
Fingerprints from Quantum Me
hani
sRonald de Wolfrdewolf�
s.berkeley.edu1 Introdu
tionTwo dead bodies have been found on the same night in di�erent parts of town,strangled to death. The poli
e are anxious to know whether the killer in both
ases was the same person. Fortunately, the murderers were stupid enough toleave their �ngerprints on the ne
ks of the vi
tims, so the poli
e only need to
ompare �ngerprints from both ne
ks to see whether they mat
h or not. Thiswill tell them whether both murderers are a
tually the same person.This is an interesting phenomenon. The reason it works is that every hu-man being has his own unique �ngerprint. Su
h �ngerprints do not give mu
hinformation about their respe
tive owners (assuming we do not have a 
ompletetable mat
hing all possible �ngerprints with all possible humans), but they doallow us to test for identity: if we want to know whether John and Ja
k arethe same person, it suÆ
es to 
ompare their �ngerprints | no need for Johnor Ja
k to be present themselves! However, human �ngerprints are 
learly re-stri
ted to human beings, and most other obje
ts (houses, 
omputers, 
ans oftomatoes) do not have �ngerprints in a similar way. Here we will des
ribe ageneral method that allows us to take short �ngerprints of anything that 
an bedes
ribed in bits. That is, we will asso
iate with ea
h n-bit string an exponen-tially smaller �ngerprint, su
h that identity between two strings 
an be dete
tedby 
omparing their �ngerprints. The 
aveat is that our �ngerprints will needto be quantum me
hani
al : they will be superpositions of 
lassi
al states. Thisquantum �ngerprinting method allows us to do 
ertain things that are provablyimpossible in the world of 
lassi
al physi
s and 
lassi
al 
omputing.This arti
le des
ribes joint work with Harry Buhrman (CWI and UvA),Ri
hard Cleve (Calgary), and John Watrous (Calgary), published re
ently in [3℄.Before des
ribing our quantum �ngerprinting s
heme, we will �rst give a briefintrodu
tion to quantum states and their use in 
omputation.2 Quantum 
omputing2.1 States and operationsIn a 
lassi
al 
omputer, the unit of information is a bit, whi
h 
an take on thevalues 0 or 1. In a quantum 
omputer, the unit is a quantum bit, whi
h is a1



linear 
ombination of those two values. That is, a qubit is a superposition ofthe two \basis states" j0i and j1i:�0j0i+ �1j1i;where 
omplex number �0 is 
alled the amplitude of the basis state j0i, and �1is the amplitude of j1i. We require j�0j2+ j�1j2 = 1. Viewing j0i and j1i as theve
tors � 10 � and � 01 � respe
tively, the qubit 
orresponds to � �0�1 �. In away, su
h a qubit is in both 
lassi
al states simultaneously.More generally, the state j�i of an m-qubit quantum 
omputer 
an be de-s
ribed by a superposition of all 2m 
lassi
al m-bit states:j�i = Xi2f0;1gm �ijii;with the 
ondition that the squared amplitudes sum to 1: Pi j�ij2 = 1. We 
analso view this state as the 2m-dimensional 
omplex unit ve
tor that has the �ias amplitudes.There are basi
ally two ways in whi
h a quantum 
omputer 
an manipulatesu
h a state: it 
an make a measurement or apply a unitary transformation.Suppose we measure state j�i. We 
annot \see" a superposition itself, but only
lassi
al states. A

ordingly, if we measure j�i we will see one and only one
lassi
al m-bit state jii. Whi
h spe
i�
 jii will we see? This is not determinedin advan
e; the only thing we 
an say is that we will see state jii with proba-bility j�ij2. Be
ause j�i is a unit ve
tor, these probabilities ni
ely sum to 1. Ifwe measure j�i and see 
lassi
al state jii as a result, then j�i itself has \dis-appeared", and all that is left is jii. In other words, observing j�i \
ollapses"the quantum superposition j�i to the 
lassi
al state jii that we saw, and allinformation that might have been 
ontained in the other amplitudes is gone.Instead of measuring j�i, we 
an also apply some operation to it, i.e., 
hangethe state to some j i = Xi2f0;1gm �ijii:Quantum me
hani
s only allows linear operations to be applied to quantumstates, so the operation must 
orrespond to multiplying the ve
tor j�i withsome matrix U : U 0B� �0...�2m�1 1CA = 0B� �0...�2m�1 1CA :Be
ause j i should also be a unit ve
tor, we have the 
onstraint that U pre-serves norm, and hen
e is unitary (that is, U�1 equals the 
onjugate transposeU�). Just like Boolean 
ir
uits, a well-
hosen unitary matrix U followed byan appropriate measurement 
an 
ompute any 
omputable fun
tion. Every U
an be built up from a small number of \elementary gates". These are uni-tary transformations that ea
h a
t on only one or two qubits, just as 
lassi
al2



