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tA lo
ally de
odable 
ode en
odes n-bit strings x in m-bit 
odewords C(x) in su
h a way thatone 
an re
over any bit xi from a 
orrupted 
odeword by querying only a few bits of that word.We use a quantum argument to prove that LDCs with 2 
lassi
al queries require exponentiallength: m = 2
(n). Previously this was known only for linear 
odes (Goldrei
h et al. 02). Theproof pro
eeds by showing that a 2-query LDC 
an be de
oded with a single quantum query,when de�ned in an appropriate sense. It goes on to establish an exponential lower bound on any`1-query lo
ally quantum-de
odable 
ode'. We extend our lower bounds to non-binary alphabetsand also somewhat improve the polynomial lower bounds by Katz and Trevisan for LDCs withmore than 2 queries. Furthermore, we show that q quantum queries allow more su

in
t LDCsthan the best known LDCs with q 
lassi
al queries. Finally, we give new 
lassi
al lower boundsand quantum upper bounds for the setting of private information retrieval. In parti
ular, weexhibit a quantum 2-server PIR s
heme with O(n3=10) qubits of 
ommuni
ation, beating theO(n1=3) bits of 
ommuni
ation of the best known 
lassi
al 2-server PIR.Keywords: Quantum 
omputing, lo
ally de
odable 
odes, private information retrieval.1 Introdu
tion1.1 SettingError 
orre
ting 
odes allow one to en
ode an n-bit string x into an m-bit 
odeword C(x) insu
h a way that x 
an still be re
overed even if the 
odeword is 
orrupted in a number of pla
es.For example, 
odewords of length m = O(n) already suÆ
e to re
over from errors in a 
onstantfra
tion of the bitpositions of the 
odeword, even in linear time [33℄. One disadvantage of su
h\standard" error 
orre
tion is that one usually needs to 
onsider all or most of the (
orrupted)�A preliminary version of this paper appeared in STOC'03 [22℄.ySupported by DARPA under agreement number F 30602{01-2{0524. Part of this work was done when visitingCWI.zMost of this work was done while a postdo
 at UC Berkeley, supported by Talent grant S 62{565 from theNetherlands Organization for S
ienti�
 Resear
h (NWO). Also (partially) funded by proje
ts QAIP (IST{1999{11234) and RESQ (IST-2001-37559) of the IST-FET programme of the EC.1




odeword to re
over anything about x. If one is only interested in re
overing one or a few of thebits of x, then more eÆ
ient s
hemes are possible, whi
h allow us to extra
t small parts of en
odedinformation from a 
orrupted 
odeword, while looking at (\querying") only a few positions ofthat word. Su
h s
hemes are 
alled lo
ally de
odable 
odes (LDCs). They have found variousappli
ations in 
omplexity theory and 
ryptography, su
h as self-
orre
ting 
omputations [5, 24,17, 16, 18℄, Probabilisti
ally Che
kable Proofs [2℄, worst-
ase to average-
ase redu
tions [3, 34℄,private information retrieval [11℄, and extra
tors [25℄. Informally, LDCs are des
ribed as follows:A (q; Æ; ")-lo
ally de
odable 
ode en
odes n-bit strings x into m-bit 
odewords C(x),su
h that, for ea
h i, the bit xi 
an be re
overed with probability 1=2 + " making onlyq queries, even if the 
odeword is 
orrupted in Æm of the bits.For example, the Hadamard 
ode is a lo
ally de
odable 
ode where two queries suÆ
e for predi
tingany bit with 
onstant advantage, even with a 
onstant fra
tion of errors. The 
ode has m = 2nand C(x)j = j � x mod 2 for all j 2 f0; 1gn. Re
overy from a 
orrupted 
odeword y is possibleby pi
king a random j 2 f0; 1gn, querying yj and yj�ei, and 
omputing the XOR of those twobits as our guess for xi. If neither of the two queried bits has been 
orrupted, then we outputyj � yj�ei = j � x � (j � ei) � x = ei � x = xi, as we should. If C(x) has been 
orrupted in at mostÆm positions, then a fra
tion of at least 1 � 2Æ of all (j; j � ei) pairs of indi
es is un
orrupted, sothe re
overy probability is at least 1 � 2Æ. This is > 1=2 as long as Æ < 1=4. The main drawba
kof the Hadamard 
ode is its exponential length.Clearly, we would like both the 
odeword length m and the number of queries q to be small.The main 
omplexity question about LDCs is how large m needs to be, as a fun
tion of n, q, Æ,and ". For q = polylog(n), Babai et al. [2℄ showed how to a
hieve almost linear size 
odes, for some�xed Æ and ". Beimel et al. [8℄ re
ently improved the best known upper bounds for 
onstant q tom = 2nO(log log q=q log q) , with some more pre
ise bounds for small q.The study of lower bounds on m was initiated by Katz and Trevisan [21℄. They proved thatfor q = 1, LDCs do not exist if n is larger than some 
onstant depending on Æ and ". For q � 2,they proved a bound of m = 
(n1+1=(q�1)) if the q queries are made non-adaptively; this boundwas generalized to the adaptive 
ase by Deshpande et al. [14℄. This establishes superlinear (but atmost quadrati
) lower bounds on the length of LDCs with a 
onstant number of queries. Thereis still a large gap between the best known upper and lower bounds. In parti
ular, it is openwhether m = poly(n) is a
hievable with 
onstant q. Goldrei
h et al. [20℄ examined the 
ase q = 2,and showed that m � 2Æ"n=8 if C is a linear 
ode. Obata [29℄ subsequently strengthened thedependen
e on " to m � 2
(Æn=(1�2")), whi
h is essentially optimal. Very re
ently, Ben-Sasson etal. [9℄ studied a relaxed notion of LDCs where the de
oder is allowed to output \don't know" for a
onstant fra
tion of the indi
es. They 
onstru
t relaxed LDCs with a 
onstant number of queriesand size m = n1+�.Katz and Trevisan, and Goldrei
h et al. established a 
lose 
onne
tion between lo
ally de
odable
odes and private information retrieval (PIR) s
hemes. A PIR s
heme allows a user to extra
t abit xi with probability 1=2+ " from an n-bit database x that is repli
ated over some k � 1 servers,without the server(s) learning whi
h i the user wants. The main 
omplexity measure of a PIRs
heme is its 
ommuni
ation 
omplexity, i.e., the sum of the lengths of the queries that the usersends to ea
h server, and the length of the servers' answers. Roughly, the queries in an LDC
orrespond to the servers in a PIR s
heme. In fa
t, the best known LDCs for 
onstant q are derivedfrom PIR s
hemes.If there is only one server (k = 1), then priva
y 
an be maintained by letting the server sendthe whole n-bit database to the user. This takes n bits of 
ommuni
ation and is optimal. If2



the database is repli
ated over k � 2 servers, then there exist proto
ols with signi�
antly less
ommuni
ation. Chor et al. [11℄ exhibited a 2-server PIR s
heme with 
ommuni
ation 
omplexityO(n1=3) and one with O(n1=k) for k > 2. Ambainis [1℄ improved the latter to O(n1=(2k�1)). Beimelet al. [8℄ improved the 
ommuni
ation 
omplexity to O(n2 log log k=k log k). Their results improve theprevious best bounds for all k � 3 but not for k = 2.No general lower bounds better than 
(logn) are known for PIRs with k � 2 servers. For the
ase of 2 servers, the best known lower bound is 4 log n, due to Mann [26℄. A PIR s
heme is linearif for every query that the user makes, the answer bits are linear 
ombinations of the bits of x.Goldrei
h et al. [20℄ proved that linear 2-server PIRs with t-bit queries and a-bit answers wherethe user looks only at k predetermined positions in ea
h answer require t = 
(n=ak).1.2 Results: Lo
ally De
odable CodesThe main result of this paper is an exponential lower bound for general 2-query LDCs:Theorem 4 If C : f0; 1gn ! f0; 1gm is a (2; Æ; ")-lo
ally de
odable 
ode, thenm � 2
n�1;for 
 = 3Æ"2=(98 ln 2).This is the �rst superpolynomial lower bound on general LDCs with more than one query. Our
onstant 
 in the exponent is somewhat worse than those of Goldrei
h et al. [20℄ and of Obata [29℄,but our proof establishes the exponential lower bound for all LDCs, not just linear ones.Our proof introdu
es one radi
ally new ingredient: quantum 
omputing. We show that iftwo 
lassi
al queries 
an re
over xi with probability 1=2 + ", then xi 
an also be re
overed withprobability 1=2+4"=7 using only one \quantum query". In other words, a (2; Æ; ")-lo
ally de
odable
ode is a (1; Æ; 4"=7)-lo
ally quantum-de
odable 
ode. We then prove an exponential lower boundfor 1-query LQDCs by showing, roughly speaking, that a 1-query LQDC of length m indu
es aquantum random a

