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1 Introduction

Two dead bodies have been found on the same night in different parts of town,
strangled to death. The police are anxious to know whether the killer in both
cases was the same person. Fortunately, the murderers were stupid enough to
leave their fingerprints on the necks of the victims, so the police only need to
compare fingerprints from both necks to see whether they match or not. This
will tell them whether both murderers are actually the same person.

This is an interesting phenomenon. The reason it works is that every hu-
man being has his own unique fingerprint. Such fingerprints do not give much
information about their respective owners (assuming we do not have a complete
table matching all possible fingerprints with all possible humans), but they do
allow us to test for identity: if we want to know whether John and Jack are
the same person, it suffices to compare their fingerprints — no need for John
or Jack to be present themselves! However, human fingerprints are clearly re-
stricted to human beings, and most other objects (houses, computers, cans of
tomatoes) do not have fingerprints in a similar way. Here we will describe a
general method that allows us to take short fingerprints of anything that can be
described in bits. That is, we will associate with each n-bit string an exponen-
tially smaller fingerprint, such that identity between two strings can be detected
by comparing their fingerprints. The caveat is that our fingerprints will need
to be quantum mechanical: they will be superpositions of classical states. This
quantum fingerprinting method allows us to do certain things that are provably
impossible in the world of classical physics and classical computing.

This article describes joint work with Harry Buhrman (CWI and UvA),
Richard Cleve (Calgary), and John Watrous (Calgary), published recently in [3].
Before describing our quantum fingerprinting scheme, we will first give a brief
introduction to quantum states and their use in computation.

2 Quantum computing

2.1 States and operations

In a classical computer, the unit of information is a bit, which can take on the
values 0 or 1. In a quantum computer, the unit is a quantum bit, which is a



linear combination of those two values. That is, a qubit is a superposition of
the two “basis states” |0) and |1):
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where complex number ayg is called the amplitude of the basis state |0), and a;
is the amplitude of |1). We require |ag|> + |a1|? = 1. Viewing |0) and |1) as the
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way, such a qubit is in both classical states simultaneously.
More generally, the state |¢) of an m-qubit quantum computer can be de-
scribed by a superposition of all 2™ classical m-bit states:
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with the condition that the squared amplitudes sum to 1: Y, |a;|*> = 1. We can
also view this state as the 2™-dimensional complex unit vector that has the «;
as amplitudes.

There are basically two ways in which a quantum computer can manipulate
such a state: it can make a measurement or apply a unitary transformation.
Suppose we measure state |¢). We cannot “see” a superposition itself, but only
classical states. Accordingly, if we measure |¢) we will see one and only one
classical m-bit state |i). Which specific |i) will we see? This is not determined
in advance; the only thing we can say is that we will see state |i) with proba-
bility |;|?. Because |¢) is a unit vector, these probabilities nicely sum to 1. If
we measure |¢) and see classical state i) as a result, then |¢) itself has “dis-
appeared”, and all that is left is |i). In other words, observing |@) “collapses”
the quantum superposition |¢) to the classical state |i) that we saw, and all
information that might have been contained in the other amplitudes is gone.

Instead of measuring |¢), we can also apply some operation to it, i.e., change

the state to some
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Quantum mechanics only allows linear operations to be applied to quantum
states, so the operation must correspond to multiplying the vector |¢) with
some matrix U:
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Because |1) should also be a unit vector, we have the constraint that U pre-
serves norm, and hence is unitary (that is, U~! equals the conjugate transpose
U*). Just like Boolean circuits, a well-chosen unitary matrix U followed by
an appropriate measurement can compute any computable function. Every U
can be built up from a small number of “elementary gates”. These are uni-
tary transformations that each act on only one or two qubits, just as classical



Boolean AND, OR, and NOT gates act on only one or two bits. A quantum
computation is deemed efficient to the extent that U can be built up from a
small number of such elementary gates.

As a simple example, consider the 1-qubit Hadamard gate, specified by the

following unitary matrix:
1 1 1
=i

If we apply this to the classical state |0), we obtain the equal superposition

Y

%(\0) +11)). If we measure this, we will see either |0) or |1), each with prob-
ability 50%. If we apply H to |1), then we obtain %(\0) — |1)), which induces
the same probability distribution when measured. However, if we apply H to a
superposition %(\0) +/1)), then we get the classical state |0) back, because the

positive and negative contributions to the amplitude of |1) add up to 0. This
effect is known as interference.