Boolean AND, OR, and NOT gates a
t on only one or two bits. A quantum
omputation is deemed eÆ
ient to the extent that U 
an be built up from asmall number of su
h elementary gates.As a simple example, 
onsider the 1-qubit Hadamard gate, spe
i�ed by thefollowing unitary matrix: H = 1p2 � 1 11 �1 � :If we apply this to the 
lassi
al state j0i, we obtain the equal superposition1p2 (j0i + j1i). If we measure this, we will see either j0i or j1i, ea
h with prob-ability 50%. If we apply H to j1i, then we obtain 1p2 (j0i � j1i), whi
h indu
esthe same probability distribution when measured. However, if we apply H to asuperposition 1p2 (j0i+ j1i), then we get the 
lassi
al state j0i ba
k, be
ause thepositive and negative 
ontributions to the amplitude of j1i add up to 0. Thise�e
t is known as interferen
e.2.2 What is it good for?Why should we 
onsider quantum 
omputing? On a fundamental level, theanswer is that 
omputers are physi
al systems and physi
al systems are quantumme
hani
al. A

ordingly, if we want to study the ultimate power and limits of
omputers, we should 
onsider the full power and limits of quantum me
hani
s.On a moderately more pra
ti
al level, the main reason to 
onsider quantum
omputers is that they 
an solve 
ertain 
omputational problems mu
h fasterthan 
lassi
al 
omputers. For most 
omputational problems, a quantum 
om-puter is not signi�
antly more eÆ
ient than a 
lassi
al 
omputer (most problemsare hard by any standard | 
lassi
al as well as quantum), but for some it is.The most important example of this is the problem of �nding prime fa
torsof large numbers. Peter Shor's quantum algorithm from 1994 [8℄ �nds a fa
torof an n-bit number in roughly n2 steps (elementary gates). In 
ontrast, thebest 
lassi
al algorithms that we know, need about 2n1=3 steps to �nd a fa
tor.Even with massive parallelism, todays 
omputers need several months to fa
tor512-bit numbers | and rightly so, be
ause mu
h of modern 
ryptography wouldbe
ome 
ompletely inse
ure if 
omputers 
ould qui
kly fa
tor numbers of 512 or1024 bits. In prin
iple quantum 
omputers 
ould do this, but pra
ti
e lags farbehind theory in this young �eld. The largest number fa
tored by a quantum
omputer to date is 15(=3*5), on a 7-qubit quantum 
omputer [9℄.A se
ond example where quantum 
omputers are mu
h faster than 
lassi
alones is the problem of sear
hing an unordered set of N elements for some targetelement. For example, sear
hing for the person with phone number 5260248 ina phone dire
tory that is ordered by name but not by phone number. Grover'squantum sear
h algorithm from 1996 [5℄ �nds the target element in about pNsteps, while a 
lassi
al algorithm 
an do no better than just go through allre
ords sequentially, whi
h takes N steps. For example, Grover's algorithm 
an�nd a satisfying assignment for an n-bit Boolean formula in roughly p2n steps,3



