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Abstract—Brandão and Svore [1] recently gave quantum
algorithms for approximately solving semidefinite programs,
which in some regimes are faster than the best-possible classical
algorithms in terms of the dimension n of the problem and
the number m of constraints, but worse in terms of various
other parameters. In this paper we improve their algorithms
in several ways, getting better dependence on those other pa-
rameters. To this end we develop new techniques for quantum
algorithms, for instance a general way to efficiently implement
smooth functions of sparse Hamiltonians, and a generalized
minimum-finding procedure.

We also show limits on this approach to quantum SDP-
solvers, for instance for combinatorial optimizations problems
that have a lot of symmetry. Finally, we prove some general
lower bounds showing that in the worst case, the complexity
of every quantum LP-solver (and hence also SDP-solver) has
to scale linearly with mn when m is approximately n, which is
the same as classical.

Keywords-Quantum algorithms, Semidefinite programs, Lin-
ear programs, Lower bounds

I. INTRODUCTION

A. Semidefinite programs

In the last decades, particularly since the work of
Grötschel, Lovász, and Schrijver [2], semidefinite programs
(SDPs) have become an important tool for designing efficient
optimization and approximation algorithms. SDPs generalize
and strengthen the better-known linear programs (LPs), but
(like LPs) they are still efficiently solvable. The basic form
of an SDP is the following:

max Tr(CX) (1)
s.t. Tr(AjX) ≤ bj for all j ∈ [m],

X � 0,

where [m] := {1, . . . ,m}. The input to the problem
consists of Hermitian n × n matrices C,A1, . . . , Am and
reals b1, . . . , bm. For normalization purposes we assume
‖C‖ , ‖Aj‖ ≤ 1. The number of constraints is m (we do
not count the standard X � 0 constraint for this). The
variable X of this SDP is an n×n positive semidefinite (psd)
matrix. LPs are the case where all matrices are diagonal.

A famous example is the algorithm of Goemans and
Williamson [3] for approximating the size of a maximum
cut in a graph G = ([n], E): the maximum, over all subsets
S of vertices, of the number of edges between S and its

complement S̄. Computing MAXCUT(G) exactly is NP-
hard. It corresponds to the following integer program

max
1

2

∑
{i,j}∈E

(1− vivj)

s.t. vj ∈ {+1,−1} for all j ∈ [n],

using the fact that (1−vivj)/2 = 1 if vi and vj are different
signs, and (1 − vivj)/2 = 0 if they are the same. We
can relax this integer program by replacing the signs vj by
unit vectors, and replacing the product vivj in the objective
function by the dot product vTi vj . We can implicitly optimize
over such vectors (of unspecified dimension) by explicitly
optimizing over an n × n psd matrix X whose diagonal
entries are 1. This X is the Gram matrix of the vectors
v1, . . . , vn, so Xij = vTi vj . The resulting SDP is

max
1

2

∑
{i,j}∈E

(1−Xij) (2)

s.t. Tr(EjjX) = 1 for all j ∈ [n],

X � 0,

where Ejj is the n×n matrix that has a 1 at the (j, j)-entry,
and 0s elsewhere. This SDP is a relaxation of a maximization
problem, so it may overshoot the correct value, but Goemans
and Williamson showed that an optimal solution to the SDP
can be rounded to a cut in G whose size is within a factor ≈
0.878 of MAXCUT(G) (which is optimal under the Unique
Games Conjecture [4]). This SDP can be massaged into the
form of (1) by replacing the equality Tr(EjjX) = 1 by
inequality Tr(EjjX) ≤ 1 (so m = n) and letting C be a
properly normalized version of the Laplacian of G.

B. Classical solvers for LPs and SDPs
Ever since Dantzig’s development of the simplex algo-

rithm for solving LPs in the 1940s [5], much work has gone
into finding faster solvers, first for LPs and then also for
SDPs. The simplex algorithm for LPs (with some reasonable
pivot rule) is usually fast in practice, but has worst-case
exponential runtime. Ellipsoid methods and interior-point
methods solve LPs and SDPs in polynomial time; they will
typically approximate the optimal value to arbitrary preci-
sion. The best known general SDP-solvers [6] approximate
the optimal value OPT with additive error ε in complexity

O(m(m2 + nω +mns) polylog(m,n,R, 1/ε)),



where ω ∈ [2, 2.373) is the (still unknown) matrix multipli-
cation exponent; s is the sparsity: the maximal number of
non-zero entries per row of the input matrices; and R is an
upper bound on the trace of an optimal X .1 The assumption
here is that the rows and columns of the matrices of SDP (1)
can be accessed as adjacency lists: we can query, say, the
`th non-zero entry of the kth row of Aj in constant time.

Arora and Kale [7] gave an alternative way to approximate
OPT, using a matrix version of the “multiplicative weights
update” method.2 In Section II-A we will describe their
framework in more detail, but in order to describe our result
we will start with an overly simplified sketch here. The
algorithm goes back and forth between candidate solutions
to the primal SDP and to the corresponding dual SDP, whose
variables are non-negative reals y1, . . . , ym:

min bT y (3)

s.t.
m∑
j=1

yjAj − C � 0,

y ≥ 0.

Under assumptions that will be satisfied everywhere here,
strong duality applies: the primal SDP (1) and dual SDP (3)
will have the same optimal value OPT. The algorithm does
a binary search for OPT by trying different guesses α for it.
Suppose we have fixed some α, and want to find out whether
α is bigger or smaller than OPT. Start with some candidate
solution X(1) for the primal, for example a multiple of the
identity matrix (X(1) has to be psd but need not be a feasible
solution to the primal). X(1) induces the following polytope:

Pε(X(1)) := {y ∈ Rm : y ≥ 0, bT y ≤ α,

Tr

( m∑
j=1

yjAj − C
)
X(1)

 ≥ −ε}.
Think of this polytope as a relaxation of the feasible region
of the dual SDP with the extra constraint that OPT ≤ α:
instead of requiring that

∑
j yjAj − C is psd, we merely

require its inner product with the particular psd matrix X(1)

is not too negative. The algorithm then calls an “oracle” that
provides a y(1) ∈ Pε(X(1)), or outputs “fail” if P0(X(1)) is
empty (how to efficiently implement such an oracle depends
on the application). In the “fail” case we know there is
no dual-feasible y with objective value ≤ α, so we can
increase our guess α for OPT, and restart. In case the oracle
produced a y(1), this is used to define a Hermitian matrix
H(1) and a new candidate solution X(2) for the primal,

1See Lee, Sidford, and Wong [6, Section 10.2 of arXiv version 2], and
note that our m,n are their n,m, their S is our mns, and their M is
our R. The bounds for other SDP-solvers that we state later also include
another parameter r; the assumptions of [6, Theorem 45 of arXiv version 2]
imply r ≤ mR in their setting, so r is absorbed in their polylog factor.

