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Abstract. We consider the problem of bounded-error quantum state identification: given either
state α0 or state α1, we are required to output ‘0’, ‘1’ or ‘?’ (“don’t know”), such that conditioned
on outputting ‘0’ or ‘1’, our guess is correct with high probability. The goal is to maximize the
probability of not outputting ‘?’. We prove a direct product theorem: if we are given two such
problems, with optimal probabilities a and b, respectively, and the states in the first problem are
pure, then the optimal probability for the joint bounded-error state identification problem is O(ab).
Our proof is based on semidefinite programming duality.

Using this result, we present two exponential separations in the simultaneous message pass-
ing model of communication complexity. First, we describe a relation that can be computed with
O(log n) classical bits of communication in the presence of shared randomness, but needs Ω(n1/3)
communication if the parties don’t share randomness, even if communication is quantum. This shows
the optimality of Yao’s recent exponential simulation of shared-randomness protocols by quantum
protocols without shared randomness. Combined with an earlier separation in the other direction
due to Bar-Yossef et al., this shows that the quantum SMP model is incomparable with the classical
shared-randomness SMP model. Second, we describe a relation that can be computed with O(log n)
classical bits of communication in the presence of shared entanglement, but needs Ω((n/ log n)1/3)
communication if the parties share randomness but no entanglement, even if communication is quan-
tum. This is the first example in communication complexity of a situation where entanglement buys
you much more than quantum communication.
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1. Introduction.

1.1. Bounded-error quantum state identification. Suppose we are given
one of two known mixed quantum states, α0 or α1, each with probability 1/2. Our
goal is to identify which one we are given. It is well known that the optimal probability
of outputting the correct answer (0 or 1) is 1/2 + ‖α0 − α1‖tr/2, where ‖ · ‖tr is the
trace norm (the sum of the singular values, divided by 2). In particular, if α0 and α1

are very close in trace norm, then even the best measurement will do little better than
a fair coin flip. In some situations, however, we cannot afford to output the wrong
answer with such high probability, and would rather settle for a measurement that
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sometimes claims ignorance, but that is usually correct in the case where it does give
an output.

To illustrate this, suppose the states involved are the following pure states:
|α0〉 =

√
a|0〉 +

√
1 − a|2〉

|α1〉 =
√
a|1〉 +

√
1 − a|2〉

If we cannot afford to make a mistake at all, it is clear what measurement we should
apply: measure in the computational basis, and if the outcome is 0 the state must
have been α0; if the outcome is 1 the state must have been α1; if the outcome is 2
we claim ignorance. Note that the probability of getting an answer (0 or 1) for the
identification problem is now only a. We have thus increased our confidence in the
answer, at the expense of decreasing the probability of getting an answer at all.

Now consider a slightly more “fudged” example, for some small ε:
|α0〉 =

√

(1 − ε)a|0〉 +
√
εa|1〉 +

√
1 − a|2〉

|α1〉 =
√
εa|0〉 +

√

(1 − ε)a|1〉 +
√

1 − a|2〉
If we apply the same procedure as before, we have now a small probability of error:
on both states our measurement outputs a guess (0 or 1) with probability a, and if
we output a guess, then that guess is wrong with probability only ε. If ε is sufficiently
small, this may still be acceptable for many applications. More generally:

Definition 1.1. Let A be a random variable, and B be another random variable
whose range includes the special symbol ‘?’. We call B an (a, ε)-predictor for A if
Pr[B 6= ?] ≥ a and Pr[A = B | B 6= ?] ≥ 1 − ε.

For example, the above measurement applied to state αX where X is a random
bit, gives us an (a, ε)-predictor for X if we interpret output 2 as ‘?’. Motivated by the
above examples—and by our applications in later sections—we define the bounded-
error state identification problem:

Given a register containing αX , with X a uniformly random bit,
and an ε > 0, what is the maximal a for which there exists a
quantum measurement on the register whose outcome is an (a, ε)-
predictor for X?

We use Dε(α0, α1) to denote the maximal value of a. We stress again that the error
probability is a conditional probability, conditioned on actually outputting a guess
for the bit (0 or 1). Unlike the straightforward distinguishing problem, where the
optimal success probability is determined by the trace distance ‖α0 − α1‖tr, we do not
know of any simple metric on density matrices that determines the value Dε(α0, α1).
However, as was also noted by Eldar [13], one can easily express quantities like this
as the optimal value of a semidefinite program, as we do in section 3.2.

Now, suppose we are given another identification problem in a second register.
This register contains a quantum state βY for a random bit Y , and suppose b =
Dε(β0, β1) is the largest value for which we can obtain a (b, ε)-predictor for Y . We
now want to determine the optimal probability with which we can identify (again
with error at most ε, or something related) both states simultaneously. That is, what
is the maximal probability p = Dε(α0 ⊗β0, α0⊗β1, α1⊗β0, α1⊗β1) such that a joint
measurement on αX ⊗ βY gives us a (p, ε)-predictor for XY ? Since the two registers
are completely independent, it seems there is nothing much better we can do except
applying the optimal measurement for both registers separately.1 Thus our intuition
suggests that p ≤ ab, or at least p = O(ab). This problem has a flavor similar to

1This actually gives slightly worse conditional error probability 1 − (1 − ε)2 = 2ε − ε2 for the
prediction of XY , so it could even be that to achieve error as low as ε we need a p that is strictly
smaller than ab.
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“direct product theorems” in computational complexity theory, where one is usually
interested in k ≥ 2 independent instances of some computational problem, and the
aim is to show that the overall success probability of some algorithm for the k-fold
problem is close to the product of the k individual success probabilities. Another
problem with a similar flavor is the notoriously hard quantum information theory
issue of multiplicativity of norms of superoperators under tensor product [16].

Proving our intuition actually turned out to be quite a hard problem, and we
indicate some reasons why in section 3.1. In section 3 we prove the p = O(ab) bound
for the case where at least one of the two sides is pure (i.e., α0 and α1 are both pure,
or β0 and β1 are both pure). More precisely, we show

Dε/2(α0 ⊗ β0, α0 ⊗ β1, α1 ⊗ β0, α1 ⊗ β1) = O(Dε(α0, α1) ·Dε(β0, β1)). (1.1)

Notice that because of the ε/2 on the left hand side, this bound is slightly weaker than
what we have promised; as we indicate in section 3.1, this modification is (somewhat
surprisingly) necessary. Our proof relies heavily on a semidefinite programming for-
mulation for the quantities involved and on an analysis of their duals. The case when
both sides can be mixed states is still open, but fortunately the special case where at
least one of the two sides is pure suffices for our applications.

1.2. Exponential separations in communication complexity. Apart from
being an interesting information-theoretic problem in its own right, the bounded-error
state identification problem and our direct product theorem have interesting applica-
tions. We give two new exponential separations, both in the simultaneous message
passing (SMP) model of communication complexity. The area of communication com-
plexity deals with the amount of communication required for solving computational
problems with distributed input. This area is interesting for its own sake, but also
has many applications to lower bounds on circuit size, data structures, etc. The si-
multaneous message passing (SMP) model involves three parties: Alice, Bob, and a
referee. Alice gets input x, Bob gets input y. They each send one message to the
referee, to enable him to compute something depending on both x and y, such as a
Boolean function or some relational property. The communication cost of a protocol
is the length of the total communication for a worst-case input, and the communica-
tion complexity of a problem is the cost of the best protocol that solves the problem
with small error probability.

The SMP model is arguably the weakest setting of communication complexity
that is still interesting. Even this simple setting is not well understood. In the case
of deterministic protocols, the optimal communication for Alice is determined by the
number of distinct rows in the communication matrix (and for Bob by the number
of distinct columns), which is a simple property. However, as soon as we add ran-
domization to the model, things become much more complicated. For one, we can
choose to either add shared (a.k.a. public) or private randomness. In other com-
munication models this difference affects the optimal communication by at most an
additive O(log n) [22], but in the SMP model the difference can be huge. For example,
the equality function for n-bit strings requires about

√
n bits of communication if the

parties have only private randomness [1, 23, 2], but only constant communication with
shared randomness! No simple characterization of SMP communication complexity
with either private or shared randomness is known.2

2Kremer et al. [18] claimed a characterization of shared-randomness complexity as the largest of
the two one-way complexities, but Bar-Yossef et al. [4, Section 4] exhibited a function where their
characterization fails.
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The situation becomes more complicated still when we throw in quantum commu-
nication. Buhrman et al. [10] exhibited a quantum protocol for the equality function
with O(log n) qubits of communication. This is exponentially better than classical
private-randomness protocols, but slightly worse than classical shared-randomness
protocols. Roughly speaking, their technique, known as “quantum fingerprinting”,
may be viewed as replacing the shared randomness by a quantum superposition.
Later, Bar-Yossef et al. [3] showed an exponential separation even between quantum
protocols and classical protocols with shared randomness. Their separation was for a
relational problem.

