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ABSTRACT
We consider the problem of bounded-error quantum state
identification: given either state α0 or state α1, we are re-
quired to output ‘0’, ‘1’ or ‘?’ (“don’t know”), such that con-
ditioned on outputting ‘0’ or ‘1’, our guess is correct with
high probability. The goal is to maximize the probability of
not outputting ‘?’. We prove a direct product theorem: if
we’re given two such problems, with optimal probabilities a
and b, respectively, and the states in the first problem are
pure, then the optimal probability for the joint bounded-
error state identification problem is O(ab). Our proof is
based on semidefinite programming duality and may be of
wider interest.

Using this result, we present two exponential separations
in the simultaneous message passing model of communica-
tion complexity. First, we describe a relation that can be
computed with O(log n) classical bits of communication in

the presence of shared randomness, but needs Ω(n1/3) com-
munication if the parties don’t share randomness, even if
communication is quantum. This shows the optimality of
Yao’s recent exponential simulation of shared-randomness
protocols by quantum protocols without shared randomness.
Second, we describe a relation that can be computed with
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O(log n) classical bits of communication in the presence of

shared entanglement, but needs Ω((n/ log n)1/3) communi-
cation if the parties share randomness but no entanglement,
even if communication is quantum. This is the first example
in communication complexity where entanglement buys you
much more than quantum communication does.

Categories and Subject Descriptors
E.4 [Coding and information theory]: Formal models of
communication; F.1.2 [Computation by Abstract De-

vices]: Modes of Computation; F.1.3 [Computation by

Abstract Devices]: Complexity Measures and Classes—
Relations among complexity measures

General Terms
Algorithms, Theory

Keywords
quantum computing, state identification, communication com-
plexity, randomness, entanglement

1. INTRODUCTION

1.1 Bounded-error quantum state identifica-
tion

Suppose we are given one of two mixed quantum states,
α0 or α1, each with probability 1/2. We know what α0 and
α1 are. Our goal is to identify which one we are given. It is
well known that we can output the correct answer (0 or 1)
with probability 1/2 + ‖α0 − α1‖tr/2, where ‖ · ‖tr is the
trace norm (the sum of the singular values, divided by 2).
This is optimal. In particular, if α0 and α1 are very close in
trace norm, the best measurement will do little better than a
fair coin flip. In some situations, however, we cannot afford
to output the wrong answer with such high probability, and
would rather settle for a measurement that sometimes claims
ignorance, but that is usually correct in the case where it
does give an output.

To illustrate this, suppose the states involved are the fol-
lowing pure states:

|α0〉 =
√
a|0〉 +

√
1 − a|2〉

|α1〉 =
√
a|1〉 +

√
1 − a|2〉

If we cannot afford to make a mistake at all, it is clear what
measurement we should apply: measure in the computa-
tional basis, and if the outcome is 0 the state must have been



α0; if the outcome is 1 the state must have been α1; if the
outcome is 2 we claim ignorance. Note that the probability
of getting an answer (0 or 1) for the identification problem
is now only a. We have thus increased our confidence in the
answer, at the expense of decreasing the probability of get-
ting an answer at all. Now consider a slightly more “fudged”
example, for some small ε:

|α0〉 =
p

(1 − ε)a|0〉 +
√
εa|1〉 +

√
1 − a|2〉

|α1〉 =
√
εa|0〉 +

p

(1 − ε)a|1〉 +
√

1 − a|2〉

If we apply the same procedure as before, we have now a
small probability of error: on both states our measurement
outputs a guess (0 or 1) with probability a, and if we output
a guess, then that guess is wrong with probability only ε. If
ε is sufficiently small, this may still be acceptable for many
applications.

More generally, let A be some classical random variable,
and B be another random variable whose range includes the
special symbol ‘?’. We call B an (a, ε)-predictor for A if
Pr[B 6= ?] ≥ a and Pr[A = B | B 6= ?] ≥ 1− ε. For example,
the above measurement applied to state αX where X is a
random bit, gives us an (a, ε)-predictor for X if we interpret
output 2 as ‘?’. Motivated by the above examples—and by
our applications in later sections—we define the bounded-
error state identification problem:

Given a register containing αX , with X a uni-
formly random bit, and an ε > 0, what is the
maximal a for which there exists a quantum mea-
surement on the register whose outcome is an
(a, ε)-predictor for X?

We useDε(α0, α1) to denote the maximal value a. We stress
again that the error probability is a conditional probabil-
ity, conditioned on actually outputting a guess for the bit
(0 or 1). Unlike the straightforward distinguishing prob-
lem, where the optimal success probability is determined
by the trace distance ‖α0 − α1‖tr, we do not know of any
simple metric on density matrices that determines the value
Dε(α0, α1). However, as was also noted by Eldar [11], one
can easily express quantities like this as the optimal value
of a semidefinite program, as we will do in Section 3.

Now suppose we are given another identification problem
in a second register, quantum state βY for a random bit Y ,
and suppose b = Dε(β0, β1) is the largest value for which
we can obtain a (b, ε)-predictor for Y . We now want to de-
termine the optimal probability with which we can identify
(again with error at most ε or something related) both states
simultaneously. That is, what is the maximal probability
p = Dε(α0 ⊗ β0, α0 ⊗ β1, α1 ⊗ β0, α1 ⊗ β1) such that a joint
measurement on αX ⊗βY gives us a (p, ε)-predictor for XY ?
Since the two registers are completely independent, it seems
there is nothing much better we can do except applying the
optimal measurement for both registers separately.1 Thus
our intuition suggests that p ≤ ab, or at least p ≤ O(ab).
This problem has a flavor similar to “direct product the-
orems” in computational complexity theory, where one is
usually interested in k ≥ 2 independent instances of some
computational problem, and the aim is to show that the
overall success probability of some algorithm for the k-fold
problem is close to the product of the k individual success

1This actually gives slightly worse error 2ε− ε2 for the pre-
diction of XY , so potentially it could be that p≪ ab.

probabilities. Another problem with a similar flavor is the
notoriously hard quantum information theory issue of mul-
tiplicativity of norms of superoperators under tensor prod-
uct [17].