2See also [8] for a subsequent survey; the same algorithm was indepen-
dently discovered around the same time in learning theory [9], [10].

which is proportional to e−H
(1)

. Then the oracle for the
polytope Pε(X(2)) induced by this X(2) is called to produce
a candidate y(2) ∈ Pε(X(2)) for the dual (or “fail”), this is
used to define H(2) and X(3) proportional to e−H

(2)

, etc.
Surprisingly, the average of y(1), y(2), . . . converges to a

nearly-dual-feasible solution. Let R be an upper bound on
the trace of an optimal X of the primal, r be an upper bound
on the sum of entries of an optimal y for the dual, and w∗ be
the “width” of the oracle for a certain SDP: the maximum
of
∥∥∥∑m

j=1 yjAj − C
∥∥∥ over all psd matrices X and all

vectors y that the oracle may output for the corresponding
polytope Pε(X). In general we will not know the width
of an oracle exactly, but only an upper bound w ≥ w∗,
that may depend on the SDP; this is, however, enough for
the Arora-Kale framework. Lemma 4 in Section II-A will
show that without loss of generality we may assume the
oracle returns a y such that ‖y‖1 ≤ r. Because we assumed
‖Aj‖ , ‖C‖ ≤ 1, we then have w∗ ≤ r+1 as an easy width-
bound. General properties of the multiplicative weights
update method guarantee that after T = Õ(w2R2/ε2)
iterations3, if no oracle call yielded “fail”, then the vector
1
T

∑T
t=1 y

(t) is close to dual-feasible and satisfies bT y ≤ α.
This vector can then be turned into a dual-feasible solution
by tweaking its first coordinate, certifying that OPT ≤ α+ε,
and we can decrease our guess α for OPT accordingly.

The framework of Arora and Kale is really a meta-
algorithm, because it does not specify how to implement
the oracle. They themselves provide oracles that are opti-
mized for special cases, which allows them to give a very
low width-bound for these specific SDPs. For example for
the MAXCUT SDP, they obtain a solver with near-linear
runtime in the number of edges of the graph. They also
observed that the algorithm can be made more efficient by
not explicitly calculating the matrix X(t) in each iteration:
the algorithm can still be made to work if instead of
providing the oracle with X(t), we feed it good estimates of
Tr(AjX(t)) and Tr(CX(t)). Arora and Kale do not describe
oracles for general SDPs, but one can get a general classical
SDP-solver in their framework with complexity

Õ

(
nms

(
Rr

ε

)4

+ ns

(
Rr

ε

)7
)
. (4)

Compared to the complexity of the SDP-solver of [6],
this has much worse dependence on R and ε, but better
dependence on m and n. Using the Arora-Kale framework is
thus preferable over standard SDP-solvers for the case where
Rr is small compared to mn, and a rough approximation to
OPT (say, small constant ε) is good enough.

C. Quantum SDP-solvers: the Brandão-Svore algorithm

Given the speed-ups that quantum computers give over
classical computers for various problems [11], [12], [13],

3The Õ(·) notation hides polylogarithmic factors in all parameters.



[14], [15], it is natural to ask whether quantum computers
can solve LPs and SDPs more efficiently as well. Very little
was known about this, until recently Brandão and Svore [1]
discovered quantum algorithms that significantly outperform
classical SDP-solvers in certain regimes. Because of the
general importance of quickly solving LPs and SDPs, and
the limited number of quantum algorithms known, this is a
very interesting development.

The key idea of the Brandão-Svore algorithm is to take
the Arora-Kale approach and to replace two of its steps by
more efficient quantum subroutines. First, given the vectors
y(1), . . . , y(t−1), it turns out one can use “Gibbs sampling”
to prepare the new primal candidate X(t) ∝ e−H

(t−1)

as
a log(n)-qubit quantum state ρ(t) := X(t)/Tr(X(t)) in
much less time than needed to compute X(t) as an n × n
matrix. Second, one can implement the oracle for Pε(X(t))
based on a number of copies of ρ(t), using those copies
to estimate Tr(Ajρ(t)) and Tr(AjX(t)) when needed (note
that Tr(Aρ) is the expectation value of operator A for
the quantum state ρ). This is based on something called
“Jaynes’s principle”, and requires fewer estimations of the
Tr (Ajρ) quantities. The resulting oracle is weaker than what
is used classically, in the sense that it outputs a sample
j ∼ yj/ ‖y‖1 rather than the whole vector y. However, such
sampling still suffices to make the algorithm work (it also
means we can assume the vector y(t) to be quite sparse).

Using these ideas, Brandão and Svore obtain a quantum
SDP-solver of complexity

Õ(
√
mns2R32/δ18),

with multiplicative error 1±δ for the special case where bj ≥
1 for all j ∈ [m], and OPT ≥ 1 (the latter assumption allows
them to convert additive error ε to multiplicative error δ) [1,
Corollary 5 in arXiv version 4]. They describe a reduction to
transform a general SDP of the form (1) to this special case,
but that reduction significantly worsens the dependence of
the complexity on the parameters R, r, and δ.

Compared to the runtime (4) of our general instantiation
of the original Arora-Kale framework, there are quadratic
improvements in both m and n, corresponding to the two
quantum modifications made to Arora-Kale. However, the
dependence on R, r, s, and 1/ε is much worse than in (4).
This quantum algorithm thus provides a speed-up only in
regimes where R, r, s, 1/ε are fairly small compared to mn
(finding good examples of such SDPs is an open problem).

D. Our results

In this paper we present two sets of results: improvements
to the Brandão-Svore algorithm, and better lower bounds
for the complexity of quantum LP-solvers (and hence for
quantum SDP-solvers as well).

1) Improved quantum SDP-solver: Our quantum SDP-
solver, like the Brandão-Svore algorithm, works by quantiz-

ing some aspects of the Arora-Kale algorithm. However, the
way we quantize is different and faster than theirs.

First, we give a more efficient procedure to estimate the
quantities Tr(Ajρ(t)) required by the oracle. Instead of first
preparing some copies of a Gibbs state ρ(t) ∝ e−H

(t−1)

as a mixed state, we coherently prepare a purification of
ρ(t), which can then be used to estimate Tr(Ajρ(t)) more
efficiently using amplitude-estimation techniques. Also, our
purified Gibbs sampler has logarithmic dependence on the
error, which is exponentially better than the Gibbs sampler
of Poulin and Wocjan [16] that Brandão and Svore invoke.
Chowdhury and Somma [17] also gave a Gibbs sampler with
logarithmic error-dependence, but assuming query access to
the entries of

√
H rather than H itself.

Second, we have a different implementation of the oracle,
without using Gibbs sampling or Jaynes’s principle (though,
as mentioned above, we still use purified Gibbs sampling for
approximating the Tr(Aρ) quantities). We observe that the
vector y(t) can be made very sparse: two non-zero entries
suffice.4 We then show how we can efficiently find such a 2-
sparse vector (rather than merely sampling from it) using two
applications of the well-known quantum minimum-finding
algorithm of Dürr and Høyer [18].

These modifications both simplify and speed up the quan-
tum SDP-solver, resulting in complexity

Õ(
√
mns2(Rr/ε)8).