ess 
ode for x of length about logm. Su
h a 
ode enables its user to re
overea
h bit xi of his 
hoi
e. Nayak's [27℄ linear lower bound on the length of su
h 
odes �nishes o�the proof. For the sake of 
ompleteness, we in
lude a proof of his result in Appendix B.This lower bound for 
lassi
al LDCs is one of the very few examples where tools from quantum
omputing enable one to prove new results in 
lassi
al 
omputer s
ien
e. We know only a fewother examples of this.1 Radhakrishnan et al. [30℄ proved lower bounds for the set membershipdata stru
ture that hold for quantum algorithms, but are in fa
t stronger than the previous 
lassi
allower bounds of Buhrman et al. [10℄. Sen and Venkatesh did the same for data stru
tures for theprede
essor problem [32, quant-ph version℄. Klau
k et al. [23℄ proved lower bounds for the k-roundquantum 
ommuni
ation 
omplexity of the tree-jumping problem that are somewhat stronger thanthe previous best 
lassi
al lower bounds. In 
ryptography, Gisin, Renner, and Wolf [19℄ used ananalogy with \quantum bound entanglement" to provide eviden
e against the 
onje
ture that the\intrinsi
 information" in a random variable shared by Ali
e, Bob, and eavesdropper Eve alwaysequals the amount of se
ret key that Ali
e and Bob 
an extra
t from this; later this 
onje
ture wasindeed disproved [31℄, though without using quantum methods. In all these 
ases, the underlyingproof te
hniques easily yield a 
lassi
al proof: one just repla
es quantum notions like von Neumannentropy and tra
e distan
e by their 
lassi
al analogues to get a 
lassi
al proof for the 
lassi
al1The quantum lower bound on the 
ommuni
ation 
omplexity of the inner produ
t fun
tion of Cleve et al. [12℄provides new insight in a 
lassi
al result, but does not establish a new result for 
lassi
al 
omputer s
ien
e.3




ase. In 
ontrast, our proof seems to be more \inherently quantum" sin
e there is no 
lassi
alanalog of our 2-
lassi
al-queries-to-1-quantum-query redu
tion (2-query LDCs exist but 1-queryLDCs don't).While Se
tion 3 fo
uses only on 
odes over the binary alphabet, in Se
tion 4.1 we extend ourresult to the 
ase of larger alphabets, using a 
lassi
al redu
tion due to Trevisan [35℄. In Se
tion 4.2we look at LDCs with q � 3 queries and improve the polynomial lower bounds of Katz and Trevisan[21℄. Our bounds are still polynomial and far from the best known upper bounds. In Se
tion 4.3we observe that our 
onstru
tion implies the existen
e of 1-query quantum-de
odable 
odes forall n. The Hadamard 
ode is an example of this. Here the 
odewords are still 
lassi
al, but thede
oder is quantum. As mentioned before, if we only allow one 
lassi
al query, then LDCs do notexist for n larger than some 
onstant depending on Æ and " [21℄. For larger q, it turns out thatthe best known (2q; Æ; ")-LDCs, due to Beimel et al. [8℄, are a
tually (q; Æ; ")-LQDCs. Hen
e for�xed number of queries q, we obtain LQDCs that are signi�
antly shorter than the best knownLDCs. In parti
ular, Beimel et al. give a 4-query LDC with length m = 2O(n3=10) whi
h is a 2-queryLQDC. This is signi�
antly shorter than the m = 2�(n) that 2-query LDCs need. We summarizethe situation in Table 1, where our 
ontributions are indi
ated by boldfa
e.Queries Length of LDC Length of LQDCq = 1 don't exist 2�(n)q = 2 2�(n) 2O(n3=10)q = 3 2O(n1=2) 2O(n1=7)q = 4 2O(n3=10) 2O(n1=11)Table 1: Best known bounds on the length of LDCs and LQDCs with q queries1.3 Results: Private Information RetrievalIn the private information retrieval setting, our te
hniques allow us to redu
e 
lassi
al 2-server PIRs
hemes with 1-bit answers to quantum 1-server PIRs, whi
h in turn 
an be redu
ed to a randoma

ess 
ode [27℄. Thus in Se
tion 5.1 we obtain an 
(n) lower bound on the 
ommuni
ation
omplexity for all 
lassi
al 2-server PIRs with 1-bit answers. In Se
tion 5.2 we extend our lowerbound to PIR s
hemes with larger answers. Previously, su
h a bound was known only for linearPIRs (�rst proven in [11, Se
tion 5.2℄ for 1-bit answers and extended to 
onstant-length answersin [20℄). Furthermore, our results 
ombined with those of Katz and Trevisan give a 4:4 log n lowerbound for the general 2-server PIR. This is the �rst, very modest improvement on the bound ofMann [26℄. Subsequently to our work, Beigel, Fortnow, and Gasar
h [7℄ found a 
lassi
al proofthat a 2-server PIR with perfe
t re
overy (" = 1=2) and 1-bit answers needs query length � n� 2.However, their proof does not seem to extend to the 
ase " < 1=2, or to larger answers.Apart from giving new lower bounds for 
lassi
al PIR, we 
an also use our 2-to-1 redu
tion toobtain quantum PIR s
hemes that beat the best known 
lassi
al PIRs. In parti
ular, Beimel etal. [8, Example 4.2℄ exhibit a 
lassi
al 4-server PIR s
heme with 1-bit answers and 
ommuni
ation
omplexity O(n3=10). We 
an redu
e this to a quantum 2-server PIR with O(n3=10) qubits of
ommuni
ation. This beats the best known 
lassi
al 2-server PIR, whi
h has 
omplexity O(n1=3).We 
an similarly give quantum improvements over the best known k-server PIR s
hemes for k > 2.However, this does not 
onstitute a true 
lassi
al-quantum separation in the PIR setting yet, sin
eno good lower bounds are known for 
lassi
al PIR. We summarize the best known bounds for
lassi
al and quantum PIR in Table 2. 4



Servers PIR 
omplexity QPIR 
omplexityk = 1 �(n) �(n)k = 2 O(n1=3) O(n3=10)k = 3 O(n1=5:25) O(n1=7)k = 4 O(n1=7:87) O(n1=11)Table 2: Best known bounds on the 
ommuni
ation 
omplexity of 
lassi
al and quantum PIR2 Preliminaries2.1 QuantumBelow we give more pre
ise de�nitions of lo
ally de
odable 
odes, PIR s
hemes, and related notions,but we �rst explain the standard notation of quantum 
omputing.Let H denote a 2-dimensional 
omplex ve
tor spa
e, equipped with the standard inner produ
t.We pi
k an orthonormal basis for this spa
e, label the two basis ve
tors j0i and j1i, and for simpli
ityidentify them with the ve
tors � 10 � and � 01 �, respe
tively. A qubit is a unit length ve
tor inthis spa
e, and so 
an be expressed as a linear 
ombination of the basis states:�0j0i + �1j1i = � �0�1 � :Here �0; �1 are 
omplex amplitudes, and j�0j2 + j�1j2 = 1.An m-qubit system is a unit ve
tor in the m-fold tensor spa
e H
� � � 
H. The 2m basis statesof this spa
e are the m-fold tensor produ
ts of the states j0i and j1i. For example, the basis statesof a 2-qubit system are the four 4-dimensional unit ve
tors j0i
j0i, j0i
j1i, j1i
j0i, and j1i
j1i.We abbreviate, e.g., j1i 
 j0i to j0ij1i, or j1; 0i, or j10i, or even j2i (sin
e 2 is 10 in binary). Withthese basis states, an m-qubit state j�i is a 2m-dimensional 
omplex unit ve
torj�i = Xi2f0;1gm �ijii:We use h�j = j�i� to denote the 
onjugate transpose of the ve
tor j�i, and h�j i = h�j � j i for theinner produ
t between states j�i and j i. These two states are orthogonal if h�j i = 0. The normof j�i is k � k =ph�j�i.A mixed state fpi; j�iig is a 
lassi
al distribution over pure quantum states, where the systemis in state j�ii with probability pi. We 
an represent a mixed quantum state by the density matrixwhi
h is de�ned as � = Pi pij�iih�ij. Note that � is a positive semide�nite operator with tra
e(sum of diagonal entries) equal to 1. The density matrix of a pure state j�i is � = j�ih�j.A quantum system is 
alled bipartite if it 
onsists of two subsystems. We 
an des
ribe the stateof ea
h of these subsystems separately with the redu
ed density matrix. For example, if a quantumstate has the form j�i =Pippijiij�ii, then the state of a system holding only the se
ond part ofj�i is des
ribed by the (redu
ed) density matrix Pi pij�iih�ij.A quantum state 
an evolve by a unitary operation or by a measurement. A unitary transfor-mation is a linear mapping that preserves the `2 norm. If we apply a unitary U to a state j�i, itevolves to U j�i. A mixed state � evolves to U�U y.The most general measurement allowed by quantum me
hani
s is spe
i�ed by a family of positivesemide�nite operators Ei = M�i Mi, 1 � i � k, subje
t to the 
ondition that PiEi = I. Given5