1.2.1. Shared randomness beats quantum communication. The finger-
printing idea of [10] was generalized by Yao [28], who showed that every classical
shared-randomness protocol with c-bit messages for a Boolean function can be sim-
ulated by a quantum fingerprinting protocol that uses O(24c logn) qubits of commu-
nication. This has since been improved to O(22c logn) qubits [14, 15]. In particular,
every O(1)-bit shared-randomness protocol can be simulated by an O(log n)-qubit
quantum protocol. Again, quantum superposition replaces shared randomness in this
construction.

This raises the question whether something similar holds in general: can every
classical shared-randomness SMP protocol be efficiently simulated by some SMP pro-
tocol that sends qubits but shares neither randomness nor entanglement? Our first
result, presented in section 4, gives a negative answer to this question. Suppose Al-
ice receives inputs x, s ∈ {0, 1}n with the property that s has Hamming weight n/2
and Bob receives input y ∈ {0, 1}n. The referee should output, with probability at
least 1 − ε, a triple (i, xi, yi) for an i satisfying si = 1. We prove that protocols
where Alice and Bob share randomness can solve this task with O(log n) classical bits
of communication, while every quantum protocol without shared randomness needs
Ω(n1/3) qubits of communication. The quantum lower bound relies crucially on our
direct product theorem for bounded-error state identification. This shows for the first
time that the resource of shared randomness cannot be efficiently traded for quantum
communication.

It is not hard to see that Yao’s exponential simulation can be made to work for
relations as well. Our quantum lower bound shows that this is essentially optimal,
since the required quantum communication is exponentially larger than the classi-
cal shared-randomness complexity for our relational problem. We expect a similar
gap to hold for (promise) Boolean functions as well. Our separation complements
a separation in the other direction: Bar-Yossef et al. [3] exhibited a relation where
quantum SMP protocols are exponentially more efficient than classical SMP protocols
even with shared randomness. Accordingly, the quantum SMP model is incomparable
with the classical shared-randomness SMP model.

1.2.2. Shared entanglement beats quantum communication with shared

randomness. The second application of our state identification result is again in
the SMP model. While the previous application separated classical protocols with
shared randomness from quantum protocols without shared randomness, this one sep-
arates classical protocols with entanglement (EPR-pairs, 2-qubit states of the form
1
2 (|00〉 + |11〉)) from quantum protocols with shared randomness.

The additional power that prior entanglement gives is one of the fundamental
questions in quantum communication complexity. This additional power is not well
understood. We basically know two ways in which entanglement can help: it can be
used for teleportation (where one EPR-pair and two classical bits of communication
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replace one qubit of communication) and it can be used for shared randomness (if Alice
and Bob each measure their side of their shared EPR-pair in the computational basis,
they get the same random bit). Neither saves very much communication, and it has in
fact been conjectured for the standard two-party one-round and many-round protocols
that the model of classical communication with entanglement [11] and the model of
quantum communication without entanglement [27] are essentially equivalent.3

Our second separation, given in section 5, shows that the situation is very different
in the simultaneous message passing model. We exhibit a relational problem, inspired
by the problem of Bar-Yossef et al. mentioned above, that can be solved with logn
EPR-pairs shared between Alice and Bob andO(log n) classical bits of communication.
In contrast, if only shared randomness is available instead of entanglement, every
bounded-error SMP protocol needs Ω((n/ logn)1/3) quantum bits of communication.
Again, our direct product theorem is crucial for proving the quantum lower bound.
This is the first example of a communication problem where entanglement is much
more useful than quantum communication.

2. Preliminaries.

2.1. Quantum states and measurements. The essentials needed for this pa-
per are quantum states, distances, and measurements. First, an m-qubit pure state
is a superposition |φ〉 =

∑

z∈{0,1}m αz |z〉 over all classical m-bit states. The αz ’s are

complex numbers called amplitudes, and
∑

z |αz|2 = 1. Hence a pure state |φ〉 is a
unit vector in the 2m-dimensional Hilbert space C2m

. Its complex conjugate (a row
vector with entries conjugated) is denoted 〈φ|. The inner product between |φ〉 and
|ψ〉 =

∑

z βz|z〉 is the dot product 〈φ| · |ψ〉 = 〈φ|ψ〉 =
∑

z α
∗
zβz. The norm of a

vector v is ‖v‖ =
√

〈v|v〉. Second, a mixed state ρ =
∑

i pi|φi〉〈φi| corresponds to a
probability distribution over pure states, where |φi〉 is given with probability pi.

The trace distance between two mixed states ρ and σ is defined as 1/2 times the
sum of the singular values of the matrix ρ − σ, and denoted by ‖ρ− σ‖tr. A basic
fact is that the optimal probability with which we can distinguish ρ from σ, equals
1/2 + ‖ρ− σ‖tr/2. The fidelity of ρ and σ is F (ρ, σ) = Tr[

√√
ρ σ

√
ρ], where “Tr[·]”

is the trace function (sum of diagonal entries). The trace distance is close to 0 iff
the fidelity is close to 1; we refer to Chapter 9 of Nielsen and Chuang [24] for more
details.

A pure state in some bipartite Hilbert space HA ⊗ HB is called entangled if it
cannot be written as a product state |φ〉A ⊗ |ψ〉B . The 2-qubit EPR-pair

1√
2
(|00〉 + |11〉)

is the canonical example of an entangled pure state.
A k-outcome positive operator-valued measure (POVM) is given by k positive

semidefinite operators E1, . . . , Ek with the property that
∑k

i=1 Ei = I. When this
POVM is applied to a mixed state ρ, the probability of the i-th outcome is given by
the trace Tr[Eiρ]. Again, see Nielsen and Chuang [24] for more details.

2.2. Communication complexity. We now give a somewhat informal descrip-
tion of the simultaneous message passing model used in our two applications. For a

3Note that classical communication complexity with entanglement and quantum communication
complexity with entanglement are equivalent up to a factor of 2 for one-round and many-round
protocols, thanks to teleportation.
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more detailed description, we refer to Kushilevitz and Nisan [19] for classical com-
munication complexity and to the surveys [17, 8, 26] for the quantum variant. In
the simultaneous message passing model, Alice receives input x, Bob receives input y,
they each send a message to a referee who should then output either f(x, y) in the case
of a functional problem, or an element from some set R(x, y) in the case of a relational

problem. We use R
‖
ε(P ), R

‖,pub
ε (P ), R

‖,ent
ε (P ) to denote the optimal communication

cost of classical protocols that solve problem P with worst-case error probability ε,
using, respectively, private randomness, shared randomness between Alice and Bob,
and shared entanglement between Alice and Bob (EPR pairs). The number of shared
coin flips or shared EPR-pairs is unlimited and does not count towards the communi-

cation cost of the protocol. We use Q
‖
ε(P ), Q

‖,pub
ε (P ), Q

‖,ent
ε (P ) for the variant that

allows quantum communication.

2.3. The random access code argument. Here we describe a slight extension
of a quantum information theoretic argument due to Ashwin Nayak [21] that we will
apply several times in our communication complexity lower bounds. We call this the
“random access code argument”.

We quickly introduce the basic information theory needed. For more details,
we refer to [12] for classical information theory and to [24] for quantum information
theory. We start with classical information theory. If A is a random variable with
probability distribution p1, . . . , pm (pi ≥ 0,

∑

i pi = 1), then its entropy is defined by

H(A) = H(p1, . . . , pm) = −
m
∑

i=1

pi log pi.

This always lies between 0 and logm. If m = 2, we abbreviate H(p, 1 − p) to H(p).
If random variables A and B have some joint (possibly correlated) distribution, then
the conditional entropy of A given B is

H(A | B) = H(A,B) −H(B) = Eb[H(A | B = b)],

where H(A,B) is the entropy of the joint distribution, “A | B = b” is the distribution
of A conditioned on the event “B = b”, and the expectation is taken according to the
marginal distribution of B. The mutual information between A and B is

I(A : B) = H(A) +H(B) −H(A,B) = H(A) −H(A | B).

