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tA strong dire
t produ
t theorem says that if we want to
ompute k independent instan
es of a fun
tion, using lessthan k times the resour
es needed for one instan
e, thenour overall su

ess probability will be exponentially smallin k. We establish su
h theorems for the 
lassi
al as wellas quantum query 
omplexity of the OR fun
tion. Thisimplies slightly weaker dire
t produ
t results for all totalfun
tions.Weprove a similar result for quantum
ommu-ni
ation proto
ols 
omputing k instan
es of the Disjoint-ness fun
tion. These results imply a time-spa
e tradeo�T 2S = 
�N3� for sorting N items on a quantum 
om-puter, whi
h is optimal up to polylog fa
tors. They alsogive several tight time-spa
e and 
ommuni
ation-spa
etradeo�s for the problems of Boolean matrix-ve
tor mul-tipli
ation and matrix multipli
ation.1. Introdu
tion1.1. Dire
t produ
t theoremsFor every reasonable model of 
omputation one 
anask the following fundamental question:How do the resour
es needed for 
omputingk independent instan
es of f s
ale with theresour
es needed for one instan
e and with k?Here \resour
e" needs to be spe
i�ed. It 
ould refer totime, spa
e, queries, 
ommuni
ation et
. Similarly weneed to de�ne what we mean by \
omputing f", forinstan
e whether we allow the algorithm some proba-bility of error, and whether this probability of error isaverage-
ase or worst-
ase.In this paper we 
onsider two kinds of resour
es,queries and 
ommuni
ation, and allow our algorithms� Supported by Canada's NSERC and MITACS and by DFGgrant KL 1470/1.y Supported in part by EU proje
t RESQ, IST-2001-37559.

some error probability. An algorithm is given k in-puts x1; : : : ; xk, and has to output the ve
tor of kanswers f(x1); : : : ; f(xk). The issue is how the algo-rithm 
an optimally distribute its resour
es among thek instan
es it needs to 
ompute. We fo
us on the rela-tion between the total amount T of resour
es availableand the best-a
hievable su

ess probability � (whi
h
ould be average or worst-
ase). Intuitively, if every al-gorithm with t resour
es must have some 
onstant er-ror probability when 
omputing one instan
e of f , thenfor 
omputing k instan
es we expe
t a 
onstant erroron ea
h instan
e and hen
e an exponentially small su
-
ess probability for the k-ve
tor as a whole. Su
h astatement is known as a weak dire
t produ
t theorem:If T � t, then � = 2�
(k)However, even if we give our algorithm roughly kt re-sour
es, on average it still has only t resour
es availableper instan
e. So even here we expe
t a 
onstant errorper instan
e and an exponentially small su

ess prob-ability overall. Su
h a statement is known as a strongdire
t produ
t theorem:If T � kt, then � = 2�
(k)Strong dire
t produ
t theorems, though intuitivelyvery plausible, are generally hard to prove and some-times not even true. Shaltiel [41℄ exhibits a general 
lassof examples where strong dire
t produ
t theorems fail.This applies for instan
e to query 
omplexity, 
ommu-ni
ation 
omplexity, and 
ir
uit 
omplexity. In his ex-amples, su

ess probability is taken under the uniformprobability distribution on inputs. The fun
tion is 
ho-sen su
h that for most inputs, most of the k instan
es
an be 
omputed qui
kly and without any error prob-ability. This leaves enough resour
es to solve the fewhard instan
es with high su

ess probability. Hen
e forhis fun
tions, with T � tk, one 
an a
hieve average su
-
ess probability 
lose to 1.A

ordingly, we 
an only establish dire
t prod-u
t theorems in spe
ial 
ases. Examples are Nisan



et al.'s [34℄ strong dire
t produ
t theorem for \de-
ision forests", Parnafes et al.'s [36℄ dire
t prod-u
t theorem for \forests" of 
ommuni
ation proto
ols,Shaltiel's strong dire
t produ
t theorems for \fair" de-
ision trees and the dis
repan
y bound for 
ommuni
a-tion 
omplexity [41℄. In the quantum 
ase, Aaronson [2℄established a result for the unordered sear
h prob-lem that lies in between the weak and the strong the-orems: every T -query quantum algorithm for sear
h-ing k marked items among N = kn input bits willhave su

ess probability � � O�T 2=N�k. In parti
u-lar, if T � pkn, then � = 2�
(k).Our main 
ontributions in this paper are strong di-re
t produ
t theorems for the OR-fun
tion in varioussettings. First 
onsider the 
ase of 
lassi
al randomizedalgorithms. Let ORn denote the n-bit OR-fun
tion,and let f (k) denote k independent instan
es of a fun
-tion f . Any randomized algorithm with less than, say,n=2 queries will have a 
onstant error when 
omput-ing ORn. Hen
e we expe
t an exponentially small su
-
ess probability when 
omputing OR(k)n using � knqueries. We prove this in Se
tion 3:SDPT for 
lassi
al query 
omplexity:Every randomized algorithm that 
omputesOR(k)n using T � �kn queries has worst-
asesu

ess probability � = 2�
(k) (for � > 0 asuÆ
iently small 
onstant).For simpli
ity we stated this with � being the worst-
ase su

ess probability, but the statement is also validfor the average probability under a k-fold produ
t dis-tribution that is impli
it in our proof.This DPT for OR implies a weaker DPT for all to-tal fun
tions f , via the notion of blo
k sensitivity bs(f).Using te
hniques of Nisan and Szegedy [35℄, we 
an em-bed ORbs(f) in f (with the promise that the weightof the input is 0 or 1). On the other hand, the 
las-si
al bounded-error query 
omplexity R2(f) is upperbounded by bs(f)3 [7℄. This implies:Every randomized algorithm that 
omputesf (k) using T � �kR2(f)1=3 queries has worst-
ase su