a density matrix �, the probability of observing the ith out
ome under this measurement is givenby the tra
e pi = Tr(Ei�) = Tr(Mi�M�i ). These pi are nonnegative be
ause Ei and � are positivesemide�nite. They also sum to 1, as they should:kXi=1 pi = kXi=1 Tr(Ei�) = Tr( kXi=1 Ei�) = Tr(I�) = 1:If the measurement yields out
ome i, then the resulting quantum state is Mi�M�i =Tr(Mi�M�i ). Inparti
ular, if � = j�ih�j, then pi = h�jEij�i = kMij�i k2, and the resulting state isMij�i=k Mij�i k.A spe
ial 
ase is where k = 2m and B = fj iig forms an orthonormal basis of the m-qubit spa
e.\Measuring in the B-basis" means that we apply the measurement given by Ei = Mi = j iih ij.Applying this to a pure state j�i gives resulting state j ii with probability pi = jh�j iij2.Finally, a word about quantum queries. A query to an m-bit string y is 
ommonly formalizedas the following unitary transformation, where j 2 [m℄, and b 2 f0; 1g is 
alled the target bit :jjijbi 7! jjijb � yji:A quantum 
omputer may apply this to any superposition. An equivalent formalization that wewill be using here, is: j
ijji 7! (�1)
�yj j
ijji:Here 
 is a 
ontrol bit that 
ontrols whether the phase (�1)yj is added or not. Given some extraworkspa
e, one query of either type 
an be simulated exa
tly by one query of the other type.We refer to Nielsen and Chuang [28℄ for more details.2.2 CodesBelow, by a `de
oding algorithm' we mean an algorithm (quantum or 
lassi
al depending on 
ontext)with ora
le a

ess to the bits of some (possibly 
orrupted) 
odeword y for x. The algorithm getsinput i and is supposed to re
over xi, making only few queries to y. We want to emphasize that wespeak of an `algorithm' merely as a 
onvenient way to formalize the de
oding pro
ess. Our fo
us isnot the algorithmi
s of the de
oding but its information-theoreti
 aspe
ts, i.e., the tradeo� betweenthe number q of queries allowed for de
oding and the required 
odelength m.De�nition 1 C : f0; 1gn ! f0; 1gm is a (q; Æ; ")-lo
ally de
odable 
ode (LDC) if there is a 
lassi
alrandomized de
oding algorithm A su
h that1. A makes at most q queries to m-bit string y, non-adaptively.2. For all x and i, and all y 2 f0; 1gm with Hamming distan
e d(C(x); y) � Æm we havePr[Ay(i) = xi℄ � 1=2 + ".The LDC is 
alled linear if C is a linear fun
tion over GF (2) (i.e., C(x+ y) = C(x) + C(y)).By allowing A to be a quantum 
omputer and to make queries in superposition, we 
an similarlyde�ne (q; Æ; ")-lo
ally quantum-de
odable 
odes (LQDCs).It will be 
onvenient to work with non-adaptive queries, as used in the above de�nition, so thedistribution on the queries that A makes is independent of y. However, our main lower bound alsoholds for adaptive queries, see the �rst remark at the end of Se
tion 3.3.6



2.3 Private Information RetrievalNext we de�ne private information retrieval s
hemes.De�nition 2 A one-round, (1�Æ)-se
ure, k-server private information retrieval (PIR) s
heme withre
overy probability 1=2 + ", query size t, and answer size a, 
onsists of a randomized algorithm(the user), and k deterministi
 algorithms S1; : : : ; Sk (the servers), su
h that1. On input i 2 [n℄, the user produ
es k t-bit queries q1; : : : ; qk and sends these to the respe
tiveservers. The jth server sends ba
k an a-bit string aj = Sj(x; qj). The user outputs a bit bdepending on i; a1; : : : ; ak; and his randomness.2. For all x and i, the probability (over the user's randomness) that b = xi is at least 1=2 + ".3. For all x and j, the distributions on qj (over the user's randomness) are Æ-
lose (in totalvariation distan
e) for di�erent i.The s
heme is 
alled linear if, for every j and qj, the jth server's answer Sj(x; qj) is a linear
ombination over GF (2) of the bits of x.We 
an straightforwardly generalize these de�nitions to quantum PIR for the 
ase where Æ = 0(the server's state after the query should be independent of i). That is the only 
ase we need here.All known upper bounds on PIR have one round of 
ommuni
ation, " = 1=2 (perfe
t re
overy) andÆ = 0 (the servers get no information whatsoever about i). Below we will assume one round andÆ = 0 without mentioning this further.3 Lower Bound for 2-Query Lo
ally De
odable CodesOur proof has two parts, ea
h with a 
lear intuition but requiring quite a few te
hni
alities:1. A 2-query LDC is a 1-query LQDC, be
ause one quantum query 
an 
ompute the sameBoolean fun
tions as two 
lassi
al queries (albeit with slightly worse error probability).2. The length m of a 1-query LQDC must be exponential, be
ause a uniform superposition overall indi
es 
ontains only logm qubits, but indu
es a quantum random a

ess 
ode for x, forwhi
h a linear lower bound is already known [27℄.3.1 From 2 Classi
al to 1 Quantum QueryThe key to the �rst step is the following lemma:Lemma 1 Let f : f0; 1g2 ! f0; 1g and suppose we 
an make queries to the bits of some inputstring a = a1a2 2 f0; 1g2. There exists a quantum algorithm that makes only one query (one that isindependent of f) and outputs f(a) with probability exa
tly 11=14, and outputs 1� f(a) otherwise.Proof. If we 
ould 
onstru
t the statej ai = 12(j0ij1i + (�1)a1 j1ij1i + (�1)a2 j1ij2i + (�1)a1+a2 j0ij2i)with one quantum query then we 
ould determine a with 
ertainty, sin
e the four possible statesj bi (b 2 f0; 1g2) form an orthonormal basis. We 
ould also see these states as the Hadamard7



en
oding of the strings b 2 f0; 1g2. Unfortunately we 
annot 
onstru
t j ai perfe
tly with onequery. Instead, we approximate this state by making the query1p3 (j0ij1i + j1ij1i + j1ij2i) ;where the �rst bit is the 
ontrol bit, and the appropriate phase (�1)aj is put in front of jji if the
ontrol bit is 1. The result of the query is the statej�i = 1p3 (j0ij1i + (�1)a1 j1ij1i + (�1)a2 j1ij2i) :The algorithm then measures this state j�i in the orthonormal basis 
onsisting of the four statesj bi. The probability of getting out
ome a is jh�j aij2 = 3=4, and ea
h of the other 3 out
omes hasprobability 1=12. The algorithm now determines its output based on f and on the measurementout
ome b. We distinguish 3 
ases for f :1. jf(1)�1j = 1 (the 
ase jf(1)�1j = 3 is 
ompletely analogous, with 0 and 1 reversed). Iff(b) = 1, then the algorithm outputs 1 with probability 1. If f(b) = 0 then it outputs 0 withprobability 6=7 and 1 with probability 1=7. A