2.2 What is it good for?

Why should we consider quantum computing? On a fundamental level, the
answer is that computers are physical systems and physical systems are quantum
mechanical. Accordingly, if we want to study the ultimate power and limits of
computers, we should consider the full power and limits of quantum mechanics.
On a moderately more practical level, the main reason to consider quantum
computers is that they can solve certain computational problems much faster
than classical computers. For most computational problems, a quantum com-
puter is not significantly more efficient than a classical computer (most problems
are hard by any standard — classical as well as quantum), but for some it is.
The most important example of this is the problem of finding prime factors
of large numbers. Peter Shor’s quantum algorithm from 1994 [8] finds a factor
of an n-bit number in roughly n? steps (elementary gates). In contrast, the

best classical algorithms that we know, need about gn'’? steps to find a factor.
Even with massive parallelism, todays computers need several months to factor
512-bit numbers — and rightly so, because much of modern cryptography would
become completely insecure if computers could quickly factor numbers of 512 or
1024 bits. In principle quantum computers could do this, but practice lags far
behind theory in this young field. The largest number factored by a quantum
computer to date is 15(=3*5), on a 7-qubit quantum computer [9].

A second example where quantum computers are much faster than classical
ones is the problem of searching an unordered set of NV elements for some target
element. For example, searching for the person with phone number 5260248 in
a phone directory that is ordered by name but not by phone number. Grover’s
quantum search algorithm from 1996 [5] finds the target element in about v N
steps, while a classical algorithm can do no better than just go through all
records sequentially, which takes N steps. For example, Grover’s algorithm can
find a satisfying assignment for an n-bit Boolean formula in roughly /2" steps,



while classical exhaustive search would have to go over all 2" possible truth
assignments separately.

3 How to construct short quantum fingerprints
and test them

We will now use quantum states to construct a fingerprinting scheme. Recall the
main idea behind fingerprinting: we want to map large objects (n-bit strings)
to short objects (their fingerprints), such that we can decide whether two such
large objects are equal by comparing only their fingerprints. A good quantum
fingerprinting scheme thus requires two things: (1) a mapping from n-bit strings
x to their short quantum fingerprints |¢,) and (2) a test to decide whether x = y,
given only fingerprints |@,) and |¢,).

It is not hard to show that non-orthogonal states (= states with non-zero
inner product) cannot be distinguished with probability 1. Thus, if we want our
test to work perfectly, the fingerprints |¢,) and |¢,) would need to be exactly
orthogonal for all pairs of distinct n-bit strings z and y. Unfortunately, this
constraint makes the quantum fingerprints way too long: an orthonormal set of
2™ states requires 2" dimensions, which corresponds to n qubits — not much
savings over n classical bits! Instead we will settle for near-orthogonality, where
the required number of dimensions can be made much smaller. Giving up exact
orthogonality implies that our test will have a certain error probability, but we
can make this error probability as small as we want.

There are many ways to obtain a set of 2" near-orthogonal states in a small
number of dimensions. Below we will use a simple application of the probabilistic
method for this, but more constructive methods based on sophisticated error-
correcting codes exist as well.

Suppose we pick a set S of 2" d-bit strings at random, for some d to be
determined later. Then the expected Hamming distance H(s,t) between two
such strings s and t is d/2, and the Chernoff bound tells us that the actual
distance is probably close to its expectation:

Pr (H(s,t) € [0.49d,0.51d]) < 27°¢

for some positive constant ¢. Now suppose we choose d = 2n/c, then the above
probability is at most 272" and using the union bound we have

Pr(3s,t € S with H(s,t) ¢ [0.49d,0.51d]) < > Pr(H(s,t) ¢ [0.49d,0.51d])
s,teS

2n
272" < 1.
(5)2 <

In particular, there exists at least one set S where H(s,t) € [0.49d,0.51d] for
all distinct s,t € S. Let us consider such a set. We can index the elements in
S = {s* | z € {0,1}"} by the n-bit strings, and derive quantum states from
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them by using the bits s7 in s* for signs of amplitudes in |¢,):

1 & )
¢2) = Z(—l)s" i).
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Since these states live in d = 2n/c¢ dimensions, we only need logd = logn+ O(1)
qubits to represent them, so our quantum fingerprints are indeed short compared
to the underlying n-bit strings. Two fingerprints are almost orthogonal, because
the inner product between |¢,) and |¢,) is

d
Z(_l)s,-“rsf’_
i=1

Because the Hamming distance between s* and s¥ is close to d/2, s? + s¥ will
be even for about half of the is and odd for the other half. Therefore the above
sum contains about as many +1s as —1s and hence will be small.