The dependence on m, n, and s is the same as in Brandão-
Svore, but our dependence on R, r, and 1/ε is substantially
better. Note that each of the three parameters R, r, and
1/ε now occurs with the same 8th power in the complexity.
This is no coincidence: as we show in our full version [19,
Appendix E], these three parameters can all be traded for one
another, in the sense that we can massage the SDP to make
each one of them small at the expense of making the others
proportionally bigger. These trade-offs suggest we should
actually think of Rr/ε as one parameter of the primal-dual
pair of SDPs, not three separate parameters. For the special
case of LPs we can improve to

Õ(
√
mn(Rr/ε)5).

Like in Brandão-Svore, our quantum oracle produces very
sparse vectors y, in our case even of sparsity 2. This means
that after T iterations, the final ε-optimal dual-feasible vector
(which is a slightly tweaked version of the average of the T
y-vectors produced in the T iterations) has only O(T ) non-
zero entries. Such sparse vectors have some advantages, for
example they take much less space to store than arbitrary

4Independently of us, Ben David, Eldar, Garg, Kothari, Natarajan, and
Wright (at MIT), and separately Ambainis observed that in the special case
where all bi are at least 1, the oracle can even be made 1-sparse, and the
one entry can be found using one Grover search over m points (in both
cases personal communication 2017). The same happens implicitly in our
Section II-C in this case. In general, two non-zero entries are necessary.



y ∈ Rm. In fact, to get a sublinear running time in terms
of m, this is necessary. However, this sparsity of the algo-
rithm’s output also points to a weakness of these methods:
if every ε-optimal dual-feasible vector y has many non-zero
entries, then the number of iterations needs to be large. For
example, if every ε-optimal dual-feasible vector y has Ω(m)
non-zero entries, then these methods require T = Ω(m)
iterations before they can reach an ε-optimal dual-feasible
vector. Since T = O

(
R2r2

ε2 ln(n)
)

this would imply that
Rr
ε = Ω(

√
m/ ln(n)), and hence many classical SDP-

solvers would have a better complexity than our quantum
SDP-solver. As we show in Section III, this will actually be
the case for families of SDPs that have a lot of symmetry.

2) Tools that may be of more general interest: Along the
way to our improved SDP-solver, we developed some new
techniques that may be of independent interest.

Implementing smooth functions of a given Hamiltonian:
We develop a general technique to apply a function f(H)
of a sparse Hamiltonian H to a given state |φ〉 (Theorem 8).
Roughly speaking, what this means is that we want a unitary
circuit that maps |0〉|φ〉 to |0〉f(H)|φ〉+ |1〉|∗〉. If need be,
we can then combine this with amplitude amplification to
boost the |0〉f(H)|φ〉 part of the state. If the function f :
R → C can be approximated well by a low-degree Fourier
series, then our preparation will be efficient in the sense of
using few queries to H and few other gates. The novelty of
our approach is that we construct a good Fourier series from
a polynomial that approximates f (for example a truncated
Taylor series for f ). Our Theorem 8 can be easily applied
to various smooth functions without using involved integral
approximations, unlike previous works.

Here we mostly care about the functions f(x) = e−x

and f(x) =
√
x; the first is used for generating purified

Gibbs states, and together these two functions are used for
estimating quantities like Tr(Aρ). However, our techniques
apply much more generally. For example, they also simplify
the analysis of the improved linear-systems solver of Childs
et al. [20], where the relevant function is f(x) = 1/x. As in
their work, the Linear Combination of Unitaries technique
of Childs et al. [21], [22], [23] is a crucial tool for us.

A generalized minimum-finding algorithm: Dürr and
Høyer [18] showed how to find the minimal value of a func-
tion f : [N ]→ R using O(

√
N) queries to f , by repeatedly

using Grover search to find smaller and smaller elements of
the range of f . In [19, Theorem 49] we construct a more
general minimum-finding procedure, which roughly does the
following. Suppose we have a unitary U which prepares
a quantum state U |0〉 =

∑N
k=1 |ψk〉|xk〉. Our procedure

can find the minimum value xk∗ among the xk’s that have
support in the second register, using roughly O(1/ ‖ψk∗‖)
applications of U and U−1. Upon finding the minimal
value k∗, the procedure actually outputs the state |ψk∗〉|xk∗〉.
This immediately gives the Dürr-Høyer result as a special

case if we take U to produce U |0〉 = 1√
N

∑N
k=1 |k〉|f(k)〉.

Unlike Dürr-Høyer, we need not assume direct query access
to the individual values f(k).

More interestingly for us, for a given n-dimensional
Hamiltonian H , if we combine our minimum-finder with
phase estimation using unitary U = eiH on one half of a
maximally entangled state, then we obtain an algorithm for
estimating the smallest eigenvalue of H (and preparing its
ground state) using roughly O(

√
n) applications of phase

estimation with U . A similar result on approximating the
smallest eigenvalue of a Hamiltonian was already shown by
Poulin and Wocjan [24], but we improve on their analysis
to be able to apply it as a subroutine in our procedure to
estimate Tr(Ajρ).

3) Lower bounds: What about lower bounds for quantum
SDP-solvers? Brandão and Svore already proved that a
quantum SDP-solver has to make Ω(

√
n+
√
m) queries to

the input matrices, for some SDPs. Their lower bound is for
a family of SDPs where s,R, r, 1/ε are all constant, and is
by reduction from a search problem.

In this paper we prove lower bounds that are quantitatively
stronger in m and n, but for SDPs with non-constant R
and r. The key idea is to consider a Boolean function F
on N = abc input bits that is the composition of an a-
bit majority function with a b-bit OR function with a c-bit
majority function. The known quantum query complexities
of majority and OR, combined with composition properties
of the adversary lower bound, imply that every quantum
algorithm that computes this functions requires Ω(a

√
bc)

queries. We define a family of LPs, with constant 1/ε but
non-constant r and R (we could massage this to make
R or r constant, but not Rr/ε), such that constant-error
approximation of OPT computes F . Choosing a, b, and c
appropriately, this implies a lower bound of

Ω
(√

max{n,m} (min{n,m})3/2
)

queries to the entries of the input matrices for quantum LP-
solvers. Since LPs are SDPs with sparsity s = 1, we get
the same lower bound for quantum SDP-solvers. If m and
n are of the same order, this lower bound is Ω(mn), the
same scaling with mn as the classical general instantiation
of Arora-Kale (4). In particular, this shows that we cannot
have an O(

√
mn) upper bound without simultaneously

having polynomial dependence on Rr/ε. The construction
of our lower bound implies that for the case m ≈ n, this
polynomial dependence has to be at least (Rr/ε)1/4.

II. AN IMPROVED QUANTUM SDP-SOLVER

Here we describe our quantum SDP-solver. In Sec-
tion II-A we describe the framework designed by Arora and
Kale for solving semidefinite programs. As in the recent
work by Brandão and Svore, we use this framework to
design an efficient quantum algorithm for solving SDPs. In
particular, we show that the key subroutine needed in the



Arora-Kale framework can be implemented efficiently on a
quantum computer. Our implementation uses different tech-
niques than the quantum algorithm of Brandão and Svore,
allowing us to obtain a faster algorithm. The techniques
required for this are developed in Sections II-B and II-C. In
Section II-D we put everything together to prove the main
theorem of this section, Theorem 13. See [19, Section 2] for
proofs omitted from this section due to space constraints.