ordingly, if f(a) = 1, then the probability ofoutput 1 is Pr[f(b) = 1℄ � 1 + Pr[f(b) = 0℄ � 1=7 = 3=4 + 1=28 = 11=14: If f(a) = 0, then theprobability of output 0 is Pr[f(b) = 0℄ � 6=7 = (11=12) � (6=7) = 11=14:2. jf(1)�1j = 2. Then Pr[f(a) = f(b)℄ = 3=4 + 1=12 = 5=6. If the algorithm outputs f(b) withprobability 13=14 and outputs 1� f(b) with probability 1=14, then its probability of outputf(a) is exa
tly 11=14.3. f is 
onstant. In that 
ase the algorithm just outputs that value with probability 11=14.Thus we always output f(a) with probability 11=14. 2Peter H�yer (personal 
ommuni
ation) re
ently improved the 11=14 in the lemma to 9=10. Wedes
ribe his algorithm in Appendix A and show that this su

ess probability is best possible if wehave only one quantum query.Using our lemma we 
an prove:Theorem 1 A (2; Æ; ")-LDC is a (1; Æ; 4"=7)-LQDC.Proof. Consider i, x, and y su
h that d(C(x); y) � Æm. The 1-query quantum de
oder will usethe same randomness as the 2-query 
lassi
al de
oder. The random string of the 
lassi
al de
oderdetermines two indi
es j; k 2 [m℄ and an f : f0; 1g2 ! f0; 1g su
h thatPr[f(yj; yk) = xi℄ = p � 1=2 + ";where the probability is taken over the de
oder's randomness. We now use Lemma 1 to obtain a1-query quantum de
oder that outputs some bit b su
h thatPr[b = f(yj; yk)℄ = 11=14:
8



The su

ess probability of this quantum de
oder is:2Pr[b = xi℄ = Pr[b = f(yj; yk)℄ � Pr[f(yj; yk) = xi℄ +Pr[b 6= f(yj; yk)℄ � Pr[f(yj; yk) 6= xi℄= 1114p+ 314(1� p)= 314 + 47p� 12 + 4"7 ;as promised. 23.2 Lower Bound for 1-Query LQDCsA quantum random a

ess 
ode is an en
oding x 7! �x of n-bit strings x into m-qubit states �x,possibly mixed, su
h that any bit xi 
an be re
overed with some probability p � 1=2 + " from �x.The following lower bound is known on the length of su
h quantum 
odes [27℄ (see Appendix B).Theorem 2 (Nayak) An en
oding x 7! �x of n-bit strings into m-qubit states with re
overy prob-ability at least p, has m � (1�H(p))n.This allows us to prove an exponential lower bound for 1-query LQDCs:Theorem 3 If C : f0; 1gn ! f0; 1gm is a (1; Æ; ")-LQDC, thenm � 2
n�1;for 
 = Æ"2=(16 ln 2).Proof. Our goal below is to show that we 
an re
over ea
h xi with good probability from anumber of 
opies of the uniform log(m) + 1-qubit statejU(x)i = 1p2m X
2f0;1g;j2[m℄(�1)
�C(x)j j
ijji:The intuitive reason for this is as follows. Sin
e C is an LQDC, it is able to re
over xi even from a
odeword that is 
orrupted in many (up to Æm) pla
es. Therefore the \distribution" of queries of thede
oder must be \smooth", i.e., spread out over almost all the positions of the 
odeword|otherwisean adversary 
ould 
hoose the 
orrupted bits in a way that makes the re
overy probability too low.The uniform distribution provides a reasonable approximation to su
h a \smooth" distribution.Sin
e the uniform state jU(x)i is independent of i, we 
an a
tually re
over any bit xi with goodprobability, so it 
onstitutes a quantum random a

ess 
ode for x. Applying Theorem 2 then givesthe result.2Here we use the `exa
tly' part of Lemma 1. To see what 
ould go wrong if the `exa
tly' were `at least', suppose the
lassi
al de
oder outputs AND(y1; y2) = xi with probability 3=5 and XOR(y3; y4) = 1�xi with probability 2=5. Thenit outputs xi with probability 3=5 > 1=2. However, if our quantum pro
edure 
omputes AND(y1; y2) with su

essprobability 11=14 but XOR(y3; y4) with su

ess probability 1, then its re
overy probability is (3=5)(11=14) < 1=2.9



Let us be more pre
ise. The most general query that the quantum de
oder 
ould make tore
over xi, is of the form jQii = X
2f0;1g;j2[m℄�
jj
ijjij�
ji;where the j�
ji are pure states in the de
oder's workspa
e and the �
j are non-negative reals (anyphases 
ould be put in the j�
ji). This workspa
e 
an also in
orporate any 
lassi
al randomnessused. However, the de
oder 
ould equivalently add these workspa
e states after the query, usingthe unitary map j
ijjij0i 7! j
ijjij�
ji. Hen
e we 
an assume without loss of generality that thea
tual query is jQii = X
2f0;1g;j2[m℄�
jj
ijji;and that the de
oder just measures the state resulting from this query. Let D and I � D be thetwo measurement operators that the de
oder uses for this measurement, 
orresponding to outputs1 and 0, respe
tively. Its probability of giving output 1 on query-result jRi is p(R) = hRjDjRi (for
larity we don't write the j�i inside the p(�)).Inspired by the smoothing te
hnique of [21℄, we split the amplitudes �j of the query jQii intosmall and large ones: A = f(
; j) : �
j � p1=Æmg and B = f(
; j) : �
j > p1=Æmg. Sin
e thequery does not a�e
t the j0ijji-states, we 
an assume without loss of generality that �0j is thesame for all j, so �0j � 1=pm � 1=pÆm and hen
e (0; j) 2 A. Let a =qP(
;j)2A �2
j be the normof the \small-amplitude" part. Sin
e P(
;j)2B �2
j � 1, we have jBj < Æm. De�ne non-normalizedstates jA(x)i = X(
;j)2A(�1)
�C(x)j�
jj
ijjijBi = X(
;j)2B �
jj
ijji:The pure states jA(x)i + jBi and jA(x)i � jBi ea
h 
orrespond to a y 2 f0; 1gm that is 
orrupted(
ompared to C(x)) in at most jBj � Æm positions, so the de
oder 
an re
over xi from ea
h ofthese states. If x has xi = 1, then we have:p(A(x) +B) � 1=2 + "p(A(x)�B) � 1=2 + ":Sin
e p(A�B) = p(A)+p(B)�(hAjDjBi+hBjDjAi), averaging the previous two inequalities givesp(A(x)) + p(B) � 1=2 + ":Similarly, if x0 has x0i = 0, then p(A(x0)) + p(B) � 1=2� ":Hen
e, for the normalized states 1a jA(x)i and 1a jA(x0)i:p�1aA(x)�� p�1aA(x0)� � 2"=a2:Sin
e this holds for every x; x0 with xi = 1 and x0i = 0, there are 
onstants q1; q0 2 [0; 1℄, q1 � q0 �2"=a2, su
h that p( 1aA(x)) � q1 whenever xi = 1 and p( 1aA(x)) � q0 whenever xi = 0.10



If we had a 
opy of the state 1a jA(x)i, then we 
ould run the pro
edure below to re
over xi.Here we assume that q1 � 1=2 + "=a2 (if not, then we must have q0 � 1=2 � "=a2 and we 
an usethe same argument with 0 and 1 reversed), and that q1 + q0 � 1 (if not, then q0 � 1=2 � "=a2 andwe're already done).Output 0 with probability q = 1� 1=(q1 + q0),and otherwise output the result of the de
oder's 2-out
ome measurement on 1a jA(x)i.If xi = 1, then the probability that this pro
edure outputs 1 is(1� q)p�1aA(x)� � (1� q)q1 = q1q1 + q0 = 12 + q1 � q02(q1 + q0) � 12 + "2a2 :If xi = 0, then the probability that the pro
edure outputs 0 isq + (1� q)�1� p�1aA(x)�� � q + (1� q)(1� q0) = 1� q0q1 + q0 = q1q1 + q0 � 12 + "2a2 :Thus we 
an re
over xi with good probability if we have the state 1a jA(x)i (whi
h depends on i aswell as x).It remains to show how we 
an obtain 1a jA(x)i from jU(x)i with reasonable probability. Thiswe do by applying a measurement with operators M yM and I �M yM to jU(x)i, where M =pÆmP(
;j)2A �
jj
; jih
; jj. Both M yM and I �M yM are positive operators (as required for ameasurement) be
ause 0 � pÆm�
j � 1 for all (
; j) 2 A. The measurement gives the �rstout
ome with probability hU(x)jM yM jU(x)i = Æm2m X
j2A�2
j = Æa22 :In this 
ase we have obtained the normalized version of M jU(x)i, whi
h is 1a jA(x)i. Suppose wehave r = 2=(Æa2) 
opies of jU(x)i and we do the measurement separately on ea
h of them. Thenwith probability 1� (1� Æa2=2)r � 1=2, one of those will give the �rst out
ome, in whi
h 
ase we
an predi
t xi with probability 12 + "2a2 . If all measurements give the se
ond out
ome then we justoutput a fair 
oin 
ip as our guess for xi. Overall, our re
overy probability is nowp � 12 �12 + "2a2�+ 12 � 12 = 12 + "4a2 :A

