and k ≤ log logN , hence nr−1 =

max{(2r + 6) log k, dlog(n2rk
3)e} = dlog(n2rk

3)e. It follows that

nr−1 + 2 log k = dlog(n2rk
3)e+ 2 log k ≤ log(2n2rk

5) ≤ logN = nr,

where the last inequality assumed N is sufficiently large and used k ≤ log logN .
For the inductive step, assume we have nj + 2 log k ≤ nj+1. We now prove nj−1 + 2 log k ≤ nj

by considering the two possible values for nj−1.
Case 1. nj−1 = (2j + 6) log k. Then we have

nj−1 + 2 log k = (2j + 8) log k ≤ max{(2j + 8) log k, dlog(n2j+1k
3)e} = nj .

Case 2. nj−1 = dlog(n2jk
3)e. We first show nj−1 ≤ nj :

nj−1 ≤ dlog(n2j+1k
3)e ≤ max{(2j + 8) log k, dlog(n2j+1k

3)e} = nj ,

where the first inequality uses the induction hypothesis. We can now conclude the inductive step:

nj−1 + 2 log k ≤ log(2n2jk
5) = 1 + 2 log nj + 5 log k ≤ nj/2 + 5 log k ≤ nj/2 + nj/2 = nj .

8 Optimizing the Number of Gates in Quantum Search

In the first inequality above we use nj−1 ≤ log(2n2jk
3). In the second inequality we use nj ≥ n1 ≥

10 log k ≥ 20 (since nj−1 ≤ nj for j ∈ {2, . . . , r} and k ≥ 4) to conclude 1 + 2 log nj ≤ nj/2

(which is true for nj ≥ 20) and in the last inequality we use 5 log k ≤ nj/2.
Using the sequence n1, . . . , nr, we consider r database-sizes 2n1 = N1 ≤ 2n2 = N2 ≤ · · · ≤

2nr = Nr = N . For each i ∈ [r], we will construct a quantum algorithm C(i) on a database
of size Ni that finds a unique solution with probability exactly 1/k. Let Qi and Ei be the query
complexity and gate complexity, respectively, of algorithm C(i). We have already constructed the
required algorithm C(1) (described after Theorem 1) on an N1-bit database using

Q1 =
⌈√N1(1 + 1/k)

2
√
k

− 1

2

⌉
≤
√
N1(1 + 2/k)

2
√
k

queries, where the inequality follows from Fact 1 (since N1 ≥ k10). Also, note that

Q1 ≥
√
N1(1 + 1/k)

2
√
k

− 1 ≥ k + 2,

where the first inequality uses N1 ≥ k10, and the second inequality uses k ≥ 4. From Theorem 1, the
number of gates E1 used by C(1) is⌈√N1(1 + 1/k)

2
√
k

− 1

2

⌉
(6 logN1 + 8) + logN1 ≤

√
N1(1 + 2/k)√

k
(3 logN1 + 4) + logN1

≤ 4
√
N1(1 + 2/k)√

k
logN1 + logN1

≤ 4
√
N1(1 + 3/k)√

k
logN1,

where we use Fact 1 (since N1 ≥ k10) in the first inequality and N1 ≥ k10 in the second and third
inequality. It is not hard to see that E1 ≥

√
N1/(4k).

For i ∈ {2, . . . , r}, we apply Theorem 2 using C(i−1) as the base algorithm and we obtain an
algorithm C(i) that succeeds with probability exactly 1/k. We showed earlier in Claim 1 that ni−1 +

2 log k ≤ ni and it also follows that k + 2 ≤ Q1 ≤ · · · ≤ Qr (since the database-sizes N1, . . . , Nr
are non-decreasing). Hence both assumptions of Theorem 2 are satisfied. The total number of queries
used by C(i) is

Qi ≤

√
Ni
Ni−1

Qi−1

(
1 +

4

k

)
. (1)

In order to analyze the number of gates used by C(i) we need the following two claims.
Claim 2 Ei ≥

√
Ni/(4k) for all i ∈ [r].

Proof: The proof is by induction on i. For the base case, we observed in Theorem 2 that E1 ≥√
N1/(4k). For the induction step assume Ei−1 ≥

√
Ni−1/(4k). The claim follows immediately

from the lower bound on E′ in Theorem 2 since Ei ≥ Ei−1
√
Ni/Ni−1 ≥

√
Ni/(4k).

Claim 3 Suppose n1 = dlog(n22k
3)e. Then ni−1 = dlog(n2i k

3)e for all i ∈ {2, . . . , r}.
Proof: We prove the claim by induction on i. The base case i = 2 is the assumption of the claim.
For the inductive step, assume ni−1 = dlog(n2i k

3)e for some i ≥ 2. We have

log(n2i k
4) ≥ dlog(n2i k

3)e ≥ (2i+ 6) log k = log(k2i+6)

S. Arunachalam and R. de Wolf 9

where the second inequality is because of the definition of ni−1. Hence

ni ≥ ki+1 > (2i+ 8) log k

using Fact 2 (k ≥ 3 and i ≥ 2 hold by the assumption of the theorem and claim respectively).
Hence ni = max{(2i + 8) log k, dlog(n2i+1k

3)e} must be equal to the second term in the max. This
concludes the proof of the inductive step and hence of the claim.