This quantity is always nonnegative. The following claim lower bounds the mutual
information between a uniform bit and its predictor.

Claim 2.1. If A is a uniform random bit and B is another random variable that
is a (λ, ε)-predictor of A for some λ ≥ 0 and ε ≥ 1/2, then I(A : B) ≥ λ(1 −H(ε)).

Proof. By definition,

I(A : B) = H(A) −H(A | B).

The first term is 1 by our assumption on A. For the second term, let (p0, p1, p?) be
the marginal distribution of B, let q0 be the probability that A = 1 conditioned on
B = 0 and similarly let q1 be the probability that A = 0 conditioned on B = 1. Our
assumption on B is then that p0 + p1 ≥ λ and (p0q0 + p1q1)/(p0 + p1) ≤ ε. Using the
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definition of conditional entropy, we have

H(A | B) ≤ p? · 1 + p0H(q0) + p1H(q1)

≤ p? + (p0 + p1)H

(

p0q0 + p1q1
p0 + p1

)

≤ 1 − (p0 + p1)(1 −H(ε))

where the second inequality follows from the concavity of H(·). The claim now follows
from p0 + p1 ≥ λ.

We now describe some basics of quantum information theory. If ρ is an m-
dimensional mixed state with eigenvalues λ1, . . . , λm, then these form a probability
distribution, and we define the von Neumann entropy of ρ as

S(ρ) = H(λ1, . . . , λm).

If

ρAB =
∑

i,i′,j,j′

αii′jj′ |i〉〈i′| ⊗ |j〉〈j′|

is a bipartite mixed state in the tensor space A ⊗ B, where i, i′ each range over an
orthonormal basis for A and j, j′ each range over an orthonormal basis for B, then
we define the state of the A-register via the partial trace:

ρA =
∑

i,i′,j,j′

αii′jj′ |i〉〈i′| ⊗ Tr(|j〉〈j′|) =
∑

i,i′





∑

j

αii′jj



 |i〉〈i′|.

We often write S(A) for S(ρA) and S(A,B) for S(ρAB). Equipped with these def-
initions we can define the conditional von Neumann entropy, the quantum mutual
information, and the quantum conditional mutual information by

S(A | B) = S(A,B) − S(B),

S(A : B) = S(A) + S(B) − S(A,B) = S(A) − S(A | B), and

S(A : B | C) = S(A,C) + S(B,C) − S(A,B,C) − S(C) = S(A | C) − S(A | B,C).

The strong subadditivity of von Neumann entropy [24, Theorem 11.15.1] says that the
quantum conditional mutual information is always nonnegative, or equivalently, that
removing a conditional cannot increase entropy, i.e.,

S(A | B,C) ≤ S(A | C).

Finally, we need to describe the Holevo bound. Consider a classically correlated
mixed state ρXM , i.e., a state of the form

ρXM =
∑

x∈{0,1}n

px|x〉〈x| ⊗Mx,

where Mx is a mixed state on the second register that depends on x. For such states,
the quantum mutual information becomes

S(X : M) = S(M) − S(M | X) = S(M) −
∑

x∈{0,1}n

pxS(Mx). (2.1)
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Assume we apply a quantum measurement to the second register, and obtain some
classical random variable Y as outcome. Then the Holevo bound [24, Theorem 12.1]
implies that

I(X : Y ) ≤ S(X : M). (2.2)

In other words, it says that the (classical) information on X we can obtain by a
measurement of M is at most S(X : M). Now we are in a position to state and prove
the random access code argument.

Lemma 2.2. Let X = X1 . . .Xn be a classical random variable of n uniformly
distributed bits. Suppose for each instantiation X = x we have a quantum state Mx

of q qubits. Suppose also that for each i ∈ [n] there exists a quantum measurement
of MX whose outcome is a (λi, εi)-predictor for Xi with some εi ≤ 1/2 and λi ≥ 0.
Then

n
∑

i=1

λi(1 −H(εi)) ≤ q.

Before giving the proof, notice the following special case: if we can predict each Xi

with bias ηi (i.e., we have a (1, 1/2− ηi)-predictor), then the above bound becomes

n
∑

i=1

(1 −H(1/2 − ηi)) ≤ q.

Since 1 −H(1/2− ηi) = Θ(η2
i ), the left hand side is essentially the sum of squares of

the ηi.

Proof. We will analyze the classically correlated state

ρXM =
1

2n

∑

x∈{0,1}n

|x〉〈x| ⊗Mx.

By (2.1), S(X : M) ≤ S(M) ≤ q and hence it suffices to lower bound the quantum
mutual information S(X : M). By definition, we have the chain rule

S(X : M) =

n
∑

i=1

S(Xi : M | X1:i−1).

where we abbreviate X1:i−1 = X1 . . . Xi−1. Moreover, by strong subadditivity and
the fact that S(Xi | X1:i−1) = S(Xi) we get

S(Xi : M | X1:i−1) = S(Xi | X1:i−1) − S(Xi |M,X1:i−1)

≥ S(Xi) − S(Xi |M)

= S(Xi : M).

It therefore suffices to show that for each i, S(Xi : M) ≥ λi(1 −H(εi)). For this, let
Bi be the outcome of the measurement corresponding to i applied to M . By (2.2) we
have S(Xi : M) ≥ I(Xi : Bi). Finally, we complete the proof by noting that Claim
2.1 implies that I(Xi : Bi) ≥ λi(1 −H(εi)).
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2.4. Semidefinite programs. A semidefinite program (SDP) is a particular
type of convex optimization problem. Although SDPs can be formulated in many
equivalent forms, they all amount to the maximization of a linear function over the
intersection of the cone of positive semidefinite matrices with some affine subspace.
As all convex optimization problems, semidefinite programs enjoy a powerful duality
theory that allows us to bound the optimal value of a program by the value achieved by
any feasible solution to another program, known as the dual program. Moreover, under
very mild conditions, the optimal values of the two programs coincide; this property
is known as strong duality. We now describe these notions in some detail. We use the
conic programming approach of Ben-Tal and Nemirovski [5] since it emphasizes the
elegant symmetry between the primal and dual programs. For proofs and definitions
of some of the terms below, see [5, Lecture 2]. For other references on the topic, see,
e.g., [20, 25, 7].

We consider the space of Hermitian n× n matrices equipped with the Frobenius
inner product given by 〈A,B〉 := Tr[AB]. This space is a real vector space of dimen-
sion n2 (one for each diagonal entry, and two for each off-diagonal pair, corresponding
to their real and imaginary parts). The set of all positive semidefinite matrices forms
a cone in this space known as the (Hermitian) positive semidefinite cone.

A (complex) semidefinite program (SDP) is a maximization program of a linear
function over the intersection of the positive semidefinite cone with some affine sub-
space.4 In more detail, any linear subspace L in the space of Hermitian matrices, and
Hermitian matrices B,D define the semidefinite program

maximize Tr[BX ]
subject to X � 0

X ∈ L +D
(2.3)

where the inequality in the second line means that X must be positive semidefinite.
The set of feasible solutions is simply the set of X that satisfy the two conditions
above. If this set is non-empty we say that the SDP is feasible. Moreover, if a feasible
solution X satisfies X ≻ 0, i.e., is positive definite, then we say that it is a strictly
feasible solution and the SDP is said to be strictly feasible.

The method of Lagrange multipliers allows us to associate a dual problem to any
optimization problem. In the case of SDPs, the Lagrange dual problem turns out
to also be an SDP. Indeed, it is not difficult to show that the Lagrange dual of the
“primal” SDP (2.3) is

minimize Tr[BD] + Tr[DY ]
subject to Y � 0

Y ∈ L⊥ −B
(2.4)

where L⊥ is the orthogonal subspace to L. Notice that Tr[BD] is a constant term.
Also note that the dual of (2.4) is exactly the primal SDP (2.3).