ordingly, r 
opies of the (log(m) + 1)-qubit state jU(x)i form a quantum random a

ess 
odewith re
overy probability p. Using Theorem 2, 1�H(1=2 + �) � 2�2= ln 2, and a2 � 1, givesr(log(m) + 1) � (1�H(p))n � "2n8a4 ln 2 � "2n8a2 ln 2 ;hen
e logm � Æ"2n16 ln 2 � 1: 2
11



3.3 Lower Bound for 2-Query LDCsTheorem 4 If C : f0; 1gn ! f0; 1gm is a (2; Æ; ")-lo
ally de
odable 
ode, thenm � 2
n�1;for 
 = 3Æ"2=(98 ln 2).Proof. The theorem 
ombines Theorem 1 and 3. Straightforwardly, this would give a 
onstantof Æ"2=(49 ln 2). We get the better 
onstant 
laimed here by observing that the 1-query LQDCderived from the 2-query LDC a
tually has 1=3 of the overall squared amplitude on queries wherethe 
ontrol bit 
 is zero (and all those �0j are in A). Hen
e in the proof of Theorem 3, we 
anrede�ne \small amplitude" to �
j �p2=(3Æm), and still B will have at most Æm elements be
auseP(
;j)2B �2
j � 2=3. This in turns allows us to make M a fa
tor p3=2 larger, whi
h improves theprobability of getting 1a jA(x)i from jU(x)i to 3Æa2=4 and allows us to de
rease r to 4=(3Æa2). Thistranslates to a lower bound logm � 3Æ"2n=(32 ln 2) � 1. Combining that with Theorem 1 (whi
hmakes " a fa
tor 4=7 smaller) gives 
 = 3Æ"2=(98 ln 2), as 
laimed. 2Remarks:(1) Note that a (2; Æ; ")-LDC with adaptive queries gives a (2; Æ; "=2)-LDC with non-adaptivequeries: if query q1 would be followed by query q02 or q12 depending on the out
ome of q1, then we
an just guess in advan
e whether to query q1 and q02 , or q1 and q12. With probability 1/2, these
ond query will be the one we would have made in the adaptive 
ase and we're �ne, in the other
ase we just 
ip a 
oin, giving overall re
overy probability 1=2(1=2 + ") + 1=2(1=2) = 1=2 + "=2.Thus we also get slightly weaker but still exponential lower bounds for adaptive 2-query LDCs.(2) The 
onstant 3=(98 ln 2) 
an be optimized a bit further by 
hoosing the number r of 
opiesa bit larger in the proof of Theorem 3 and by using Peter H�yer's 9/10-algorithm (Appendix A)instead of our 11/14-algorithm from Lemma 1. More interesting, however, is the question whetherthe quadrati
 dependen
e on " 
an be improved.(3) For a (2; Æ; ")-LDC where the de
oder's output is the XOR of its two queries, we 
an givea better redu
tion than in Theorem 1. Now the quantum de
oder 
an query 1p2 (j1ij1i + j1ij2i) ;giving 1p2 ((�1)a1 j1ij1i + (�1)a2 j1ij2i) = (�1)a1 1p2 �j1ij1i + (�1)a1�a2 j1ij2i� ;and extra
t a1�a2 from this with 
ertainty. Thus the re
overy probability remains 1=2+ " insteadof going down to 1=2+4"=7. A

ordingly, we also get better lower bounds for 2-query LDCs wherethe output is the XOR of the two queries, with 
 = Æ"2=(16 ln 2) in the exponent.(4) The se
ond part of our proof is a redu
tion from a Lo
ally Quantum-De
odable Code to a\smooth" quantum 
ode and then to a 
ode where the distribution of the queries is uniform. Thisredu
tion is known for 
lassi
al 
odes as well (see the next se
tion). Hen
e, an alternative way toget the exponential lower bound on m would be �rst to invoke the result by Katz and Trevisanthat redu
es an LDC to a 
ode with a uniform query distribution. We 
an redu
e further to the
ase where the de
oder outputs the XOR of the q queried bits. Starting with su
h a uniformlysmooth 
ode, we 
an then use our redu
tion from 2 
lassi
al queries to 1 quantum query withoutany loss in re
overy probability (see Remark 3). After this redu
tion we immediately end up witha quantum random a

ess 
ode of logm qubits and we are done. However, this proof would give aworse dependen
e on Æ and " than our 
urrent result.12



4 ExtensionsIn this se
tion we give various extensions and variations of the lower bound of the previous se
tion.4.1 Non-Binary AlphabetsHere we extend our lower bounds for binary 2-query LDCs to the 
ase of 2-query LDCs over largeralphabets. For simpli
ity we assume the alphabet is � = f0; 1g`, so a query to position j now returnsan `-bit string C(x)j. The de�nition of (q; Æ; ")-LDC from Se
tion 2.2 
arries over immediately, withd(C(x); y) now measuring the Hamming distan
e between C(x) 2 �m and y 2 �m.We will need the notion of smooth 
odes and their 
onne
tion to LDCs as stated in [21℄.De�nition 3 C : f0; 1gn ! �m is a (q; 
; ")-smooth 
ode if there is a 
lassi
al randomized de
odingalgorithm A su
h that1. A makes at most q queries, non-adaptively.2. For all x and i we have Pr[AC(x)(i) = xi℄ � 1=2 + ".3. For all x, i, and j, the probability that on input i ma
hine A queries index j is at most 
=m.Note that smooth 
odes only require good de
oding on 
odewords C(x), not on y that are 
loseto C(x). Katz and Trevisan [21, Theorem 1℄ established the following 
onne
tion:Theorem 5 (Katz & Trevisan) A (q; Æ; ")-LDC C : f0; 1gn ! �m is a (q; q=Æ; ")-smooth 
ode.A 
onverse to Theorem 5 also holds: a (q; 
; ")-smooth 
ode is a (q; Æ; " � 
Æ)-LDC, be
ausethe probability that the de
oder queries one of Æm 
orrupted positions is at most (
=m)(Æm) = 
Æ.Hen
e LDCs and smooth 
odes are essentially equivalent, for appropriate 
hoi
es of the parameters.To prove the exponential lower bound for LDCs over non-binary alphabet �, we will redu
e asmooth 
ode over � to a somewhat longer binary smooth 
ode that works well averaged over x.Then, we will show a lower bound on su
h average-
ase binary smooth 
odes in a way very similarto the proof of Theorem 4. The following key lemma was suggested to us by Lu
a Trevisan [35℄.Lemma 2 (Trevisan) Let C : f0; 1gn ! �m be a (2; 
; ")-smooth 
ode. Then there exists a(2; 
 �2`; "=22`)-smooth 
ode C 0 : f0; 1gn ! f0; 1gm�2` that is good on average, i.e., there is a de
oderA su
h that for all i 2 [n℄ 12n Xx2f0;1gn Pr[AC0(x)(i) = xi℄ � 12 + "22` :Proof. We form the new binary 
ode C 0 by repla
ing ea
h symbol C(x)j 2 � of the old 
ode byits Hadamard 
ode, whi
h 
onsists of 2` bits. The length of C 0(x) is m � 2` bits. The new de
odingalgorithm uses the same randomness as the old one. Let us �x the two queries j; k 2 [m℄ and theoutput fun
tion f : �2 ! f0; 1g of the old de
oder. We will des
ribe a new de
oding algorithmthat is good for an average x and looks only at one bit of the Hadamard 
odes of ea
h of a = C(x)jand b = C(x)k.First, if for this spe
i�
 j; k; f we have Prx[f(a; b) = xi℄ � 1=2, then the new de
oder just outputsa random bit, so in this 
ase it is at least as good as the old one for an average x. Now 
onsiderthe 
ase Prx[f(a; b) = xi℄ = 1=2 + � for some � > 0. Swit
hing from the f0; 1g-notation to the13