Recursively it follows that the number of gates Ei used by C(i) is at most√
Ni
Ni−1

(Ei−1 + 3ni)(1 + 3/k) ≤

√
Ni
Ni−1

Ei−1

(
1 + 3ni

√
4k

Ni−1

)
(1 + 3/k)

≤

√
Ni
Ni−1

Ei−1(1 + 6/k)2,

(2)

where we used Claim 2 in the first inequality and ni ≤
√

Ni−1

k3 in the last inequality (which clearly
holds if ni−1 = (2i + 6) log k ≥ dlog(n2i k

3)e). Unfolding the recursion in Equations (1) and (2),
we obtain

Qr ≤
√
Nr
4k

(
1 +

4

k

)r
, Er ≤ 4

√
Nr
k

(
1 +

6

k

)2r−1
logN1.

It remains to show that n1, defined as max{10 log k, dlog(n22k
3)e}, is O(max{log k, log(r)N}). If

n1 = 10 log k, then we are done. If n1 = dlog(n22k
3)e, we can use Claim 3 to write

ni−1 = d2 log ni + 3 log ke ≤ 4 log ni, for i ∈ {2, . . . , r},

where the last inequality follows from k ≤ n
1/3
2 ≤ n

1/3
i (using dlog(n22k

3)e ≥ 10 log k and Claim 1
for the first and second inequality respectively). Since nr = logN , it follows that n1 = O(log(r)N).
We conclude n1 = O(max{log k, log(r)N}).

The following is our main result:
Corollary 3

• For every constant integer r > 0 and sufficiently largeN = 2n, there exist a quantum algorithm
that finds a unique solution in a database of size N with probability 1, using (π4 + o(1))

√
N

queries and O(
√
N log(r)N) gates,

• For every ε > 0 and sufficiently large N = 2n, there exist a quantum algorithm that finds
a unique solution in a database of size N with probability 1, using (π4 + ε)

√
N queries and

O(
√
N log(log?N)) gates.

Proof: Applying Corollary 1 to algorithm C(r) (as described in Theorem 3), with some k ≤
log logN to be specified later, we obtain an algorithm that succeeds with probability 1 using at most

π

2

(√N

4k

(
1 +

4

k

)r)
·
(√

k
(

1 +
2√
k

)2)
≤ π

4

√
N
(

1 +
4√
k

)r+2

queries and

O
(√

kn+
√
N
(

1 +
6

k

)2r−1
max{log k, log(r)N}

)
≤ O

(√
N
(

1 +
6

k

)2r
max{log k, log(r)N}

)
gates. To obtain the two claims of the corollary we can now either pick:

10 Optimizing the Number of Gates in Quantum Search

• k = (c1 log?N)2, where c1 ∈ [1, 2] ensures k is a power of 2. Observe that (1+ 4
c1 log?N)r+2 =

1 + o(1) for constant r. Since log?N ∈ o(log(r)N) for every constant r, it follows that
max{log k, log(r)N} = log(r)N . Hence the query and gate complexities are (π4 + o(1))

√
N

and O(
√
N log(r)N), respectively.

• r = log?N and k = (c2(log?N + 2))2, where we choose c2 as the smallest number that
is at least 4/ ln(1 + ε) and that makes k a power of 2. We have (1 + 4√

k
)r+2 ≤ (1 +

4
c2(log?N+2))

log?N+2 ≤ 1 + ε. Hence the query and gate complexities are π
4

√
N(1 + ε) and

O(
√
N log(log?N)), respectively.

4 Future work

Our work could be improved further in a number of directions:

• Can we reduce the log(log?N) factor in the gate complexity to the optimal O(
√
N)? This may

well be possible, but requires a different idea than our roughly log? recursion steps, which will
inevitably end up with ω(

√
N) gates.

• Our construction only works for specific values of N . Can we generalize it to work for all
sufficiently large N , even those that are not powers of 2, while still using close to the opti-
mal π4

√
N queries?

• Can we obtain a similar gate-optimized construction when the database has multiple solutions
instead of one unique one? Say when the exact number of solutions is known in advance?

• Most applications of Grover’s algorithm deal with databases with an unknown number of solu-
tions, and focus only on the number of queries. Are there application where our reduction in
the number of elementary gates for search with one unique solution is both applicable and sig-
nificant?

Acknowledgements

We thank Peter Høyer and Andris Ambainis for helpful comments related to [11], and an anonymous
referee for helpful comments on the presentation.

1. L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of 28th ACM STOC,
pages 212–219, 1996. quant-ph/9605043.

2. G. Brassard, P. Høyer, M. Mosca, and A. Tapp. Quantum amplitude amplification and estimation. In Quantum
Computation and Quantum Information: A Millennium Volume, volume 305 of AMS Contemporary Mathe-
matics Series, pages 53–74. 2002. quant-ph/0005055.

3. Ch. Zalka. Grover’s quantum searching algorithm is optimal. Physical Review A, 60:2746–2751, 1999.
quant-ph/9711070.

4. G. Brassard, P. Høyer, and A. Tapp. Quantum algorithm for the collision problem. ACM SIGACT News
(Cryptology Column), 28:14–19, 1997. quant-ph/9705002.

5. H. Buhrman, R. Cleve, and A. Wigderson. Quantum vs. classical communication and computation. In Pro-
ceedings of 30th ACM STOC, pages 63–68, 1998. quant-ph/9802040.

6. H. Buhrman, Ch. Dürr, M. Heiligman, P. Høyer, F. Magniez, M. Santha, and R. de Wolf. Quantum algorithms
for element distinctness. SIAM Journal on Computing, 34(6):1324–1330, 2005. quant-ph/0007016.

7. C. Dürr and P. Høyer. A quantum algorithm for finding the minimum. quant-ph/9607014, 18 Jul 1996.

S. Arunachalam and R. de Wolf 11

8. C. Dürr, M. Heiligman, P. Høyer, and M. Mhalla. Quantum query complexity of some graph problems. In
Proceedings of 31st ICALP, volume 3142 of Lecture Notes in Computer Science, pages 481–493, 2004.

9. S. Dörn. Quantum Complexity of Graph and Algebraic Problems. PhD thesis, Institut für Theoretische
Informatik, Universität Ulm, 2007.

10. L. K. Grover. Trade-offs in the quantum search algorithm. Physical Review A, 66(052314), 2002. quant-
ph/0201152.

11. S. Aaronson and A. Ambainis. Quantum search of spatial regions. Theory of Computing, 1(1):47–79, 2005.
Earlier version in FOCS’03. quant-ph/0303041.

Appendix A

For the sake of completeness we present the construction of quantum algorithm B from Theorem 1.
The idea is to lower the success probability from a in such a way that an integer number of rounds of
amplitude amplification suffice to produce a solution with probability exactly a′.

Define θ = arcsin(
√
a′)

2w+1 and ã = sin2(θ), where w is defined in Theorem 1. Let Rã/a be the one-
qubit rotation that maps |0〉 7→

√
ã/a|0〉+

√
1− ã/a|1〉. Call an (n+ 1)-bit string (i, b) a “solution”

if xi = 1 and b = 0. Define the (n + 1)-qubit unitary O′x = (I ⊗ XH)Ox(I ⊗HX). It is easy to
verify that O′x puts a − in front of the solutions (in the new sense of the word), and a + in front of the
non-solutions.

LetA′ = A⊗Rã/a, and define |U〉 = A′|0n+1〉 to be the final state of this new algorithm. Let |G〉
be the normalized projection of |U〉 on the (new) solutions and |B〉 be the normalized projection of |U〉
on the (new) non-solutions. Measuring |U〉 results in a (new) solution with probability exactly sin2(θ),
hence we can write

|U〉 = sin(θ)|G〉+ cos(θ)|B〉.

Define Q = A′Dn+1(A′)−1O′x. This is a product of two reflections in the plane spanned by |G〉 and
|B〉: O′x is a reflection through |G〉, and A′Dn+1(A′)−1 = 2|U〉〈U | − I is a reflection through |U〉.
As is well known in the analysis of Grover’s algorithm and amplitude amplification, the product of
these two reflections rotates the state through an angle 2θ. Hence after applying Q w times to |U〉 we
have the state

Qw|U〉 = sin((2w + 1)θ)|G〉+ cos((2w + 1)θ)|B〉 =
√
a′|G〉+

√
1− a′|B〉,

since (2w+1)θ = arcsin(
√
a′). Thus the algorithmA′ can be boosted to success probability a′ using

an integer number of applications of Q.
Our new algorithm B is now defined as QwA′. It acts on n+ 1 qubits (all initially 0) and maps

|0n+1〉 7→
√
a′|G〉+

√
1− a′|B〉,

so it finds a solution with probability exactly a′. B uses w + 1 applications of algorithm A together
with elementary gate Rã/a; w applications of A−1 together with R−1ã/a; w applications of O′x (each
of which involves one query to x and two other elementary gates, counting XH as one gate); and
w applications of Dn+1 (each of which takes 4n + 3 elementary gates). Hence the total number
of queries that B makes is at most (2w + 1)Q + w and the number of gates used by B is at most
(2w + 1)E + 4w(n+ 2).