while 
lassi
al exhaustive sear
h would have to go over all 2n possible truthassignments separately.3 How to 
onstru
t short quantum �ngerprintsand test themWe will now use quantum states to 
onstru
t a �ngerprinting s
heme. Re
all themain idea behind �ngerprinting: we want to map large obje
ts (n-bit strings)to short obje
ts (their �ngerprints), su
h that we 
an de
ide whether two su
hlarge obje
ts are equal by 
omparing only their �ngerprints. A good quantum�ngerprinting s
heme thus requires two things: (1) a mapping from n-bit stringsx to their short quantum �ngerprints j�xi and (2) a test to de
ide whether x = y,given only �ngerprints j�xi and j�yi.It is not hard to show that non-orthogonal states (= states with non-zeroinner produ
t) 
annot be distinguished with probability 1. Thus, if we want ourtest to work perfe
tly, the �ngerprints j�xi and j�yi would need to be exa
tlyorthogonal for all pairs of distin
t n-bit strings x and y. Unfortunately, this
onstraint makes the quantum �ngerprints way too long: an orthonormal set of2n states requires 2n dimensions, whi
h 
orresponds to n qubits | not mu
hsavings over n 
lassi
al bits! Instead we will settle for near-orthogonality, wherethe required number of dimensions 
an be made mu
h smaller. Giving up exa
torthogonality implies that our test will have a 
ertain error probability, but we
an make this error probability as small as we want.There are many ways to obtain a set of 2n near-orthogonal states in a smallnumber of dimensions. Below we will use a simple appli
ation of the probabilisti
method for this, but more 
onstru
tive methods based on sophisti
ated error-
orre
ting 
odes exist as well.Suppose we pi
k a set S of 2n d-bit strings at random, for some d to bedetermined later. Then the expe
ted Hamming distan
e H(s; t) between twosu
h strings s and t is d=2, and the Cherno� bound tells us that the a
tualdistan
e is probably 
lose to its expe
tation:Pr (H(s; t) 62 [0:49d; 0:51d℄) � 2�
dfor some positive 
onstant 
. Now suppose we 
hoose d = 2n=
, then the aboveprobability is at most 2�2n and using the union bound we havePr (9s; t 2 S with H(s; t) 62 [0:49d; 0:51d℄) � Xs;t2SPr (H(s; t) 62 [0:49d; 0:51d℄)� �2n2 �2�2n < 1:In parti
ular, there exists at least one set S where H(s; t) 2 [0:49d; 0:51d℄ forall distin
t s; t 2 S. Let us 
onsider su
h a set. We 
an index the elements inS = fsx j x 2 f0; 1gng by the n-bit strings, and derive quantum states from4



them by using the bits sxi in sx for signs of amplitudes in j�xi:j�xi = 1pd dXi=1(�1)sxi jii:Sin
e these states live in d = 2n=
 dimensions, we only need log d = logn+O(1)qubits to represent them, so our quantum �ngerprints are indeed short 
omparedto the underlying n-bit strings. Two �ngerprints are almost orthogonal, be
ausethe inner produ
t between j�xi and j�yi is1d dXi=1(�1)sxi+syi :Be
ause the Hamming distan
e between sx and sy is 
lose to d=2, sxi + syi willbe even for about half of the is and odd for the other half. Therefore the abovesum 
ontains about as many +1s as �1s and hen
e will be small.We now have our mapping from strings to short quantum �ngerprints. Itremains to show how we 
an test whether x = y, when given only �ngerprintsj�xi and j�yi. Our test is pi
tured in Figure 1, where time progresses from leftto right: we add on an auxiliary j0i-qubit, apply a Hadamard transform to itto get 1p2 (j0i + j1i), apply a 
ontrolled swap to the two registers 
ontainingthe �ngerprints (this swaps the two registers if the auxiliary qubit is j1i anddoes nothing if it is j0i), then apply another Hadamard transform, and �nallymeasure the auxiliary qubit.j0ij�xij�yi
measureH Ht

SWAPFigure 1: Test whether 2 �ngerprints j�xi and j�yi are equalLet us analyze what happens here. First, if x = y then j�xi = j�xi andthe 
ontrolled swap has no e�e
t, sin
e swapping two identi
al things doesn'tdo anything. In this 
ase, the se
ond Hadamard transform will just set theauxiliary qubit ba
k to the j0i-state, so our measurement will give out
ome 0with 
ertainty. On the other hand, if x 6= y then j�xi and j�yi are almostorthogonal. In this 
ase, by 
al
ulating the �nal state one 
an show that themeasurement will give out
ome j1i with probability 
lose to 1=2 (where the\
loseness" depends on the inner produ
t between j�xi and j�yi). Thus one5