The basic property of a Lagrange dual is that any feasible solution to it gives a
bound on the optimal value of the primal program. This is readily seen in our case:
let Y be any feasible solution to (2.4). Then for any feasible solution X to (2.3),

Tr[BD] + Tr[DY ] − Tr[BX ] = Tr[XY ] ≥ 0

4Most of the literature deals with semidefinite programs over (real) symmetric matrices. Since
both are conic programs, exactly the same theory applies.
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where we used that X −D is orthogonal to Y +B and that the inner product of any
two positive semidefinite matrices is nonnegative. Hence the optimal value of (2.4)
upper bounds the optimal value of (2.3). This property is known as weak duality.

In addition to weak duality, SDPs (and conic programs in general) usually satisfy
that the optimal value of the dual program is equal to that of the primal program.
This property is known as strong duality. One sufficient condition for strong duality
to hold is simply that the dual (or primal) program is strictly feasible. This condition,
known as Slater’s condition, guarantees that we avoid those pathological cases where
strong duality does not hold.

2.5. On the positive part of a matrix. We now prove a basic claim regarding
the positive part of a Hermitian matrix which will be used in section 3. Any Hermitian
matrix A can be written uniquely as A = A+ − A−, where A+, A− are positive
semidefinite (A+, A− � 0) and have orthogonal support. We define Pos(A) = A+.
By definition, the trace of Pos(A) is given by the sum of the positive eigenvalues of
A. Equivalently,

Tr[Pos(A)] = max
k

k
∑

i=1

λi (2.5)

where λ1 ≥ λ2 ≥ · · · are the eigenvalues of A.
Claim 2.3. For any Hermitian matrices A,B the following holds.
1. If A � B then A � Pos(B).
2. If A � 0 then Pos(A⊗B) = A⊗ Pos(B).
3. If A � B then Tr[Pos(A)] ≤ Tr[Pos(B)].

Note that it is not true that if A � B then Pos(A) � Pos(B).
Proof. The first part follows from B � Pos(B). The second part can be seen by

diagonalizing the matrices (note that the nonzero eigenvalues of Pos(B) are exactly
the positive eigenvalues of B). The third part can be seen for instance by using ma-
jorization (see, e.g., [6]). If A � B, then the vector of eigenvalues of A is submajorized
by the vector of eigenvalues of B ([6], Eq. (II.16)). This means that if we order the
eigenvalues of A (resp. B) as λ1 ≥ λ2 ≥ · · · (resp. µ1 ≥ µ2 ≥ · · · ) then for all k ≥ 1,
∑k

i=1 λi ≤
∑k

i=1 µi. The third part now follows from (2.5).

3. Bounded-error quantum state identification: Direct product.

3.1. Why this is a delicate problem. We briefly recall the 2-register state
identification problem from the introduction. In the first register we are given a
quantum state αX , with X a random bit, and a is the largest value for which we can
get an (a, ε)-predictor for X . In the second register we are given βY , with Y a random
bit, and b is the largest value for which we can get a (b, ε)-predictor for Y . We now
want to know the optimal probability p such that there is a (p, ε)-predictor forXY . As
mentioned in the introduction, intuition suggests that p = O(ab). Before proceeding
to prove a slightly weaker form of this statement (namely the special case where α0

and α1 are pure), we will pause to sketch two variants of the problem where the same
intuition is provably false, even for pure states! This points to the subtleness of the
state identification problem: seemingly small changes to the setup change everything.

First, suppose that instead of a (p, ε)-predictor for XY we want a (p, ε)-predictor
for the parity X ⊕ Y of the two bits. This might be slightly easier than getting both
bits separately, but intuition still suggests that because both registers are independent,
the best we can do is predict both registers separately and output their parity if both
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measurements gave an answer. So we expect p = O(ab). However, this intuition is
false. Consider the following counterexample, with δ very small:

|α0〉 = |β0〉 = |0〉
|α1〉 = |β1〉 =

√
1 − δ2|0〉 + δ|1〉

It is not hard to convince oneself5 that for any fixed ε < 1/2, the optimal a and
b are Θ(δ2), so our intuition suggests p = O(ab) = O(δ4) for the parity problem.
However, if we apply the measurement with operator E0 that projects onto the state

1√
2+δ2

(δ|00〉−|01〉−|10〉), E1 = 0, and E? = I−E0, then on the parity-0 inputs α0⊗β0

and α1 ⊗ β1 the measurement gives outcome 0 with probability roughly δ2, while on
the parity-1 inputs it gives the (incorrect) outcome 0 with probability only about δ6,
which is much smaller than εδ2. Thus, both for 0 and for 1-inputs the probability
to output the incorrect answer is at most ε (conditioned on actually outputting an
answer), while the probability p to actually output an answer is of the same order as
a and b instead of their product.

In our second example, we return to the original setting where we want to obtain
a predictor for XY (not their parity). We consider the case where in the left hand
side of Eq. (1.1) from the introduction we replace ε/2 with a slightly larger error
parameter. Surprisingly, we show that in this case the bound p = O(ab) is false.
Choose ε to be, say, 0.49, and replace ε/2 in the left hand side of (1.1) with something
slightly larger, say, 0.251.6 To construct this example, we use the same states as in
the previous example. For our choice of ε, we still have a, b = Θ(δ2). Now consider
the measurement where operator E00 projects onto the state 1√

8/9+δ2
(δ|00〉− 2

3 |01〉−
2
3 |10〉), E01 = E10 = E11 = 0, and E? = I − E00. Then on the state α0 ⊗ β0 we get
outcome 00 with probability roughly 9δ2/8, while on each of the other three states
this probability is roughly δ2/8. Conditioned on outputting an answer, our error
probability is roughly (3/8)/(9/8+3/8) = 1/4, so we obtain a (p, 0.251)-predictor for
XY , with p ≈ δ2/8. We see that again, contrary to our intuition, p is of the same
order as a and b.

Finally, to get a better feel for this problem and for why it is non-trivial, let us
consider the classical case. This is the special case of the problem in which all states
involved are classical probability distributions. In other words the density matrices
α0, α1 are diagonal in the same basis and similarly for β0, β1.

7 In this case, one can give
a characterization of the optimal measurement. Let α0 (resp., α1) correspond to some
probability distribution on n elements with probabilities p1, . . . , pn (resp., q1, . . . , qn).
Assume without loss of generality that the n elements are sorted by non-increasing
order of max{pi/(pi + qi), qi/(pi + qi)}. For any k ≥ 1, consider the measurement
that maps the outcome i for 1 ≤ i ≤ k to either 0 if pi > qi or 1 otherwise, and maps
any outcome i > k to ‘?’. This means that for each i ≤ k we output the guess (α0

or α1) that is more likely, conditioned on i. Note that max{pi/(pi + qi), qi/(pi + qi)}
represents the probability that our guess is correct, given i. Then, for any error
parameter ε, one can show that the best measurement is obtained by taking k as
large as possible while still keeping the error probability of the resulting measurement
below ε.8

5A rigorous proof can be obtained from the SDP formulation of this problem.
6With some effort, this example can be generalized to other values of ε.
7This is related to optimal detector design, see, e.g. [7], Section 7.3.
8To be precise, we should also allow non-integer k in the sense that when the outcome is ⌊k⌋+1,

one should output either 0 or 1 (depending on whether p⌈k⌉ > q⌈k⌉) with probability k −⌊k⌋ and ‘?’
otherwise.
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Now assume we have probability distributions α0, α1, β0, β1 (equivalently, diag-
onal matrices) and we want to predict XY based on a sample from αX ⊗ βY (the
tensor can be described classically as one sample from αX together with one inde-
pendent sample from βY ). The optimal measurement in the two-register case can be
obtained by a straightforward generalization of the measurement we have described
in the single register case. As mentioned in the introduction, one might expect the
optimal measurement to use the first register to predict X and the second register to
predict Y separately, i.e., to be a tensor product measurement. It is perhaps some-
what surprising that this is not true in general, as can be seen using some simple
examples. The intuitive reason for this is that if a sample (i, j) from αX ⊗ βY is such
that i gives a very strong indication of (say) α0, then we might be willing to predict
the state α0 ⊗ β0 even if j gives only a weak indication of β0.

Nevertheless, the direct product theorem of Eq. (1.1) does hold in the classical
case, even when we replace ε/2 with ε. One proof of this is based on a similar approach
to the one we will take in the quantum case: first, formulate the problem in terms of
linear programs (which are very similar to the semidefinite programs that arise in the
quantum case) and then bound the dual solution of the joint system. Bounding the
dual solution is the most demanding step technically, and amounts to solving some
inequalities on real numbers. In the general quantum case, this step involves some
(rather involved) matrix inequalities that seem quite difficult to solve. In the special
case that we consider below, these matrix inequalities turn out to have a sufficiently
nice form that can be analyzed.