Notation/Assumptions: We use log to denote the log-
arithm in base 2. We denote the all-zero matrix and vec-
tor by 0. Throughout we assume each element of the
input matrices can be represented by a bitstring of size
poly(log n, logm). We use s as the sparsity of the input
matrices, that is, the maximum number of non-zero entries
in a row (or column) of any of the matrices C,A1, . . . , Am
is s. Recall that for normalization purposes we assume
‖A1‖ , . . . , ‖Am‖ , ‖C‖ ≤ 1. We furthermore assume that
A1 = I and b1 = R, that is, the trace of primal-feasible so-
lutions is bounded by R (and hence also the trace of primal-
optimal solutions is bounded by R). The analogous quantity
for the dual SDP (3), an upper bound on

∑m
j=1 yj for an

optimal dual solution y, will be denoted by r. However,
we do not add the constraint

∑
j yj ≤ r to the dual. We

will assume r ≥ 1. For r to be well-defined we have to
make the explicit assumption that the optimal solution in
the dual is attained. In Section III it will be necessary to
work with the best possible upper bounds: we let R∗ be
the smallest trace of an optimal solution to SDP (1), and
we let r∗ be the smallest `1-norm of an optimal solution to
the dual. These quantities are well-defined; both the primal
and dual optimum are attained: the dual optimum is attained
by assumption, and due to the assumption A1 = I , the dual
SDP is strictly feasible, hence the optimum in (1) is attained.

Unless specified otherwise, we always consider additive
error. In particular, an ε-optimal solution to an SDP will be
a feasible solution whose value is within error ε of OPT.

Input oracles: We assume sparse black-box access to
the elements of the matrices C,A1, . . . , Am defined in the
following way: for input (j, `) ∈ [n]× [s] we can query the
location and value of the `th non-zero entry in the jth row
of the matrix M . Specifically, as described in [23], for each
M ∈ {A1, . . . , Am, C} we assume access to an oracle OIM ,
which serves the purpose of sparse access. OIM calculates
the index : [n] × [s] → [n] function, which for input (j, `)
gives the column index of the `th non-zero element in the jth
row. We assume this oracle computes the index “in place”:

OIM |j, `〉 = |j, index(j, `)〉. (5)

(In the degenerate case where the jth row has fewer than `
non-zero entries, index(j, `) is defined to be ` together with
some special symbol.) Also assume we can apply (OIM )−1.

We also need another oracle OM , returning a bitstring
representation of Mji for any j, i ∈ [n]:

OM |j, i, z〉 = |j, i, z ⊕Mji〉. (6)

This slightly unusual “in place” setup is not too demanding.
In particular, if instead we had an oracle that computed the
non-zero entries of a row in order, then we could implement
both OIM and its inverse using log(s) queries (we can
compute ` from j and index(j, `) using binary search) [23].

Computational model: As our computational model,
we assume a slight relaxation of the usual quantum circuit
model: a classical control system that can run quantum
subroutines. We limit the classical control system so that
its number of operations is at most a polylogarithmic factor
bigger than the gate complexity of the quantum subroutines,
i.e., if the quantum subroutines use C gates, then the clas-
sical control may use at most O(C polylog(C)) operations.

When we talk about gate complexity, we count the number
of two-qubit quantum gates needed for implementation of
the quantum subroutines. Additionally, we assume for sim-
plicity that there exists a unit-cost QRAM gate that allows
us to store and retrieve qubits in a memory, by means of a
swap of two registers indexed by another register:

QRAM : |i, x, r1, . . . , rK〉
7→ |i, ri, r1, . . . , ri−1, x, ri+1, . . . , rK〉,

where the registers r1, . . . , rK are only accessible through
this gate. The QRAM gate can be seen as a quantum
analogue of pointers in classical computing. The reason we
need QRAM is that we need a data structure that allows
efficient access to the non-zero entries of a sum of sparse
matrices; for the special case of LPs it is not needed.

A. The Arora-Kale framework for solving SDPs

In this section we give a short introduction to the Arora-
Kale framework for solving semidefinite programs. We refer
to [7], [8] for a more detailed description and omitted proofs.

The key building block is the Matrix Multiplicative
Weights (MMW) algorithm. This can be seen as a strategy
for you in the following game between you and an adversary.
There is a number of rounds T . In each round you present a
density matrix ρ to an adversary, the adversary replies with
a loss matrix M satisfying ‖M‖ ≤ 1. After each round you
have to pay Tr (Mρ). Your objective is to pay as little as
possible. The MMW algorithm is a strategy for you (i.e., an
update rule for ρ), that allows you to lose not too much, in
a sense that is made precise by the following theorem.

Theorem 1 ([7, Theorem 3.1]). For every adversary, the se-
quence ρ(1), . . . , ρ(T ) of density matrices constructed using
the Matrix Multiplicative Weights Algorithm satisfies

T∑
t=1

Tr
(
M (t)ρ(t)

)
≤λmin

(
T∑
t=1

M (t)

)

+ η

T∑
t=1

Tr
(

(M (t))2ρ(t)
)

+
ln(n)

η
.



Arora and Kale use the MMW algorithm to construct
an SDP-solver. For that, they construct an adversary who
promises to satisfy an additional condition: in each round t,
the adversary returns a matrix M (t) whose trace inner
product with the density matrix ρ(t) is non-negative. The
above theorem shows that then, after T rounds, the av-
erage of the adversary’s responses satisfies the stronger
condition that its smallest eigenvalue is not too negative:
λmin

(
1
T

∑T
t=1M

(t)
)
≥ −η − ln(n)

ηT . More explicitly, the
MMW algorithm is used to build a vector y ≥ 0 such that

1

T

T∑
t=1

M (t) ∝
m∑
j=1

yjAj − C

and bT y ≤ α. That is, the smallest eigenvalue of the
matrix

∑m
j=1 yjAj − C is only slightly below zero and y’s

objective value is at most α. Since A1 = I , increasing
the first coordinate of y makes the smallest eigenvalue of∑
j yjAj − C bigger, so that this matrix becomes psd and

hence dual-feasible. By the above we know how much the
minimum eigenvalue has to be shifted, and with the right
choice of parameters it can be shown that this gives a dual-
feasible vector y that satisfies bT y ≤ α + ε. In order to
present the algorithm formally, we require some definitions.

Given a candidate solution X � 0 for the primal prob-
lem (1) and a parameter ε ≥ 0, define the polytope

Pε(X) := {y ∈ Rm : y ≥ 0, bT y ≤ α,

Tr

( m∑
j=1

yjAj − C
)
X

 ≥ −ε}.
The Arora-Kale framework for solving SDPs uses the

MMW algorithm, where the role of the adversary is taken
by an ε-approximate oracle, whose requirements are given
in Algorithm 1 below. Much of the work in the Arora-Kale
framework lies in implementing this.

Input An n× n psd matrix X , a parameter ε, and the
input matrices and reals of (3).
Output Either the Oracleε returns a vector y from the
polytope Pε(X) or it outputs “fail”. It may only output
fail if P0(X) = ∅.