Proving our intuition actually turned out to be quite a
hard problem, and here we briefly mention some reasons
why. First, classically the intuition turns out to be true,
but the optimal 2-register strategy is not the product of two
separate optimal 1-register strategies (see the longer version
of this paper [14] for more details). Second, one would ex-
pect the same intuition to hold in the case where one wants
to obtain the parity X ⊕ Y instead of the two bits X and
Y separately. Yet in that case, we know an example where
p ≈ a, b and not p ≤ O(ab); more details may be found
in [14]. In an earlier preprint [13] we were only able to prove
it for ε = 0, which was then used by us in [13] and [12]
to obtain various zero-error separations in communication
complexity. The present paper supersedes all of these un-
published results and gives in Section 3 the first proof of the
p ≤ O(ab) bound for the case where at least one of the two
sides is pure (i.e., α0 and α1 are both pure, or β0 and β1 are
both pure). More precisely, we show

Dε/2(α0 ⊗ β0, α0 ⊗ β1, α1 ⊗ β0, α1 ⊗ β1)

≤ O(Dε(α0, α1) ·Dε(β0, β1)). (1)

Our proof relies heavily on a semidefinite programming for-
mulation for the quantities involved and on an analysis of
their duals. Note that because of the ε/2 on the left hand
side, this bound is slightly weaker than what we have promised;
as we explain in the longer version of this paper [14], this
modification is (somewhat surprisingly) necessary. This is
a third reason why the bounded-error state identification
problem is quite subtle.

1.2 Exponential separations in communication
complexity

Apart from being an interesting information theoretic prob-
lem in its own right, the bounded-error state identification
problem and our direct product theorem have interesting ap-
plications. We give two new exponential separations, both
in the simultaneous message passing (SMP) model of com-
munication complexity. The area of communication com-
plexity deals with the amount of communication required
for solving computational problems with distributed input.
This area is interesting for its own sake, but also has many
applications to lower bounds on circuit size, data structures,
etc. The SMP model involves three parties: Alice, Bob, and
a referee. Alice gets input x, Bob gets input y. They each
send one message to the referee, to enable him to compute
something depending on both x and y, such as a Boolean
function or some relational property. The cost or complex-
ity of a communication protocol is the length of the total
communication for a worst-case input, and the complexity
of a problem is the cost of the best protocol that solves our
problem with small error probability.

The SMP model is arguably the weakest setting of com-
munication complexity that is still interesting. Even this
simple setting is not well understood. In the case of de-
terministic protocols, the optimal communication is deter-
mined by the number of distinct rows (and columns) in the
communication matrix, which is a simple property. How-
ever, as soon as we add randomization to the model things
become much more complicated. For one, we can choose to



either add shared (a.k.a. public) or private randomness. In
other communication models this difference affects the opti-
mal communication by at most an additive O(log n) [23], but
in the SMP model the difference can be huge. For example,
the equality function for n-bit strings requires about

√
n bits

of communication if the parties have only private random-
ness [1, 24, 2], but only constant communication with shared
randomness! No simple characterization of SMP communi-
cation complexity with either private or shared randomness
is known.2

The situation becomes more complicated still when we
throw in quantum communication. Buhrman et al. [8] ex-
hibited a quantum protocol for the equality function with
O(log n) qubits of communication. This is exponentially
better than classical private-randomness protocols, but slightly
worse than shared-randomness protocols. Roughly speak-
ing, their quantum fingerprinting technique may be viewed
as replacing the shared randomness by a quantum superpo-
sition.

1.2.1 Shared randomness beats quantum communi-
cation

The fingerprinting idea of [8] was generalized by Yao [29],
who showed that every classical shared-randomness protocol
with c-bit messages for a Boolean function can be simulated
by a quantum fingerprinting protocol that uses O(24c log n)
qubits of communication. This has since been improved to
O(22c log n) qubits [13, 15]. In particular, every O(1)-bit
shared-randomness protocol can be simulated by anO(log n)-
qubit quantum protocol. Again, quantum superposition re-
places shared randomness in this construction.

This raises the question whether something similar al-
ways holds in the SMP model: can every classical shared-
randomness protocol be efficiently simulated by some pro-
tocol that sends qubits but shares neither randomness nor
entanglement? Since the appearance of Yao’s paper, quite a
number of people have tried to address this. Our first sep-
aration, presented in Section 4, gives a negative answer to
this question. Suppose Alice receives inputs x, s ∈ {0, 1}n

with the property that s has Hamming weight n/2 and Bob
receives input y ∈ {0, 1}n. The referee should output, with
probability at least 1 − ε, a triple (i, xi, yi) for an i satisfy-
ing si = 1. We prove that protocols where Alice and Bob
share randomness can solve this task with O(log n) classical
bits of communication, while every bounded-error quantum
protocol without shared randomness needs Ω(n1/3) qubits
of communication. This shows for the first time that the re-
source of shared randomness cannot be efficiently traded for
quantum communication. The quantum lower bound relies
crucially on our direct product theorem for bounded-error
state identification.

Yao’s exponential simulation can be made to work for re-
lations as well, and our quantum lower bound shows that
it is essentially optimal, since the required quantum com-
munication is exponentially larger than the classical shared-
randomness complexity for our relational problem. We ex-
pect a similar gap to hold for (promise) Boolean functions
as well. Our separation complements a separation in the
other direction: Bar-Yossef et al. [3] exhibited a relation

2Kremer et al. [19] claimed a characterization of shared-
randomness complexity as the largest of the two one-way
complexities, but Bar-Yossef et al. [4, Section 4] exhibited a
function where their characterization fails.

where quantum SMP protocols are exponentially more effi-
cient than classical SMP protocols even with shared random-
ness (also in their case it is open whether there is a similar
gap for a Boolean function). Accordingly, the quantum SMP
model is incomparable with the classical shared-randomness
SMP model.

1.2.2 Shared entanglement beats quantum communi-
cation with shared randomness

The second application of our state identification result
is again in the SMP model. While the previous applica-
tion separated classical protocols with shared randomness
from quantum protocols without shared randomness, this
one separates classical protocols with entanglement (EPR-
pairs, 2-qubit states 1

2
(|00〉+ |11〉)) from quantum protocols

with shared randomness.
The additional power that prior entanglement gives is one

of the most fundamental questions in quantum communi-
cation complexity. This additional power is not well un-
derstood. We basically know two ways in which entangle-
ment can help: it can be used for teleportation (where one
EPR-pair and two classical bits of communication replace
one qubit of communication) and it can be used for shared
randomness (if Alice and Bob each measure their side of
their shared EPR-pair in the computational basis, they get
the same random bit). Neither saves very much commu-
nication, and it has in fact been conjectured for the stan-
dard two-party one-round and many-round protocols that
the model of classical communication with entanglement [9]
and the model of quantum communication without entan-
glement [28] are essentially equivalent.