3.2. Proof of the direct product theorem. In this section we prove our
main results about the 2-register quantum state identification problem by using the
powerful technique of semidefinite programming duality (see section 2.4). The main
theorem is the following.

Theorem 3.1. Let 0 ≤ ε < 1
2 and α0, α1, β0, β1 be density matrices, where α0, α1

correspond to pure states |α0〉, |α1〉. Let b = Dε(β0, β1) and p = Dε/2(α0 ⊗ β0, α0 ⊗
β1, α1 ⊗ β0, α1 ⊗ β1). Then

p ≤ 16(1 − |〈α0|α1〉|2) · b.

Before presenting the proof, let us mention two consequences of this theorem.
First, notice that since α0 and α1 are pure,

Dε(α0, α1) ≥ D0(α0, α1) ≥
1

2
(1 − |〈α0|α1〉|2),

where the last inequality follows by considering the projective measurement on |α0〉
and |α⊥

0 〉. Hence Theorem 3.1 implies that whenever α0, α1 are pure,

Dε/2(α0 ⊗ β0, α0 ⊗ β1, α1 ⊗ β0, α1 ⊗ β1) = O(Dε(α0, α1) ·Dε(β0, β1)).

Second, by using purifications, we can derive a useful bound even in the case
where α0 and α1 are not necessarily pure states,

Dε/2(α0 ⊗ β0, α0 ⊗ β1, α1 ⊗ β0, α1 ⊗ β1) = O(‖α0 − α1‖tr ·Dε(β0, β1)).

This “asymmetric” bound is given in the following corollary.
Corollary 3.2. Let 0 ≤ ε < 1

2 and α0, α1, β0, β1 be density matrices. Let
a = ‖α0 − α1‖tr, b = Dε(β0, β1), and p = Dε/2(α0 ⊗ β0, α0 ⊗ β1, α1 ⊗ β0, α1 ⊗ β1).
Then p ≤ 32 a · b.
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Proof. The idea is to work with purifications of α0 and α1. By Uhlmann’s
theorem [24, p.410] there exist purifications |α̃0〉 and |α̃1〉 that preserve the fidelity,
i.e., F (α0, α1) = F (|α̃0〉, |α̃1〉) = |〈α̃0|α̃1〉|. Using known properties of the fidelity [24,
Section 9.2.3], we have

F (α0, α1) ≥ 1 − ‖α0 − α1‖tr = 1 − a.

This implies 1 − |〈α̃0|α̃1〉|2 ≤ 2a. With slight abuse of notation, let α̃i = |α̃i〉〈α̃i|.
Then,

p = Dε/2(α0 ⊗β0, α0 ⊗β1, α1 ⊗β0, α1 ⊗β1) ≤ Dε/2(α̃0 ⊗β0, α̃0 ⊗β1, α̃1 ⊗β0, α̃1 ⊗β1)

because one can obtain α0, α1 by tracing out the purification degrees of freedom of
α̃0, α̃1. Theorem 3.1 now gives p ≤ 16(1 − |〈α̃0|α̃1〉|2) · b ≤ 32 a · b.

In the rest of this section we prove Theorem 3.1.
Proof. [of Theorem 3.1] We first write b = Dε(β0, β1) as the optimal value of

an SDP. Recall that any measurement whose outcome is a (b, ε)-predictor outputs
the correct answer with probability at least 1 − ε conditioned on outputting a guess
(0 or 1, but not ?). Let E0, E1, E? � 0 be the three measurement operators with
E0 + E1 + E? = I. Then we require

ε ≥ Pr[wrong guess | guess] =
Pr[wrong guess]

Pr[guess]
=

1
2Tr[E0β1] + 1

2Tr[E1β0]

Tr [(E0 + E1)β]
, (3.1)

where β = 1
2 (β0 + β1) is the average state. To our knowledge there is no simple

expression for Dε(β0, β1) in terms of β0 and β1. However, one can easily express it
as the optimal value of an SDP. Indeed, for fixed density matrices β0, β1 and fixed
ε ∈ [0, 1/2), b = Dε(β0, β1) is given by the following SDP.

maximize Tr[(E0 + E1)β]
subject to E0, E1, E? � 0,

E0 + E1 + E? = I,
1
2Tr[E0β1] + 1

2Tr[E1β0] ≤ εTr[(E0 + E1)β].

The first two constraints state that E0, E1, E? form a valid quantum measurement.
The last constraint bounds the conditional error probability, as in Eq. (3.1). By
introducing an auxiliary real variable e, we obtain the equivalent form

maximize Tr[(E0 + E1)β]
subject to E0, E1, E? � 0, e ≥ 0,

E0 + E1 + E? = I,
e− εTr[(E0 + E1)β] + 1

2Tr[E0β1] + 1
2Tr[E1β0] = 0.

We can write this SDP in the form (2.3) by optimizing over Hermitian matrices X of
dimension d+ d+ d+ 1 where d is the dimension of β0 and β1. Namely, let B, D be
square matrices of dimension d+ d+ d+ 1 given by

B =









β
β

0
0









D =









0
0

I
0









,
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and take L to be the space of Hermitian matrices whose first three diagonal blocks
sum to zero and are orthogonal to









1
2β1 − εβ

1
2β0 − εβ

0
1









. (3.2)

Then we obtain a program of the form (2.3) where the blocks on the diagonal of X
correspond to E0, E1, E?, and e. Notice that we did not restrict L to matrices whose
elements outside the diagonal blocks are zero, as this does not change the optimal
value of the program. This follows from the fact that the matrix obtained from any
X � 0 by replacing all its elements outside the diagonal blocks with zero is still
positive semidefinite (see, e.g., [6], Eq. (II.39)).

The dual SDP is now given by (2.4). The space L⊥ is spanned by the matrix
in (3.2) and the space of matrices whose first three diagonal blocks are identical. In
other words, the space L⊥ consists of all matrices of the form









Xb + (1
2β1 − εβ)zb

Xb + (1
2β0 − εβ)zb

Xb

zb









.

for some Hermitian matrix Xb and real zb. A straightforward calculation now shows
that the dual SDP can be written as

minimize Tr[Xb]
subject to Xb � 0, zb ≥ 0,

Xb � 1
2 ((1 + εzb)β0 + (1 − (1 − ε)zb)β1) =: X1,

Xb � 1
2 ((1 + εzb)β1 + (1 − (1 − ε)zb)β0) =: X2.

(3.3)

This SDP is strictly feasible as can be seen by taking, say, Xb = 2I, zb = 1. This
implies that its optimal value is also b and in particular, that there exist feasible
solutions (Xb, zb) whose value Tr[Xb] is as close to b as we wish.

A similar calculation allows us to derive the SDP formulation of p = Dε/2(α0 ⊗
β0, α0 ⊗ β1, α1 ⊗ β0, α1 ⊗ β1). The primal SDP is the following.

maximize Tr[(E00 + E01 + E10 + E11)α⊗ β]
subject to E00, E01, E10, E11, E? � 0,

E00 + E01 + E10 + E11 + E? = I,
1
4Tr [(E01 + E10 + E11)α0 ⊗ β0 + (E00 + E10 + E11)α0 ⊗ β1+

(E00 + E01 + E11)α1 ⊗ β0 + (E00 + E01 + E10)α1 ⊗ β1]
≤ ε

2Tr[(E00 + E01 + E10 + E11)α⊗ β].

Here α⊗ β = 1
4 (α0 ⊗ β0 +α0 ⊗ β1 +α1 ⊗ β0 +α1 ⊗ β1) is the average state. The dual

SDP is easily shown to be the following.

minimize Tr[X ]
subject to X � 0, z ≥ 0,
X � 1

4

({

(1 + ε
2z)α0 + (1 − (1 − ε

2 )z)α1

}

⊗ β0 + (1 − (1 − ε
2 )z)(α0 + α1) ⊗ β1

)

=: X ′
1,

X � 1
4

({

(1 + ε
2z)α0 + (1 − (1 − ε

2 )z)α1

}

⊗ β1 + (1 − (1 − ε
2 )z)(α0 + α1) ⊗ β0

)

=: X ′
2,

X � 1
4

({

(1 + ε
2z)α1 + (1 − (1 − ε

2 )z)α0

}

⊗ β0 + (1 − (1 − ε
2 )z)(α0 + α1) ⊗ β1

)

=: X ′
3,

X � 1
4

({

(1 + ε
2z)α1 + (1 − (1 − ε

2 )z)α0

}

⊗ β1 + (1 − (1 − ε
2 )z)(α0 + α1) ⊗ β0

)

=: X ′
4.