su
h test allows us to distinguish the two 
ases x = y and x 6= y with one-sided error probability about 1=2. If we have a few 
opies of both �ngerprintsavailable, then we 
an repeat the above test and redu
e the error probability toa small 
onstant.4 Appli
ation: Saving 
ommuni
ationWe now des
ribe an appli
ation of our quantum �ngerprinting s
heme. We will
onsider a simple 
ommuni
ation s
enario. There are three parties: Ali
e, Bob,and a referee. Ali
e re
eives n-bit input x and Bob re
eives n-bit input y. Thereferee re
eives no input, but he wants to �nd out whether x = y or not (theequality problem). Ali
e and Bob ea
h 
an send information to the referee, but
annot re
eive messages from the referee, nor 
an they 
ommuni
ate with ea
hother. We want a s
heme that uses only little 
ommuni
ation, but that allowsthe referee to determine whether x = y with high probability, for all inputs x; y.Clearly, Ali
e 
an send the whole x and Bob 
an send the whole y, allowingthe referee to solve the problem at a 
ost of 2n bits of 
ommuni
ation. However,smarter things with less 
ommuni
ation are possible. The 
lassi
al 
ommuni
a-tion 
omplexity of this problem has been studied by various resear
hers in thelast de
ade, and it turns out that about pn bits of 
ommuni
ation are suÆ-
ient [1℄ as well as ne
essary [6, 2℄ to solve this equality problem.1 In 
ontrast,the 
onstru
tion of short quantum �ngerprints together with the equality testoutlined above, immediately suggest a mu
h more eÆ
ient quantum solution tothe equality problem: Ali
e sends the �ngerprint j�xi to the referee (or a few
opies thereof), Bob sends the �ngerprint j�yi, and the referee just tests whetherthe two �ngerprints he re
eived are equal or almost orthogonal. This gives us asolution to the equality problem that works with high su

ess probability andrequires only O(logn) qubits to be sent, whi
h is exponentially better than thepn bits of 
ommuni
ation that are required 
lassi
ally (this also implies thatthere is no eÆ
ient 
lassi
al �ngerprinting s
heme that a
hieves the same as ourquantum s
heme).For example, suppose Ali
e and Bob are 
ying through spa
e, ea
h in theirown spa
eship. They 
an only send messages to the 
ommand 
enter on earth.They have ea
h gathered a large 
hunk of data, of 240 bits say, and for somereason the 
ommand 
enter needs to know whether they have the same 
hunkof data. Classi
ally, Ali
e and Bob would ea
h need to send about p240 �1; 000; 000 bits to the referee. In the quantum 
ase, only about 50 qubits of
ommuni
ation would already suÆ
e | a signi�
ant savings.1Only O(1) 
lassi
al bits of 
ommuni
ation would suÆ
e if Ali
e and Bob had a

ess tosome shared sour
e of randomness, but we're not allowing that here.
6



5 Con
lusionWe des
ribed the quantum �ngerprinting te
hnique from [3℄. To ea
h n-bitstring x we 
an asso
iate a logn-qubit state j�xi, su
h that we 
an de
idewhether x = y by de
iding whether j�xi = j�yi. In other words, for the purposesof identi�
ation the long obje
t x 
an be repla
ed by its short �ngerprint j�xi.This gives rise to an exponential redu
tion in the 
ommuni
ation 
omplexity ofthe equality problem when we allow quantum 
ommuni
ation.What about other appli
ations of quantum �ngerprinting? Note that the �n-gerprint j�xi gives only little information about x, be
ause a logn-qubit state
an 
ontain only logn bits of 
lassi
al information (Holevo's theorem). In somesense the quantum �ngerprint \
ontains" x 
ompletely without revealing it. Yetwe 
an 
learly test or verify whether the hidden x equals some string y of our
hoi
e, by testing j�xi against j�yi. This information-hiding property of quan-tum �ngerprints sma
ks of 
ryptography, and indeed there has re
ently beensome work on \quantum signatures" that uses quantum �ngerprints as a build-ing blo
k [4℄. Further appli
ations of quantum �ngerprinting in 
ommuni
ation
omplexity or 
ryptography may lie ahead.Referen
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