We now have our mapping from strings to short quantum fingerprints. It
remains to show how we can test whether z = y, when given only fingerprints
|¢z) and |¢y,). Our test is pictured in Figure 1, where time progresses from left
to right: we add on an auxiliary |0)-qubit, apply a Hadamard transform to it
to get %(\0) + [1)), apply a controlled swap to the two registers containing
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the fingerprints (this swaps the two registers if the auxiliary qubit is |1) and
does nothing if it is |0)), then apply another Hadamard transform, and finally
measure the auxiliary qubit.

0) H H measure

|62)
SWAP

|y)

Figure 1: Test whether 2 fingerprints |¢,) and |¢,) are equal

Let us analyze what happens here. First, if z = y then |¢,) = |¢.) and
the controlled swap has no effect, since swapping two identical things doesn’t
do anything. In this case, the second Hadamard transform will just set the
auxiliary qubit back to the |0)-state, so our measurement will give outcome 0
with certainty. On the other hand, if 2 # y then |¢,) and |¢,) are almost
orthogonal. In this case, by calculating the final state one can show that the
measurement will give outcome |1) with probability close to 1/2 (where the
“closeness” depends on the inner product between |¢,) and |#,)). Thus one



such test allows us to distinguish the two cases x = y and x # y with one-
sided error probability about 1/2. If we have a few copies of both fingerprints
available, then we can repeat the above test and reduce the error probability to
a small constant.

4 Application: Saving communication

We now describe an application of our quantum fingerprinting scheme. We will
consider a simple communication scenario. There are three parties: Alice, Bob,
and a referee. Alice receives n-bit input x and Bob receives n-bit input y. The
referee receives no input, but he wants to find out whether z = y or not (the
equality problem). Alice and Bob each can send information to the referee, but
cannot receive messages from the referee, nor can they communicate with each
other. We want a scheme that uses only little communication, but that allows
the referee to determine whether z = y with high probability, for all inputs z, y.

Clearly, Alice can send the whole 2 and Bob can send the whole y, allowing
the referee to solve the problem at a cost of 2n bits of communication. However,
smarter things with less communication are possible. The classical communica-
tion complexity of this problem has been studied by various researchers in the
last decade, and it turns out that about y/n bits of communication are suffi-
cient [1] as well as necessary [6, 2] to solve this equality problem.! In contrast,
the construction of short quantum fingerprints together with the equality test
outlined above, immediately suggest a much more efficient gquantum solution to
the equality problem: Alice sends the fingerprint |@,) to the referee (or a few
copies thereof), Bob sends the fingerprint |¢,), and the referee just tests whether
the two fingerprints he received are equal or almost orthogonal. This gives us a
solution to the equality problem that works with high success probability and
requires only O(logn) qubits to be sent, which is exponentially better than the
\/n bits of communication that are required classically (this also implies that
there is no efficient classical fingerprinting scheme that achieves the same as our
quantum scheme).

For example, suppose Alice and Bob are flying through space, each in their
own spaceship. They can only send messages to the command center on earth.
They have each gathered a large chunk of data, of 240 bits say, and for some
reason the command center needs to know whether they have the same chunk
of data. Classically, Alice and Bob would each need to send about V2%
1,000,000 bits to the referee. In the quantum case, only about 50 qubits of
communication would already suffice — a significant savings.

1Only O(1) classical bits of communication would suffice if Alice and Bob had access to
some shared source of randomness, but we’re not allowing that here.



5 Conclusion

We described the quantum fingerprinting technique from [3]. To each n-bit
string  we can associate a logn-qubit state |¢,), such that we can decide
whether © = y by deciding whether |¢,) = |¢,). In other words, for the purposes
of identification the long object = can be replaced by its short fingerprint |¢,).
This gives rise to an exponential reduction in the communication complexity of
the equality problem when we allow quantum communication.

What about other applications of quantum fingerprinting? Note that the fin-
gerprint |¢,) gives only little information about x, because a logn-qubit state
can contain only logn bits of classical information (Holevo’s theorem). In some
sense the quantum fingerprint “contains” x completely without revealing it. Yet
we can clearly test or verify whether the hidden z equals some string y of our
choice, by testing |¢,) against |¢,). This information-hiding property of quan-
tum fingerprints smacks of cryptography, and indeed there has recently been
some work on “quantum signatures” that uses quantum fingerprints as a build-
ing block [4]. Further applications of quantum fingerprinting in communication
complexity or cryptography may lie ahead.
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