(3.4)
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Let δ :=
√

1 − |〈α0|α1〉|2. Below we will show that any feasible solution (Xb, zb)
with value Tr[Xb] ≥ b to (3.3) can be used to construct a feasible solution (X, z)
to (3.4) whose value Tr[X ] satisfies

Tr[X ] ≤ 16δ2Tr[Xb]. (3.5)

By weak duality, this implies that p ≤ 16δ2Tr[Xb]. Moreover, as observed before, the
SDP (3.3) is strictly feasible. Therefore, by strong duality, we can make Tr[Xb] as
close to b as we wish and the theorem follows from (3.5).

It remains to show how to obtain (X, z) from (Xb, zb) as above. So fix some
feasible solution (Xb, zb) to (3.3). We need the following technical claim, which we
prove afterwards.

Claim 3.3. Let 0 ≤ ε < 1/2 and zb ≥ 0. There exists z = z(ε, zb) with the
following property: for all density matrices σ0, σ1, ρ0, and ρ1 where ρ0 and ρ1 are
2-dimensional with rank 1 we have

4δ2ρ⊥1 ⊗
1

2
{(1 + εzb)σ0 + (1 − (1 − ε)zb)σ1}

� 1

4

({(

1 +
ε

2
z
)

ρ0 +
(

1 −
(

1 − ε

2

)

z
)

ρ1

}

⊗ σ0 +
(

1 −
(

1 − ε

2

)

z
)

(ρ0 + ρ1) ⊗ σ1

)

,

where ρ⊥1 = I − ρ1 and δ =
√

1 − Tr[ρ0ρ1].
Since |α0〉 and |α1〉 are pure states, we can assume without loss of generality that they
are in a two-dimensional space, and therefore we can apply Claim 3.3 with ρ0 = α0,
ρ1 = α1, σ0 = β0 and σ1 = β1. Let

Y1 = 4δ2α⊥
1 ⊗ 1

2
{(1 + εzb)β0 + (1 − (1 − ε)zb)β1} = 4δ2α⊥

1 ⊗X1.

Claim 3.3 gives a z = z(ε, zb) such that Y1 � X ′
1 (see (3.4) for the definition of X ′

1).
Since α⊥

1 � 0, Item 2 in Claim 2.3 implies that

Pos(Y1) = 4δ2α⊥
1 ⊗ Pos(X1).

Because Tr[α⊥
1 ] = 1, we have Tr[Pos(Y1)] = 4δ2Tr[Pos(X1)]. Moreover, X1 � Xb

by definition (see (3.3)) and Xb = Pos(Xb), hence Tr[Pos(Y1)] ≤ 4δ2Tr[Pos(Xb)] =
4δ2Tr[Xb] (using Item 3 in Claim 2.3).

However, Pos(Y1) is not a feasible solution to (3.4) because it need not satisfy
the last three inequalities. We therefore construct three more matrices Y2, Y3 and
Y4 such that Yi � X ′

i for the same z as before. For this we apply Claim 3.3 three
more times (for Y2 = 4δ2α⊥

1 ⊗ X2 with (ρ0, ρ1, σ0, σ1) = (α0, α1, β1, β0), for Y3 =
4δ2α⊥

0 ⊗ X1 with (ρ0, ρ1, σ0, σ1) = (α1, α0, β0, β1) and for Y4 = 4δ2α⊥
0 ⊗ X2 with

(ρ0, ρ1, σ0, σ1) = (α1, α0, β1, β0)). Because z depends only on zb and ε, which are
the same in all four applications, we obtain each time the same z. Now define X =
∑4

i=1 Pos(Yi). Clearly (X, z) is a feasible solution to the SDP (3.4) since X � 0 by
definition and X � Pos(Yi) � X ′

i for i = 1, . . . , 4 (using Item 1 of Claim 2.3). Since

Tr[X ] =
∑4

i=1 Tr[Pos(Yi)] ≤ 16δ2Tr[Xb], Eq. (3.5) follows and we are done.
It remains to prove the claim.

Proof. [of Claim 3.3] Because σ0 and σ1 are positive semidefinite, it suffices to
find a z ≥ 0 for which both

4δ2ρ⊥1
1

2
(1 + εzb) �

1

4

{(

1 +
ε

2
z
)

ρ0 +
(

1 −
(

1 − ε

2

)

z
)

ρ1

}

(3.6)
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and

4δ2ρ⊥1
1

2
(1 − (1 − ε)zb) �

1

4

(

1 −
(

1 − ε

2

)

z
)

(ρ0 + ρ1) (3.7)

are true.
Let |ρ0〉, |ρ1〉 and |ρ⊥1 〉 be pure states corresponding to the density matrices ρ0,

ρ1 and ρ⊥1 . We can assume without loss of generality that |ρ0〉 =
√

1 − δ2|ρ1〉+ δ|ρ⊥1 〉
(by choosing an appropriate global phase). Then, in the basis given by |ρ1〉, |ρ⊥1 〉,
Eqs. (3.6) and (3.7) become

(

−(1 + ε
2z)(1 − δ2) − (1 − (1 − ε

2 )z) −δ
√

1 − δ2(1 + ε
2z)

−δ
√

1 − δ2(1 + ε
2z) 8δ2(1 + εzb) − δ2(1 + ε

2z)

)

=

(

z(1 − ε+ δ2 ε
2 ) + δ2 − 2 −δ

√
1 − δ2(1 + ε

2z)

−δ
√

1 − δ2(1 + ε
2z) δ2(7 + 8εzb − ε

2z)

)

� 0 (3.8)

and
(

−(1 − (1 − ε
2 )z)(2 − δ2) −δ

√
1 − δ2(1 − (1 − ε

2 )z)

−δ
√

1 − δ2(1 − (1 − ε
2 )z) 8δ2(1 − (1 − ε)zb) − δ2(1 − (1 − ε

2 )z)

)

=

(

((1 − ε
2 )z − 1)(2 − δ2) δ

√
1 − δ2((1 − ε

2 )z − 1)

δ
√

1 − δ2((1 − ε
2 )z − 1) δ2(7 − 8(1 − ε)zb + (1 − ε

2 )z)

)

� 0. (3.9)

We choose

z = 16
1 − ε

1 − ε/2
zb +

4

1 − ε
≥ 4.

To show that a 2 × 2 Hermitian matrix is positive semidefinite it suffices to show
that its determinant is nonnegative and at least one of its diagonal entries is positive.
Since z ≥ 4, the top-left entries of the matrices in Eqs. (3.8) and (3.9) are positive.
When δ = 0, the two matrices are clearly positive semidefinite, so we assume that
0 < δ ≤ 1. By canceling δ2 > 0 from both terms that appear in the determinants
and some algebraic manipulations, we find that for Eqs. (3.8) and (3.9) to be true, it
suffices to show

(

z(1 − ε) − 2
)

(

7 + 8εzb −
ε

2
z
)

−
(

1 +
ε

2
z
)2

≥ 0 (3.10)

and

(2 − δ2)
((

1 − ε

2

)

z − 1
)(

7 − 8(1 − ε)zb +
(

1 − ε

2

)

z
)

− (1 − δ2)
((

1 − ε

2

)

z − 1
)2

≥ 0.

(3.11)

To see how (3.10) implies (3.8), notice that it implies 7 +8εzb − ε
2z ≥ 0 and hence we

can replace the term z(1 − ε) − 2 by the larger term z(1 − ε+ δ2 ε
2 ) + δ2 − 2.

Using (2 − δ2) ≥ 2(1 − δ2) and (1 − ε
2 )z − 1 > 0, Eq. (3.11) is implied by

2
(

7 − 8(1 − ε)zb +
(

1 − ε

2

)

z
)

≥
(

1 − ε

2

)

z − 1

which is equivalent to

z ≥ 16zb
1 − ε

1 − ε
2

− 15

1 − ε
2

.
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This inequality is true for our choice of z.

