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Abstract

The Bonami-Beckner hypercontractive inequality is a pduléool in Fourier analysis of real-valued
functions on the Boolean cube. In this paper we present aoveds this inequality formatrix-valued
functions on the Boolean cube. Its proof is based on a pohiedquality by Ball, Carlen, and Lieb. We
also present a number of applications of this inequalitypdrticular, we analyze maps that encade
classical bits intan qubits, in such a way that each setkdbits can be recovered with some probability
by an appropriate measurement on the quantum encoding; avetblat if m < 0.7n, then the success
probability is exponentially small ik. This result may be viewed as a direct product version of Kaya
quantum random access code bound. It in turn implies strinegtdproduct theorems for the one-way
quantum communication complexity of Disjointness and pfireblems. We also slightly strengthen
and simplify a result about 3-party communication complegf Disjointness due to Beame et al.
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1 Introduction

1.1 A hypercontractive inequality for matrix-valued functions

Fourier analysis of real-valued functions on the Booledreduas been widely used in the theory of comput-
ing. Applications include analyzing the influence of vatégbon Boolean functions [25], probabilistically-
checkable proofs [20], analysis of threshold phenomenaridom graphs [16], analyzing noise [37], learn-
ing under the uniform distribution [30, 31, 23, 32], comnuation complexity [39, 26, 17], etc.

One of the main technical tools in this area is a hypercotit@inequality that is sometimes called the
Bonami-Beckner inequalify@, 7], though its history would also justify other nameseg(éecture 16 of [38]
for some background and history). For a fixed [0, 1], consider the linear operati, on the space of all
functionsf : {0,1}" — R defined by

(Tp(F))(x) = Ey[f ()]

wherey is obtained fromz by negating each bit independently with probability— p)/2. In other words,
the value of7,(f) at a pointz is obtained by averaging the values fobver a certain neighborhood of
One important property df}, for p < 1 is that it has a “smoothing” effect: any “high peaks” presenf
are smoothed out ifi,,(f). The hypercontractive inequality formalizes this intoiiti To state it precisely,
define thep-norm of a functionf by || f||, = (5>, |f(2)|P)Y/P. Itis not difficult to prove that the norm
is nondecreasing with. Also, the highep is, the more sensitive the norm becomes to peaks in the @mcti
f. The hypercontractive inequality says that for ceriain p, theg-norm of 7,( f) is upper bounded by the
p-norm of f. This exactly captures the intuition th&f( f) is a smoothed version g¢f. even though we are
considering a higher norm, the norm does not increase. Me@gely, the hypercontractive inequality says
thataslongas <p <gandp < /(p—1)/(¢ — 1), we have

1T (NNl < 1A1- 1)

The most interesting case for us is when= 2, since in this case one can view the inequality as a
statement about the Fourier coefficientsfofas we describe next. Let us first recall some basic defisition
from Fourier analysis. For ever§ C [n] (which by some abuse of notation we will also view asnabit
string) andz € {0, 1}, definexs(z) = (—1)* to be the parity of the bits of indexed bysS. TheFourier
transformof a functionf : {0,1}" — R is the functionf : {0,1}" — R defined by

S =5 S s
xe{0,1}"

~ ~

The valuesf (S) are called théourier coefficientof f. The coefficientf(S) may be viewed as measuring
the correlation betweefi and the parity functioryg. Since the functiong s form an orthonormal basis of
the space of all functions frofD, 1}" to R, we can expresg in terms of its Fourier coefficients as

=" F(S)xs. (2)
SCln]
. . . _ ~ 1/2
Using the same reasoning we obtain Parseval’s idettty, = (ngn] f(S)2) .
The operatofl, has a particularly elegant description in terms of the Feurpbefficients. Namely, it
simply multiplies each Fourier coefficierf{,S) by a factor ofp!Sl:

T,(f) = > P F(S)xs.

SC[n]
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The highenS| is, the stronger the Fourier coeﬁicieﬁ@S) is “attenuated” byl},. Using Parseval’s identity,
we can now write the hypercontractive inequality (1) for daseg = 2 as follows. For every € [1, 2],

1/2 1/p
<Z<p—1>'5f<5>2> s(% > \f(x)\p> : (3)

SC|n] ze{0,1}"

This gives an upper bound on a weighted sum of the squaredgrooefficients off, where each coefficient
is attenuated by a factdp — 1)I°l. We are interested in generalizing this hypercontractiegjuality to
matrix-valuedfunctions. LetM be the space afx d matrices and suppose we have a functfan{0,1}" —
M. For example, a natural scenario where this arises is intgoaimformation theory, if we assign to every
x € {0,1}"™ somem-qubit density matrixf(z) (sod = 2™). We define the Fourier transforrf of a
matrix-valued functionf exactly as before:

S =5 S F)xst).
z€{0,1}"

~

The Fourier coefficientg'(S) are now alsal x d matrices. An equivalent definition is by applying the

~

standard Fourier transform to eathy-entry separatelyyf(S);; = m(S). This extension of the Fourier
transform to matrix-valued functions is quite natural, &ad also been used in, e.g., [34, 15].

Our main result, which we prove in Section 3, is an extensibthe hypercontractive inequality to
matrix-valued functions. Fak/ € M with singular values, ..., o4, we define its (normalized Schatten)
p-norm as| M|, = (3 S0, oP)lP.

Theorem 1. For everyf : {0,1}" — Mandl <p <2,

~ , 1/2 ) 1/p
(So-virsl) < (3 5 wom)

SC|[n] ze{0,1}"

This is the analogue of Eq. (3) for matrix-valued functiongh p-norms replacing absolute values. The
casen = 1 can be seen as a geometrical statement that extends thafgraiallelogram law in Euclidean
geometry and is closely related to the notion of uniform @xity. This case was first proven for certain
values ofp by Tomczak-Jaegermann [41] and then in full generality bi}, Baarlen, and Lieb [4]. Among
its applications are the work of Carlen and Lieb on fermiofd&d13], and the more recent work of Lee and
Naor on metric embeddings [29].

To the best of our knowledge, the general case 1 has not appeared befotdts proof is not difficult,
and follows by induction om, similar to the proof of the usual hypercontractive ineity& Although
one might justly regard Theorem 1 as a ‘standard’ corolldryhe result by Ball, Carlen, and Lieb, such
‘tensorized inequalities’ tend to be extremely useful (&eg., [8, 18]) and we believe that the matrix-valued
hypercontractive inequality will have more applicationghie future.

1A different generalization of the Bonami-Beckner ineqyaliias given by Borell [10]. His generalization, howeveraiseasy
corollary of the Bonami-Beckner inequality and is therefoelatively weak (although it does apply to any Banach spaoe not
just to the space of matrices with the Schaftemorm).

2We remark that Carlen and Lieb’s proof in [13] also uses itidncand has some superficial resemblance to our proof. Their
induction, however, is on thdimensionof the matrices (or more precisely, the number of fermioas)d moreover leads to an
entirely different inequality.



1.2 Application: k-out-of-n random access codes

Our main application of Theorem 1 is for the following infaation-theoretic problem. Suppose we want
to encode am-bit string z into m bits or qubits, in such a way that for any setC [n] of k indices, the
k-bit substringzg can be recovered with probability at leasby making an appropriate measurement on
the encoding. We are allowed to use probabilistic encodirege, so the encoding need not be a function
mappingx to a fixed classical string or a fixed quantum pure state. Wecail such encoding&-out-of«
random access codesince they allow us to access any sek afut of n bits. As far as we know, fok > 1
neither the classical nor the quantum case has been stueliettb Here we focus on the quantum case,
because our lower bounds for quantum encodings of coursepfdy to classical encodings.

We are interested in the tradeoff between the lengtof the quantum random access code, and the
success probability. Clearly, if m > n then we can just use the identity encoding to obfais= 1.

If m < n then by Holevo’s theorem [21] our encoding will be “lossyhdap will be less than 1. The
casek = 1 was first studied by Ambainis et al. [2], who showed that i§ bounded away from 1/2, then
m = Q(n/logn). Nayak [33] subsequently strengthened this bound te (1— H (p))n, whereH () is the
binary entropy function. This bound is optimal up to an aslditog n term both for classical and quantum
encodings. The intuition of Nayak’s proof is that, for awgga, the encoding only contains/n < 1 bits
of information about the bit;, which limits our ability to predictz; given the encoding.

Now suppose that > 1, andm is much smaller tham. Clearly, for predicting one specific hit;,
with ¢ uniformly chosen, Nayak’s result applies, and we will haveuacess probability that is bounded
away from 1. But intuitively this should apply to each of thebits that we need to predict. Moreover,
thesek success probabilities should not be very correlated, soxweat an overall success probability that
is exponentially small irk. Nayak’s proof does not generalize to the c&se> 1 (or at least, we do not
know how to do it). The reason it fails is the following. Sugpowe probabilistically encode € {0, 1}"
as follows: with probability 1/4 our encoding isitself, and with probability 3/4 our encoding is the empty
string. Then the average length of the output (and henceritregy or amount of information in the
encoding) is onlyn/4 bits, or 1/4 bit for an average;. Yet from this encoding one can predail of z
with success probability /4! Hence, if we want to prove our intuition it is crucial to makee of the fact
that the encoding is always confined t®"&dimensional space (a property which the above examples)ack
Entropy-based arguments, such as the ones used in [33],td®em capable of capturing this condition.
The new hypercontractive inequality offers an alternatipgroach—in fact the only alternative approach
to entropy-based methods that we are aware of in quantunniation. Applying the inequality to the
matrix-valued function that gives the encoding implies 2-°®*) if m < n. More precisely:

Theorem 2. For anyn > 21n 2 there exists a constardt, such that ifn/k is large enough then for any
k-out-ofyn quantum random access codesamubits, the success probability satisfies

k
1 1 /nm
r<an (343

In particular, the success probability is exponentiallyafirm & if m/n < 1/(21n2) ~ 0.721. Notice
that for very smallm /n the bound orp gets close t®~*, which is what one gets by guessing thdit
answer randomly. We also obtain boundg iis close ton, but these are a bit harder to state. We believe
that the theorem can be extended to the casenthiat > 1/(21n 2), although proving this would probably
require a strengthening of the inequality by Ball, Carlemd &ieb. Luckily, in all our applications we are
free to choose a small enough Finally, we note that in contrast to Nayak’s approach, coopdoes not
use the strong subadditivity of von Neumann entropy.



The classical case. For future reference, we give a few comments regarding tleeiapcase of classical
(probabilistic)m-bit encodings. First, in this case the encodings are repted by diagonal matrices. For
such matrices, the base case- 1 of Theorem 1 can be derived directly from the Bonami-Becknequal-
ity, without requiring the full strength of the Ball, Carleghieb inequality (see [4] for details). Alternatively,
one can derive Theorem 2 in the classical case directly ffrBlonami-Beckner inequality by condition-
ing on a fixedm-bit string of the encoding (this step is already impossihl¢he quantum case) and then
analyzing the resulting distribution of®, 1}™. This proof is very similar to the one we give in Section 4
(and in fact slightly less elegant due to the conditionirepstind we therefore omit the details.
Interestingly, in the classical case there is a simplerragnt that avoids Bonami-Beckner altogether.
This argument was used in [42] and was communicated to usebsuithors of that paper. We briefly sketch
it here. Suppose we have a classieabit encoding that allows to recover akybit set with probabilityp.
Use this repeatedly to decode= 100n/k uniformly and independently chosénsets. With probability at
leastp?, all decodings will be correct, and with probability— 2-©( the union of the/ k-sets will have
at leastn /10 elements. Thus we have a way to recover 90% of the bitsfadm anm-bit encoding, with
probability at leasp? —2-©("), A simple counting argument shows that this is impossiblessp < 2—%(*)
or m is close ton. This argument does not work for quantum encodings, of eyurecause these cannot
just be reused (a quantum measurement changes the state).

1.3 Applications in communication complexity
1.3.1 Direct product theorem for one-way quantum communicion complexity

Our result fork-out-ofn random access codes has the flavor of a direct product theateensuccess
probability of performing a certain task dninstances (i.ek distinct indices) goes down exponentially
with k. We use this to prove a new strong direct product theoremrierwway communication complexity.

Consider the 2-party Disjointness function: Alice recsiveputz € {0,1}", Bob receives inpuy €
{0,1}", and they want to determine whether the sets representeldebyiiputs are disjoint, i.e. whether
xy; = 0 forall i € [n]. They want to do this while communicating as few qubits assiie (allowing
some error probability). We can either consider one-wayquuls, where Alice sends one message to Bob
who then computes the output; or two-way protocols, whiahiateractive. The quantum communication
complexity of Disjointness is fairly well understood: it €(n) qubits for one-way protocols [12], and
©(y/n) qubits for two-way protocols [11, 22, 1, 40].

Now consider the case d&f independent instances: Alice receives inptgs. . ., 2, (each ofn bits),
Bob receivesyy, . .., yx, and their goal is to compute allbits DISJ,(z1, 1), ..., DISI, (zk, yx). Klauck
et al. [27] proved an optimal direct product theorem tiwp-wayquantum communication: every protocol
that communicates fewer thark/n qubits (for some small constant> 0) will have a success probability
that is exponentially small ik. Surprisingly, no strong direct product theorem was knowamtlie usually
simpler case obne-waycommunication—not even falassicalone-way communication. In Section 5 we
derive such a theorem from ourout-of-n random access code lower bound:nif> 21In 2, then every
one-way quantum protocol that sends fewer tharin qubits will have success probability at mast(%).

These results can straightforwardly be generalized to geuad for all functions in terms of therC-
dimension If f has VC-dimensioni, then any one-way quantum protocol for computingndependent
copies off that sends:d/n qubits, has success probabilzy*(*). For simplicity, Section 5 only presents
the case of Disjointness.



1.3.2 3-party NOF communication complexity of Disjointnes

Though often studied in the standard 2-player setting, camaation complexity is also interesting with
more than two players. Suppose there @apayers, and inputszy, ..., xz,. The players want to compute
some functionf(x1,...,xz,). There are two main models here: the “number in the hand” |Ntiddel
where player; sees only input;, and the “number on the forehead” (NOF) model where plgyszes all
inputsexceptz;. In thel-party version of the Disjointness problem, thelayers want to figure out whether
there is an index € [n] where all/ input strings have a 1. Nearly tight bounds were obtainedHisr
function in the NIH model by Chakrabarti et al. [14]. On théet hand, very little is known about lower
bounds in the NOF model. This is all the more unfortunate bseaven slightly superlogarithmic lower
bounds would already imply interesting lower bounds for s Schrijver proof systems [5].

Probably the best results known so far for three players aecta Beame et al. [6], in settings that limit
the communication to less than full interaction. Supposehese a classical protocol where Charlie first
sends a message to Bob, and then Alice and Bob are allowed&ya@ommunication between each other
to compute DISJ(x1,z2,23). Beame et al. showed (using a direct product theorem) thabaonded-
error protocol of this form require@(nl/?’) bits of communicatiod. Moreover, if Bob only has one-way
communication to Alice, then the bound becorfiés/n) bits. As Beame et al. noted, this follows from a
lower bound for the pointer-jumping problem due to Wigdexsiacluded in the appendix of [3].

In Section 6 we slightly strengthen the two 3-player resuligh simpler proofs, showing the same
bounds for protocols where Alice and Bob can sgndntumbits. These results will follow easily from the
two direct product theorems: the one for two-way commuitcafrom [27], and the new one for one-way
communication that we prove here.

2 Preliminaries
Norms: Recall that we define the-norm of ad-dimensional vectov by
1 d 1/p
Jell, = (aZW) .
=1

We extend this to matrices by defining the (normalized Seh@t-norm of a matrixA € C%*¢ as

1 1/p
4l = (Gmar)

This is equivalent to the-norm of the vector of singular values df. For diagonal matrices this definition
coincides with the one for vectors. For convenience we défelenorms to be under the normalized
counting measure, even though for matrices this is nonatdndrhe advantage of the normalized norm is
that it is nondecreasing with We also define thrace norm|| A||,, of a matrixA as the sum of its singular
values, hence we hayed||,, = d||A]|, for anyd x d matrix A.

3Their conference paper had &x{n!/? / log n) bound, but the journal version [6] managed to get rid ofltien.
“Very recently, Viola and Wigderson [42] generalized the-ars pointer-jumping lower bound lﬁ(nl/“*l)) for any constant
¢ players, and obtained the same lower bound for the one-waplexity of /-player Disjointness.



Quantum states: An m-qubitpure statés a superpositiofp) = 3°_ ; 1ym @ |2) over all classicain-bit

states. They,’s are complex numbers callamplitudes and"_ |a.|*> = 1. Hence a pure state) is a
unit vector inC2™. Its complex conjugate (a row vector with entries conjudpis denoted¢|. The inner

product betweeny) = > a.|z) and|y) = 3", 5.]z) is the dot producte| - [¢) = (¢|v) = . aif..
Second, am-qubit mixed stat€or density matrix p = >, pi|¢;)(¢;| corresponds to a probability distribu-

tion overm-qubit pure states, whete;) is given with probabilityp;. The eigenvaluesa,, ..., \; of p are
non-negative reals that sum to 1, so they form a probabilgtridution. If p is pure then one eigenvalue is
1 while all others are 0. Hence for apy> 1, the maximalp-norm is achieved by pure states:

1 1 1
lolly =22 A <5D di= )
1=1 i=1

A k-outcomepositive operator-valued measurem¢ROVM) is given byk positive semidefinite oper-
atorsFy, ..., E, with the property thaEf:1 E; = I. When this POVM is applied to a mixed statethe
probability of theith outcome is given by the trace(H;p). The following well known fact gives the close
relationship between trace distance and distinguishglufidensity matrices:

Fact 3. The best possible measurement to distinguish two denstticesp, andp; has bia&%Hpo — P14

Here “bias” is defined as twice the success probability, mihuWe refer to Nielsen and Chuang [36]
for more details.

3 The hypercontractive inequality for matrix-valued functions

Here we prove Theorem 1. The proof relies on the following @dul inequality by Ball et al. [4] (they state
this inequality for the usual unnormalized Schatpenorm, but both statements are clearly equivalent).

Lemma 4. ([4, Theorem 1]) For any matriced, B and anyl < p < 2, it holds that

1/2 1/
A+ B 2 - 1A+ 1Bl2 "
2 » - 2 )

Theorem 1. Forany f : {0,1}" — M and for anyl < p < 2,

o, 1/2 ) 1/p
(Z(p—l)S'Hf(S)Hp> §<2—n > Hf(@\lﬁ) :

SC[n] ze{0,1}n

2

A-B
-1 257

p

Proof: By induction. The case = 1 follows from Lemma 4 by settingl = f(0) andB = f(1), and
noting that(A + B)/2 and(A — B)/2 are exactly the Fourier coefficienfg0) and f(1).

We now assume the lemma holds ferand prove it forn + 1. Let f : {0,1}"*! — M be some
matrix-valued function. Foi € {0,1}, letg; = f|,,.,—: be the function obtained by fixing the last input
bit of f toi. We apply the induction hypothesis gnandg; to obtain

1/2 1/p
(Z(pl)sg?)(s)f,) <<21n > go(w)ﬁ)

SCn] ze{0,1}n
1/2 1/p
~ 1
Y e-v)la®I] < o o la@IE|
SC[n] ze{0,1}n



Take theL,, average of these two inequalities: raise each topthgpower, average them and take it
root. We get

1/p

p/2
5> <Z<p1>3@<s>§)

i€{0,1} \ SC[n]

1/p
<(21+1 > (go<x>5+g1<w>§)) (5)

z€{0,1}"

1/p
(2,3“ > f<:c>§) .

ze{0,1}+1

The right-hand side is the expression we wish to lower boufabound the left-hand side, we need the
following inequality (to get a sense of why this holds, cdesithe case wherg = 1 andgs = o0).

Lemma 5 (Minkowski's inequality, [19, Theorem 26])For any r; x r, matrix whose rows are given by
ui, ..., ur and whose columns are given by, ..., v,,, and anyl < ¢; < ¢z < o0,

(el Mol ) |2 [ (g, )

i.e., the value obtained by taking the-norm of each column and then taking thxenorm of the results, is
at least that obtained by first taking tlye-norm of each row and then taking the-norm of the results.

Consider now th@™ x 2 matrix whose entries are given by

=2t

wherei € {0,1} andS C [n]. The left-hand side of (5) is then

p/2\ /P 2/p\ 1/2

1 1 )
2 :E:: (:Qn/ 2{: Cfﬂ{) > | = 2{: (: j{: )
1€{0,1} SCn] SCln] i€{0,1}

~ - 2/p 1/2

S -y (Hgo<5>||;;+ ||gl<s>||;;> )
2 )
SCln]

where the inequality follows from Lemma 5 with = p, ¢o = 2. We now apply Lemma 4 to deduce that

the above is lower bounded by
1/2 1/2
2 . 9
) 5 e-vyrs)
p SC[n+1]

(Z( - 1) (
SC[n]

where we used (S) = (go(S) + i(S)) and f(S U {n + 1}) = L(g(S) — Gi(S)) foranyS C [n]. =

2
+(p—1)

90(5) — 91(5)

90(5) + g1(5)
2 2




4 Bounds for k-out-of-n quantum random access codes

In this section we prove Theorem 2. Recall that-aut-ofs» random access code allows us to encade
bits intom qubits, such that we can recover ampit substring with probability at leagt. We now define
this notion formally. In fact, we consider a somewhat weakaion where we only measure the success
probability for a randomk subset, and a random inpute {0,1}". Since we only prove impossibility
results, this clearly makes our results stronger.

Definition 1. A k-out-of, quantum random access codexanqubits with success probability (for short
(k,n,m,p)-QRAC), is a map

f{o. 1) — e
that assigns am-qubit density matrixf () to everyz € {0, 1}", and a quantum measurememts . }.c (o 1}
to every sefs € (1)), with the property that

E. s[Tr(Mss - f(2))] = p,

where the expectation is taken over a uniform choice ef{0,1}" and S € (")), andzs denotes thé-bit
substring ofr specified bys.

In order to prove Theorem 2, we introduce another notion oAQRwhich we callXOR-QRACHere,
the goal is to predict the XOR of thebits indexed bys (as opposed to guessing all the bitsSin Since one
can always predict a bit with probabili%/, it is convenient to define thaias of the prediction as = 2p — 1
wherep is the probability of a correct prediction. Hence a biasl aheans that the prediction is always
correct, whereas a bias efl means that it is always wrong. The advantage of dealing witi@R-QRAC
is that it is easy to express the best achievable predictasviaithout any need to introduce measurements.
Namely, if f : {0,1}» — C?"*2" is the encoding function, then the best achievable biasddigiing the
XOR of the bits inS (over a random{0, 1}") is exactly half the trace distance between the averaggof
over allz with the XOR of the bits inS being0 and the average gf(x) over allz with the XOR of the bits
in S being1. Using our notation for Fourier coefficients, this can betteri simply ag| f(.5)|,..

Definition 2. A k-out-of» XOR quantum random access codeoqubits with biag (for short(k, n, m, )-
XOR-QRAC), isamap
{01 — e

that assigns am-qubit density matrixf (x) to everyz € {0,1}"™ and has the property that
Eq. ) [|1FS)]] = =
Our new hypercontractive inequality allows us to easilyivdethe following key lemma:
Lemma 6. Let f : {0,1}" — C?"*2" be any mapping from-bit strings tom-qubit density matrices.
Then for anyd < § < 1, we have
> SNFS), <22
SC[n]
Proof: Letp =1+ 4. On one hand, by Theorem 1 and Eq. (4) we have

~ 2/p 2/p
Z(p—1>5'|!f<5)uis<2in 3 Hf(m)Hi) §<2iggim> _g-2mip

SC[n] z€{0,1}»



On the other hand, by norm monotonicity we have

S e-DEFS) = 3 - 0EFSI =27 Y -0 FE),.

SC[n] SCln] SC[n]

By rearranging we have

1 |S\‘ Hf < 92m(1=1/p) < 92m(p=1)
E P S <
SCln

as required. [

The following is our main theorem regarding XOR-QRAC. Intgardar it shows that it = o(n) and
m/n < 1/(21n2) = 0.721, then the bias will be exponentially smallin

Theorem 7. For any (k, n, m, e)-XOR-QRAC we have the following bound on the bias

(=)0

In particular, for anyn > 21In 2 there exists a constart;,, such that ifn/% is large enough then for any
(k,n,m,e)-XOR-QRAC,
k/2
e<Cy <77m> .

n

Proof: Apply Lemma 6 withy = 7(21;“2)”1

Vel ()= (522 ()

The first bound orz now follows by convexity (Jensen’s inequality). To derite tsecond bound, approxi-
mate(}}) using Stirling’s approximatiom! = ©(y/n(n/e)"):

) es T bt )

Now use the fact that for large enoughik we have(1 + k/(n — k))(*=*)/k > (2¢1n 2) /5, and notice that
the factor\/n/k(n — k) > \/1/k can be absorbed by this approximation. ]

We now derive Theorem 2 from Theorem 7.

and only take the sum a$i with |S| = k. This gives

Proof of Theorem 2: Consider a(k,n,m,p)-QRAC, given by encoding functiorf and measurements
{Mr,:}.conye for all T € (). Definepr(w) = E, [Pz @ 27 = w]] as the distribution on the “er-
ror vector’ w € {0,1}* of the measurement outcomec {0, 1}* when applying{ Mr,}. By definition,
we have thap < Er[pr(0%)].

Now suppose we want to predict the parity of the bits of som&' s size at mosk. We can do this as
follows: uniformly pick a sefl” (["}) that containsS, measuref (x) with {M7 .}, and output the parity



of the bits corresponding t8 in the measurement outcome Note that our output is correct if and only if
the bits corresponding t6 in the error vectorv have even parity. Hence the bias of our output is

Bs = Erros { > pT(w)XS(w)] = 2" Eqros [Pr(S)] -

we{0,1}+

(We slightly abuse notation here by viewirgboth as a subset &f and as a subset Q}E: | obtained by
identifying 7" with [k].) Notice that3s can be upper bounded by the best-achievable pf&s) ||, .

Consider the distributiors on setsS defined as follows: first picl from the binomial distribution

B(k,1/2) and then uniformly pickS € (["}) Notice that the distribution on paifss, 7") obtained by first

choosingS ~ S and then choosing a uniforfi > S from (1) is identical to the one obtained by first

choosing uniformlyT” from ([Z]) and then choosing a uniforrffi C T. This allows us to show that the
average biagg overS ~ S is at leasp, as follows:

Es~s [Bs] = 2"Eg~smos [pT(S)]
= 2kETN([Z]),S§T [pr(5)]

[sz ]

Scr
=B (my [pT(Ok)] >p

where the last equality follows from Eg. (2). On the otherdyamsing Theorem 7 we obtain

(5)1l.]
VEg o (17,
>

Es~s [Bs] < “ |/

¢
%0

w|’_‘

nm i/2

nm

I
9

IA
?r|’_‘
- ng J'DM??
_|_

n

N —
\_/

where the last equality uses the binomial theorem. Comgittie two inequalities completes the proof

5 Direct product theorem for one-way quantum communication

The setting of communication complexity is by now well-kmgvgo we will not give formal definitions of
protocols etc., referring to [28, 43] instead. Consider ithbit Disjointness problem in 2-party commu-
nication complexity. Alice receives-bit string x and Bob receives-bit string y. They interpret these
strings as subsets @f] and want to decide whether their sets are disjoint. In otreds; DISJ (z,y) = 1
ifand only if z Ny = (. Let DISif) denotek independent instances of this problem. That is, Alice’s
input is ak-tuple x4, ...,z of n-bit strings, Bob’s input is &-tuple y1, ..., yx, and they should output

10



all k bits: DIS‘ﬁf)(ml, ey Ty Y1y -+ Yk) = DISI, (21, 41), - .., DISI, (zk, yx). The trivial protocol where
Alice sends all her inputs to Bob has success probabilitydlcammunication complexitgn. We want to
show that if the total one-way communication is much smaliankn qubits, then the success probability
is exponentially small irk. We will do that by deriving a random access code from thequalts message.

Lemma 8. Let/¢ < k/2. If there is ac-qubit one-way communication protocol fmsif) with success
probability o, then there is arf-out-of&n quantum random access codecef O(k + log(kn)) qubits with
success probability > 1o - (1 — ¢/k)".

Proof: Consider the following one-way communication setting:c&lhas &n-bit string z, and Bob hag
distinct indicesiy, . .., iy € [kn] and wants to learn the corresponding bits:ofn order to do this, they use
[log((kn)!)] public coin flips to pick a random permutatiane Sy,,, and Alice sends the-qubit message
corresponding to input(z) in the DISﬁf)—protocoI. We viewr (x) = z7 ...z} as consisting ok disjoint
blocks ofn bits each. The probability (over the choicemfthat Bob's¢ permuted indices (i1), . . ., 7(i¢)

end up in¢ different blocks is
“in —in kn — n\* \*
- > =(1-—-) .
- - kn—1 — kn k

If this is the case, Bob chooses his Disjointness inputs. .,y as follows. If indexn(i;) ended up
somewhere in block < [k|, then he chooseg, to be the string having a 1 at the position whetg;)
ended up, and Os elsewhere. Note that the correct outpulhddrth instance of Disjointness with inputs
m(x) andyi, ...,y is exactlyl — ;.. Now Bob completes the protocol and getg-ait output for the
k-fold Disjointness problem. A correct output tells him theits he wants to know (he can just disregard
the outcomes of the othér— ¢ instances). Overall the success probability is at leést— ¢/k)°.

We will now replace the large public coin by a short coin théitéflips privately and sends along with
her message. By Newman'’s theorem [35], there exists & sébnly O (log (2" - n*) /(o (1 — £/k)*)?) per-
mutations, such that using a random element from this sraailhstead of a uniformly random permutation
changes the success probability in the protocol by at moatiditive 1o'(1 — ¢/k)", for each of the*" . n*
inputs that we are considering. Alice’s permutation (pitkem the small sef, which we hardwire into
the protocol so Bob also knows it) can be describedday S| = O(k + log(kn)) bits. Here we assume
o > 27F: the lemma is trivial otherwise. The quantum message quoreding tox together with Alice’s
private coin, is the quantum random access code. That idicé’8 message on input and permutationr
is denoted by (., then the random access code is the mixed quantum state

1
@ Z Pr(x) ® ’7T><7T‘

mes

This hasc + log |\S| qubits. ]

Combining the previous lemma with our earlier upper boundpdor ¢-out-of-kn quantum random
access codes (Theorem 2), we obtain the following upper daumthe success probabiliy of c-qubit

one-way communication protocols for leé)J For everyn > 21n 2 there exists a constagt, such that:

¢
o < 2p(1—1/k)~" <20, ((% + % Wc + O(ZZ 10g(k‘n)))) (k i E)) |

Choosing/ a sulfficiently small constant fraction &f(depending om), we obtain a strong direct product
theorem for one-way communication:

11



Theorem 9. For anyn > 21n 2 the following holds: for any large enough and anyk, every one-way
guantum protocol forDISJEf) that communicates < kn/n qubits, has success probability < 2%
(where the constant in the(-) depends om).

The above strong direct product theorem (SDPT) bounds tbeess probability for protocols that are
required to computall %k instances correctly. We call thiszero-error SDPT. What if we settle for getting
a (1 — ¢)-fraction of thek instances right, for some smaill> 0? Anc-error SDPTis a theorem to the
effect that even in this case the success probability is reemitally small. Ans-error SDPT follows from
a zero-error SDPT as follows. Run arerror protocol with success probabilify (“success” now means
getting1 — ¢ of the k instances right), guess up 4& positions and change them. With probability at least
p the number of errors of the-error protocol is at mostk, and with probability at least/ >-5% (%) we
now have corrected all those errors. Sincg”, (¥) < 2#1¢) (see, e.g., [24, Corollary 23.6]), we have a
protocol that computes all instances correctly with susqesbabilityc > p2~%()_ |f we have a zero-
error SDPT that bounds < 2-7* for somey > H(e), then it follows that must be exponentially small as
well: p < 2-(—H(EDk Hence Theorem 9 implies:

Theorem 10. For anyn > 2In 2 there exists am > 0 such that the following holds: for every one-way

quantum protocol forDISJ(nk) that communicates < kn/n qubits, its probability to compute at least a
(1 — ¢)-fraction of thek instances correctly is at most (¥),

6 Lower bounds for 3-party Disjointness in the NOF model

We now prove two lower bounds for the communication compjeaf 3-party Disjointness in the “number
on the forehead” model, slightly improving upon [6]. Hereo®l sees-bit inputsz andz, Bob seeg; and
z, and Charlie sees andy. Their goal is to decide if there is @re [n] such thate; = y; = z; = 1.

6.1 Communication-typeC — (B < A)

Suppose we have a 3-party proto¢ofor Disjointness with the following “flow” of communicatiorCharlie
sends a message of classical bits to Alice and Bob (or just to Bob, it doesn'tliganatter), who then
exchange:; qubits and compute Disjointness with bounded error probgbi®ur lower bound approach is
similar to the one of Beame et al. [6], the main change beinmguea of stronger direct product theorems.
Combining the (0-error) two-way quantum strong direct pidtheorem for Disjointness from [27] with
the argument from the end of our Section 5, we have the foligwierror strong direct product theorem for
k instances of 2-party Disjointness:

Theorem 11. There exist constants > 0 and o > 0 such that the following holds: for every two-way

guantum protocol foDISﬁ) that communicates at moat+/n qubits, its probability to compute at least
an (1 — )-fraction of thek instances correctly, is at mogt *(*),

Assume without loss of generality that the error probapitif our initial 3-party protocolP is at most
half thee of Theorem 11. View the:-bit inputs of protocolP as consisting ot consecutive blocks of
n/t bits each. We will restrict attention to inputs= z; ... z; where onez; is all-1, and the othet; are
all-0. Note that for such a, we have DISJ(z,y,z) = DISJ, (s, y:). Fixing z thus reduces the 3-party
Disjointness on(z, y, z) to 2-party Disjointness on a smaller instar{ag, y;). Since Charlie does not see
input z, his ¢1-bit message is independent af Now by going over allt possiblez’s, and running their

12



2-party protocok times starting from Charlie’s message, Alice and Bob obagimotocol P’ that computes

t independent instances of 2-party Disjointness, namelyagh ef thet inputs(x1,v1),. .., (x¢, y:). This

P’ uses at moste, qubits of communication. For evenyandy, it follows from linearity of expectation that
the expected number of instances whereerrs, is at mostt/2 (expectation taken over Charlie’s message,
and thet-fold Alice-Bob protocol). Hence by Markov’s inequality)e probability that”” errs on more than
et instances, is at most 1/2. Then for every there exists a&;-bit messagen,, such that?’, when given
that message to start with, with probability at least 1/2exty computed — ¢ of all ¢ instances.

Now replace Charlie’'s:;-bit message by a uniformly random message Alice and Bob can just
generate this by themselves using shared randomness. iVéssagnew 2-party protocdP”. For eachr, v,
with probability 2=°* we havem = m,,, hence with probability at Iea%tz—Cl the protocolP” correctly
computesl — ¢ of all ¢ instances of Disjointness am/t¢ bits each. Choosing = O(c;) and invoking
Theorem 11 gives a lower bound on the communicatioRintc, = Q(t+/n/t). Hencecs = Q(y/n/c1).
The overall communication of the original 3-party proto¢ols

c1+ca=c1+Q/nfe1) = Q(nl/g)

(the minimizing value ig = n'/3).

This generalizes the bound of Beame et al. [6] to the caseenlierallow Alice and Bob to send each
other qubits. Note that this bound is tight for our restrcset ofz's, since Alice and Bob know and
can compute the 2-party Disjointness on the relevanty;) in O(vVn2/3) = O(n'/3) qubits of two-way
communication without help from Charlie, using the optimaantum protocol for 2-party Disjointness [1].

6.2 Communication-typeC' — B — A

Now consider an even more restricted type of communicatidharlie sends a classical message to Bob,
then Bob sends a quantum message to Alice, and Alice comietesitput. We can use a similar argument
as before, dividing the inputs into= O(n'/?) equal-sized blocks instead 6f(n'/3) equal-sized blocks.

If we now replace the two-way SDPT (Theorem 11) by the newwag-SDPT (Theorem 10), we obtain a
lower bound of2(/n) for 3-party bounded-error protocols for Disjointness agtrestricted type.

Remark. If Charlie’s message is quantum as well, then the same agiprevarks, except we need to
reduce the error of the protocol te 1/t at a multiplicative cost 0D (logt) = O(logn) to bothc; andc
(Charlie’s one guantum message needs to be retsetes). This worsens the two communication lower
bounds ta2(n'/3/log n) andQ(/n/log n) qubits, respectively.
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