ess probability � = 2�
(k).This theorem falls short of a true strong dire
t prod-u
t theorem in having R1=32 (f) instead of R2(f) in theresour
e bound. However, the other two important as-pe
ts of a SDPT remain valid: the linear dependen
eof the resour
es on k and the exponential de
ay of thesu

ess probability.Next we turn our attention to quantum algorithms.Buhrman et al. [16℄ a
tually proved that roughly ktimes the resour
es for one instan
e suÆ
es to 
ompute

f (k) with su

ess probability 
lose to 1, rather than ex-ponentially small: Q2(f (k)) = O(kQ2(f)), where Q2(f)denotes the quantum bounded-error query 
omplexityof f (su
h a result is not known to hold in the 
lassi
alworld). For instan
e, Q2(ORn) = �(pn) by Grover'ssear
h algorithm, so O(kpn) quantum queries suÆ
eto 
ompute OR(k)n with high su

ess probability. In Se
-tion 4 we show that if we make the number of queriesslightly smaller, the best-a
hievable su

ess probabil-ity suddenly be
omes exponentially small:SDPT for quantum query 
omplexity:Every quantum algorithm that 
omputesOR(k)n using T � �kpn queries has worst-
ase su

ess probability � = 2�
(k) (for� > 0 a suÆ
iently small 
onstant).Our proof uses the polynomial method [7℄ and is 
om-pletely di�erent from the 
lassi
al proof. The polyno-mial method was also used by Aaronson [2℄ in his proofof a weaker version, mentioned above. Our proof takesits starting point from his proof, analyzing the degree ofa single-variate polynomial that is 0 on f0; : : : ; k�1g, atleast � on k, and between 0 and 1 on f0; : : : ; kng. Thedi�eren
e between his proof and ours is that we par-tially fa
tor this polynomial, whi
h gives us some ni
eextra properties over Aaronson's approa
h of di�eren-tiating the polynomial. In addition, we use a strong re-sult of Coppersmith and Rivlin [20℄. In both 
ases (dif-ferent) extremal properties of Chebyshev polynomials�nish the proofs. Again, we also get a weaker result forall total fun
tions:Every quantum algorithm that 
omputes f (k)using T � �kQ2(f)1=6 queries has worst-
asesu

ess probability � = 2�
(k).The third and last setting where we establish a strongdire
t produ
t theorem is quantum 
ommuni
ation
omplexity. Suppose Ali
e has an n-bit input x and Bobhas an n-bit input y. These x and y represent sets, andDISJn(x; y) = 1 i� those sets are disjoint. Note thatDISJn is the negation of ORn(x^y), where x^y is then-bit string obtained by bitwise AND-ing x and y. Inmany ways, DISJn has the same 
entral role in 
om-muni
ation 
omplexity as ORn has in query 
omplex-ity. In parti
ular, it is \
o-NP 
omplete" [6℄. The 
om-muni
ation 
omplexity of DISJn has been well stud-ied: it takes �(n) bits of 
ommuni
ation in the 
las-si
al world [24, 38℄ and �(pn) in the quantum world[13, 23, 3, 39℄. For the 
ase where Ali
e and Bob wantto 
ompute k instan
es of Disjointness, we establish astrong dire
t produ
t theorem in Se
tion 5:SDPT for q. 
ommuni
ation 
omplexity:Every quantum proto
ol that 
omputes



DISJ(k)n 
ommuni
ating T � �kpn qubitshas worst-
ase su

ess probability � = 2�
(k).Our proof uses Razborov's [39℄ lower bound te
hniqueto translate the quantum proto
ol to a polynomial, atwhi
h point the polynomial results established for thequantum query SDPT take over. We 
an obtain similarresults for other symmetri
 predi
ates.One may also 
onsider 
omputing the parity of the kout
omes instead of all k out
omes. This issue has beenwell studied, parti
ularly in 
ir
uit 
omplexity, andgenerally goes under the name of XOR lemmas [44, 21℄.In this paper we fo
us on the ve
tor version, but we 
anprove similar strong bounds for the parity version. Inparti
ular, we 
an get a strong XOR lemma for thequantum 
ase using the te
hnique of Cleve et al. [19,Se
tion 3℄. They show how the ability to 
ompute theparity of any subset of k bits with probability 1=2+ ",suÆ
es to 
ompute the full k-ve
tor with probability4"2. Hen
e our strong quantum dire
t produ
t theo-rems imply strong quantum XOR lemmas.1.2. Time-Spa
e and Communi
ation-Spa
e tradeo�sApart from answering a fundamental question aboutthe 
omputational models of (quantum) query 
om-plexity and 
ommuni
ation 
omplexity, our dire
tprodu
t theorems also imply a number of new and op-timal time-spa
e tradeo�s.First, we 
onsider the tradeo� between the timeT and spa
e S that a quantum 
ir
uit needs forsorting N numbers. Classi
ally, it is well knownthat TS = 
�N2�, and this tradeo� is a
hiev-able [8℄. In the quantum 
ase, Klau
k [26℄ 
on-stru
ted a bounded-error quantum algorithm thatruns in time T = O((N logN)3=2=pS) for all(logN)3 � S � N= logN . He also showed1 a lowerbound TS = 
�N3=2�, whi
h is 
lose to optimal forsmall S but not for large S. We use our strong di-re
t produ
t theorem to prove T 2S = 
�N3�. This istight up to polylog fa
tors.Se
ondly, we 
onsider time-spa
e and
ommuni
ation-spa
e tradeo�s for the problemsof Boolean matrix-ve
tor produ
t and Boolean ma-trix produ
t. In the �rst problem there are an N � Nmatrix A and a ve
tor b of dimension N , andthe goal is to 
ompute the ve
tor 
 = Ab, where
i = _Nj=1 (A[i; j℄ ^ bj). In the setting of time-spa
etradeo�s, the matrix A is �xed and the input is1 Unfortunately there is an error in the proof presented in [26℄,namely Lemma 5 appears to be wrong.