It remains to show that our z satisfies Eq. (3.10). Substituting for z we see that
the quadratic term in zb cancels and we obtain

(

17 − 4

(1 − ε)2

)

+ 16zb

(

7

1 − ε
2

− 17ε

)

≥ 0.

This inequality holds for any zb ≥ 0 because both its constant coefficient and the
coefficient of zb are positive for 0 ≤ ε < 1

2 .

4. Shared randomness can be exponentially stronger than quantum

communication.

4.1. The problem. In this section we analyze the following communication
problem P1 in the SMP model:

Alice’s input: strings x, s ∈ {0, 1}n, with weight |s| = n/2
Bob’s input: a string y ∈ {0, 1}n

Goal: the referee should output (i, xi, yi) for some i such that si = 1

We allow the referee some small constant error probability ε < 1/8. In the next two
subsections we show that this problem is easy if we have classical communication
and shared randomness, and hard if we have quantum communication without shared
randomness. More precisely, we will prove:

Theorem 4.1. For the relational problem P1 defined above we have

R‖,pub
ε (P1) = O(log n) and Q‖

ε(P1) = Ω(n1/3).

4.2. Upper bound with classical communication and shared random-

ness. Shared randomness gives the parties enough coordination to easily solve this
problem. Alice and Bob just send (i, xi, si) and (i, yi), respectively, to the referee
for log(1/ε) public random i’s. With probability 1 − ε, si = 1 for at least one of
those i’s and the referee outputs the corresponding (i, xi, yi). With probability ε he
does not see an i for which si = 1, in which case his output is arbitrary. Hence

R
‖,pub
ε (P ) = O(log n log(1/ε)).

4.3. Lower bound for quantum communication with private random-

ness. Consider some quantum protocol that solves our problem with error probability
ε < 1/8, and where the messages that Alice and Bob send to the referee are at most
q qubits long. Our goal is to show q = Ω(n1/3).

First consider the mixed state message βy that Bob sends given input y. For
i ∈ [n], let

βi0 =
1

2n−1

∑

y:yi=0

βy

be the uniform mixture of all βy with yi = 0 and define βi1 similarly. Let bi =
D4ε(βi0, βi1). Then by the random access code argument (Lemma 2.2) we have

n
∑

i=1

bi(1 −H(4ε)) ≤ q.
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By Markov’s inequality, there is a set S of n/2 i’s such that

bi ≤
2q

n(1 −H(4ε))
= O(q/n)

for all i ∈ S. We now fix Alice’s input s to be the n-bit string with support corre-
sponding to S.

We now analyze Alice’s message. Let αx be the mixed state she sends given
input x and our fixed s. Define αi0 as the uniform mixture of all αx with xi = 0,
similarly define αi1, and ai = ‖αi0 − αi1‖tr. The optimal probability with which we
can distinguish αi0 from αi1 is 1

2 + ai

2 . The random access code argument gives

n
∑

i=1

a2
i = O(q).

Now we look at the protocol’s behavior. Let X = X1 . . . Xn and Y = Y1 . . . Yn be
uniformly distributed random variables giving Alice’s first and Bob’s only input, and
I, B1, B2 be the random variables describing the referee’s output. We call an index
i ∈ S good, if the protocol is correct with high probability when it outputs (i, ∗, ∗):

i is good iff i ∈ S and Pr[B1 = Xi, B2 = Yi | I = i] ≥ 1 − 2ε.

The index is called bad otherwise. Define pi = Pr[I = i] to be the probability
that the referee outputs something of the form (i, ∗, ∗). Because the protocol is correct
with probability at least 1− ε, a Markov argument shows that the good indices must
together have most of the probability:

1 − ε ≤
∑

good i

pi +
∑

bad i

(1 − 2ε)pi = 1 − 2ε+ 2ε
∑

good i

pi,

hence

1

2
≤
∑

good i

pi.

Notice that for each good i we can use the protocol to get a (pi, 2ε)-predictor for
XiYi: just run the protocol and return ‘?’ if the protocol’s output is not of the form
(i, ∗, ∗), and otherwise return the last two bits of the protocol’s output. Therefore
Corollary 3.2 implies pi = O(aibi). Also, bi = O(q/n) for all good i so we can bound

1

2
≤
∑

good i

pi =
∑

good i

O(aibi) = O

(

q

n

n
∑

i=1

ai

)

= O





q

n

√

√

√

√n
n
∑

i=1

a2
i



 = O

(

q3/2

n1/2

)

,

where we applied Cauchy-Schwarz in the fourth step. This implies q = Ω(n1/3).
Remark. The best private-randomness protocol for P1 that we could come up

with communicates O(
√
n) bits. The idea, inspired by Ambainis [1], is to arrange the

n-bit inputs in a
√
n×√

n matrix. Alice picks a random row index in [
√
n], and then

sends that index and the indexed row of x and of s to the referee. Bob picks a random
column index in [

√
n], and then sends that index and the indexed column of y to the

referee. The row and the column intersect in exactly one (uniformly random) point
i ∈ [n]. With probability 1/2, si = 1 and we are done. Repeating this a few times in
parallel reduces the error probability to a small constant. A matching lower bound
would follow from the general direct product theorem p = O(ab), for the case of the
2-register identification problem where both sides are allowed to be mixed.
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5. Entanglement can be exponentially stronger than quantum commu-

nication with shared randomness.

5.1. The problem. For n a power of 2, consider the following relational problem
P2, inspired by a one-way communication problem due to Bar-Yossef et al. [3]:

Alice’s input: a perfect matching M ⊂
(

[n]
2

)

and a string x ∈
{0, 1}n/2 containing a bit xe for each edge e ∈M
Bob’s input: a string y ∈ {0, 1}n

Goal: referee should output (i, j, x(i,j), yi ⊕ yj) for some (i, j) ∈M
Below we show that this problem is easy if we have classical communication and prior
entanglement, and hard if we have quantum communication without entanglement:

Theorem 5.1. For the relational problem P2 defined above we have

R‖,ent
ε (P2) = O(log n) and Q‖,pub

ε (P2) = Ω((n/ logn)1/3).

5.2. Upper bound with classical communication and entanglement. The
following protocol solves the problem with success probability 1, using O(log n) clas-
sical bits of communication and logn EPR-pairs shared between Alice and Bob. It
is a modification of an unpublished protocol due to Harry Buhrman [9], which is in
turn based on a one-way protocol from [3]. The starting state of Alice and Bob is

1√
n

∑

i∈{0,1}log n

|i〉|i〉.

Bob adds his bits as phases:

1√
n

∑

i

|i〉(−1)yi |i〉.

Alice measures with the n/2 projectors Eij = |i〉〈i| + |j〉〈j| induced by the n/2 pairs
(i, j) ∈ M . This gives her a random (i, j) ∈ M and the resulting joint state of Alice
and Bob is

1√
2

(|i〉(−1)yi |i〉 + |j〉(−1)yj |j〉) .

Now both players apply a Hadamard transform to each of the logn qubits of their
part of the state, which becomes (ignoring normalization)

∑

k,ℓ

(

(−1)yi+(k+ℓ)·i + (−1)yj+(k+ℓ)·j
)

|k〉|ℓ〉.

Note that |k〉|ℓ〉 has nonzero amplitude iff yi + (k + ℓ) · i = yj + (k + ℓ) · j mod 2,
equivalently

(k + ℓ) · (i+ j) = yi ⊕ yj .

Alice and Bob both measure their part of the state in the computational basis, ob-
taining some k and ℓ, respectively, satisfying the above equality. Alice sends i, j, k,
and x(i,j) to the referee, Bob sends ℓ; a total of O(log n) bits of communication. The
referee calculates yi ⊕ yj from i, j, k, ℓ and outputs (i, j, x(i,j), yi ⊕ yj) as required.
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5.3. Lower bound for quantum communication without entanglement.

We make use of some ideas from the classical lower bound of Bar-Yossef et al. [3]. For

k ∈ {0, . . . , n/2−1}, let Mk denote the matching {(i, (i+k−1 mod n/2)+n/2+1}n/2
i=1.

For example, M1 = {(1, n/2+2), (2, n/2+3), (3, n/2+4), . . . , (n/2−1, n), (n/2, n/2+
1)}. We will prove our lower bound for the special case where Alice’s matching is
one of the Mk. Consider a quantum protocol where Alice and Bob share randomness
but no entanglement, each communicates at most q qubits to the referee, and they
solve problem P2 with error probability ε < 1/16 for each input. Our goal is to show
q = Ω((n/ logn)1/3).