Our second separation shows that the situation is very dif-
ferent in the SMP model: the qubit-communication model
cannot efficiently simulate the entanglement model. In Sec-
tion 5 we exhibit a relational problem, inspired by the prob-
lem of Bar-Yossef et al. mentioned above, that can be solved
with log n EPR-pairs shared between Alice and Bob and
O(log n) classical bits of communication. In contrast, if
only shared randomness is available instead of entanglement,
every bounded-error SMP protocol needs Ω((n/ log n)1/3)
quantum bits of communication. Again, our direct product
theorem is crucial for proving the quantum lower bound.
This is the first example of a communication problem where
entanglement is much more useful than quantum communi-
cation.

2. PRELIMINARIES

2.1 Quantum computing
The essentials needed for this paper are quantum states

and their measurement. First, an m-qubit pure state is a
superposition |φ〉 =

P

z∈{0,1}m αz|z〉 over all classical m-bit

states. The αz’s are complex numbers called amplitudes,
and

P

z |αz|2 = 1. Hence a pure state |φ〉 is a unit vector

in C
2m

. Its complex conjugate (a row vector with entries
conjugated) is denoted 〈φ|. The inner product between |φ〉
and |ψ〉 =

P

z βz|z〉 is the dot product 〈φ| · |ψ〉 = 〈φ|ψ〉 =
P

z α
∗
zβz. The norm of a vector v is ‖v‖ =

p

〈v|v〉. Second,
a mixed state ρ =

P

i pi|φi〉〈φi| corresponds to a probabil-
ity distribution over pure states, where |φi〉 is given with
probability pi. A k-outcome positive operator-valued mea-
sure (POVM) is given by k positive semidefinite operators



E1, . . . , Ek with the property that
Pk

i=1Ei = I . When this
POVM is applied to a mixed state ρ, the probability of the
i-th outcome is given by the trace Tr[Eiρ]. See Nielsen and
Chuang [25] for more details.

2.2 Communication complexity
We now give a somewhat informal description of the simul-

taneous message passing model discussed in our two applica-
tions. For a more formal description, we refer to Kushilevitz
and Nisan [20] for classical communication complexity and
to the surveys [18, 6, 27] for the quantum variant. In the
simultaneous message passing model, Alice receives input x,
Bob receives input y, they each send a message to a ref-
eree who should then output either f(x, y) in the case of a
functional problem, or an element from some set R(x, y) in

the case of a relational problem. We use R
‖
ε(P ), R

‖,pub
ε (P ),

R
‖,ent
ε (P ) to denote, respectively, the optimal communica-

tion complexity of classical protocols that solve problem
P with worst-case error probability ε, using, respectively,
private randomness, shared randomness between Alice and
Bob, and shared entanglement between Alice and Bob (EPR
pairs). The number of shared coin flips or shared EPR-pairs
is unlimited and does not count towards the communication
cost of the protocol. We use Q

‖
ε(P ), Q

‖,pub
ε (P ), Q

‖,ent
ε (P )

for the variety that allows quantum communication.

2.3 The random access code argument
Here we will describe a slight extension of a quantum in-

formation theory argument due to Nayak [22] that we will
apply several times in our communication lower bounds. We
call this the “random access code argument”. We assume fa-
miliarity with classical information theory [10] and quantum
information theory [25].

Lemma 1. [“Random Access Code Argument”] Let X =
X1 . . . Xn be a classical random variable of n uniformly dis-
tributed bits. Suppose for each instantiation X = x we have
a quantum state Mx of q qubits. Suppose also that for each
i ∈ [n] of our choice we can apply a quantum measurement
to MX whose outcome is a (λi, εi)-predictor for Xi. Then

n
X

i=1

λi(1 −H(εi)) ≤ q.

Before giving the proof, notice the following special case: if
we can predict each Xi with bias ηi (i.e., we have a (1, 1/2−
ηi)-predictor), then the above bound becomes

n
X

i=1

(1 −H(1/2 − ηi)) ≤ q.

Since 1−H(1/2−ηi) = Θ(η2
i ), the left hand side is essentially

the sum of squares of the ηi.

Proof. First, let Y be a classical random variable cor-
responding to a uniformly distributed bit. Let B be an-
other random variable that is a (λ, ε)-predictor of Y . Using
H(Y | B,B 6= ?) ≤ H(ε) and Pr[B 6= ?] ≥ λ, we can upper
bound the entropy of Y given B:

H(Y | B) = Pr[B = ?] ·H(Y | B,B = ?)

+ Pr[B 6= ?] ·H(Y | B,B 6= ?)

≤ (1 − Pr[B 6= ?]) · 1 + Pr[B 6= ?] ·H(ε)

≤ 1 − λ(1 −H(ε)),

and hence lower bound the mutual information between Y
and B:

I(Y : B) = H(Y ) −H(Y | B) ≥ λ(1 −H(ε)).

Now let Bi be the outcome of the measurement correspond-
ing to i applied to MX . We have

S(Xi : MX) ≥ I(Xi : Bi) ≥ λi(1 −H(εi))

by Holevo’s theorem [16] (the left hand side is equal to the
Holevo χ-quantity).

Using [25, Theorem 11.8.5] we have

S(X : MX ) = S(X) + S(MX) − S(X,MX)

= S(MX) − 1

2n

X

x∈{0,1}n

S(Mx) ≤ S(MX) ≤ q.

Abbreviating X1:i−1 = X1 . . .Xi−1, a chain rule for mutual
information gives

S(X : MX) =

n
X

i=1

S(Xi : MX | X1:i−1).

Using strong subadditivity and the fact S(Xi | X1:i−1) =
S(Xi) we get

S(Xi : MX | X1:i−1) = S(Xi | X1:i−1) − S(Xi |MXX1:i−1)

≥ S(Xi) − S(Xi |MX ) = S(Xi : MX).

Combining our inequalities gives the bound on q.