the ve
tor b. In the problem of matrix multipli
a-tion two matri
es have to be multiplied with thesame type of Boolean produ
t, and both are inputs.Time-spa
e tradeo�s for Boolean matrix-ve
tor mul-tipli
ation have been analyzed in an average-
ases
enario by Abrahamson [4℄, whose results give aworst-
ase lower bound of TS = 
�N3=2� for 
las-si
al algorithms. He 
onje
tured that a worst-
aselower bound of TS = 
�N2� holds. Using our 
las-si
al dire
t produ
t result we are able to 
on�rmthis, i.e., there is a matrix A, su
h that 
omput-ing Ab requires TS = 
�N2�. We also show a lowerbound of T 2S = 
�N3� for this problem in the quan-tum 
ase. Both bounds are tight (the se
ond withina logarithmi
 fa
tor) if T is taken to be the num-ber of queries to the inputs. We also get a lowerbound of T 2S = 
�N5� for the problem of multiply-ing two matri
es in the quantum 
ase. This bound is
lose to optimal for small S.Resear
h on 
ommuni
ation-spa
e tradeo�s in the
lassi
al setting has been initiated by Lam et al. [31℄ ina restri
ted setting, and by Beame et al. [9℄ in a gen-eral model of spa
e-bounded 
ommuni
ation 
omplex-ity. In the setting of 
ommuni
ation-spa
e tradeo�s,players Ali
e and Bob are modeled as spa
e-bounded
ir
uits, and we are interested in the 
ommuni
ation
ost when given parti
ular spa
e bounds. For the prob-lem of 
omputing the matrix-ve
tor produ
t Ali
e re-
eives the matrix A (now an input) and Bob the ve
-tor b. Beame et al. gave tight lower bounds e.g. for thematrix-ve
tor produ
t and matrix produ
t over GF(2),but stated the 
omplexity of Boolean matrix-ve
tormultipli
ation as an open problem. Using our dire
tprodu
t result for quantum 
ommuni
ation 
omplex-ity we are able to show that any quantum proto
olfor this problem satis�es C2S = 
�N3�. This is tightwithin a polylogarithmi
 fa
tor. We also get a lowerbound of C2S = 
�N5� for 
omputing the produ
t oftwo matri
es, whi
h again is tight.No 
lassi
al lower bounds for these problems wereknown previously, and �nding better 
lassi
al boundsthan these remains open. The possibility to show goodquantum bounds 
omes from the deep relation betweenquantum proto
ols and polynomials impli
it in [39℄.2. PreliminariesWe assume familiarity with quantum 
omputing [32℄and sket
h the model of query 
omplexity, referringto [18℄ for more details, also on the 
lose relation be-tween query 
omplexity and degrees of multivariatepolynomials. Suppose we want to 
ompute some fun
-tion f . For input x 2 f0; 1gN , a query gives us a

ess



to the input bits. It 
orresponds to the unitary mapO : ji; b; zi 7! ji; b � xi; zi: Here i 2 [N ℄ = f1; : : : ; Ngand b 2 f0; 1g; the z-part is workspa
e, whi
h is not af-fe
ted by the query. We assume the input 
an be a
-
essed only via su
h queries. A T -query quantum algo-rithm has the form A = UTOUT�1 � � �OU1OU0, wherethe Uk are �xed unitaries, independent of x. This Adepends on x via the T appli
ations of O. The algo-rithm starts in initial S-qubit state j0i and its outputis the result of measuring a dedi
ated part of the �-nal state Aj0i. For a Boolean fun
tion f , the outputof A is obtained by observing the leftmost qubit of the�nal superposition Aj0i, and its a

eptan
e probabil-ity on input x is its probability of outputting 1. Oneof the most interesting quantum query algorithms isGrover's sear
h algorithm [22, 10℄. It 
an �nd an in-dex of a 1-bit in an n-bit input in expe
ted number ofO�pn=(jxj+ 1)� queries, where jxj is the Hammingweight (number of ones) in the input. If we know thatjxj � 1, we 
an solve the sear
h problem exa
tly us-ing �4pn queries [11℄.For investigating time-spa
e tradeo�s we use the 
ir-
uit model. A 
ir
uit a

esses its input via an ora
le likea query algorithm. Time 
orresponds to the number ofgates in the 
ir
uit. We will, however, usually 
onsiderthe number of queries to the input, whi
h is obviouslya lower bound on time. A quantum 
ir
uit uses spa
e Sif it works with S qubits only. We require that the out-puts are made at prede�ned gates in the 
ir
uit, bywriting their value to some extra qubits that may notbe used later on. Similar de�nitions are made for 
las-si
al 
ir
uits.In the model of quantum 
ommuni
ation 
omplex-ity, two players Ali
e and Bob 
ompute a fun
tion fon distributed inputs x and y. The 
omplexity mea-sure of interest in this setting is the amount of 
ommu-ni
ation. The players follow some prede�ned proto
olthat 
onsists of lo
al unitary operations, and the ex-
hange of qubits. The 
ommuni
ation 
ost of a proto-
ol is the maximal number of qubits ex
hanged for anyinput. In the standard model of 
ommuni
ation 
om-plexity, Ali
e and Bob are 
omputationally unbounded,but we are also interested in what happens if they havebounded memory, i.e., they work with a bounded num-ber of qubits. To this end we model Ali
e and Bob as
ommuni
ating quantum 
ir
uits, following Yao [45℄.A pair of 
ommuni
ating quantum 
ir
uits is a
-tually a single quantum 
ir
uit partitioned into twoparts. The allowed operations are lo
al unitary opera-tions and a