f�1; 1g-notation enables us to say that Ex[f(a; b)�xi℄ = 2�. Viewing a and b as two `-bit strings, we
an represent f by its Fourier representation (see e.g. [6℄): f(a; b) =PS;T�[`℄ f̂S;T Qs2S asQt2T btand hen
eXS;T f̂S;TEx "Ys2S asYt2T bt � xi# = Ex 240�XS;T f̂S;T Ys2S asYt2T bt1A � xi35 = Ex[f(a; b) � xi℄ = 2�:Averaging and using that jf̂S0;T0 j � 1, it follows that there exist subsets S0; T0 su
h that������Ex 24Ys2S0 as Yt2T0 bt � xi35������ � f̂S0;T0Ex 24Ys2S0 as Yt2T0 bt � xi35 � 2�22` :Returning to the f0; 1g-notation, we must have eitherPrx [(S0 � a� T0 � b) = xi℄ � 1=2 + �=22`or Prx [(S0 � a� T0 � b) = xi℄ � 1=2 � �=22`;where S0 �a and T0 � b denote inner produ
ts mod 2 of `-bit strings. A

ordingly, either the XOR ofthe two bits S0 �a and T0 �b, or its negation, predi
ts xi with average probability� 1=2+�=22`. Bothof these bits are in the binary 
ode C 0(x). The 
-smoothness of C translates into 
 � 2`-smoothnessof C 0. Averaging over the 
lassi
al randomness (i.e. the 
hoi
e of j; k, and f) gives the lemma. 2This lemma enables us to modify our proof of Theorem 4 so that it works for non-binaryalphabets �:Theorem 6 If C : f0; 1gn ! �m = (f0; 1g`)m is a (2; Æ; ")-lo
ally de
odable 
ode, thenm � 2
n�`;for 
 = �(Æ"2=25`).Proof. Using Theorem 5 and Lemma 2, we turn C into a binary (2; 2`+1=Æ; "=22`)-smooth 
odeC 0 that has average re
overy probability 1=2 + "=22` and length m0 = m � 2` bits. Sin
e its de
oderXORs its two binary queries, we 
an redu
e this to one quantum query without any loss in theaverage re
overy probability (see the third remark following Theorem 4).We now redu
e this quantum smooth 
ode to a quantum random a

ess 
ode, by a modi�edversion of the proof of Theorem 4. The smoothness of C 0 implies that all amplitudes �j (whi
hdepend on i) in the one quantum query satisfy �j � p2`+1=Æm0. Hen
e there is no need to splitthe set of j's into A and B. Also, the 
ontrol bit 
 will always be 1, so we 
an ignore it.Consider the states jU(x)i = 1pm0 Pm0j=1(�1)C(x)0j jji and jA(x)i =Pm0j=1 �j(�1)C(x)0j jji, and the2-out
ome measurement with operators M =pÆm0=2`+1Pj �jjjihjj and I �M . The probabilitythat the measurement takes us from jU(x)i to the renormalized M jU(x)i (= jA(x)i) is equal tohU(x)jM�M jU(x)i = Æ=2`+1. Hen
e r = 2`+1=Æ 
opies of jU(x)i forms a quantum random a

ess
ode with average su

ess probabilityp � 12 �12 + "22`�+ 12 � 12 = 12 + "22`+1 :14



The (1�H(p))n lower bound for a quantum random a

ess 
ode holds even if the re
overy proba-bility p is only an average over x, whi
h givesr � log(m0) � (1�H(p))n;whi
h implies the statement of the theorem. 24.2 Bounds for More Than 2 QueriesHere we address the 
ase of LDCs over the binary alphabet where the de
oder asks more than 2queries. There is no obvious way to extend our 2-to-1 redu
tion to more than 2 
lassi
al queries,sin
e a quantum 
omputer needs dq=2e queries to 
ompute the parity of q bits with any advantage [4,15℄. In parti
ular, it needs 2 quantum queries to 
ompute the parity of 3 bits, and we don't haveany lower bounds for 2-query LQDCs. Still, for LDCs with q � 3 queries we were able to improvethe polynomial lower bounds m = 
(n1+1=(q�1)) of Katz and Trevisan [21℄ somewhat:Theorem 7 If C : f0; 1gn ! f0; 1gm is a (q; Æ; ")-lo
ally de
odable 
ode, thenm = 
 � nlogn�1+1=(dq=2e�1)! ;where the 
onstant under the 
(�) depends on q, Æ and ".Proof. Suppose for simpli
ity that q is even and m is a multiple of q. By Theorem 5, it suÆ
esto prove a bound for a (q; 
; ")-smooth 
ode, with 
 = q=Æ. We will use the following result to makethe smooth 
ode uniform.Fa
t (Katz & Trevisan [21, dis
ussion in Se
tion 4℄): A (q; 
; ")-smooth 
ode is a (q; q; "2=2
)-smooth 
ode that is good on average. For every i, the new q-query de
oder has a �xed partitionMi of [m℄ into m=q q-tuples; it just pi
ks a random q-tuple (j1; : : : ; jq) 2Mi and outputs a Booleanfun
tion of the q bits C(x)j1 ; : : : ; C(x)jq . For every i, the de
oding of xi will be 
orre
t withprobability at least 1=2 + "2=2
 averaged over all x.By a proof analogous to Lemma 2, we 
an ensure that the de
oder a
tually 
omputes the XORof the q queried bits (or its negation). The average 
orre
tness probability will still be at least1=2+ "2=
2q+1. We will derive a quantum random a

ess 
ode from this uniform smooth 
ode. LetPij = jiihij + jjihjj be the proje
tor on the states jii and jji. Suppose (i1; j1); : : : ; (im=2; jm=2) is apartition of all the q-tuples in Mi into pairs. By measuring the uniform statejU(x)i = 1pm mXj=1(�1)C(x)j jjiwith operators Pi1j1 ; : : : ; Pim=2jm=2 , we get1p2 �(�1)C(x)i` ji`i+ (�1)C(x)j` jj`i� ;for random 1 � ` � m=2. From this we 
an obtain C(x)i` � C(x)j` , so we 
an generate the XORof a random pair from the partition. In order to re
over xi we need to �nd q=2 di�erent pairs that
ome from the same q-tuple. 15



Ea
h state jU(x)i gives us a random pair out of the possible m=2. By the Birthday Paradox, ifwe have O(m1�2=q) 
opies of the logm-qubit state jU(x)i, then with high probability we will �ndq=2 di�erent pairs that 
ome from the same q-tuple and hen
e be able to re
over xi. In other words,O(m1�2=q) 
opies of the logm-qubit state jU(x)i 
onstitute an (average) random a

ess 
ode. Therandom a

ess 
ode lower bound (Appendix B) now givesm1�2=q � logm = 
(n);whi
h implies m = 
((n= log n)1+2=(q�2)). 2For example, for q = 4 queries our lower bound is m = 
((n= log n)2) while Katz and Trevisanhave m = 
(n4=3).4.3 Lo
ally Quantum-De
odable Codes with Few QueriesThe third remark of Se
tion 3.3 immediately generalizes to:Theorem 8 A (2q; Æ; ")-LDC where the de
oder's output is the XOR of the 2q queried bits, is a(q; Æ; ")-LQDC.LDCs with q queries 
an be obtained from q-server PIR s
hemes with 1-bit answers by 
on-
atenating the answers that the servers give to all possible queries of the user. Beimel et al. [8,Corollary 4.3℄ re
ently improved the best known upper bounds on q-query LDCs, based on theirimproved PIR 
onstru
tion. They give a general upper bound m = 2nO(log log q=q log q) for q-queryLDCs, for some 
onstant depending on Æ and ", as well as more pre
ise estimates for small q. Inparti
ular, for q = 4 they 
onstru
t an LDC of length m = 2O(n3=10). All their LDCs are of theXOR-type, so we 
an redu
e the number of queries by half when allowing quantum de
oding. Forinstan
e, their 4-query LDC is a 2-query LQDC with lengthm = 2O(n3=10). In 
ontrast, any 2-queryLDC needs length m = 2
(n) as proved above.For general LDCs we 
an do something nearly as good, using van Dam's result that a q-bitora
le 
an be re
overed with probability nearly 1 using q=2 +O(pq) quantum queries [13℄:Theorem 9 A (q; Æ; ")-LDC is a (q=2 +O(pq); Æ; "=2)-LQDC.4.4 Lo
ally De
odable Erasure CodesRe
ently, the notion of a Lo
ally De
odable Erasure Code (LDEC) was used in the 
onstru
tion ofextra
tors [25, Se
tion 3.1℄. This is a 
ode where, even if (1� ")m of all positions of the 
odewordare erased, we 
an still re
over ea
h xi using only q queries to the remaining positions.De�nition 4 Consider a map C : f0; 1gn ! �m. We say that message position i is de
odablefrom 
odeword positions j1; : : : ; jq if there exists a fun
tion f su
h that f(C(x)j1 ; : : : ; C(x)jq ) = xifor all x. C is a (q; ")-LDEC, if for every i, in every "-fra
tion of the positions of the 
odeword,there exists a q-tuple of positions from whi
h i is de
odable.Here we show that LDECs are equivalent to smooth 
odes, as de�ned in Se
tion 4.1, and hen
eto LDCs. Consider some LDEC with 
odewords of length m. This equivalen
e shows that ourlower bounds also hold for LDECs. In parti
ular, (2; ")-LDECs need exponential length.16



First 
onsider some LDEC. Take S to be the set of an "-fra
tion of positions of the 
odeword. Byde�nition, there exists a \good" q-tuple in S, i.e., one from whi
h we 
an de
ode message positioni. Remove these q positions of the 
odeword from S and repla
e them by some other q positions.Now in this new set S0 of positions there should still be a \good" q-tuple. Remove it and go on.You 
an repeat this substitution (1�")m=q times, where m is the size of the 
ode. Therefore, thereare 
(m) disjoint q-tuples that are \good" for xi and so the 
ode is a smooth 
ode: the smoothde
oder just pi
ks one of these tuples at random and queries it positions.The 
onverse is also true. A smooth 
ode 
ontains 
(m) disjoint q-tuples, say �m of them, thatare \good" for xi. Hen
e, in any subset of the positions of the 
odeword of size (1��)m+1, thereexists a \good" q-tuple and therefore the 
ode is an LDEC with " � 1� �.5 Private Information RetrievalAs mentioned, there is a 
lose 
onne
tion between lo
ally de
odable 
odes and private informationretrieval. In this se
tion we use a variant of our 2-to-1 redu
tion to prove new lower bounds forPIR and new upper bounds for QPIR.5.1 Lower Bounds for Binary 2-Server PIRTo get lower bounds for 2-server PIRs with 1-bit answers, we again give a 2-step proof: a redu
tionof 2 
lassi
al servers to 1 quantum server, 
ombined with a lower bound for 1-server quantum PIR.Theorem 10 If there exists a 
lassi
al 2-server PIR s
heme with t-bit queries, 1-bit answers, andre
overy probability 1=2 + ", then there exists a quantum 1-server PIR s
heme with (t + 2)-qubitqueries, (t+ 2)-qubit answers, and re
overy probability 1=2 + 4"=7.Proof. The proof is analogous to the proof for lo
ally de
odable 
odes (Theorem 1). If we letthe quantum user employ the same randomness as the 
lassi
al one, the problem boils down to
omputing some f(a1; a2), where a1 is the �rst server's 1-bit answer to query q1, and a2 is these
ond server's 1-bit answer to query q2. However, in addition we now have to hide i from thequantum server. This we do by making the quantum user set up the (4 + t)-qubit state1p3 �j0ij0; 0ti+ j1ij1; q1i+ j2ij2; q2i� ;where `0t' is a string of t 0s. The user sends everything but the �rst register to the server. Thestate of the server is now a uniform mixture of j0; 0ti, j1; q1i, and j2; q2i. By the se
urity of the
lassi
al proto
ol, j1; q1i 
ontains no information about i (averaged over the user's randomness),and the same holds for j2; q2i. Hen
e the server gets no information about i.The quantum server then puts (�1)aj in front of jj; qji (j 2 f1; 2g), leaves j0; 0ti alone, andsends everything ba
k. Note that we need to supply the name of the 
lassi
al server j 2 f1; 2g totell the server in superposition whether it should play the role of server 1 or 2. The user now has1p3 �j0ij0; 0ti+ (�1)a1 j1ij1; q1i+ (�1)a2 j2ij2; q2i� :From this we 
an 
ompute f(a1; a2) with su

ess probability exa
tly 11=14, giving overall re
overyprobability 1=2 + 4"=7 as in Theorem 1. 2Combining the above redu
tion with the quantum random a

ess 
ode lower bound, we obtainthe �rst 
(n) lower bound that holds for all 1-bit-answer 2-server PIRs, not just for linear ones.17



Theorem 11 A 
lassi
al 2-server PIR s
heme with t-bit queries, 1-bit answers, and re
overy prob-ability 1=2 + ", has t � (1�H(1=2 + 4"=7))n � 2.Proof. We �rst redu
e the 2 
lassi
al servers to 1 quantum server in the way of Theorem 10.Now 
onsider the state of the quantum PIR s
heme after the user sends his (t+ 2)-qubit messagej�ii: Xr rpr3 jri �j0ij0; 0ti+ j1ij1; q1(r; i)i + j2ij2; q2(r; i)i� :Here the pr are the 
lassi
al probabilities of the user (these depend on i) and qj(r; i) is the t-bitquery that the user sends to server j in the 
lassi
al 2-server s
heme, if he wants xi and has randomstring r. Letting B = f0t+1g [ f1; 2g � f0; 1gt be the server's basis states, we 
an write j�ii as:j�ii =Xb2B �bjaibijbi:Here the jaibi are pure states that do not depend on x. The 
oeÆ
ients �b are non-negative realsthat do not depend on i, for otherwise a measurement of b would give the server information abouti, 
ontradi
ting priva
y. The server then tags on the appropriate phase sbx, whi
h is 1 for b = 0t+1and (�1)Sj(x;qj) for b = jqj , j 2 f1; 2g. This givesj�ixi =Xb2B �bjaibisbxjbi:Now the following pure state will be a random a

ess 
ode for xj xi =Xb2B �bsbxjbi;be
ause a user 
an unitarily map j0ijbi 7! jaibijbi to map j0ij xi 7! j�ixi, from whi
h he 
an getxi with probability p = 1=2 + 4"=7 by 
ompleting the quantum PIR proto
ol. The state j xi hast+ 2 qubits, hen
e from Theorem 2 we obtain t � (1�H(p))n� 2. 2For the spe
ial 
ase where the 
lassi
al PIR outputs the XOR of the two answer bits, we 
animprove our lower bound to t � (1 �H(1=2 + "))n � 1. In parti
ular, t � n� 1 in 
ase of perfe
tre
overy (" = 1=2), whi
h is tight.5.2 Lower Bounds for 2-Server PIR with Larger AnswersWe 
an also extend our linear lower bound on 2-server PIR s
hemes with answer length a = 1(Theorem 11) to the 
ase of 2-server PIR larger answer length. We use the translation from PIRto smooth 
odes given by Lemma 7.1 of Goldrei
h et al. [20℄:Lemma 3 (GKST) If there is a 
lassi
al 2-server PIR s
heme with query length t, answer lengtha, and re
overy probability 1=2 + ", then there is a (2; 3; ")-smooth 
ode C : f0; 1gn ! �m for� = f0; 1ga and m � 6 � 2t.Going through roughly the same steps as for the proof of Theorem 6, we obtain:Theorem 12 A 
lassi
al 2-server PIR s
heme with t-bit queries, a-bit answers, and re
overy prob-ability 1=2 + ", has t � 
(n"2=25a). 18



5.3 Lower Bounds for General 2-Server PIRThe previous lower bounds on the query length of 2-server PIR s
hemes were signi�
ant only forproto
ols with short answer length. Here we slightly improve the best known bound of 4 log n [26℄on the overall 
ommuni
ation 
omplexity of 2-server PIR s
hemes, by 
ombining our Theorem 12and Theorem 6 of Katz and Trevisan [21℄. We restate their theorem here for the PIR setting. Forthe remainder of this se
tion, we assume " to be some �xed positive 
onstant.Theorem 13 (Katz & Trevisan) Every 2-server PIR s
heme with t-bit queries and a-bit an-swers has t � 2 log na �O(1):We now prove the following lower bound on the total 
ommuni
ation C = 2(t + a) of any2-server PIR s
heme with t-bit queries and a-bit answers:Theorem 14 Every 2-server PIR s
heme has total 
ommuni
ationC � (4:4� o(1)) logn:Proof. We distinguish three 
ases, depending on the answer length of the s
heme. Let Æ =log logn= log n.
ase 1: a � (0:2 � Æ) log n. Then from Theorem 12 we get that C � t = 
(n5Æ) = 
((log n)5).
ase 2: (0:2 � Æ) log n < a < 2:2 log n. Then from Theorem 13 we haveC = 2(t+ a) > 2 (2 log(n=(2:2 log n))�O(1) + (0:2� Æ) log n) = (4:4� o(1)) logn:
ase 3: a � 2:2 log n. Then obviously C = 2(t+ a) � 4:4 log n. 25.4 Upper Bounds for Quantum PIRThe best known LDCs are derived from 
lassi
al PIR s
hemes with 1-bit answers where the outputis the XOR of the 1-bit answers that the user re
eives. By allowing quantum queries, we 
anredu
e the number of queries by half to obtain more eÆ
ient LQDCs. Similarly, we 
an also turnthe underlying 
lassi
al k-server PIRs dire
tly into quantum PIRs with k=2 servers.Most interestingly, there exists a 4-server PIR with 1-bit answers and 
ommuni
ation 
om-plexity O(n3=10) [8, Example 4.2℄. This gives us a quantum 2-server PIR s
heme with O(n3=10)
ommuni
ation, improving upon the 
ommuni
ation required by the best known 
lassi
al 2-serverPIR s
heme, whi
h has been O(n1=3) ever sin
e the introdu
tion of PIR by Chor et al. [11℄. In theintrodu
tion we mentioned also some quantum upper bounds for k > 2 servers, whi
h are obtainedsimilarly.
19



6 Con
lusion and Open problemsThis paper is the �rst where a new 
lassi
al result is proved using te
hniques from quantum 
om-puting in an apparently essential way (at least, we don't know a 
lassi
al proof of the same result).Clearly, it would be very interesting to �nd other su
h appli
ations. This would mu
h broadenthe relevan
e of quantum 
omputing and make it less 
onditional on whether an a
tual quantum
omputer will ever be built.There are also many interesting open questions related to the tradeo�s between the variousparameters in LDCs. In parti
ular, it is still open whether one 
an a
hieve m = poly(n) LDCs usingonly a 
onstant (or even sublogarithmi
) number of queries. We would like to obtain better lowerbounds for q > 2 queries and explore the 
onne
tions of LDCs to other 
ombinatorial 
onstru
tions.Similarly, the main 
omplexity questions about general PIR s
hemes are still wide open, evenfor the 2-server 
ase if we don't restri
t the answer size. The O(n1=3)-proto
ol of [11℄ has been thebest known for a long time for the 2-server 
ase, and it would be very ni
e to show that this is
lose to optimal. Finally, we exhibited 2-server quantum PIR s
hemes that are more eÆ
ient thanthe best known 
lassi
al ones. It would be very interesting to improve these further, and to provethat QPIR is more eÆ
ient than the best (rather than the best known) 
lassi
al PIR s
hemes.A
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essprobability 9=10 using only one quantum query, and that this is optimal for fun
tions like AND
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and OR.3 If f is 
onstant or depends on only one of its 2 input bits x1 and x2, then we 
an obviously
ompute it with one query. If f is PARITY or its negation, then it is well known that f 
an be
omputed exa
tly with one quantum query. The only remaining 
ase is where f is an imbalan
edfun
tion, i.e. has one 1-input and three 0-inputs, or vi
e versa. These 8 possible fun
tions are allequivalent, so we will restri
t attention to the NOR-fun
tion, whi
h is 1 i� x = 00.Peter H�yer dis
overed the following algorithm for doing the 2-bit NOR with 1 quantum queryand error probability " = 1=10. Using one quantum query we 
an obtain the state1p3 (j0i + (�1)x1 j1i+ (�1)x2 j2i) :We now use a 2-out
ome measurement where the �rst operator is the proje
tion on the uniformsuperposition. We output 1 i� the measurement gives the �rst out
ome. This has error probability0 on the x = 00 input (where NOR = 1), and error probability 1=9 on ea
h of the three otherinputs. We 
an balan
e this to an algorithm with 2-sided error 1=10, by produ
ing output 0 withprobability 1=10, and running the above 1-query algorithm with probability 9=10.We will now prove that his error " = 1=10 is optimal. By the analysis of [4℄, the amplitudes ofthe �nal state of a 1-query quantum algorithm are degree-1 polynomials in the input variables, sothe a

eptan
e probability of the algorithm is a polynomialp(x1; x2) =Xj jaj + bj(�1)x1 + 
j(�1)x2 j2 ;where j ranges over all basis states that would yield a 1 as output, and the aj; bj ; 
j are 
omplexnumbers that are independent of the input. Let a = (aj) be the ve
tor of ajs, k a k = phajai itsEu
lidean norm, and similarly for b and 
. If the algorithm has error probability � ", then we havethe following four 
onditions, one for ea
h of the possible inputs:(A) 1� " � p(0; 0) = k a+ b+ 
 k2(B) p(0; 1) = k a+ b� 
 k2 � "(C) p(1; 0) = k a� b+ 
 k2 � "(D) p(1; 1) = k a� b� 
 k2 � "Averaging (B) and (C) givesk a k2 + k b� 
 k2 � "; hen
e k a k � p":Triangle inequality and (D) givesk b+ 
 k � k a k � k a� b� 
 k � p"; hen
e k b+ 
 k � k a k+p" � 2p":Subtra
ting (D) from (A), and using Cau
hy-S
hwarz, gives1� 2" � 4jhajb+ 
ij � 4k a k � k b+ 
 k � 4 � p" � 2p" = 8";hen
e " � 1=10.3Unlike our 11=14 solution in Lemma 1, the query of the optimal 9=10 algorithm will depend on f . This meansthat we 
annot dire
tly use this algorithm in the PIR-
ontext, as the query 
ould leak information about f (andhen
e possibly about i) to the server. 23



B Lower Bound for Quantum Random A

ess CodesAs de�ned in Se
tion 3.2, a quantum random a

ess 
ode is an en
oding x 7! �x, su
h that anybit xi 
an be re
overed with some probability p � 1=2 + " from �x. Below we reprove Nayak's [27℄linear lower bound on the length m of su
h en
odings.We assume familiarity with the following notions from quantum information theory, see [28,Chapters 11 and 12℄ for details. Very brie
y, if we have a bipartite quantum system AB (given bysome density matrix), then we use A and B to denote the states (redu
ed density matri
es) of theindividual systems. S(A) = �Tr(A logA) is the (Von Neumann) entropy of A, whi
h is the Shannonentropy of the probability distribution given by the eigenvalues of A. S(AjB) = S(AB) � S(B) isthe 
onditional entropy of A given B; and S(A : B) = S(A) + S(B)� S(AB) = S(A) � S(AjB) isthe mutual information between A and B.We de�ne an n+m-qubit state XM as follows:12n Xx2f0;1gn jxihxj 
 �x:We use X to denote the �rst subsystem, Xi for its individual bits, andM for the se
ond subsystem.By [28, Theorem 11.8.4℄ we haveS(XM) = n+ 12n Xx S(�x) � n = S(X):Sin
e M has m qubits we have S(M) � m, hen
eS(X :M) = S(X) + S(M)� S(XM) � S(M) � m:Using a 
hain rule for relative entropy, and the (highly non-trivial) subadditivity of Von Neumannentropy we get S(XjM) = nXi=1 S(XijX1 : : : Xi�1M) � nXi=1 S(XijM):Sin
e we 
an predi
t Xi from M with su

ess probability p, Fano's inequality impliesH(p) � S(XijM):In fa
t, Fano's inequality even applies under the weaker assumption that the su

ess probability inpredi
ting xi is p only when averaged over all x. Putting the above equations together we obtain(1�H(p))n � S(X) � nXi=1 S(XijM) � S(X)� S(XjM) = S(X :M) � m:
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