3. BOUNDED-ERROR QUANTUM STATE
IDENTIFICATION: DIRECT PRODUCT

In this section we prove our main results about the 2-
register quantum state identification problem. We use the
powerful technique of semidefinite programming duality. For
details on semidefinite programming, see e.g. [21, 26]. Re-
call that in the first register we are given a quantum state
αX , with X a random bit, and the optimal probability with
which we can get an ε-predictor for X is a. In the second
register we’re given βY , with Y a random bit, and the opti-
mal probability with which we can get an ε-predictor for Y
is b. We now want to know the optimal probability p with
which a joint measurement on both registers can obtain an
ε-predictor for XY . We will actually prove two bounds.
First, for the case where α0, α1 are pure and β0, β1 are
unrestricted, our Theorem 1 implies

Dε/2(α0 ⊗ β0, α0 ⊗ β1, α1 ⊗ β0, α1 ⊗ β1)

≤ O(Dε(α0, α1) ·Dε(β0, β1)). (2)

Second, if we allow all of α0, α1, β0, β1 to be mixed states
then our Corollary 1 gives

Dε/2(α0 ⊗ β0, α0 ⊗ β1, α1 ⊗ β0, α1 ⊗ β1)

≤ O(‖α0 − α1‖tr ·Dε(β0, β1)).

The second bound will follow from the first by purifying the
mixed states α0 and α1.

Let us first characterize Dε(α0, α1). Recall that any mea-
surement whose outcome is an (a, ε)-predictor outputs the
correct answer with probability at least 1−ε conditioned on
outputting a guess (0 or 1, but not ?). Denote the three



measurement operators by E0, E1, E?. Then we require

ε ≥ Pr[wrong guess | guess] =
Pr[wrong guess]

Pr[guess]

=
1
2
Tr[E0α1] +

1
2
Tr[E1α0]

Tr [(E0 + E1)α]
, (3)

where α = 1
2
(α0+α1) is the average state. To our knowledge

there is no simple expression for Dε(α0, α1) in terms of α0

and α1. However, one can easily express it as a solution to a
semidefinite program (SDP). For fixed density matrices α0,
α1 and fixed ε ∈ [0, 1/2), the optimal value a = Dε(α0, α1)
is given by the SDP:

max Tr[(E0 + E1)α]
s.t. 0 � E0, E1,

E0 + E1 � I,
1
2
Tr[E0α1] +

1
2
Tr[E1α0] ≤ εTr[(E0 + E1)α].

(4)

The first two constraints state that the operators E0, E1

together with a third operator E? = I − E0 − E1 form a
valid quantum measurement. The last constraint bounds
the conditional error probability, as in Eq. (3). An analogous
SDP can be written for b = Dε(β0, β1).

Similarly we can write the primal SDP that optimizes p =
Dε(α0 ⊗ β0, α0 ⊗ β1, α1 ⊗ β0, α1 ⊗ β1):

max Tr[(E00 + E01 +E10 + E11)α⊗ β]
s.t. 0 � E00, E01, E10, E11,

E00 + E01 + E10 + E11 � I,
1
4
Tr [(E01 + E10 + E11)α0 ⊗ β0+

(E00 + E10 + E11)α0 ⊗ β1+
(E00 + E01 + E11)α1 ⊗ β0+
(E00 + E01 + E10)α1 ⊗ β1]
≤ εTr[(E00 +E01 + E10 + E11)α⊗ β].

(5)

Here α⊗ β = 1
4
(α0 ⊗ β0 + α0 ⊗ β1 + α1 ⊗ β0 + α1 ⊗ β1) is

the average state.

Theorem 1. Let 0 ≤ ε < 1
2

and α0, α1, β0, β1 be density
matrices, where α0, α1 correspond to pure states |α0〉, |α1〉.
Let b = Dε(β0, β1) and p = Dε/2(α0 ⊗ β0, α0 ⊗ β1, α1 ⊗
β0, α1 ⊗ β1). Then

p ≤ 16(1 − |〈α0|α1〉|2) · b.

Since α0 and α1 are pure, a = Dε(α0, α1) ≥ D0(α0, α1) ≥
1
2
(1−|〈α0|α1〉|2), where the last inequality follows by consid-

ering the projective measurement on |α0〉 and |α⊥
0 〉. Hence

this theorem implies Eq. (2).

Proof. The idea behind our proof is the following. Both
b and p are the solution of an SDP and so any feasible solu-
tion of the corresponding dual SDP yields an upper bound
to b resp. p. We will show that a feasible solution with value
db ≥ b for the dual for b can be used to construct a feasible
solution with value 16(1 − |〈α0|α1〉|2) · db for the dual for
p. This value then upper bounds p. The dual SDP for b is
strictly feasible in our case, which means that we can make
db as close to b as we want. This implies the theorem.

Let δ :=
p

1 − |〈α0|α1〉|2. Then we want to show p ≤
16δ2b. The dual SDP for b is

min Tr[Xb]
s.t. Xb � 0, zb ≥ 0,

Xb � 1
2

((1 + εzb)β0 + (1 − (1 − ε)zb)β1) =: X1,
Xb � 1

2
((1 + εzb)β1 + (1 − (1 − ε)zb)β0) =: X2.

(6)

This SDP is strictly feasible, for example, zb = 1
2
,Xb = 2I

is a strictly feasible solution. Hence by strong duality its
optimal value is exactly b.

The dual SDP for p is

min Tr[X]
s.t. X � 0, z ≥ 0,

X � 1
4

`˘

(1 + ε
2
z)α0 + (1 − (1 − ε

2
)z)α1

¯

⊗ β0+
(1 − (1 − ε

2
)z)(α0 + α1) ⊗ β1

´

=: X ′
1,

X � 1
4

`˘

(1 + ε
2
z)α0 + (1 − (1 − ε

2
)z)α1

¯

⊗ β1+
(1 − (1 − ε

2
)z)(α0 + α1) ⊗ β0

´

=: X ′
2,

X � 1
4

`˘

(1 + ε
2
z)α1 + (1 − (1 − ε

2
)z)α0

¯

⊗ β0+
(1 − (1 − ε

2
)z)(α0 + α1) ⊗ β1

´

=: X ′
3,

X � 1
4

`˘

(1 + ε
2
z)α1 + (1 − (1 − ε

2
)z)α0

¯

⊗ β1+
(1 − (1 − ε

2
)z)(α0 + α1) ⊗ β0

´

=: X ′
4.

(7)
For what follows we need to define the positive part of a
Hermitian matrix. Any Hermitian matrix A can be writ-
ten uniquely as A = A+ − A−, where A+, A− are positive
semidefinite (A+, A− � 0) and have orthogonal support.
Then define Pos(A) = A+. We need the following simple
properties:

Claim 1. 1. If A � B then A � Pos(B).

2. If A � 0 then Pos(A⊗B) = A⊗ Pos(B).

3. If A � B then Tr[Pos(A)] ≤ Tr[Pos(B)].

NB: it is not true that A � B implies Pos(A) � Pos(B).