ess to the inputs that are given by ora
les.Ali
e's part of the 
ir
uit may use ora
le gates to readsingle bits from her input, and Bob's part of the 
ir-
uit may do so for his input. The 
ommuni
ation C

between the two parties is simply the number of wires
arrying qubits that 
ross between the two parts of the
ir
uit. A pair of 
ommuni
ating quantum 
ir
uits usesspa
e S, if the whole 
ir
uit works on S qubits.In the problems we 
onsider, the number of outputsis mu
h larger than the memory of the players. There-fore we use the following output 
onvention. The playerwho 
omputes the value of an output sends this valueto the other player at a predetermined point in the pro-to
ol. In order to make our models as general as possi-ble, we furthermore allow the players to do lo
al mea-surements, and to throw qubits away as well as pi
kup some fresh qubits. The spa
e requirement only de-mands that at any given time no more than S qubitsare in use in the whole 
ir
uit.A �nal 
omment regarding upper bounds: Buhrmanet al. [13℄ showed how to run a query algorithm in adistributed fashion with small overhead in the 
om-muni
ation. In parti
ular, if there is a T -query quan-tum algorithm 
omputing N -bit fun
tion f , then thereis a pair of 
ommuni
ating quantum 
ir
uits withO(T logN) 
ommuni
ation that 
omputes f(x^y) withthe same su

ess probability. We refer to the book ofKushilevitz and Nisan [30℄ for more on 
ommuni
ation
omplexity in general, and to the surveys [25, 12, 42℄for more on its quantum variety.3. SDPT for Classi
al QueriesIn this se
tion we give the strong dire
t produ
ttheorem for randomized algorithms 
omputing k in-dependent instan
es of ORn. Unlike the quantum 
ase,the proof (sket
hed in Appendix A) is quite straight-forward, proving a dire
t produ
t theorem for non-adaptive algorithms as an intermediate.Theorem 1 (SDPT for OR) For every 0 < 
 < 1,there exists an � > 0 su
h that every randomized algo-rithm for OR(k)n with T � �kn queries has su

ess prob-ability � � 2�
k.The strong dire
t produ
t theorem for OR implies aweaker dire
t produ
t theorem for all fun
tions. In thisweaker version, the su

ess probability of 
omputing kinstan
es still goes down exponentially with k, but weneed to start from a polynomially smaller bound on theoverall number of queries. For x 2 f0; 1gn and S � [n℄,we use xS to denote the n-bit string obtained from xby 
ipping the bits in S. Consider a (possibly partial)fun
tion f : D ! Z, with D � f0; 1gn. The blo
k sensi-tivity bsx(f) of x 2 D is the maximal b for whi
h thereare disjoint sets S1; : : : ; Sb su
h that f(x) 6= f(xSi).The blo
k sensitivity of f is bs(f) = maxx2D bsx(f).Blo
k sensitivity is 
losely related to deterministi
 andbounded-error 
lassi
al query 
omplexity:



Theorem 2 ([33, 7℄) R2(f) = 
(bs(f)) for all f ,D(f) � bs(f)3 for all total Boolean f .Nisan and Szegedy [35℄ showed how to embed abs(f)-bit OR-fun
tion (with the promise that the in-put has weight � 1) into f . Combined with our strongdire
t produ
t theorem for OR, this implies a dire
tprodu
t theorem for all fun
tions f in terms of bs(f):Theorem 3 For every 0 < 
 < 1, there exists an� > 0 su
h that for every f , every 
lassi
al algorithmfor f (k) with T � �kbs(f) queries has su

ess probabil-ity � � 2�
k.This is optimal if R2(f) = �(bs(f)), whi
h is the
ase for most fun
tions. For total fun
tions, the gap be-tween R2(f) and bs(f) is not more than 
ubi
, hen
eCorollary 4 For every 0 < 
 < 1, there exists an � > 0su
h that for every total Boolean f , every 
lassi
al algo-rithm for f (k) with T � �kR2(f)1=3 queries has su

essprobability � � 2�
k.4. SDPT for Quantum QueriesIn this se
tion we prove a strong dire
t produ
t the-orem for quantum algorithms 
omputing k indepen-dent instan
es of OR. Our proof relies on the polyno-mial method of [7℄. The following key lemma is provedin Appendix B.Lemma 5 Suppose p is a single-variate degree-D poly-nomial su
h that for some Æ � 0�Æ � p(i) � Æ for all i 2 f0; : : : ; k � 1g,p(k) = �,p(i) 2 [�Æ; 1 + Æ℄ for all i 2 f0; : : : ; Ng.Then for every integerC 2 [1; N � k) and � = 2C=(N �k � C) we have� � Æk2k�1 + a�1 + Æ + Æ(2N)k(k � 1)!� �exp� b(D � k)2(N � k � C) + 2(D � k)p2�+ �2 � k ln(C=k)� ;where a; b are the 
onstants of Theorem 23 (Appendix B).We will apply this lemma with Æ negligibly small, D =�pkN for small �, and C = ke
+1, giving� � exp�(b�2 + 4�e
=2+1=2 � 1� 
)k� � e�
k � 2�
k:This will imply a strong tradeo� between queries andsu

ess probability for quantum algorithms that haveto �nd k ones in an N -bit input. A k-threshold algo-rithm with su

ess probability � is an algorithm on N -bit input x, that outputs 0 with 
ertainty if jxj < k,and outputs 1 with probability at least � if jxj = k.