We consider the following input distribution. Let K be a uniformly random
number between 0 and n/2 − 1, MK be Alice’s first input, and X ∈ {0, 1}n/2 and
Y ∈ {0, 1}n be uniformly distributed random variables for Alice’s second and Bob’s
only input. Since the protocol has error at most ε for all inputs, we can (and will) fix
a value for the shared randomness such that the resulting protocol has average error
at most ε under the above input distribution.

Let αkx be Alice’s message on input Mk, x. For edge e = (i, j) ∈ Mk, define
αke0 as the uniform mixture of all αkx with xe = 0, similarly define αke1, and ake =
‖αke0 − αke1‖tr. The optimal probability with which we can distinguish αke0 from
αke1 is 1/2+ake/2. Hence for every k, the random access code argument (Lemma 2.2)
gives

∑

e∈Mk

a2
ke = O(q).

Let βy be Bob’s message on input y. For any e = (i, j) (not necessarily part of any
matching), define βe0 as the uniform mixture over all βy with yi⊕yj = 0 and similarly
define βe1. Let be = D8ε(βe0, βe1). We now prove two claims upper bounding sums
of these be.

Claim 5.2. For any forest (i.e., acyclic graph) F on [n] we have
∑

e∈F

be = O(q).

Proof. Denote by |F | the number of edges in F . For every e = (i, j) ∈ F we can
obtain a (be, 8ε)-predictor for the bit Yi ⊕ Yj given the q-qubit state βY . Intuitively,
since F is a forest, these |F | bits are independent and therefore represent |F | bits
of information. To make this formal, define for each w ∈ {0, 1}|F | (with positions
indexed by the e ∈ F ) the set of inputs y whose F -parities coincide with the string w:

Tw = {y ∈ {0, 1}n | ∀e = (i, j) ∈ F, yi ⊕ yj = we}.
Since F is a forest, {Tw}w∈{0,1}|F | is a partition of {0, 1}n into 2|F | sets of size 2n−|F |.

For any bit string w ∈ {0, 1}|F | we define ξw as the uniform mixture of βy over
all y ∈ Tw. For each e ∈ F , define ξe0 as the uniform mixture of ξw over all w with
we = 0 and similarly define ξe1. Then, it is easy to see that ξe0 = βe0 and ξe1 = βe1.
Hence, D8ε(ξe0, ξe1) = be and by applying the random access code argument to the
encoding of w as the q-qubit state ξw, we get

∑

e∈F be(1 −H(8ε)) ≤ q.

Claim 5.3.

n/2−1
∑

k=0

∑

e∈Mk

b2e = O(q2 logn).

Proof. By construction all our Mk’s are edge-disjoint, hence the set M = ∪kMk

contains each edge in the above sum exactly once. Making some bijection between
edges in M and numbers ℓ ∈ [|M |], we order the be in non-increasing order as

b1 ≥ b2 ≥ · · · ≥ b|M|.
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Now consider the graph consisting of the first ℓ edges in this ordering. This graph
must contain at least

√
2ℓ non-isolated vertices, since v vertices give only

(

v
2

)

≤ v2/2
distinct edges. Let F be a forest consisting of a spanning tree for each connected
component of this graph. This F has at least

√
2ℓ/2 =

√

ℓ/2 edges, and for each of
those edges e we have be ≥ bℓ. Now we can use Claim 5.2:

√

ℓ

2
· bℓ ≤

∑

e∈F

be = O(q).

Hence for all ℓ ≤ |M | we have bℓ = O(q/
√
ℓ).

Summing over all ℓ gives
∑

e∈M b2e =
∑|M|

ℓ=1 b
2
ℓ ≤

∑n2/4
ℓ=1 O(q2/ℓ) = O(q2 logn).

Since the protocol has average error at most ε, by Markov’s inequality there is a
set M of at least n/4 of our matchings Mk such that the protocol has error at most
2ε for each of those Mk and uniformly random X and Y . Since M contains at least
n/4 matchings as elements, Claim 5.3 implies there is a matching Mk ∈ M such that

∑

e∈Mk

b2e ≤ O

(

q2 logn

n

)

.

We now fix this matching on Alice’s side. Let I, J,B1, B2 be the random variables
giving the referee’s output. Suppose we run the protocol with Mk, and uniformly
random x and y as input. We call an edge (i, j) ∈Mk good, if the protocol is correct
with high probability when it outputs (i, j, ∗, ∗):
e = (i, j) is good iff e ∈Mk and Pr[B1 = Xe, B2 = Yi ⊕ Yj | I = i, J = j] ≥ 1 − 4ε.

The edge is called bad otherwise. Let pe = Pr[I = i, J = j] be the probability
that the protocol outputs edge e. Since Mk ∈ M, the success probability (averaged
over x and y) is at least 1 − 2ε, so by a Markov argument, the good edges must have
most of the probability:

1 − 2ε ≤
∑

good e

pe +
∑

bad e

pe(1 − 4ε) = 1 − 4ε+ 4ε
∑

good e

pe,

hence

1

2
≤
∑

good e

pe.

For every good edge e, we can construct a (pe, 4ε)-predictor for (Xe, Yi ⊕ Yj). Hence,
by Corollary 3.2, pe = O(akebe). Using Cauchy-Schwarz:

1

2
≤
∑

good e

pe =
∑

good e

O(akebe) = O





√

∑

good e

a2
ke ·

∑

good e

b2e



 = O

(
√

q3 logn

n

)

.

This implies the promised lower bound q = Ω((n/ logn)1/3).
Remark. Our bound is tight up to logn factors. To see this, we briefly sketch a

protocol which uses O(n1/3 logn) qubits of communication: Alice and Bob use their
shared randomness to fix a subset S ⊂ [n] of size n2/3. With high probability the
number of edges from M contained in S × S is roughly n1/3. For each of the edges
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(i, j) ∈ M ∩ S × S, Alice sends (i, j, x(i,j)) to the referee, which is O(n1/3 logn) bits

of communication. Bob prepares n1/3 copies of the state

1
√

|S|
∑

i∈S

(−1)yi |i〉 (5.1)

and sends them to the referee. This gives a total of O(n1/3 logn) qubits of communica-
tion. On each of the copies, the referee measures with the projectorsEij = |i〉〈i|+|j〉〈j|
induced by the edges in S that Alice has sent, completed by Egarbage = I −∑Eij .
Given the state in Eq. (5.1), the probability to not measure “garbage” is roughly
n−1/3. This means that with some constant probability the referee will measure
one of the edges Eij on one of the states Bob sent. This state then collapses to
1√
2
((−1)yi |i〉 + (−1)yj |j〉), and a measurement in the basis |i〉 ± |j〉 gives yi ⊕ yj.

6. Conclusion and future work. We studied the bounded-error quantum state
identification problem and proved a direct product theorem for two independent in-
stances of this problem (one involving pure states) using SDP duality. We applied
our direct product theorem to obtain two exponential separations in the simultaneous
message passing model of communication complexity. These two separations nicely
complement each other: the first shows that shared randomness is much more pow-
erful than private randomness, the second shows that prior entanglement is much
more powerful than shared randomness. Moreover, both separations are shown in the
strongest possible sense: the stronger model is restricted to classical communication
while the weaker model is allowed quantum communication.

We identify some interesting problems left open by our work. First, for the
bounded-error quantum state identification problem, prove the direct product the-
orem p = O(ab) in the general case where both sides have mixed states instead of
one side pure and one side mixed. That result would lift, for instance, our quan-
tum communication lower bound for the problem P1 to the optimal Ω(

√
n). Second,

show similar communication complexity separations for decision problems (Boolean
functions, possibly with a promise on the input) instead of for relational problems.
Third, it is quite possible that the situation with entanglement is analogous to the
situation with shared randomness: shared randomness sometimes gives savings in
the SMP model (compared to private randomness) in the SMP model, but it gives
at most logarithmic additive savings in the more general models of one-way or two-
communication [22]. We showed here that entanglement can give exponential savings
(compared to shared randomness) in the SMP model. To complete the analogy, we
would need to show that entanglement doesn’t help much in the models of one-way
and two-way communication. Finally, we hope our direct product theorem will be
useful for other applications as well.
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