Proof. The first part follows from B � Pos(B). The
second part can be seen by diagonalizing the matrices (note
that the non-zero eigenvalues of Pos(B) are exactly the pos-
itive eigenvalues of B). The third part can be seen for in-
stance by using majorization (see e.g. [5]). If A � B, then
the vector of eigenvalues of A is submajorized by the vec-
tor of eigenvalues of B ([5], Eq. (II.16), Ky Fan Maximum
Principle). This means that if we order the eigenvalues of A
(resp. B) as λ1 ≥ λ2 ≥ . . . (resp. µ1 ≥ µ2 ≥ . . .) then for all

k ≥ 1,
Pk

i=1 λi ≤
Pk

i=1 µi. Together with the fact that the
trace of Pos(A) is the sum of the positive eigenvalues of A,
the property follows.

We also need the following technical claim, which we will
prove afterwards:

Claim 2. Let 0 ≤ ε < 1/2 and σ0, σ1, ρ0, ρ1 be density
matrices, where ρ0 and ρ1 are 2-dimensional of rank 1 (i.e.,
pure states). Denote by ρ⊥1 = I − ρ1 the rank 1 density
matrix whose support is orthogonal to that of ρ1. Then for
all zb ≥ 0 there exists z = z(ε, zb) ≥ 0 such that

4δ2ρ⊥1 ⊗1

2
{(1 + εzb)σ0 + (1 − (1 − ε)zb)σ1}

� 1

4

“n

(1 +
ε

2
z)ρ0 + (1 − (1 − ε

2
)z)ρ1

o

⊗ σ0

+(1 − (1 − ε

2
)z)(ρ0 + ρ1) ⊗ σ1

”

.

Fix a dual solution (Xb, zb) for (6). Our goal is to find a
feasible solution (X, z) to (7) such that Tr[X] ≤ 16δ2Tr[Xb].
Since |α0〉 and |α1〉 are pure states, we can assume without
loss of generality that they are in a two dimensional space,



and therefore we can apply Claim 2 with ρ0 = α0, ρ1 = α1,
σ0 = β0 and σ1 = β1. Let

Y1 = 4δ2α⊥
1 ⊗ 1

2
{(1 + εzb)β0 + (1 − (1 − ε)zb)β1}

= 4δ2α⊥
1 ⊗X1.

Claim 2 gives z = z(ε, zb) such that Y1 � X ′
1 (see (7) for the

definition of X ′
1). Since α⊥

1 � 0 we can use Claim 1.2:

Pos(Y1) = 4δ2α⊥
1 ⊗ Pos

1

2
{(1 + εzb)β0 + (1 − (1 − ε)zb)β1}

= 4δ2α⊥
1 ⊗ Pos(X1).

Because α⊥
1 � 0, Tr[Pos(Y1)] = 4δ2Tr[Pos(X1)]. Moreover,

X1 � Xb by definition (see (6)) and Xb = Pos(Xb), hence
Tr[Pos(Y1)] ≤ 4δ2Tr[Pos(Xb)] = 4δ2Tr[Xb] (using Claim
1.3).

However, Pos(Y1) is not a solution of the dual SDP in
(7) because it need not satisfy the last three inequalities.
We construct three more matrices Y2, Y3 and Y4 such that
Yi � X ′

i for the same z as before. For this we apply Claim 2
three more times (for Y2 = 4δ2α⊥

1 ⊗X2 with (ρ0, ρ1, σ0, σ1) =
(α0, α1, β1, β0), for Y3 = 4δ2α⊥

0 ⊗X1 with (ρ0, ρ1, σ0, σ1) =
(α1, α0, β0, β1) and for Y4 = 4δ2α⊥

0 ⊗X2 with (ρ0, ρ1, σ0, σ1) =
(α1, α0, β1, β0)). Because z depends only on zb and ε, which
are the same in all four applications, we obtain each time
the same z. Now define X =

P4
i=1 Pos(Yi). Clearly (X, z)

is a feasible solution to the SDP (7) since X � 0 by defini-
tion and X � Pos(Yi) � X ′

i for i = 1 . . . 4 (using Claim 1.1).
But Tr[X] =

P4
i=1 Tr[Pos(Yi)] ≤ 16δ2Tr[Xb]. As Tr[X] is

an upper bound on p, and Tr[Xb] can be made arbitrarily
close to b, this implies the theorem.

Proof of Claim 2. Because σ0 and σ1 are positive semidef-
inite, it suffices to find a z ≥ 0 for which

4δ2ρ⊥1
1

2
(1+εzb) �

1

4

n

(1 +
ε

2
z)ρ0 + (1 − (1 − ε

2
)z)ρ1

o

(8)

and

4δ2ρ⊥1
1

2
(1 − (1 − ε)zb) �

1

4
(1 − (1 − ε

2
)z)(ρ0 + ρ1) (9)

are true.
Let |ρ0〉, |ρ1〉 and |ρ⊥1 〉 be pure states whose density ma-

trices are ρ0, ρ1 and ρ⊥1 . We choose their global phase such
that |ρ0〉 =

√
1 − δ2|ρ1〉 + δ|ρ⊥1 〉. Then, in the basis given

by |ρ1〉, |ρ⊥1 〉, Eqs. (8) and (9) become
„

z(1 − ε+ δ2 ε
2
) + δ2 − 2 −δ

√
1 − δ2(1 + ε

2
z)

−δ
√

1 − δ2(1 + ε
2
z) δ2(7 + 8εzb − ε

2
z)

«

� 0

(10)

and
„

((1- ε
2
)z − 1)(2-δ2) δ

√
1 − δ2((1- ε

2
)z − 1)

δ
√

1 − δ2((1- ε
2
)z − 1) δ2(7 − 8(1-ε)zb + (1- ε

2
)z)

«

� 0 (11)

To show that a 2×2 Hermitian matrix is positive semidefinite
it suffices to show that both its determinant and at least one
of its diagonal entries are positive. We choose

z = 16
1 − ε

1 − ε/2
zb +

4

1 − ε
.

Since z ≥ 4, the upper diagonal entries of the matrices in
Eqs. (10) and (11) are positive. Moreover, if δ = 0 these

matrices are trivially positive. If δ > 0 then we can cancel
δ2 > 0 from both terms that appear in their determinants.
Hence, for Eqs. (10) and (11) to be true it suffices to show

`

z(1 − ε) − 2
´

(7 + 8εzb −
ε

2
z) − (1 +

ε

2
z)2 > 0 (12)

and

(2 − δ2)((1 − ε

2
)z − 1)(7 − 8(1 − ε)zb + (1 − ε

2
)z)

− (1 − δ2)((1 − ε

2
)z − 1)2 > 0. (13)

To derive Eq. (12) we have replaced the term z(1−ε+δ2 ε
2
)+

δ2 − 2 by the smaller positive term z(1 − ε) − 2, which is
allowed because this equation is only true if 7+8εzb− ε

2
z > 0.