Theorem 6 For every 
 > 0, there exists an � > 0su
h that every quantum k-threshold algorithm with T ��pkN queries has su

ess probability � � 2�
k.Proof. Fix 
 > 0 and 
onsider a T -query k-thresholdalgorithm. By [7℄, its a

eptan
e probability is an N -variate polynomial of degree D � 2T � 2�pkN and
an be symmetrized to a single-variate polynomial pwith the propertiesp(i) = 0 if i 2 f0; : : : ; k � 1gp(k) � �p(i) 2 [0; 1℄ for all i 2 f0; : : : ; NgChoosing � > 0 suÆ
iently small and Æ = 0, the resultfollows from Lemma 5. �This implies a strong dire
t produ
t theorem for kinstan
es of the n-bit sear
h problem:Theorem 7 (SQDPT for Sear
h) For every 
 > 0,there exists an � > 0 su
h that every quantum algorithmfor Sear
h(k)n with T � �kpn queries has su

ess proba-bility � � 2�
k.Proof. Set N = kn, �x a 
 > 0 and a T -query algo-rithm A for Sear
h(k)n with su

ess probability �. Now
onsider the following algorithm on N -bit input x:1. Apply a random permutation � to x.2. Run A on �(x).3. Query ea
h of the k positions that A outputs, re-turn 1 i� at least k=2 of those bits are 1.This uses T + k queries. We will show that it is a k=2-threshold algorithm. If jxj < k=2, it always outputs 0.If jxj = k=2, the probability that � puts all k=2 ones indistin
t n-bit blo
ks isNN � N � nN � 1 � � � N � k2nN � k2 �  N � k2nN !k=2 = 2�k=2:Hen
e our algorithm outputs 1 with probability at least�2�k=2. Choosing � suÆ
iently small, the previous the-orem implies �2�k=2 � 2�(
+1=2)k, hen
e � � 2�
k. �Our bounds are quite pre
ise for � � 1. We 
an
hoose 
 = 2 ln(1=�) � O(1) and ignore some lower-order terms to get roughly � � �2k . On the otherhand, it is known that Grover's sear
h algorithm with�pn queries on an n-bit input has su

ess probabil-ity roughly �2 [10℄. Doing su
h a sear
h on all k in-stan
es gives overall su

ess probability �2k.Theorem 8 (SQDPT for OR) There exist �; 
 > 0su
h that every quantum algorithm for OR(k)n with T ��kpn queries has su

ess probability � � 2�
k.



Proof. An algorithm A for OR(k)n with su

ess prob-ability � 
an be used to build an algorithm A0 forSear
h(k)n with slightly worse su

ess probability:1. Run A on the original input and remember whi
hblo
ks 
ontain a 1.2. Run simultaneously (at most k) binary sear
heson the nonzero blo
ks. Iterate this s = 2 log(1=�)times. Ea
h iteration runs A on the parts of theblo
ks that are known to 
ontain a 1, halving theremaining instan
e size ea
h time.3. Run the exa
t version of Grover's algorithm onea
h of the remaining parts of the instan
es tolook for a one there (ea
h part has size n=2s).This new algorithm A0 uses (s + 1)T + �4 kpn=2s =O(� log(1=�)kpn) queries. With probability at least�s+1, A su

eeds in all iterations, in whi
h 
ase A0solves Sear
h(k)n . By Theorem 7, for every 
0 > 0 thereis an � > 0 su
h that �s+1 � 2�
0k. This gives the the-orem with 
 = 
0=(s+ 1). �Choosing parameters 
arefully, we 
an show that forevery 
 < 1 there is an � su
h that �kpn queries give� � 2�
k. Clearly, � = 2�k is a
hievable without anyqueries by random guessing.As in the 
lassi
al 
ase, we also get weaker boundsfor all fun
tions, using the following results from [7℄:Q2(f) = 
�pbs(f)� for all f and D(f) � bs(f)3 forall total Boolean f .Theorem 9 There exist �; 
 > 0 su
h that for every f ,every quantum algorithm for f (k) with T � �kpbs(f)queries has su

ess probability � � 2�
k.Corollary 10 There exist �; 
 > 0 su
h that for ev-ery total Boolean f , every quantum algorithm for f (k)with T � �kQ2(f)1=6 queries has su

ess probability� � 2�
k.5. SDPT for Quantum Communi
ationHere we establish a strong dire
t produ
t theoremfor quantum 
ommuni
ation, spe
i�
ally for proto
olsthat 
ompute k independent instan
es of the Disjoint-ness problem. Our proof relies 
ru
ially on the beautifulte
hnique that Razborov introdu
ed to lower bound thequantum 
ommuni
ation 
omplexity of one instan
e ofDisjointness [39℄. It allows us to translate a quantum
ommuni
ation proto
ol to a single-variate polynomialthat represents, roughly speaking, the proto
ol's a

ep-tan
e probability as a fun
tion of the size of the inter-se
tion of x and y. The following lemma is impli
it inRazborov's paper (see our long version [1℄).