Algorithm 1. Requirements for an ε-approximate Oracleε

As we will see later, the runtime of the Arora-Kale frame-
work depends on a property of the oracle called the width:

Definition 2 (Width of Oracleε). The width of Oracleε for
an SDP is the smallest w∗ ≥ 0 such that for every primal
candidate X � 0, the vector y returned by Oracleε satisfies∥∥∥∑m

j=1 yjAj − C
∥∥∥ ≤ w∗.

In practice, the width of an oracle is not always known.
However, it suffices to work with an upper bound w ≥ w∗:
as we can see in Meta-Algorithm 2, the purpose of the width
is to rescale the matrix M (t) in such a way that it forms a
valid response for the adversary in the MMW algorithm.

The following theorem shows the correctness of the
Arora-Kale primal-dual meta-algorithm for solving SDPs,
stated in Meta-Algorithm 2:

Theorem 3 ([7, Theorem 4.7]). Given an SDP of the
form (1) with input matrices A1 = I, A2, . . . , Am and C
having operator norm at most 1, and input reals b1 =
R, b2, . . . , bm. If Meta-Algorithm 2 does not output “fail” in
any of the rounds, then the returned vector y is feasible for
the dual (3) with objective value at most α+ε. If Oracleε/3
outputs “fail” in the t-th round then a suitably scaled version
of X(t) is primal-feasible with objective value at least α.

The SDP-solver uses T =
⌈
9w2R2 ln(n)

ε2

⌉
iterations. Each

iteration has several steps. The most expensive two steps
are computing the matrix exponential of the matrix −ηH(t)

and the application of the oracle. Note that the only purpose
of computing the matrix exponential is to allow the oracle
to compute the values Tr (AjX) for all j and Tr (CX),
since the polytope Pε(X) depends on X only through those
values. To obtain faster algorithms it is important to note,
as was done already by Arora and Kale, that the primal-
dual algorithm also works if we provide a (more accurate)
oracle with approximations of Tr (AjX). In fact, it will be
convenient to work with Tr (Ajρ) = Tr (AjX) /Tr (X). To
be more precise, given a list of reals a1, . . . , am, c and a
parameter θ ≥ 0, such that |aj − Tr (Ajρ) | ≤ θ for all j,
and |c− Tr (Cρ) | ≤ θ, define the polytope

P̃(a, c′) := {y ∈ Rm : y ≥ 0, bT y ≤ α,
m∑
j=1

yj ≤ r,

m∑
j=1

ajyj ≥ c′},

where for convenience we denote a = (a1, . . . , am) and
c′ := c−(r+1)θ. Notice that P̃ also contains a new type of
constraint:

∑
j yj ≤ r. Recall that r is defined as a positive

real such that there exists an optimal solution y to SDP (3)
with ‖y‖1 ≤ r. Hence, using that P0(X) is a relaxation of
the feasible region of the dual (with bound α on the objective
value), we may restrict our oracle to return only such y:

P0(X) 6= ∅ ⇒ P0(X) ∩ {y ∈ Rm :

m∑
j=1

yj ≤ r} 6= ∅.

Due to this restriction and the assumption on the norms of
the input matrices, an oracle that always returns a vector
with `1-norm ≤ r, automatically has a width w∗ ≤ r + 1.



Input The input matrices and reals of SDP (1) and trace
bound R. The current guess α of the optimal value of
the dual (3). An additive error tolerance ε > 0. An ε

3 -
approximate oracle Oracleε/3 as in Algorithm 1 with
width-bound w.
Output Either “Lower” and a vector y ∈ Rm+ feasible
for (3) with bT y ≤ α+ ε, or “Higher” and a symmetric
n × n matrix X that, when scaled suitably, is primal-
feasible with objective value at least α.

T :=
⌈
9w2R2 ln(n)

ε2

⌉
.

η :=
√

ln(n)
T .

ρ(1) := I/n
for t = 1, . . . , T do

Run Oracleε/3 with X(t) = Rρ(t).
if Oracleε/3 outputs “fail” then

return “Higher” and a description of X(t).
end if
Let y(t) be the vector generated by Oracleε/3.
Set M (t) = 1

w

(∑m
j=1 y

(t)
j Aj − C

)
.

Define H(t) = H(t−1) +M (t) =
∑t
τ=1M

(τ).
Update the state matrix:
ρ(t+1) := exp

(
−ηH(t)

)
/Tr
(
exp

(
−ηH(t)

))
.

end for
If Oracleε/3 does not output “fail” in any of the T
rounds, then output the dual solution y = ε

Re1 +
1
T

∑T
t=1 y

(t) where e1 = (1, 0, . . . , 0) ∈ Rm.

Meta-Algorithm 2. Primal-Dual Algorithm for solving SDPs

The following shows that an oracle that always returns
a vector y ∈ P̃(a, c′) if one exists, is a 4Rrθ-approximate
oracle as defined in Algorithm 1.

Lemma 4. Let a1, . . . , am and c be θ-approximations of
Tr (A1ρ) , . . . ,Tr (Amρ) and Tr (Cρ), respectively, where
X = Rρ. Then the following holds:

P0(X) ∩ {y ∈ Rm :

m∑
j=1

yj ≤ r} ⊆ P̃(a, c′) ⊆ P4Rrθ(X).

We have now seen the Arora-Kale framework for solving
SDPs. To obtain a quantum SDP-solver it remains to provide
a quantum oracle subroutine. By the above discussion it suf-
fices to set θ = ε/(12Rr) and to use an oracle that is based
on θ-approximations of Tr (Aρ) (for A ∈ {A1, . . . , Am, C}),
since with that choice of θ we have P4Rrθ(X) = Pε/3(X).
In the next section, we first give a quantum algorithm for ap-
proximating Tr (Aρ) efficiently. In Section II-C, we provide
an oracle using those estimates based on a simple geometric
idea. In Section II-D we conclude with an overview of the
runtime of our quantum SDP-solver.

B. Approximating Tr (Aρ)

In this section we give an efficient quantum algorithm to
approximate quantities of the form Tr (Aρ). We are going
to work with Hermitian matrices A,H ∈ Cn×n, such that
ρ is the Gibbs state e−H/Tr

(
e−H

)
. Note the analogy with

quantum physics: in physics terminology Tr (Aρ) is simply
called the “expectation value of observable A” for a quantum
system in a thermal state corresponding to H .

The general approach is to separately estimate Tr
(
Ae−H

)
and Tr

(
e−H

)
, and then to use the ratio of these as an

approximation of Tr (Aρ) = Tr
(
Ae−H

)
/Tr
(
e−H

)
. Both

estimations are obtained using state preparation to prepare a
pure state with a flag, such that the probability that the flag
is 0 is proportional to the quantity we want to estimate. We
then use amplitude estimation to estimate that probability.

As we will show in Lemma 5, it suffices to construct a
unitary UA,H which, if applied to the state |0 . . . 0〉, gives a

probability
Tr((I+A/2)e−H)

4n of measurement outcome 0 for
the first qubit. That is:

‖(〈0| ⊗ I)UA,H |0 . . . 0〉‖2 =
Tr
(
(I + A

2 )e−H
)

4n
.

(To clarify the notation: if |ψ〉 is a 2-register state, then
(〈0| ⊗ I)|ψ〉 is the (unnormalized) state in the 2nd register
that results from projecting on |0〉 in the 1st register.)