Using (2 − δ2)/(1 − δ2) ≥ 2 and (1 − ε
2
)z − 1 > 0, Eq. (13)

is implied by

2(7 − 8(1 − ε)zb + (1 − ε

2
)z) > (1 − ε

2
)z − 1

which is equivalent to

z > 16zb
1 − ε

1 − ε
2

− 15

1 − ε
2

.

This inequality is true for our choice of z. It remains to
show that our z satisfies Eq. (12). Substituting for z we see
that the quadratic term in zb cancels and we obtain

“

17 − 4

(1 − ε)2

”

+ 16zb

“ 7

1 − ε
2

− 17ε
”

> 0.

This linear inequality is satisfied (for zb ≥ 0) because both
its constant coefficient and the coefficient of zb are positive
for 0 ≤ ε < 1

2
.

Using this result, we also obtain a second, “asymmetric”
direct product theorem when α0, α1 and β0, β1 are all mixed
states:

Corollary 1. Let 0 ≤ ε < 1
2

and α0, α1, β0, β1 be den-
sity matrices. Let a = ‖α0 − α1‖tr, b = Dε(β0, β1), and
p = Dε/2(α0⊗β0, α0⊗β1, α1⊗β0, α1⊗β1). Then p ≤ 32 a·b.

Proof. The idea is to work with purifications of α0 and
α1. By Uhlmann’s theorem [25, p.410] there exist purifica-
tions |α̃0〉 and |α̃1〉 that preserve the fidelity, i.e., F (α0, α1) =
F (|α̃0〉, |α̃1〉) = |〈α̃0|α̃1〉|. Using known properties of the fi-
delity [25, Section 9.2.3], we have

F (α0, α1) ≥ 1 − ‖α0 − α1‖tr = 1 − a.

Hence 1 − |〈α̃0|α̃1〉|2 ≤ 2a. If α̃i = |α̃i〉〈α̃i|, then

p = Dε/2(α0 ⊗ β0, α0 ⊗ β1, α1 ⊗ β0, α1 ⊗ β1)

≤ Dε/2(α̃0 ⊗ β0, α̃0 ⊗ β1, α̃1 ⊗ β0, α̃1 ⊗ β1)

because one can obtain α0, α1 by tracing out the purification
degrees of freedom of α̃0, α̃1. Theorem 1 now gives p ≤
16(1 − |〈α̃0|α̃1〉|2) · b ≤ 32 a · b.



4. SHARED RANDOMNESS CAN BE EX-
PONENTIALLY STRONGER THAN
QUANTUM COMMUNICATION

4.1 The problem
In this section we analyze the following communication

problem P1 in the SMP model:

Alice’s input: strings x, s ∈ {0, 1}n, with Hamming weight
|s| = n/2
Bob’s input: a string y ∈ {0, 1}n

Goal: the referee should output (i, xi, yi) for some i such
that si = 1

We allow the referee a small constant error probability
ε < 1/8. In the next two subsections we show that this prob-
lem is easy if we have classical communication and shared
randomness, and hard if we have quantum communication
without shared randomness:3

Theorem 2. For the relational problem P1 defined above
we have

R‖,pub
ε (P1) ≤ O(log n) and Q‖

ε(P1) ≥ Ω(n1/3).

4.2 Upper bound with classical communica-
tion and shared randomness

Shared randomness gives the parties enough coordina-
tion to easily solve this problem. Alice and Bob just send
(i, xi, si) and (i, yi), respectively, to the referee for log(1/ε)
public random i’s. With probability 1−ε, si = 1 for at least
one of those i’s and the referee outputs the corresponding
(i, xi, yi). With probability ε he doesn’t see an i for which
si = 1, in which case he outputs something random. Hence

R
‖,pub
ε (P ) ≤ O(log n log(1/ε)).

4.3 Lower bound for quantum communica-
tion with private randomness

Consider some quantum protocol that solves our problem
with error probability ε < 1/8, and where the messages that
Alice and Bob send to the referee are at most q qubits long.
Our goal is to show q ≥ Ω(n1/3).

First consider the mixed state message βy that Bob sends
given input y. For i ∈ [n], let

βi0 =
1

2n−1

X

y:yi=0

βy

be the uniform mixture of all βy with yi = 0 and define
βi1 similarly. Let bi = D4ε(βi0, βi1). Then by the random
access code argument (Lemma 1) we have

n
X

i=1

bi(1 −H(4ε)) ≤ q.

By Markov’s inequality, there is a set S of n/2 i’s such that
bi ≤ 2q/n(1 −H(4ε)) ≤ O(q/n) for all i ∈ S. We fix Alice’s
input s to be the n-bit string with support corresponding to
S.

3We believe the problem remains hard if we drop Alice’s
input x, but our proof doesn’t seem to work in that case.

We now analyze Alice’s message. Let αx be the mixed
state she sends given input x and our fixed s. Define αi0 as
the uniform mixture of all αx with xi = 0, similarly define
αi1, and ai = ‖αi0 − αi1‖tr. The optimal probability with
which we can distinguish αi0 from αi1 is 1

2
+ ai

2
. The random

access code argument gives

n
X

i=1

a2
i ≤ O(q).

Now we look at the protocol. Let X = X1 . . .Xn and
Y = Y1 . . . Yn be uniformly distributed random variables
giving Alice’s first and Bob’s only input, and I , B1, B2 be
the random variables describing the referee’s output. We
call an index i ∈ [n] good, if the protocol is correct with high
probability when it outputs (i, ∗, ∗):

i is good iff i ∈ S and
Pr[B1 = Xi, B2 = Yi | I = i] ≥ 1 − 2ε.

The index is called bad otherwise. Define pi = Pr[I = i]
to be the probability that the referee outputs something
of the form (i, ∗, ∗). Because the protocol is correct with
probability at least 1 − ε, a Markov argument shows that
the good indices have most of the probability:

1 − ε ≤
X

good i

pi +
X

bad i

(1 − 2ε)pi = 1 − 2ε+ 2ε
X

good i

pi,

hence

1

2
≤
X

good i

pi.