Lemma 11 Consider a Q-qubit quantum 
om-muni
ation proto
ol on N-bit inputs x and y,with a

eptan
e probabilities P (x; y). De�neP (i) = Ejxj=jyj=N=4;jx^yj=ij[P (x; y)℄, with expe
-tation taken uniformly over all x; y that ea
h haveweight N=4 and that have interse
tion i. For ev-ery d � N=4 there exists a degree-d polynomial q su
hthat jP (i)� q(i)j � 2�d=4+2Q for all i 2 f0; : : : ; N=8g.Theorem 12 (SQDPT for Disjointness) Thereexist �; 
 > 0 su
h that every quantum proto
olfor DISJ(k)n with Q � �kpn qubits of 
ommuni
a-tion has su

ess probability p � 2�
k.Proof (sket
h). By doing the same tri
k with s =2 log(1=�) rounds of binary sear
h as for Theorem 8, we
an tweak a proto
ol for DISJ(k)n to a proto
ol that sat-is�es (with P (i) de�ned as in Lemma 11, N = kn and� = ps+1) P (i) = 0 if i 2 f0; : : : ; k � 1g; P (k) � �;P (i) 2 [0; 1℄ for all i 2 f0; : : : ; Ng. Instead of exa
tGrover we use an exa
t version of the O(pn)-qubit Dis-jointness proto
ol of [3℄ (the [13℄-proto
ol would lose alogn-fa
tor). Lemma 11, using d = 12Q, then gives adegree-d polynomial q that di�ers from P by at mostÆ � 2�Q on all i 2 f0; : : : ; N=8g. This Æ is suÆ
ientlysmall to apply Lemma 5, whi
h in turn upper bounds� and hen
e p. �6. Time-Spa
e Tradeo� for QuantumSortingWe will now use our strong dire
t produ
t theoremto get near-optimal time-spa
e tradeo�s for quantum
ir
uits for sorting. This follows Klau
k [26℄, who de-s
ribed an upper bound T 2S = O�(N logN)3� and alower bound TS = 
�N3=2�. In our model, the num-bers a1; : : : ; aN that we want to sort 
an be a

essedby means of queries, and the number of queries lowerbounds the a
tual time taken by the 
ir
uit. The 
ir-
uit has N output gates and in the 
ourse of its 
ompu-tation outputs the N numbers in sorted (say, des
end-ing) order, with su

ess probability at least 2=3.Theorem 13 Every bounded-error quantum 
ir
uit forsorting N numbers that uses T queries and S qubits ofworkspa
e satis�es T 2S = 
�N3�.Proof. We \sli
e" the 
ir
uit along the time-axis intoL = T=�pSN sli
es, ea
h 
ontaining T=L = �pSNqueries. Ea
h su
h sli
e has a number of output gates.Consider any sli
e. Suppose it 
ontains output gatesi; i+ 1; : : : ; i+ k � 1, for i � N=2, so it is supposed tooutput the i-th up to i + k � 1-th largest elements ofits input. We want to show that k = O(S). If k � S



then we are done, so assume k > S. We 
an use thesli
e as a k-threshold algorithm on N=2 bits, as fol-lows. For an N=2-bit input x, 
onstru
t a sorting in-put by taking i�1 
opies of the number 2, the N=2 bitsin x, and N=2� i+ 1 
opies of the number 0, and ap-pend their position behind the numbers.Consider the behavior of the sorting 
ir
uit on thisinput. The �rst part of the 
ir
uit has to output thei� 1 largest numbers, whi
h all start with 2. We 
on-dition on the event that the 
ir
uit su

eeds in this.It then passes on an S-qubit state (possibly mixed) asthe starting state of the parti
ular sli
e we are 
onsid-ering. This sli
e then outputs the k largest numbers inx with probability at least 2=3. Now, 
onsider an algo-rithm that runs just this sli
e, starting with the 
om-pletely mixed state on S-qubits, and that outputs 1 ifit �nds k numbers starting with 1, and outputs 0 oth-erwise. If jxj < k this new algorithm always outputs0 (note that it 
an verify �nding a 1 sin
e its posi-tion is appended), but if jxj = k then it outputs 1with probability at least � � 23 � 2�S, be
ause the 
om-pletely mixed state has \overlap" 2�S with the \good"S-qubit state that would have been the starting stateof the sli
e in the run of the sorting 
ir
uit. On theother hand, the sli
e has only �pSN < �pkN queries,so by 
hoosing � suÆ
iently small, Theorem 6 implies� � 2�
(k). Combining our upper and lower bounds on� gives k = O(S). Thus we need L = 
(N=S) sli
es, soT = L�pSN = 
�N3=2=pS�. �As mentioned, our tradeo� is a
hievable up to poly-log fa
tors [26℄. Interestingly, the near-optimal algo-rithm uses only a polylogarithmi
 number of qubitsand otherwise just 
lassi
al memory. For simpli
ity wehave shown the lower bound for the 
ase when the out-puts have to be made in their natural ordering only,but we 
an show the same lower bound for any order-ing of the outputs that does not depend on the inputusing a slightly di�erent proof.7. Time-Spa
e Tradeo�s for BooleanMatrix Produ
tsFirst we give a lower bound on the time-spa
e trade-o� for Boolean matrix-ve
tor multipli
ation on 
lassi-
al ma
hines. For reasons of spa
e we omit the proofs inthis se
tion and the next. They use the same approa
has before: sli
e the 
ir
uit into small sli
es, and use astrong dire
t produ
t theorem to show that ea
h sli
e
an only produ
e few outputs (hen
e we need manysli
es). Details may be found in our long version [1℄.Theorem 14 There is a matrix A su
h that every 
las-si
al bounded-error 
ir
uit that 
omputes the Boolean