In practice we will not be able to construct such a UA,H
exactly, instead we will construct a ŨA,H that yields a
sufficiently close approximation of the correct probability.

Lemma 5. Suppose we are given the positive numbers z ≤
Tr
(
e−H

)
, θ ∈ (0, 1], and unitary circuits Ũ0,H and ŨA,H

(with ‖A‖ ≤ 1), each acting on at most q qubits, such that
for each A′ ∈ {0, A} we have∣∣∣∣∣∣
∥∥∥(〈0| ⊗ I)ŨA′,H |0 . . . 0〉

∥∥∥2 − Tr
(

(I + A′

2 )e−H
)

4n

∣∣∣∣∣∣ ≤ θz

144n

Then there is a procedure that gives an additive θ-
approximation of Tr (Aρ) with high probability, using
O
(
1
θ

√
n
z

)
applications of ŨA,H , Ũ0,H and their inverses,

and O
(
q
θ

√
n
z

)
additional gates.

Notice the 1/
√
z ≥ 1/

√
Tr (e−H) factor in the complex-

ity statement of this lemma. To make sure this factor is not
too large, we would like to ensure Tr

(
e−H

)
= Ω(1). This

can be achieved by substituting H+ = H−λmin(H)I , where
λmin(H) is the smallest eigenvalue of H . It is easy to verify
that this will not change the value Tr

(
Ae−H/Tr

(
e−H

))
.

Below we show how to compute λmin(H) (Section II-B1)
and how to apply ŨA,H (Section II-B2).5 Using the results

5The state-preparation will be the hardest part, because we need not
know the diagonalizing bases for A and H , and A and H may not be
simultaneously diagonalizable. In the special case where all matrices are
diagonal (i.e., the case of LP-solving), we do know these bases, making
the proofs simpler and the complexity bounds better.



from those sections we get the following:

Theorem 6. Let A,H ∈ Cn×n be Hermitian matrices such
that ‖A‖ ≤ 1 and ‖H‖ ≤ K for a known bound K ∈ R+.
Assume A is s-sparse and H is d-sparse with s ≤ d. We
can compute an additive θ-approximation of

Tr (Aρ) =
Ae−H

Tr (e−H)

using Õ
(√

ndK
θ

)
queries (to A and H) and other gates.

Proof: Start by computing an estimate λ̃min of
λmin(H), up to additive error ε = 1/2 using Lemma 7
(below). Define H+ := H− (λ̃min−3/2)I , so that I � H+

but 2I ⊀ H+. Applying Lemma 9 (below) and then
Lemma 5 to A,H+ with z = e−2 gives the bound.

1) Computing minimum eigenvalues: As mentioned in
Section I-D2, we developed new techniques that gener-
alize minimum-finding. The lemma below applies these
techniques to the problem of finding the minimum eigen-
value of a Hamiltonian H . Poulin and Wocjan [24] gave a
similar complexity for minimum-eigenvalue estimation, but
we improve on their analysis to fit our framework better.
We assume sparse oracle access to the Hamiltonian H as
described in Section II, and count queries to these oracles.

Lemma 7. If H=
∑n
j=1Ej |φj〉〈φj |, with eigenvalues E1 ≤

E2 ≤ . . . ≤ En, satisfies ‖H‖ ≤ K, ε ≤ K/2, and H is
given in d-sparse oracle form, then we can compute an E
such that with probability ≥ 2/3, |E1 − E| ≤ ε, using

O
(
Kd
√
n

ε
polylog

(
Kn

ε

))
queries and gates.

2) Applying smooth functions of Hamiltionians: To con-
struct a circuit for ŨA,H , the basic idea is that we first
prepare a maximally entangled state

∑n
i=1 |i〉|i〉/

√
n, and

then apply the (norm-decreasing) maps e−H/2 and
√

I+A/2
4

to the first register, so that we end up with a state(
n∑
i=1

(√
I +A/2

4
e−H/2|i〉

)
|i〉/
√
n

)
|0〉+ |φ〉|1〉.

One can verify that the probability of measuring the flag 0 is
indeed Tr

(
I+A/2

4n e−H
)

. These two norm-decreasing maps
both correspond to smooth functions. Instead of providing a
circuit for each of them separately, we give a general result:

Theorem 8 (Implementing a smooth function of a Hamil-
tonian). Let x0 ∈ R and r > 0 be such that f(x0 +
x) =

∑∞
`=0 a`x

` for all x ∈ [−r, r]. Suppose B > 0
and δ ∈ (0, r] are such that

∑∞
`=0(r + δ)`|a`| ≤ B. If

H ∈ Cn×n is a Hermitian matrix such that ‖H − x0I‖ ≤
r, and ε ∈

(
0, 12
]
, then we can implement a unitary

Ũ such that
∥∥∥(〈0| ⊗ I)Ũ(|0〉 ⊗ I)− f(H)

B

∥∥∥ ≤ ε, using

O
(
r
δ log (r/(δε)) log (1/ε)

)
gates and a single use of a

circuit that can do controlled simulation of H (with error
≤ ε/2 in operator norm) for up to O( rδ log(1/ε)) time-steps
each of duration O(1/r).

If ‖H‖ ≤ K, H is d-sparse and is accessed via ora-
cles (5)-(6), and r = O(K), then (based on the Hamiltonian
simulation of [23]) this Ũ can be implemented using

O
(
Kd

δ
log

(
K

δε

)
log

(
1

ε

))
queries and

O
(
Kd

δ
log

(
K

δε

)
log

(
1

ε

)[
log(n)+log

5
2

(
K

δε

)])
gates.

Applying to f(x) = e−x/2 and f(x) =
√

1 + x/2 gives:

Lemma 9. Let A,H ∈ Cn×n be Hermitian matrices such
that ‖A‖ ≤ 1 and I � H � KI for a known K ∈ R+.
Assume A is s-sparse and H is d-sparse with s ≤ d. For
every µ > 0, there exists a unitary ŨA,H such that∣∣∣∣∣∥∥∥(〈0| ⊗ I)ŨA,H |0 . . . 0〉

∥∥∥2 − Tr

(
I + A

2

4n
e−H

)∣∣∣∣∣ ≤ µ
that uses Õ (Kd) queries (to A and H) and other gates.

C. An efficient 2-sparse oracle

In this section we describe our quantum oracle. Remember
that aj is an additive θ-approximation to Tr (Ajρ), c is a θ-
approximation to Tr (Cρ) and c′ = c − rθ − θ. Due to the
results from the last section we may now assume access to an
oracle Oa that computes the entries aj of a = (a1, . . . , am).
Our goal is now to find a y ∈ P̃(a, c′), i.e., a y such that

bT y ≤ α
aT y ≥ c′

‖y‖1 ≤ r
y ≥ 0

If α ≥ 0 and c′ ≤ 0, then y = 0 is a solution. If not, then
write y = Nq with N = ‖y‖1 > 0 and hence ‖q‖1 = 1. So
we want an N and q such that

bT q ≤ α/N (7)

aT q ≥ c′/N
‖q‖1 = 1

q ≥ 0

0 < N ≤ r

We can now view q ∈ Rm+ as the coefficients of a convex
combination of the points pi = (bi, ai) in the plane. We
want such a combination that lies to the upper left of gN =
(α/N, c′/N) for some 0 < N ≤ r. Let GN denote the
upper-left quadrant of the plane starting at gN .

