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Abstract

We study a quantum analogue of locally decodable error-correcting codes. A q-query locally
decodable quantum code encodes n classical bits in an m-qubit state, in such a way that each of
the encoded bits can be recovered with high probability by a measurement on at most q qubits
of the quantum code, even if a constant fraction of its qubits have been corrupted adversarially.
We show that such a quantum code can be transformed into a classical q-query locally decod-
able code of the same length that can be decoded well on average (albeit with smaller success
probability and noise-tolerance). This shows, roughly speaking, that q-query quantum codes
are not significantly better than q-query classical codes, at least for constant or small q.

1 Introduction

1.1 Setting

Locally decodable codes (LDCs) have received much attention in the last decade. They are error-
correcting codes that encode n bits into m bits, with the usual error-correcting properties, and the
additional feature that any one of the n encoded bits can be recovered (with high probability) by a
randomized decoder that queries at most q bits in the codeword, for some small q. In other words,
to decode small parts of the encoded data, we only need to look at a small part of the codeword
instead of “unpacking” the whole thing. Precise definitions will be given in the next sections.
Such codes are potentially useful in their own right (think of decoding small pieces from a large
encoded library), and also have a variety of applications in complexity theory and cryptography.
For instance, it is well known that they can be turned into private information retrieval schemes
and vice versa (see the appendix). For further details about such connections, we refer to Trevisan’s
survey [Tre04] and the references therein.

The most interesting question about LDCs is the tradeoff between their length m and the
number of queries q. The former measures the space efficiency of the code, while the latter measures
the efficiency of decoding. The larger we make q, the smaller we can make m. On one extreme, if
we allow q = polylog(n) queries, the codelength m can be made polynomial in n [BFLS91]. On the
other extreme, for q = 1 and sufficiently large n, LDCs do not exist at all [KT00]. For q = 2 they
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do exist but need exponential length, m = 2Θ(n) [KW04]. Between these two extremes, interesting
but hard questions persist. In particular, we know little about the length of LDCs with constant
q > 2. The best upper bounds for q = 3 are Yekhanin’s recent construction [Yek07]: he gives 3-

query LDCs with length m = 2O(n1/t) for every Mersenne prime p = 2t − 1. Currently only finitely
many Mersenne primes are known (the largest has t = 32582657), but it has been conjectured that
there are infinitely many. For q > 3, shorter codes may be derived by combining Yekhanin’s codes
with the recursive constructions of Beimel et al. [BIKR02]. However, all these bounds still have
superpolynomial length m for every constant q. On the lower bound side, the best we know for
q > 2 is m = Ω

(
(n/ log n)1+1/(⌈q/2⌉−1)

)
[KT00, KW04, Woo06] (these bounds are stated for fixed

success probability and noise rate). For instance for q = 3 and q = 4, our best lower bounds are
slightly less than n2.

Interestingly, the best known lower bounds were obtained using tools from quantum information
theory. It is thus a natural question to consider also the potential positive effects of quantum: can
we construct much shorter q-query locally decodable codes by somehow harnessing the power of
quantum states and quantum algorithms? There are two natural ways to generalize classical locally
decodable codes to the quantum world:

• We can keep the code classical, but allow q quantum queries. This means we can query
positions of the codeword in quantum superposition, and process the results using quantum
circuits. This approach was investigated in [KW04]. A q-query quantum decoder can simulate
a 2q-query classical decoder with high success probability, and this simulation can be made
exact if the classical decoder took the parity of its 2q bits. This implies for instance that
Yekhanin’s 3-query LDC can be decoded by only 2 quantum queries. In contrast, we know
that every 2-query LDC needs length 2Θ(n). Allowing quantum queries thus results in very
large savings in m when we consider a fixed number of queries q.

• We can also make the code itself quantum: instead of encoding an n-bit x into an m-bit
string C(x), we could encode it into an m-qubit state Q(x). A q-query decoder for such a
code would select up to q qubits of the state Q(x), and make some 2-outcome measurement
on those qubits to determine its output. In this case our notion of noise also needs to be
generalized: instead of up to δm bitflip-errors, we now allow any set of up to δm qubits of
the m-qubit state Q(x) to be arbitrarily changed.1

1.2 Our results

In this paper we investigate the second kind of code, which we call a “q-query locally decodable
quantum code”, or q-query LDQC. The question is whether the ability to encode our n bits into a

1While a classical LDC can be reused as often as we want, a quantum code has the problem that a measurement
made to predict one bit changes the state, so predicting another bit based on the changed state may give the wrong
results. However, if the error probability is small then the changes incurred by each measurement will be small as
well, and we can reuse the code many times with reasonable confidence.

Another issue is that more general decoders could be allowed. For instance, we could consider allowing any
quantum measurement on the m-qubit state that can be written as a linear combination of m-qubit Pauli-matrices
that have support on at most q positions. This is potentially stronger than what we do now (it is an interesting
open question whether it is really stronger). However, we feel this is a somewhat unnatural formalization of the idea
that a measurement should be localized to at most q qubits. Our current set-up, where we classically select up to q

positions and then apply an arbitrary quantum measurement to those q qubits, seems more natural.

2



quantum state enables us to make codes much shorter. There are some small examples where quan-
tum encodings achieve things that are impossible for classical encodings. For example, Ambainis
et al. [ANTV02] give an example of an encoding of 2 classical bits into 1 qubit, such that each of
the bits—though not both simultaneously—can be recovered from the qubit with success probabil-
ity 0.85. They even cite an example due to Chuang where 3 bits are encoded into 1 qubit, and each
bit can be recovered with success probability 0.78. However, they also show that asymptotically
large savings are not possible in their setting of random access codes (explained in Section 3.4
below).

Their setting, however, considers neither noise nor local decodability, and hence does not answer
our question about locally decodable codes: can LDCs be made significantly shorter if we allow
quantum instead of classical encodings? Our main result in this paper is a negative answer to
this question: essentially it says that q-query locally decodable quantum codes can be turned into
q-query locally decodable classical codes of the same length, with some deterioration in their other
parameters. The precise statement of this result (Corollaries 9 and 10) is a little bit dirty. We
obtain a cleaner statement for so-called “smooth (quantum) codes”, which have the property that
they query the codewords fairly uniformly. These smooth (quantum) codes can be converted into
LD(Q)Cs and vice versa. For these, the precise statement is as follows (Theorem 7).

Suppose we are given a smooth quantum code of m qubits from which we can recover (with
success probability at least 1/2 + ε) each bit xi of the encoded n-bit string x, while only looking
at q qubits of the state. Let µ be a distribution on the n-bit inputs. Then we can construct
a randomized classical code R of the same length (for each x, the “codeword” is a distribution
over m-bit strings) from which we can recover each xi with µ-average success probability at least
1/2+ ε/4q+1, while only looking at q bits of the codeword. Thus a q-query quantum code is turned
into a q-query classical code of the same length. For those who do not like the idea of encoding x
into a distribution R(x), we can turn the randomized code R into a deterministic code C, where
C(x) is a fixed m-bit codeword instead of a distribution, at the expense of correctly decoding only
a constant fraction of all indices i instead of all n of them (Corollary 8).

Since all known lower bounds on LDCs also apply to randomized classical codes that work well
under a uniform distribution µ on the n-bit strings, those lower bounds immediately carry over to
LDQCs. In particular we obtain as corollaries of our result:

• For sufficiently large n, 1-query LDQCs do not exist for any length m (from [KT00]).2

• 2-query LDQCs need length m = 2Θ(n) (from [KW04]).

• For every constant q, q-query LDQCs need length m = Ω
(
(n/ log n)1+1/(⌈q/2⌉−1)

)
(from [KW04]).

Techniques. Our main technique is to apply to the m qubits of the quantum code a randomly
selected sequence of m Pauli measurements. The randomized “codeword” R(x) will be the probabil-
ity distribution on m-bit outcomes that results from applying such a measurement to the quantum
state Q(x). The main part of our proof is to show that there exists a choice of Pauli measurements
that roughly preserves correct decodability for all indices i.

2Actually, this result can more easily be shown directly, by combining Katz and Trevisan’s proof for classical codes
with the quantum random access code lower bound mentioned below in Section 3.4.
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2 Preliminaries

We write [n] for the set {1, . . . , n}. We use P(S) to denote the set of all probability distributions (or
random variables) on set S. If z is distributed according to the distribution of a random variable
Z, we write z ∼ Z. We will use this when taking probabilities Prz∼Z or expectations Ez∼Z .
Probabilities and expectations with a subscript ‘i ∈ S’ should be read as taken over a uniformly
random i ∈ S. Below we give a brief overview of the concepts of quantum mechanics used here,
see [NC00, Pre07] for more extensive introductions.

Quantum states. In quantum mechanics, a physical system is mathematically represented by
a complex Hilbert space. A d-dimensional complex Hilbert space consists of all d-dimensional
vectors with complex entries, endowed with the standard inner product. The state of a physical
system is in turn represented by a density operator (a positive semidefinite linear operator with
trace 1) acting on a Hilbert space. We use B1

+(Hd) to denote the set of all density operators on
a d-dimensional complex Hilbert space. States in two-dimensional Hilbert spaces are called qubits.
Density operators of rank 1 are called pure states.

Measurements. Information about the state of a physical system can only be obtained by doing
a measurement. The most general k-outcome measurement can be defined as a set {A1, . . . , Ak} of
k positive semidefinite matrices that satisfy

∑k
i=1 Ai = I. The probability that the measurement of

a system in a state ρ yields the i’th outcome is Tr(Aiρ). Hence, the measurement yields a random
variable A(ρ) with Pr[A(ρ) = i] = Tr(Aiρ). With a measurement that has outcomes +1 and −1
(and corresponding operators A+ and A−) we associate an operator A = A+ − A−. The expected
value of this measurement on a state ρ is then Tr(Aρ). Note that this equals the difference between
the probabilities of outcomes +1 and −1, respectively.

Pauli matrices. The one-qubit Pauli operators are given by

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, and Z =

(
1 0
0 −1

)
.

For integer k ≥ 1, the set of k-qubit Pauli operators is Pk := {I,X, Y, Z}⊗k. These 4k matrices form
an orthonormal basis for the space of all 2k × 2k complex matrices endowed with the inner product
〈A,B〉 = 1

2k Tr(A†B). Each Pauli operator S ∈ Pk has a unique decomposition S = S+ − S−, with
S+ and S− orthogonal projectors that satisfy S+ + S− = I. For this reason we associate a unique
two-outcome measurement {S+, S−} with each such S. A Pauli measurement S ∈ Pk of a k-qubit
state ρ yields a ±1-valued random variable S(ρ) with expected value Tr(Sρ). However, we can
also view S ∈ Pk as k separate one-qubit Pauli measurements, to be applied to the k qubits of the
state, respectively. When viewed in this way, the result of measuring ρ is an k-bit random variable,
i.e., a probability distribution on {±1}k. The product of those k bits equals the ±1-valued random
variable S(ρ) mentioned before.

Super-operators. A super-operator is a mathematical representation of the most general trans-
formation of a quantum state allowed by the laws of quantum mechanics. A super-operator E
can be defined by a finite set {E1, . . . , Ek} of linear operators (known as Kraus operators) that

satisfy
∑k

i=1 E†
i Ei = I. The corresponding operation on a state ρ yields another density operator,
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E(ρ) =
∑k

i=1 EiρE†
i . This E(ρ) may act on a Hilbert space of a possibly different dimension, though

we will not need that here. We say that E “acts trivially” on, say, the first qubit of the state if all
its Kraus operators have the form Ei = I ⊗ E′

i for some E′
i acting on all but the first qubit.

3 Codes

It will be convenient to write bits as ±1 instead of 0/1. With this convention, if random variable
A ∈ {±1} predicts bit xi ∈ {±1}, we can write the bias of this prediction as an expectation:
E[A · xi] = Pr[A = xi] − Pr[A 6= xi]. Note that Pr[A = xi] ≥ 1/2 + ε iff E[A · xi] ≥ 2ε.

3.1 Classical codes

We start with classical codes. The formal definition of a locally decodable code is as follows. It
involves a decoder A that receives input i ∈ [n] and oracle access to a string y ∈ {±1}m, usually
written as a superscript to A. This y will be a codeword C(x) ∈ {±1}m corrupted by some “error
string” E ∈ {±1}m, which negates some of the bits of C(x) (below, C(x)◦E denotes the entry-wise
product of the two m-bit vectors C(x) and E). The oracle “queries index j ∈ [m]” if it reads the
j’th bit of y. We use Ay(i) to denote the ±1-valued random variable that is the algorithm’s output.

Definition 1 (Locally decodable code). A function C : {±1}n → {±1}m is a (q, δ, ε)-locally
decodable code if there exists a probabilistic oracle algorithm A such that

1. For every x ∈ {±1}n, every i ∈ [n], and every E ∈ {±1}m with at most δm −1’s, we have
Pr[AC(x)◦E(i) = xi] ≥ 1/2 + ε, where the probability is taken over the internal coin tosses
of A.

2. A queries at most q indices of y. Queries are made non-adaptively, meaning that the indices
to be queried are all selected before the querying starts.

An algorithm A satisfying the above is called a (q, δ, ε)-local decoder for C.

Since any δm indices can be corrupted, a local decoder must query the indices fairly uniformly.
Otherwise, an adversary could choose to corrupt the most queried part of the code and ruin the
decoder’s success probability. Motivated by this property, Katz and Trevisan [KT00] defined a
variation of a locally decodable code called a smooth code, defined only for uncorrupted codewords.

Definition 2 (Smooth code). A function C : {±1}n → {±1}m is a (q, c, ε)-smooth code if there
exists a probabilistic oracle algorithm A such that:

1. For every x ∈ {±1}n and i ∈ [n], we have Pr[AC(x)(i) = xi] ≥ 1/2 + ε.

2. For every i ∈ [n] and j ∈ [m], we have Pr[A(·)(i) queries index j] ≤ c/m.

3. A queries at most q indices (non-adaptively).

An algorithm satisfying the above is called a (q, c, ε)-smooth decoder for C.

Katz and Trevisan showed that LDCs and smooth codes are essentially equivalent, in the sense
that a decoder for one can be transformed into a decoder for the other. We will prove the same for
quantum codes in Section 3.3, using essentially their proof.
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3.2 Randomized codes

Here we define our first generalization, incorporating randomness into the definition of the code. A
randomized locally decodable code (randomized LDC) maps {±1}n to random variables over {±1}m

(rather than fixed codewords), such that any xi can be decoded well using a constant number of
queries, even if up to δm indices are corrupted. The formal definition is as follows.

Definition 3 (Randomized locally decodable code). A function R : {±1}n → P({±1}m) is a
(q, c, ε)-randomized locally decodable code if there exists a probabilistic oracle algorithm A such
that:

1. For every x ∈ {±1}n, every i ∈ [n], and every E ∈ {±1}m with at most δm −1’s, we have
Pr[AR(x)◦E(i) = xi] ≥ 1/2 + ε, where the probability is taken over the internal coin tosses
of A as well as the distribution R(x).

2. A queries at most q indices (non-adaptively).

An algorithm A satisfying the above is called a (q, δ, ε)-randomized local decoder for R.

Similarly, we define a randomized smooth code:

Definition 4 (Randomized smooth code). A function R : {±1}n → P({±1}m) is a (q, c, ε)-
randomized smooth code if there exists a probabilistic oracle algorithm A such that:

1. For every x ∈ {±1}n and every i ∈ [n], we have Pr[AR(x)(i) = xi] ≥ 1/2 + ε.

2. For every i ∈ [n], and every j ∈ [m], we have Pr[A(·)(i) queries index j] ≤ c/m.

3. A queries at most q indices (non-adaptively).

An algorithm A satisfying the above is called a (q, c, ε)-randomized smooth decoder for R.

It will be convenient to also have a version of these codes that are only required to work well
on average, instead of for all x:

Definition 5 (µ-average codes). Let µ be a distribution on {±1}n. A function C : {±1}n → {±1}m

is a µ-average (q, δ, ε)-locally decodable code if Definition 1 holds with the first clause replaced by:

1. For every i ∈ [n] and E ∈ {±1}m with at most δm −1’s, Prx∼µ[AC(x)◦E(i) = xi] ≥
1
2 + ε.

Analogously, we define µ-average versions of smooth codes, randomized LDCs, and randomized
smooth codes. For these codes, we assume without loss of generality that for each i and queried set
r ⊆ [m], the decoder A always uses the same function fi,r : {±1}q → {±1} to determine its output.

A µ-average randomized smooth code can actually be “derandomized” to a µ-average smooth
code on a smaller number of bits:

Lemma 1. Let R : {±1}n → P({±1}m) be a µ-average (q, c, ε)-randomized smooth code. Then
there exists a µ-average (q, c, ε/2)-smooth code C : {±1}n → {±1}m for at least εn of the indices i
(that is, a smooth code with µ-success probability at least 1/2+ ε/2 for at least εn of the n indices).
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Proof: As a first step we will view R as a function to strings: there exists a random variable W
(over some possibly infinite set W) and a function R : {±1}n ×W → {±1}m such that for every
x ∈ {±1}n, the random variables R(x,W ) and R(x) are the same. A decoder A for R also works
for R(·,W ), so we have bias Ex∼µ,w∼W [AR(x,w)(i) · xi] ≥ 2ε for every i ∈ [n]. For every i ∈ [n] and
w ∈ W, define variables Xi,w ∈ {0, 1}, with

Xi,w = 1 ⇐⇒ Ex∼µ[AR(x,w)(i) · xi] ≥ ε,

and Xw :=
∑n

i=1 Xi,w. Using the definition of a µ-average randomized smooth code, we have

2εn ≤
n∑

i=1

Ex∼µ,w∼W [AR(x,w)(i) · xi]

= Ew∼W

[
n∑

i=1

Ex∼µ[AR(x,w)(i) · xi]

]

< Ew∼W [Xw + (n − Xw)ε]

= εn + (1 − ε)Ew∼W [Xw].

Hence Ew∼W [Xw] ≥ εn. Thus there exists a w ∈ W such that for at least εn of the n indices i, we
have Ex∼µ[AR(x,w)(i) · xi] ≥ ε, equivalently, Ex∼µ[Pr[AR(x,w)(i) = xi]] ≥ 1/2 + ε/2. Defining the
code C(·) := R(·, w) gives the lemma.

3.3 Quantum codes

Our second level of generalization brings quantum mechanics into the picture: now our code maps
classical n-bit strings to m-qubit quantum states. Decoding of these codes requires algorithms that
use both quantum measurements and properties of classical probabilistic oracle algorithms. Below,
with “quantum oracle algorithm” we mean an algorithm A with oracle access to an m-qubit state ρ,
which is written as a superscript. This ρ could be a corrupted version of an m-qubit “codeword”
Q(x), obtained by applying some super-operator E to Q(x). This E should only affect a δ-fraction
of the m qubits. This way of modelling the error generalizes the classical case: a classical error
pattern E ∈ {±1}m corresponds to a super-operator E that applies an X to the qubits at positions
where E has a −1, and I to the positions where E has a +1. On input i ∈ [n], the algorithm
probabilistically selects a set r ⊆ [m] of at most q indices of qubits of this state, and applies a
two-outcome measurement to the selected qubits with operators A+

i,r and A−
i,r. As before, we will

use “Aρ(i)” to denote the ±1-valued random variable that is the output. We say that “A queries
r”, and “A queries index j” if j is in r. Note that such algorithms are non-adaptive by definition:
they first select the qubits in r, and then apply one measurement to those qubits.

We now define a locally decodable quantum code (LDQC) as follows:

Definition 6 (Locally decodable quantum code). A function Q : {±1}n → B1
+(H2m) is a (q, δ, ε)-

locally decodable quantum code if there exists a quantum oracle algorithm A such that:

1. For every x ∈ {±1}n, every i ∈ [n], and every super-operator E that acts non-trivially on at
most δm qubits, we have Pr[AE(Q(x))(i) = xi] ≥ 1/2 + ε, where the probability is taken over
the coin tosses and measurements in A.

2. A queries at most q indices (non-adaptively).
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An algorithm A satisfying the above requirements is called a (q, δ, ε)-local quantum decoder for Q.

LDQCs generalize randomized LDCs, because probability distributions are just diagonal density
operators. Similarly, we can establish a smoothness property also for quantum codes:

Definition 7 (Smooth quantum code). A function Q : {±1}n → B1
+(H2m) is a (q, c, ε)-smooth

quantum code if there exists a quantum oracle algorithm A such that:

1. For every x ∈ {±1}n and every i ∈ [n], we have Pr[AQ(x)(i) = xi] ≥ 1/2 + ε.

2. For every i ∈ [n] and every j ∈ [m], we have Pr[A(·)(i) queries index j ] ≤ c/m.

3. A queries at most q indices (non-adaptively).

An algorithm A satisfying the above is called a (q, c, ε)-smooth quantum decoder for Q.

As Katz and Trevisan [KT00] did for classical LDCs, we can establish a strong connection
between LDQCs and smooth quantum codes. Either one can be used as the other, as the next
theorems show. Analogues of these theorems also hold between randomized LDCs and randomized
smooth codes, and between the µ-average versions of these codes.

Theorem 2. Let Q : {±1}n → B1
+(H2m) be a (q, c, ε)-smooth quantum code. Then, as long as

δ ≤ ε/c, we have that Q is also a (q, δ, ε − δc)-locally decodable quantum code.

Proof: Let A be a (q, c, ε)-smooth quantum decoder for Q. Suppose we run it on E(Q(x)) with
at most δm corrupted qubits. The probability that A queries a specific qubit is at most c/m.
Then by the union bound, the probability that A queries any of the corrupted qubits is at most
δmc/m = δc. Hence A itself is also a (q, δ, ε − δc)-local quantum decoder for Q.

Theorem 3. Let Q : {±1}n → B1
+(H2m) be a (q, δ, ε)-locally decodable quantum code. Then Q is

also a (q, q/δ, ε)-smooth quantum code.

Proof: Let A be a (q, δ, ε)-local quantum decoder for Q. For each i ∈ [n], let pi(j) be the probability
that on input i, A queries qubit j. Let Hi = {j | pi(j) > q/(δm)}. Then |Hi| ≤ δm, because A
queries no more than q indices. Let B be the quantum decoder that simulates A, except that
on input i it does not query qubits in Hi, but instead acts as if those qubits are in a completely
mixed state. Then B does not measure any qubit j with probability greater than q/(δm). Also, B’s
behavior on input i and Q(x) is the same as A’s behavior on input i and E(Q(x)) that is obtained
by replacing all qubits in Hi by completely mixed states. Since E acts non-trivially on at most
|Hi| ≤ δm qubits, we have Pr[BQ(x)(i) = xi] = Pr[AE(Q(x))(i) = xi] ≥ 1/2 + ε.

3.4 A weak lower bound from random access codes

We can immediately establish a weak lower bound on the length of LDQCs and smooth quantum
codes by considering a quantum random access code (QRAC) [ANTV02], which generalizes both.

Definition 8 (Quantum random access code). A function Q : {±1}n → B1
+(H2m) is an (n,m, ε)-

quantum random access code if there exists a quantum oracle algorithm A such that for every
x ∈ {±1}n and i ∈ [n], Pr[AQ(x)(i) = xi] ≥ 1/2 + ε. An algorithm A that satisfies this is called a
quantum random access decoder for Q.
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LDQCs and smooth quantum codes are QRACs with some additional properties, such as con-
straints on the way the qubits of the codeword are accessed. Hence the following well-known lower
bound on the length of QRACs also holds for them.

Theorem 4 (ANTV [ANTV02, Nay99]). Every (n,m, ε)-QRAC satisfies m ≥ (1 − H(1/2 + ε))n.

4 Pauli decoding from disjoint subsets

In this section we consider a (q, c, ε)-smooth quantum code Q. Fix a distribution µ on {±1}n. We
will show that there exists a sequence S∗ ∈ Pm such that if the m qubits of Q(x) are measured
by the m Pauli measurements in S∗, then each xi can be retrieved by querying only q bits of the
m-bit measurement outcome S∗(Q(x)), in a very structured way. Specifically, we prove:

Theorem 5. Let Q : {±1}n → B1
+(H2m) be a (q, c, ε)-smooth quantum code and µ be a distribution

on {±1}n. Then there exists a sequence S∗ ∈ Pm, and for every i ∈ [n] a set Mi of at least εm/(qc)
disjoint sets r ⊆ [m] (each of size at most q) with associated signs ai,r ∈ {±1}, such that

Ex∼µ


 1

|Mi|

∑

r∈Mi

Pr
[
ai,r

∏

j∈r

S∗
j (Q(x)) = xi

]

 ≥

1

2
+

ε

4q+1
.

The proof consists of two parts. We start by constructing the sets Mi and then we show that
decoding Q can be done by using only Pauli measurements. Putting these two observations together
enables us to prove Theorem 5.

As an aside, the fact that this theorem works for every distribution µ allows us to turn smooth
codes into schemes for private information retrieval (PIR) that work for every x ∈ {±1}n instead
of only on average. We explain this in Appendix A.

4.1 Decoding from disjoint subsets

First we construct the large sets Mi of disjoint q-sets that enable reasonably good prediction of xi.

Theorem 6 (modified from Lemma 4 in [KT00]). Let Q : {±1}n → B1
+(H2m) be a (q, c, ε)-smooth

quantum code with decoder A, and µ a distribution on {±1}n. Then for every i ∈ [n] there exists
a set Mi of at least εm/(qc) disjoint sets r ⊆ [m] (each of size at most q) satisfying

Prx∼µ[AQ(x)(i) = xi | A
(·)(i) queries r] ≥

1

2
+

ε

2
.

Proof: Call a set r ⊆ [m] “good for i” if it satisfies the inequality stated in the theorem. Define
for every i ∈ [n] a hypergraph Hi = (V,Ei) with vertex-set V = [m] and a set of hyperedges
Ei := {e | e is good for i}. Say that a smooth quantum decoder A for Q “queries Ei” if A queries
an e ∈ Ei. Let p(e) := Pr[A(·)(i) queries e]. Then the probability that this decoder queries Ei is
p(Ei) :=

∑
e∈Ei

p(e). For all e 6∈ Ei we have

Pr[AQ(x)(i) = xi | A
(·)(i) queries e] <

1

2
+

ε

2
.
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But since for every x and i, A decodes bit xi with probability at least 1/2 + ε, we have

1

2
+ ε ≤ Pr[AQ(x)(i) = xi] < p(Ei) + (1 − p(Ei))(

1

2
+

ε

2
) =

1

2
+

ε

2
+ p(Ei)(

1

2
−

ε

2
).

Hence p(Ei) > ε/(1 − ε) ≥ ε. Since Q is a smooth quantum code, we know that the probability
that A queries an index j is

∑
e∈Ei|j∈e p(e) = Pr[A(·)(i) queries j] ≤ c/m.

Let Mi be a maximal set of disjoint hyperedges in Hi, and define the vertex set T = ∪e∈Mie.
Note that T has at most q|Mi| elements and that it intersects each e ∈ Ei (since otherwise |Mi|
would not be maximal). We can now lower bound the size of Mi as follows:

ε < p(Ei) =
∑

e∈Ei

p(e)
(∗)

≤
∑

j∈T

∑

e∈Ei|j∈e

p(e) ≤
c|T |

m
≤

cq|Mi|

m
,

where (∗) holds because each e ∈ Ei is counted exactly once on the left hand side, and at least once
on the right-hand side (since T intersects each e ∈ Ei). Hence |Mi| > εm/(qc).

4.2 Pauli decoding

In the second part of the proof of Theorem 5, we find the appropriate Pauli measurements. Recall
that to decode xi, a smooth quantum decoder first selects a set r ⊆ [m] of at most q indices, and then
applies some measurement with operators A+

i,r, A
−
i,r to determine its output. Let Ai,r = A+

i,r −A−
i,r.

Strictly speaking these operators act only on the qubits indexed by r, but we can view them as
acting on the m-qubit state Q(x) by tensoring them with m−|r| identities. The difference between
the probabilities of obtaining outcomes +1 and −1 is Tr(Ai,r ·Q(x)). For every i ∈ [n] and r ∈ Mi

we define the following bias:

B(i, r) := Ex∼µ[Tr(Ai,r · Q(x)) · xi].

This measures how well the measurement outcome is correlated with xi (with x weighted according
to µ). From Theorem 6 we have B(i, r) ≥ ε for every i ∈ [n] and every r ∈ Mi.

Since Pq is a basis for all 2q × 2q complex matrices we can write

Ai,r =
∑

S∈Pq

Âi,r(S)S,

with Âi,r(S) := 〈Ai,r, S〉 = 1
2q Tr(Ai,r · S) ∈ [−1, 1]. We now have:

ε ≤ B(i, r) =
∑

S∈Pq

Âi,r(S)Ex∼µ[Tr(S · Q(x)) · xi] ≤
∑

S∈Pq

|Ex∼µ[Tr(S · Q(x)) · xi]| . (1)

Suppose we measure the r-qubits of Q(x) with some S ∈ Pq and get outcome b ∈ {±1}. The
quantity Ex∼µ[Tr(S · Q(x)) · xi] is the difference between Prx∼µ[b = xi] and Prx∼µ[b 6= xi]. If we
output b if this difference is nonnegative, and −b otherwise, then we would predict xi with bias

B′(i, S, r) := |Ex∼µ[Tr(S · Q(x)) · xi]| .

From Equation (1) we know that this bias is at least ε/4q for at least one “good” S ∈ Pq. Hence,
with some loss in success probability, we can decode Q by only using Pauli measurements. We now
use a probabilistic argument to prove that a good sequence S∗ of Pauli measurements exists, which
is simultaneously good, for every i ∈ [n], for most of the elements r ∈ Mi.

10



Proof (of Theorem 5): Suppose we let S ∈ Pq be a random variable uniformly distributed over
Pq, and we use it to predict xi as above. Then B′(i,S, r) is a random variable in the interval [0, 1],
with expectation

ES∈Pq [B
′(i, S, r)] =

1

4q

∑

S∈Pq

|Ex∼µ[Tr(S · Q(x)) · xi]| ≥
ε

4q
.

Now we consider m-qubit Pauli measurements and replace all elements not in r with I’s: for S ∈ Pm

and r ⊆ [m], let S(r) denote S with all its m−|r| elements outside of r replaced by I. If we let S be
uniform over Pm, we get biases B′(i,S(r), r) for each r ∈ Mi, each in [0, 1] and with expectation at
least ε/4q (over the choice of S(r)). But note that the random variables B′(i,S(r), r) are independent
from each other for different r ∈ Mi, since the elements of Mi are disjoint. Hence the average bias
over all r ∈ Mi,

B′(S, i) :=
1

|Mi|

∑

r∈Mi

B′(i,S(r), r),

is the average of |Mi| independent random variables, each in [0, 1] and with expectation at least
ε/4q. By a Chernoff bound3 the probability that B′(S, i) is much smaller than its expectation, is
small:

PrS∈Pm

[
B′(S, i) <

1

2

ε

4q

]
≤ PrS∈Pm

[
B′(S, i) <

1

2
E[B′(S, i)]

]
≤ exp

(
−
|Mi|ε

8 · 4q

)
.

By Theorems 4 and 6 we may assume |Mi| > 8 · 4q log(n)/ε. It follows that the above probability
is less than 1/n. Since this is true for every index i ∈ [n], the union bound gives

PrS∈Pm

[
∃i s.t. B′(S, i) <

1

2

ε

4q

]
≤

n∑

i=1

PrS∈Pm

[
B′(S, i) <

1

2

ε

4q

]
< 1.

We can thus conclude that there exists an S∗ ∈ Pm such that for every i ∈ [n] we have

1

|Mi|

∑

r∈Mi

B′(i, S∗
(r), r) ≥

1

2

ε

4q
.

This implies the statement of the theorem.

5 Classical codes from quantum codes

Theorem 5 implies that if we measure all m indices of a smooth quantum quantum code Q with
the elements of S∗, then we get distributions on {±1}m that can be massaged to “codewords” R(x)
of a randomized smooth code:

Theorem 7. Let Q : {±1}n → B1
+(H2m) be a (q, c, ε)-smooth quantum code. Then for every

input distribution µ on {±1}n, there exists a µ-average (q, qc/ε, ε/4q+1)-randomized smooth code
R : {±1}n → P({±1}m).

3See Equation (7) in [HR90]. A small modification of their proof shows that this bound not only holds for
independent 0/1-variables, but also for independent variables in the interval [0, 1].
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Proof: We use Theorem 5. Let R(x) be the distribution on {±1}m obtained by measuring Q(x)
with S∗. We define a decoder A for R as follows: on input i ∈ [m] and oracle y ∈ {±1}m, pick a
set r from the set Mi uniformly at random, and return ai,r

∏
j∈r yj. It is straightforward to check

that A is a µ-average (q, qc/ε, ε/4q+1) decoder for R; in particular, since A picks r uniformly from
a set of at least εm/(qc) disjoint sets, each index j ∈ [m] has probability at most qc/(εm) of being
queried.

Combining Lemma 1 and Theorem 7, we immediately get the following “derandomization”:

Corollary 8. Let Q : {±1}n → B1
+(H2m) be a (q, c, ε)-smooth quantum code. Then for every

distribution µ on {±1}n, there exists a C : {±1}n → {±1}m which is a µ-average (q, qc/ε, ε/(2 ·
4q+1))-smooth code for at least εn/4q+1 of the n indices.

Following the path through Theorems 3, 7, and the µ-average version of Theorem 2, we can
turn an LDQC into a µ-average randomized LDC:

Corollary 9. Let Q : {±1}n → B1
+(H2m) be a (q, δ, ε)-locally decodable quantum code. Then,

as long as δ′ ≤ δε2/(q24q+1), for every distribution µ over {±1}n, there exists an R : {±1}n →
P({±1}m) which is a µ-average (q, δ′, ε/4q+1 − δ′q2/(δε))-randomized locally decodable code.

Going through Theorem 3, Corollary 8, and the µ-average version of Theorem 2 instead, we
can also turn an LDQC into a µ-average LDC:

Corollary 10. Let Q : {±1}n → B1
+(H2m) be a (q, δ, ε)-locally decodable quantum code. Then, as

long as δ′ ≤ δε2/(2q24q+1), for every distribution µ over {±1}n, there exists a C : {±1}n → {±1}m

which is a µ-average (q, δ′, ε/(2 · 4q+1)− δ′q2/(δε))-locally decodable code for at least εn/4q+1 of the
n indices.

6 Conclusion and open problems

We defined quantum generalizations of q-query locally decodable codes in which q queries cor-
respond to a measurement on q qubits of the m-qubit codeword. By a reduction to (classical)
randomized smooth codes through a special sequence of Pauli measurements on an LDQC, we
showed that the use of quantum systems for this type of encoding can not provide much advantage
in terms of length, at least for small q. An obvious open problem is reducing the gap between
upper and lower bound on the length m of LDCs for fixed small number of queries q. Our results
show that an upper bound for LDQCs would carry over to (µ-average) LDCs. This might perhaps
be a way to improve the best known classical upper bounds on m.
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A PIR schemes from LDCs

Katz and Trevisan [KT00] showed that LDCs are closely related to so-called private information
retrieval (PIR) schemes, first introduced by Chor et al. [CGKS98]. In a PIR scheme, q non-
communicating “servers” each hold a copy of the same database x ∈ {±1}n. A “user” interacts
(usually in only one round of communication) with these servers to retrieve the i’th bit xi while
preserving privacy: individually, the servers should get no information whatsoever about which
index i the user is interested in. The resource to be minimized is the amount of communication
between user and servers.

Katz and Trevisan observed that a smooth code implies a PIR scheme where the user has good
recovery probability on average. Specifically, Theorem 6 gives a (q, q, ε2/(2c))-smooth decoder as
follows. We complete the set Mi to a set M ′

i of exactly m/q disjoint q-tuples (assume for simplicity
that q divides m). Now the decoder uniformly picks an r ∈ M ′

i and queries those q indices. If r
contains an element of Mi (which happens with probability at least ε/c) then the decoder proceeds
as before, predicting xi with probability at least 1/2+ε/2 (under µ); otherwise the decoder outputs
a fair coin flip. Note that for each i ∈ [n], the overall success probability (under µ) is at least
(ε/c)(1/2+ ε/2)+ (1− ε/c)/2 = 1/2+ ε2/(2c). Also, each index j ∈ [m] is queried with probability
exactly q/m. Thus we have a µ-average (q, q, ε2/(2c))-smooth code.

This in turn gives a PIR scheme with good success probability under µ: the user just sends one
query to each of the servers, the servers return the requested bit of the code, and the user gives
the same output as the code’s decoder. Since each query individually is uniformly distributed, no
information about i will be leaked to individual servers.4

However, we can actually show that there exists a (q, q, ε2/(2c))-smooth decoder that can decode
any bit xi for every x ∈ {±1}n, hence giving true PIR schemes that work for every database instead
of only on µ-average.

Theorem 11. Let C : {±1}n → {±1}m be a (q, c, ε)-smooth code. Then there exists a (q, q, ε2/(2c))-
smooth decoder for C.

Proof: Fix an i ∈ [n]. We will show that there exists a decoder B(i) such that for all x ∈ {±1}n

Pr[BC(x)(i) = xi] ≥
1

2
+

ε2

2c
.

Consider all possible pairs (M,F ), where M is a set of at least εm/(qc) disjoint sets r ⊆ [m], each
of size at most q, and F contains one Boolean function fr for each r ∈ M . Define a decoder A(M,F )

that decodes according to this pair, i.e., it queries a uniformly random r ∈ M and applies fr ∈ F
to the results. Define a matrix P , with rows indexed by all x and columns by pairs (M,F ):

Px,(M,F ) = Pr[A
C(x)
(M,F ) = xi].

Theorem 6 says that for every distribution µ over {±1}n, there exists a column of P (i.e., an (M,F )
pair) with µ-average at least 1/2 + ε/2.

For each x define 2n-dimensional 0/1-vector ex with a 1 only at position x, and similarly define
0/1-vector u(M,F ). For probability distributions µ (on the set of all x) and ν (on the set of all pairs

4The same argument works to derive PIR schemes from codes over a non-binary alphabet, where the servers’
answers are more than one bit. Conversely, one can get a smooth code from a one-round PIR scheme by, roughly
speaking, concatenating all answers of the q servers to all possible messages that the user can send them.
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(M,F )), define vectors eµ =
∑

x∈{±1}n µ(x)ex and uν =
∑

(M,F ) ν((M,F ))u(M,F ). Then Yao’s
principle (i.e., the minimax theorem as used in [Yao77]) gives us

1

2
+

ε

2
≤ min

µ
max
(M,F )

eT
µ Pu(M,F ) = max

ν
min

x
eT
x Puν .

Let ν be a distribution that maximizes the right-hand side. Let B(i) select a pair (M,F ) according
to distribution ν, complete M to some M ′, and use a uniformly chosen element of M ′

i to predict xi,
as explained before the theorem. Then B(i) queries every index with probability exactly q/m, and
satisfies

min
x∈{±1}n

Pr[BC(x)(i) = xi] ≥
1

2
+

ε2

2c
.

Hence the algorithms B(1), . . . ,B(n) form a (q, q, ε2/(2c))-smooth decoder for C.

15