matrix-ve
tor produ
t Ab with T queries and spa
e S =o(N= logN) satis�es TS = 
�N2�.The bound is tight if T measures queries to the in-put. An absolutely analogous 
onstru
tion 
an be donein the quantum 
ase.Theorem 15 There is a matrixA su
h that every quan-tum bounded-error 
ir
uit that 
omputes the Booleanmatrix-ve
tor produ
t Ab with T queries and spa
e S =o(N= logN) satis�es T 2S = 
�N3�.This is tight within a log-fa
tor (needed to improve thesu

ess probability of Grover sear
h).Theorem 16 Every 
lassi
al bounded-error 
ir
uit that
omputes the Boolean matrix produ
t AB with T queriesand spa
e S satis�es TS = 
�N3�.While this is near-optimal for small S, it is proba-bly not tight for large S, a likely tight tradeo� beingT 2S = 
�N6�. It is also no improvement 
ompared tothe average-
ase bounds of [4℄. The appli
ation to thequantum 
ase is analogous.Theorem 17 Every quantum bounded-error 
ir-
uit that 
omputes the Boolean matrix produ
t AB withT queries and spa
e S satis�es T 2S = 
�N5�.If S = O(logN), then N2 appli
ations of Grover 
an
ompute AB with T = O�N2:5 logN�. Hen
e ourtradeo� is near-optimal for small S. We do not knowwhether it is optimal for large S.8. Quantum Communi
ation-Spa
eTradeo�s for Matrix Produ
tsIn this se
tion we use the strong dire
t produ
tresult for quantum 
ommuni
ation (Theorem 12) toprove tight 
ommuni
ation-spa
e tradeo�s.Theorem 18 Every quantumbounded-error proto
ol inwhi
h Ali
e and Bob have bounded spa
e S and that 
om-putes the Booleanmatrix-ve
tor produ
t, satis�esC2S =
�N3�.Theorem 19 Every quantumbounded-error proto
ol inwhi
h Ali
e and Bob have bounded spa
e S and that
omputes the Boolean matrix produ
t, satis�es C2S =
�N5�.Theorem 20 There is a quantum bounded-error pro-to
ol with spa
e S that 
omputes the Boolean produ
tbetween a matrix and a ve
tor within 
ommuni
a-tion C = O((N3=2 log2N)=pS). There is a quan-tum bounded-error proto
ol with spa
e S that 
omputesthe Boolean produ
t between two matri
es within 
om-muni
ation C = O((N5=2 log2N)=pS).



9. Open ProblemsWe mention some open problems. The �rst is todetermine tight time-spa
e tradeo�s for Boolean ma-trix produ
t on both 
lassi
al and quantum 
omput-ers. Se
ond, regarding 
ommuni
ation-spa
e tradeo�sfor Boolean matrix-ve
tor and matrix produ
t, we didnot prove any 
lassi
al bounds that were better thanour quantum bounds. Klau
k [27℄ re
ently proved 
las-si
al tradeo�s CS2 = 
�N3� and CS2 = 
�N2� forBoolean matrix produ
t and matrix-ve
tor produ
t, re-spe
tively, by means of a weak dire
t produ
t theoremfor Disjointness. A 
lassi
al strong dire
t produ
t theo-rem for Disjointness would imply optimal tradeo�s, butwe do not know how to prove this at the moment. Fi-nally, it would be interesting to get any lower boundson time-spa
e or 
ommuni
ation-spa
e tradeo�s for de-
ision problems in the quantum 
ase, for example forElement Distin
tness [15, 5℄ or the veri�
ation of ma-trix multipli
ation [17℄.A
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A. Proofs from Se
tion 3Here we sket
h the strong dire
t produ
t theorem for
lassi
al randomized algorithms that 
ompute k inde-pendent instan
es of ORn, referring to [1℄ for a more de-tailed proof. By Yao's prin
iple, it is suÆ
ient to proveit for deterministi
 algorithms under a �xed hard inputdistribution. Let Su
t;�(f) be the su

ess probability ofthe best algorithm for f under � that queries � t in-put bits. We 
all an algorithm non-adaptive if, for ea
hof the k input blo
ks, the maximum number of queriesin that blo
k is �xed before the �rst query. By indu
-tion, as in [41℄, we 
an prove:Lemma 21 Let f : f0; 1gn ! f0; 1g and � be an in-put distribution. Every non-adaptive deterministi
 algo-rithm for f (k) under �k with T � kt queries has su

essprobability � � Su
t;�(f)k.Remark. A similar statement is not always true foradaptive algorithms. Following [41℄, de�ne h(x) = x1_(x2�: : :�xn). Clearly Su
 23n;�(h) = 3=4 for � uniform.By a Cherno� bound, Su
 23nk;�k (h(k)) = 1�2�
(k), be-
ause approximately half of the blo
ks 
an be solved us-ing just 1 query and the unused queries 
an be used toanswer exa
tly also the other half of the blo
ks.However, the SDPT is valid for OR(k)n under �k,where �(0n) = 1=2 and �(ei) = 1=2n for ei an n-bit string that 
ontains a 1 only at the i-th posi-tion. It is simple to prove that Su
�n;�(ORn) = �+12 .Non-adaptive algorithms for OR(k)n under �k with �knqueries thus have � � (�+12 )k = 2� log( 2�+1 )k. We 
ana
hieve any 
 < 1 by 
hoosing � suÆ
iently small. Weprove that adaptive algorithms 
annot be mu
h better.Without loss of generality, we assume: (1) The adap-tive algorithm is deterministi
. (2) Whenever the algo-rithm �nds a 1 in some input blo
k, it stops queryingthat blo
k. (3) The algorithm spends the same num-ber of queries in all blo
ks where it does not �nd a1. This is optimal due to the symmetry between theblo
ks, and implies that the algorithm spends at leastas many queries in ea
h \empty" input blo
k as in ea
h\non-empty" blo
k.Lemma 22 If there is an adaptive T -query algorithmA 
omputing OR(k)n under �k with su