Lemma 10. If there is a y ∈ P̃(a, c′), then there is a 2-
sparse y′ ∈ P̃(a, c′) such that ‖y‖1 = ‖y′‖1.



This shows that we can restrict our search to 2-sparse y.
Let G =

⋃
N∈(0,r] GN . We want to find two points pj , pk

such that their convex combination lies in G, since this
implies that a scaled version of their convex combination
gives a y ∈ P̃(a, c′) and ‖y‖1 ≤ r.

Lemma 11. There is an oracle that returns a 2-sparse
vector y ∈ P̃(a, c′), if one exists, using one search and
two minimizations over the m points pj = (bj , aj).

Proof sketch: The algorithm is as follows:
1) Check if α ≥ 0 and c′ ≤ 0. If so, output y = 0.
2) Check if ∃i : pi ∈ G. If so, let q = ei and N = c′

ai
.

3) Find pj , pk so that the line segment pjpk goes
through G. This gives coefficients q of a convex
combination that can be scaled by N = c′

aT q
to get y.

An example of G, when α, c′ > 0, is drawn in Figure 3. In
general G is always the intersection of at most 2 halfspaces,
hence steps 1-2 of the algorithm are easy to perform when
given access to the coordinates of the points pj .

It remains to consider step 3. Denote the two edges of G
by L1 and L2. Furthermore, let `j and `k be the lines from
(α/r, c′/r) to pj and pk. Looking at Figure 4, it is clear
that the line pjpk intersects with G if and only if ∠`jL1 +
∠L1L2 +∠L2`k ≤ π. In particular, if any choice of j and k
will cause pjpk to intersect with G, then so will the choice
that minimizes ∠`jL1 + ∠L1L2 + ∠L2`k. Clearly we can
minimize this expression by separately minimizing ∠`jL1

and ∠L2`k. Hence one search and two minimizations using
the coordinates of the pj suffice to implement the oracle.

Figure 3. The region G in light blue. The borders of two quadrants GN
have been drawn by thick dashed blue lines. The red dot at the beginning
of the arrow is the point (α/r, c′/r).

Corollary 12. There is a quantum algorithm that returns a
vector y ∈ P̃(a, c′), if one exists, using O(

√
m) calls to the

subroutine for the entries of a, and Õ (
√
m) other gates.

D. Total runtime

We can now add our quantum trace calculators and the
oracle to the classical Arora-Kale framework.

L2

L1

pj

pk

∠L2ℓk

∠L1L2

∠ℓjL1
(α/r, c′/r)

Figure 4. Illustration of G with the points pj , pk and the angles
∠`jL1,∠L1L2,∠L2`k drawn in. Clearly the line pjpk only crosses G
when the total angle is less than π.

Theorem 13. Instantiating Meta-Algorithm 2 using the trace
calculation algorithm from Section II-B and the oracle from
Section II-C (with width-bound w := r + 1), and using this
to do a binary search for OPT ∈ [−R,R] (using different
guesses α for OPT), gives a quantum algorithm for solving
SDPs of the form (1), which (with high probability) produces
a feasible solution y to the dual program that is optimal up
to an additive error ε, using

Õ

(
√
nms2

(
Rr

ε

)8)
queries (to the input matrices) and other gates.

Proof: Using our implementations of the different
building blocks, it remains to calculate what the total com-
plexity will be when they are used together.

Cost of the oracle for H(t): The first problem in each
iteration is to obtain access to an oracle for H(t). In each
iteration the oracle will produce a y(t) that is at most 2-
sparse, and hence in the (t+ 1)th iteration, H(t) is a linear
combination of 2t of the Aj matrices, and the C matrix.

We can write down a sparse representation of the coef-
ficients of the linear combination that gives H(t) in each
iteration by adding the new terms coming from y(t). This
will clearly not take longer than Õ (T ), since there are only
a constant number of terms to add. As we will see, this term
will not dominate the complexity of the full algorithm.

Using such a sparse representation of the coefficients, one
query to a sparse representation of H(t) will cost Õ (st)
queries to the input matrices, and Õ (st) other gates.

Cost of the oracle for Tr (Ajρ): In each iteration M (t)

is made to have operator norm at most 1. This means that∥∥∥−ηH(t)
∥∥∥ ≤ η t∑

τ=1

∥∥∥M (τ)
∥∥∥ ≤ ηt.



Furthermore we know that H(t) is at most d := s(2t + 1)-
sparse. Calculating Tr (Ajρ) for one index j up to an
additive error of θ := ε/(12Rr) can be done using the
algorithm from Theorem 6. This will take

Õ
(√

n
‖H‖ d
θ

)
= Õ

(√
ns
ηt2Rr

ε

)
queries to the oracle for H(t) and the same number of other
gates. Since each query to H(t) takes Õ (st) queries to the
input matrices, this means that

Õ
(√

ns2
ηt3Rr

ε

)
queries to the input matrices will be made, and the same
number of other gates, for each approximation of a Tr (Ajρ)
(and similarly for approximating Tr (Cρ)).

Total cost of one iteration: Corollary 12 tells us that
we will use Õ (

√
m) calculations of Tr (Ajρ), and the same

number of other gates, to calculate a classical description of
a 2-sparse y(t). This brings the total cost of one iteration to

Õ
(√

nms2
ηt3Rr

ε

)
queries (to the input matrices) and other gates.

Total quantum runtime for SDPs: Since w ≤ r+ 1 we

can set T = Õ
(
R2r2

ε2

)
. With η =

√
ln(n)
T , summing over

all iterations in one run of the algorithm gives total cost

Õ
(√

nms2
ηT 4Rr

ε

)
= Õ

(
√
nms2

(
Rr

ε

)8)
queries (to the input matrices) and other gates.

We want to stress again that our solver is meant to work
for all SDPs. In particular, it does not use the structure of a
specific SDP. As we show in the next section, every oracle
that works for all SDPs must have large width. To obtain
quantum speedups for a specific class of SDPs, it will be
necessary to develop oracles tuned to that problem. We view
this as an important direction for future work. Recall from
the introduction that Arora and Kale also obtain fast classical
algorithms for problems such as MAXCUT by doing exactly
that: they develop specialized oracles for those problems.

III. DOWNSIDE OF THIS METHOD: GENERAL ORACLES
ARE RESTRICTIVE

In this section we give two examples illustrating the
limitations of a method that uses sparse or general oracles,
i.e., ones that are not optimized for the properties of specific
SDPs. To illustrate the problem with sparse oracles we
consider the classical LP problem (s, t)-maxflow-mincut.
Next, we will show that general oracles are bad for solving
the Goemans-Williamson SDP relaxation for MAXCUT.

A. Sparse oracles are restrictive for (s, t)-maxflow-mincut

Given a graph G = (V,E) and two vertices s, t ∈ V , the
(s, t)-maxflow-mincut problem is to compute the maximum
flow that can be sent through G, starting at s and ending at t.
Equivalently, one can compute the minimum cut of G with
s and t on different sides of the cut. We consider a simple
instance of this problem: the union of two complete graphs
each of size z+ 1, where s is in one sub-graph and t in the
other. The other vertices will be labeled by {1, 2, . . . , 2z}.
Every partition of the label-set over the two halves gives a
unique mincut of value 0 (namely the one which separates
the two complete graphs), and every other partition cuts at
least z edges. Hence a z/2-approximate mincut must be the
unique mincut. Since every partition of the 2z labels over
the two halves is a different problem instance, there are

(
2z
z

)
instances that each require a different unique output.

Now assume we have a family of LPs, one for each
problem instance, with the following two properties:

1) There is a function f such that for a z/2-approximate
dual solution y to one of the LPs, f(y) = S ⊆ V
is a z/2-approximate mincut for the corresponding
instance.

2) The LPs corresponding to the different permutations
of the labels only differ by permutations of their
constraints and variables.

The first condition states that a dual solution is enough to
find a mincut. The second condition states that the LPs treat
all points equally (except s and t). Both these conditions
hold for the standard (s, t)-maxflow-mincut LP.

A direct consequence of these conditions is that the
(
2z
z

)
dual solutions for the LPs are all just permutations of
each other. However, they all need to be different since
their image under f (the corresponding mincut) has to be
different. A k-sparse vector in Rm can have k different
non-zero entries and hence the number of possible unique
permutations of that vector is at most(

m

k

)
k! =

m!

(m− k)!
≤ mk.

Hence, using
(
2z
z

)
≥ 22z

2
√
z

, we find the following lower bound
on the sparsity of near-optimal dual solutions

k ≥
log
(
2z
z

)
logm

≥ z

logm
.

If the dual solution needs to have at least z/ log(m) non-
zero entries, and the oracle outputs only a constant number
of entries in each iteration, then the Arora-Kale framework
with that oracle needs T = Ω(z/ log(m)) iterations to build
such a dual solution. Since T = O(R2w2 ln(n)/ε2), this in
turn implies that Rw/ε cannot be small.

Similar symmetry-based arguments can be made for more
general classes of LPs and SDPs.



B. General width-bounds are restrictive for MAXCUT

One problem in using the Arora-Kale framework as a
general SDP-solver, is that it is hard to give a good upper
bound on the width w of the oracle. Here we used w ≤ r+1
as an upper bound, where r is an upper bound on the smallest
`1-norm r∗ among all optimal solutions y to the dual. In
general we cannot use a better upper bound on w: in our
full version [19, Lemma 21] we show that for every n ≥ 4,
m ≥ 4, s ≥ 1, R∗ > 0, r∗ > 0, and ε ≤ 1/2, there is
an SDP with these parameters for which every oracle has
width w ≥ 1

2r
∗. This shows that every SDP-solver in the

Arora-Kale framework which uses a general oracle that only
considers those parameters (including our SDP-solver and
the one of Brandão and Svore), will have a bad performance
on every SDP with a large r∗ parameter.

It turns out that r∗ can grow linearly in n and m for many
natural classes of SDPs. A simple example comes from
the Goemans-Williamson SDP for approximating MAXCUT
(see the introduction). Start with a graph G(1), and let G(t)

be the graph corresponding to t disjoint copies of G(1). From
the form of SDP (2), it is clear that the SDP corresponding to
G(t) has the structure of the SDP corresponding to G(1), but
copied t times. In particular this implies that the `1-norm of a
dual solution for the G(t)-SDP is r∗(t) ≥ tr∗(1). Since n and
m are linear in t, we have r∗ = Ω(n) = Ω(m). This kind
of argument can be generalized to other SDP formulations
that have similar “combinable” structures.

IV. LOWER BOUNDS ON QUANTUM QUERY COMPLEXITY

In the full version of this paper [19, Section 4], we
show that every LP-solver (and hence every SDP-solver)
that can distinguish two optimal values with high probability
needs Ω

(√
max{n,m} (min{n,m})3/2

)
quantum queries

in the worst case. This general statement can be shown via
reduction from the MAJa-ORb-MAJc function, which is the
composition of an a-bit majority function with a b-bit OR
function with a c-bit majority function.

Due to space constraints, here we will only give a simpler
proof for the special case n = m.

Theorem 14. For every integer k, there exists an LP with
n = m = 2k, such that calculating (with success probability
≥ 2/3) the optimal value up to an additive error ε = 1/3
takes at least Ω(k2) = Ω(nm) queries to the input matrices.

Proof: It is known that Ω(k2) quantum queries are
necessary to compute (with success probability ≥ 2/3) the
majority function on input Z ∈ {0, 1}k×k [25]. Computing
this is equivalent to approximating the Hamming weight
|Z| =

∑k
i=1

∑k
j=1 Zij within additive error ε = 1/3. We

claim that the optimal value of the following LP equals |Z|:

max

k∑
i=1

wi

s.t.
[
Ik −Z
0 Ik

] [
w
v

]
≤
[
0
1

]
0 ≤ v, w

where Ik is the k × k identity matrix. This claim directly
implies the theorem, since n = m = 2k.

To prove the claim, note that every wi-variable only
appears in one constraint of the form wi ≤

∑k
j=0 Zijvj .

Since wj is maximized, this constraint will be tight in
the optimum. Since all entries of Z are non-negative, this
implies that each vj will be maximized. The only upper
bound on the vj-variables is vj ≤ 1, which will hence be
tight in the optimum. Putting this together, we get

OPT =

k∑
i=1

wi =

k∑
i=1

k∑
j=1

Zijvj =

k∑
i=1

k∑
j=1

Zij = |Z|.

V. CONCLUSION

We gave better algorithms and lower bounds for quantum
SDP-solvers, improving upon recent work of Brandão and
Svore [1]. Here are a few directions for future work:
• Better upper bounds. The runtime of our algorithm,

like the earlier algorithm of Brandão and Svore, has
better dependence on m and n than the best classical
SDP-solvers, but worse dependence on s and on Rr/ε.
It may be possible to improve the dependence on s to
linear and/or the dependence on Rr/ε to less than our
current 8th power.

• Applications of our algorithm. As mentioned, both
our and Brandão-Svore’s quantum SDP-solvers only
improve upon the best classical algorithms for a specific
regime of parameters, namely where mn � Rr/ε.
Unfortunately, we don’t know particularly interesting
problems in combinatorial optimization in this regime.
As shown in Section III, many natural SDP formula-
tions will not fall into this regime. However, it would be
interesting to find useful SDPs for which our algorithm
gives a significant speed-up.

• New algorithms. As in the work by Arora and Kale,
it might be more promising to look at oracles (now
quantum) that are designed for specific SDPs. Such
oracles could build on the techniques developed here,
or develop totally new techniques. It might also be
possible to speed up other classical SDP-solvers, for
example those based on interior-point methods.

• Better lower bounds. Our lower bounds are probably
not optimal, particularly for the case where m and n
are not of the same order. The most interesting case
would be to get lower bounds that are simultaneously
tight in the parameters m, n, s, and Rr/ε.
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