Note that for each good i we can use the protocol to get
a (pi, 2ε)-predictor for XiYi: just run the protocol and re-
turn ‘?’ if the protocol’s output is not of the form (i, ∗, ∗),
and otherwise return the last two bits of the protocol’s out-
put. Therefore Corollary 1 implies pi ≤ O(aibi). Also,
bi ≤ O(q/n) for all good i, hence

1

2
≤
X

good i

pi ≤
X

good i

O(aibi) ≤ O

 

q

n

n
X

i=1

ai

!

≤ O

0

@

q

n

v

u

u

tn
n
X

i=1

a2
i

1

A ≤ O

„

q3/2

n1/2

«

,

where we applied Cauchy-Schwarz in the fourth step. This
implies q ≥ Ω(n1/3).

Remark: The best no-shared-randomness protocol we
know for P1 communicates O(

√
n) bits. The idea is to ar-

range the n-bit inputs in a
√
n×√

n matrix. Alice picks a
random row index in [

√
n], and then sends that index and

the indexed row of x and of s to the referee. Bob picks
a random column index in [

√
n], and then sends that in-

dex and the indexed column of y to the referee. The row
and the column intersect in exactly one (uniformly random)
point i ∈ [n]. With probability 1/2, si = 1 and we are done.
Repeating this a few times in parallel reduces the error prob-
ability to a small constant. A matching lower bound would
follow from the general direct product theorem p ≤ O(ab),
for the case of the 2-register identification problem where
both sides are allowed to be mixed.



5. SHARED ENTANGLEMENT CAN BE EX-
PONENTIALLY STRONGER THAN QUAN-
TUM COMMUNICATION WITH SHARED
RANDOMNESS

5.1 The problem
For n a power of 2, consider the following relational prob-

lem P2, inspired by a one-way communication problem due
to Bar-Yossef et al. [3]:

Alice’s input: a perfect matching M ⊂
`

[n]
2

´

and a string

x ∈ {0, 1}n/2 containing a bit xe for each e ∈M
Bob’s input: a string y ∈ {0, 1}n

Goal: the referee should output (i, j, x(i,j), yi⊕yj) for some
edge (i, j) ∈M

We show that this problem is easy if we have classical
communication and prior entanglement, and hard if we have
quantum communication without entanglement:

Theorem 3. For the relational problem P2 defined above
we have

R‖,ent
ε (P2) ≤ O(log n) and Q‖,pub

ε (P2) ≥ Ω((n/ log n)1/3).

5.2 Upper bound with classical communica-
tion and entanglement

The following protocol solves the problem with success
probability 1, using O(log n) classical bits of communica-
tion and log n EPR-pairs shared between Alice and Bob. It
is a modification of an unpublished protocol due to Harry
Buhrman [7], which is in turn based on a one-way protocol
from [3]. The starting state of Alice and Bob is

1√
n

X

i∈{0,1}log n

|i〉|i〉.

Bob adds his bits as phases:

1√
n

X

i

|i〉(−1)yi |i〉.

Alice measures with the n/2 projectors Eij = |i〉〈i| + |j〉〈j|
induced by the n/2 pairs (i, j) ∈M . This gives her a random
(i, j) ∈M and the resulting joint state is

1√
2

(|i〉(−1)yi |i〉 + |j〉(−1)yj |j〉) .

Now both players apply a Hadamard transform to each of
the log n qubits of their part of the state, which becomes
(ignoring normalization)

X

k,ℓ

“

(−1)yi+(k+ℓ)·i + (−1)yj+(k+ℓ)·j
”

|k〉|ℓ〉.

Note that |k〉|ℓ〉 has non-zero amplitude iff yi + (k + ℓ) · i =
yj + (k + ℓ) · j mod 2, equivalently

(k + ℓ) · (i+ j) = yi ⊕ yj .

Alice and Bob both measure their part of the state in the
computational basis, obtaining some k and ℓ, respectively,
satisfying the above equality. Alice sends i, j, k, and x(i,j)

to the referee, Bob sends ℓ; a total of O(log n) bits of com-
munication. The referee calculates yi ⊕ yj from i, j, k, ℓ and
outputs (i, j, x(i,j), yi ⊕ yj).

5.3 Lower bound for quantum communica-
tion without entanglement

We make use of some ideas from the classical lower bound
of Bar-Yossef et al. [3]. For k ∈ {0, . . . , n/2 − 1}, let Mk

denote the matching {(i, (i+k−1 mod n/2)+n/2+1}n/2
i=1 .

For example, M1 = {(1, n/2 + 2), (2, n/2 + 3), (3, n/2 +
4), . . . , (n/2−1, n), (n/2, n/2+1)}. We will prove our lower
bound for the special case where Alice’s matching is one of
theMk.4 Consider a quantum protocol where Alice and Bob
share randomness but no entanglement, each communicates
at most q qubits to the referee, and they solve problem P2

with error probability ε < 1/16 for each input. Our goal is

to show q ≥ Ω((n/ log n)1/3).
We consider the following input distribution. Let K be a

uniformly random number between 0 and n/2 − 1, MK be

Alice’s first input, and X ∈ {0, 1}n/2 and Y ∈ {0, 1}n be
uniformly distributed random variables for Alice’s second
and Bob’s only input. Since the protocol has error at most
ε for all inputs, we can (and will) fix a value for the shared
randomness such that the resulting protocol has average er-
ror at most ε under the above input distribution.

Let αkx be Alice’s message on input Mk, x. For edge
e = (i, j) ∈Mk, define αke0 as the uniform mixture of all αkx

with xe = 0, similarly define αke1, and ake = ‖αke0 − αke1‖tr.
The optimal probability with which we can distinguish αke0

from αke1 is 1/2 + ake/2. Hence for every k, the random
access code argument gives

X

e∈Mk

a2
ke ≤ O(q).

Let βy be Bob’s message on input y. For any e = (i, j)
(not necessarily part of any matching), define βe0 as the
uniform mixture over all βy with yi ⊕ yj = 0 and similarly
define βe1. Let be = D8ε(βe0, βe1). We now prove two claims
upper bounding sums of these be.

Claim 3. For any forest (i.e., acyclic graph) F on [n] we

have
X

e∈F

be ≤ O(q).

Proof. Denote by |F | the number of edges in F . For
every e = (i, j) ∈ F we can obtain a (be, 8ε)-predictor for the
bit Yi⊕Yj given the q-qubit state βY . Intuitively, since F is a
forest, these |F | bits are independent and therefore represent
|F | bits of information. To make this formal, define for each

w ∈ {0, 1}|F | the set

Tw = {y ∈ {0, 1}n | ∀e = (i, j) ∈ F, yi ⊕ yj = we}.
Since F is a forest, {Tw}w∈{0,1}|F | is a partition of {0, 1}n

into 2|F | sets of size 2n−|F | each.
For any bit string w ∈ {0, 1}|F | we define ξw as the uni-

form mixture of βy over all y ∈ Tw. For each e ∈ F , define

4Note that if we restrict attention to so few matchings, then
Alice can communicate her matching to the referee in log n
classical bits. Hence her second input x, which seems some-
what redundant at first sight, is actually crucial for our lower
bound. Without it, there would be a cheap qubit protocol
(Bob just sends the uniform superposition with his n bits as
phases).



ξe0 as the uniform mixture of ξw over all w with we = 0 and
similarly define ξe1. Then, it is easy to see that ξe0 = βe0

and ξe1 = βe1. Hence, D8ε(ξe0, ξe1) = be and by applying
the random access code argument to the encoding of w as
the q-qubit state ξw, we get

P

e∈F be(1 −H(8ε)) ≤ q.

Claim 4.

n/2−1
X

k=0

X

e∈Mk

b2e ≤ O(q2 log n).

Proof. By construction all our Mk’s are disjoint, hence
the set M = ∪kMk contains each edge in the above sum
exactly once. Making some bijection between edges in M
and numbers ℓ ∈ [|M |], we order the be in non-increasing
order as

b1 ≥ b2 ≥ · · · ≥ b|M|.

Now consider the graph consisting of the first ℓ edges in this
ordering. This graph must contain at least

√
2ℓ non-isolated

vertices, since v vertices give only
`

v
2

´

≤ v2/2 distinct edges.
Let F be a forest consisting of a spanning tree for each
connected component of this graph. This F has at least√

2ℓ/2 =
p

ℓ/2 edges, and for each of those edges e we have
be ≥ bℓ. Now we use Claim 3:

r

ℓ

2
· bℓ ≤

X

e∈F

be ≤ O(q).

Hence for all ℓ ≤ |M | we have bℓ ≤ O(q/
√
ℓ). Summing over

all ℓ gives

X

e∈M

b2e =

|M|
X

ℓ=1

b2ℓ ≤
n2/4
X

ℓ=1

O(q2/ℓ) ≤ O(q2 log n).

Since the protocol has average error at most ε, by Markov’s
inequality there is a set M of at least n/4 of our matchings
Mk such that the protocol has error at most 2ε for that Mk

and uniformly random X and Y . Since M contains at least
n/4 elements, Claim 4 implies there is a matching Mk ∈ M
such that

X

e∈Mk

b2e ≤ O

„

q2 log n

n

«

.

We now fix this matching on Alice’s side. Let I, J,B1, B2 be
the random variables giving the referee’s output. Suppose
we run the protocol with Mk, and uniformly random x and
y as input. We call an edge (i, j) good, if the protocol is
correct with high probability when it outputs (i, j, ∗, ∗):

e = (i, j) is good iff e ∈Mk and
Pr[B1 = Xe, B2 = Yi ⊕ Yj | I = i, J = j] ≥ 1 − 4ε.

The edge is called bad otherwise. Let pe = Pr[I = i, J = j]
be the probability that the protocol outputs edge e. Since
Mk ∈ M, the success probability (averaged over x and y) is
at least 1 − 2ε, so by a Markov argument, the good edges
must have most of the probability:

1 − 2ε ≤
X

good e

pe +
X

bad e

pe(1 − 4ε) = 1 − 4ε+ 4ε
X

good e

pe,

hence

1

2
≤
X

good e

pe.

For every good edge e, we can construct a (pe, 4ε)-predictor
for (Xe, Yi ⊕ Yj). Hence, by Corollary 1, pe ≤ O(akebe).
Using Cauchy-Schwarz:

1

2
≤

X

good e

pe ≤
X

good e

O(akebe)

≤ O

0

@

s

X

good e

a2
ke ·

X

good e

b2e

1

A ≤ O

 
r

q3 log n

n

!

.

This implies the promised bound q ≥ Ω((n/ log n)1/3).
Remark: Our bound is tight up to log n factors. To see

this, we briefly sketch a protocol which uses O(n1/3 log n)
qubits of communication: Alice and Bob use their shared
randomness to fix a subset S ⊂ [n] of size n2/3. With high
probability the number of edges from M contained in S×S
is roughly n1/3. For each of the edges (i, j) ∈ M ∩ S × S,

Alice sends (i, j, x(i,j)) to the referee, which is O(n1/3 log n)

bits of communication. Bob prepares n1/3 copies of the state

1
p

|S|
X

i∈S

(−1)yi |i〉 (14)

and sends them to the referee, giving a total of O(n1/3 log n)
qubits of communication. On each of the copies, the referee
measures with the projectors Eij = |i〉〈i|+ |j〉〈j| induced by
the edges in S that Alice has sent, completed by Egarbage =
I−PEij . Given the state in Eq. (14), the probability to not

measure “garbage” is roughly n−1/3. This means that with
some constant probability the referee will measure one of
the edges Eij on one of the states Bob sent. This state then
collapses to 1√

2
((−1)yi |i〉 + (−1)yj |j〉), and a measurement

in the basis |i〉 ± |j〉 gives yi ⊕ yj .

6. CONCLUSION AND FUTURE WORK
We studied the bounded-error quantum state identifica-

tion problem and proved a direct product theorem for two
independent instances of this problem (one involving pure
states) using SDP duality. We applied our direct product
theorem to obtain two exponential separations in the simul-
taneous message passing model of communication complex-
ity. These two separations nicely complement each other:
the first shows that shared randomness is much more pow-
erful than private randomness, the second shows that prior
entanglement is much more powerful than shared random-
ness. Moreover, both separations are shown in the strongest
possible sense: the stronger model is restricted to classical
communication while the weaker model is allowed quantum
communication.

We identify some interesting open questions. First, for the
bounded-error quantum state identification problem, prove
the direct product theorem p ≤ O(ab) in the general case
where both sides have mixed states instead of one side pure
and one side mixed. That result would lift, for instance,
our quantum communication lower bound for the problem
P1 to the optimal Ω(

√
n). Second, show similar communica-

tion complexity separations for decision problems (Boolean
functions, possibly with a promise on the input) instead of
for relational problems. Finally, we hope our direct product
theorem will be useful for other applications as well.
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