ess probability �,then there is a non-adaptive 3T -query algorithm A0 
om-puting it with su

ess probability � � 2�
(k).Proof. Let Z be the number of empty blo
ks. E[Z℄ =k=2 and, by a Cherno� bound, Æ = Pr [Z < k=3℄ =2�
(k). If Z � k=3, then A spends at most 3T=k queriesin ea
h empty blo
k. De�ne non-adaptive A0 thatspends 3T=k queries in ea
h blo
k. Then A0 queries all



the positions that A queries, and maybe some more.Let us 
ompare the overall su

ess probabilities of Aand A0:�A = Pr [Z < k=3℄ � Pr [A su

eeds j Z < k=3℄+ Pr [Z � k=3℄ � Pr [A su

eeds j Z � k=3℄� Æ � 1 + Pr [Z � k=3℄ � Pr [A0 su

eeds j Z � k=3℄� Æ + �A0 :We 
on
lude that �A0 � �A�Æ. (Remark. By repla
ingthe k=3-bound on Z by a �k-bound for some � > 0, we
an obtain arbitrary 
 < 1 in the exponent Æ = 2�
k,while the number of queries of A0 be
omes T=�.) �Combining the two lemmas establishes Theorem 1.B. Proofs from Se
tion 4We use three results about polynomials, also usedin [14℄. The �rst is by Coppersmith and Rivlin [20,p. 980℄ and gives a general bound for polynomialsbounded by 1 at integer points:Theorem 23 (Coppersmith & Rivlin [20℄)Every polynomial p of degree d � n that has abso-lute value jp(i)j � 1 for all integers i 2 [0; n℄, sat-is�es jp(x)j < aebd2=n for all real x 2 [0; n℄, wherea; b > 0 are universal 
onstants (no expli
it val-ues for a and b are given in [20℄).The other two results 
on
ern the Chebyshev poly-nomials Td, de�ned as in [40℄:Td(x) = 12 ��x+px2 � 1�d + �x�px2 � 1�d� :Td has degree d and its absolute value jTd(x)j isbounded by 1 if x 2 [�1; 1℄. On the interval [1;1),Td ex
eeds all others polynomials with those two prop-erties ([40, p.108℄ and [37, Fa
t 2℄):Theorem 24 If q is a polynomial of degree d su
h thatjq(x)j � 1 for all x 2 [�1; 1℄ then jq(x)j � jTd(x)j for allx � 1.Paturi [37, before Fa
t 2℄ provedLemma 25 (Paturi [37℄) Td(1+�) � e2dp2�+�2 forall � � 0.Proof. For x = 1 + �: Td(x) � (x + px2 � 1)d =(1+�+p2�+ �2)d � (1+2p2�+ �2)d � e2dp2�+�2(using that 1 + z � ez for all real z). �These tools allow us to establish the key lemma.

Proof of Lemma 5. Divide p with remainder byQk�1j=0 (x� j) to obtainp(x) = q(x) k�1Yj=0(x� j) + r(x);where d = deg(q) = D � k and deg(r) � k � 1.We know that r(x) = p(x) 2 [�Æ; Æ℄ for all x 2f0; : : : ; k � 1g. De
ompose r as a linear 
ombinationof polynomials ei, where ei(i) = 1 and ei(x) = 0 forx 2 f0; : : : ; k � 1g � fig:r(x) = k�1Xi=0 p(i)ei(x) = k�1Xi=0 p(i) k�1Yj=0j 6=i x� ji� j :We bound the values of r for all real x 2 [0; N ℄ byjr(x)j � k�1Xi=0 jp(i)ji!(k � 1� i)! k�1Yj=0j 6=i jx� jj� Æ(k � 1)! k�1Xi=0 �k � 1i �Nk � Æ(2N)k(k � 1)! ;jr(k)j � Æk2k�1:This implies the following about the values of q:jq(k)j � (� � Æk2k�1)=k!jq(i)j � (i� k)!i! �1 + Æ + Æ(2N)k(k � 1)!�for i 2 fk; : : : ; NgIn parti
ular:jq(i)j � C�k �1 + Æ + Æ(2N)k(k � 1)!� = Afor i 2 fk + C; : : : ; NgTheorem 23 implies that there are a; b > 0 su
h thatjq(x)j � A � aebd2=(N�k�C) = Bfor all real x 2 [k+C;N ℄. We now divide q by B to nor-malize it, and res
ale the interval [k + C;N ℄ to [1;�1℄to get a degree-d polynomial t satisfyingjt(x)j � 1 for all x 2 [�1; 1℄t(1 + �) = q(k)=B for � = 2C=(N � k � C)Sin
e t 
annot grow faster than the degree-d Cheby-shev polynomial, we gett(1 + �) � Td(1 + �) � e2dp2�+�2 .Combining our upper and lower bounds on t(1 + �):(� � Æk2k�1)=k!C�k �1 + Æ + Æ(2N)k(k�1)! � aebd2=(N�k�C) � e2dp2�+�2 :Rearranging gives the bound. �


