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Abstract

The Bonami-Beckner hypercontractive inequality is a powerful tool in Fourier analysis of real-valued
functions on the Boolean cube. In this paper we present a version of this inequality formatrix-valued
functions on the Boolean cube. Its proof is based on a powerful inequality by Ball, Carlen, and Lieb. We
also present a number of applications of this inequality. Inparticular, we analyze maps that encoden
classical bits intom qubits, in such a way that each set ofk bits can be recovered with some probability
by an appropriate measurement on the quantum encoding; we show that ifm < 0.7n, then the success
probability is exponentially small ink. This result may be viewed as a direct product version of Nayak’s
quantum random access code bound. It in turn implies strong direct product theorems for the one-way
quantum communication complexity of Disjointness and other problems. We also slightly strengthen
and simplify a result about 3-party communication complexity of Disjointness due to Beame et al.
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1 Introduction

1.1 A hypercontractive inequality for matrix-valued funct ions

Fourier analysis of real-valued functions on the Boolean cube has been widely used in the theory of comput-
ing. Applications include analyzing the influence of variables on Boolean functions [25], probabilistically-
checkable proofs [20], analysis of threshold phenomena in random graphs [16], analyzing noise [37], learn-
ing under the uniform distribution [30, 31, 23, 32], communication complexity [39, 26, 17], etc.

One of the main technical tools in this area is a hypercontractive inequality that is sometimes called the
Bonami-Beckner inequality[9, 7], though its history would also justify other names (see Lecture 16 of [38]
for some background and history). For a fixedρ ∈ [0, 1], consider the linear operatorTρ on the space of all
functionsf : {0, 1}n → R defined by

(Tρ(f))(x) = Ey[f(y)]

wherey is obtained fromx by negating each bit independently with probability(1 − ρ)/2. In other words,
the value ofTρ(f) at a pointx is obtained by averaging the values off over a certain neighborhood ofx.
One important property ofTρ for ρ < 1 is that it has a “smoothing” effect: any “high peaks” presentin f
are smoothed out inTρ(f). The hypercontractive inequality formalizes this intuition. To state it precisely,
define thep-norm of a functionf by ‖f‖p = ( 1

2n

∑
x |f(x)|p)1/p. It is not difficult to prove that the norm

is nondecreasing withp. Also, the higherp is, the more sensitive the norm becomes to peaks in the function
f . The hypercontractive inequality says that for certainq > p, theq-norm ofTρ(f) is upper bounded by the
p-norm off . This exactly captures the intuition thatTρ(f) is a smoothed version off : even though we are
considering a higher norm, the norm does not increase. More precisely, the hypercontractive inequality says
that as long as1 ≤ p ≤ q andρ ≤

√
(p− 1)/(q − 1), we have

‖Tρ(f)‖q ≤ ‖f‖p. (1)

The most interesting case for us is whenq = 2, since in this case one can view the inequality as a
statement about the Fourier coefficients off , as we describe next. Let us first recall some basic definitions
from Fourier analysis. For everyS ⊆ [n] (which by some abuse of notation we will also view as ann-bit
string) andx ∈ {0, 1}n, defineχS(x) = (−1)x·S to be the parity of the bits ofx indexed byS. TheFourier
transformof a functionf : {0, 1}n → R is the functionf̂ : {0, 1}n → R defined by

f̂(S) =
1

2n

∑

x∈{0,1}n

f(x)χS(x).

The valuesf̂(S) are called theFourier coefficientsof f . The coefficientf̂(S) may be viewed as measuring
the correlation betweenf and the parity functionχS. Since the functionsχS form an orthonormal basis of
the space of all functions from{0, 1}n to R, we can expressf in terms of its Fourier coefficients as

f =
∑

S⊆[n]

f̂(S)χS . (2)

Using the same reasoning we obtain Parseval’s identity,‖f‖2 =
(∑

S⊆[n] f̂(S)2
)1/2

.

The operatorTρ has a particularly elegant description in terms of the Fourier coefficients. Namely, it
simply multiplies each Fourier coefficient̂f(S) by a factor ofρ|S|:

Tρ(f) =
∑

S⊆[n]

ρ|S|f̂(S)χS .
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The higher|S| is, the stronger the Fourier coefficientf̂(S) is “attenuated” byTρ. Using Parseval’s identity,
we can now write the hypercontractive inequality (1) for thecaseq = 2 as follows. For everyp ∈ [1, 2],

(
∑

S⊆[n]

(p− 1)|S|f̂(S)2

)1/2

≤
(

1

2n

∑

x∈{0,1}n

|f(x)|p
)1/p

. (3)

This gives an upper bound on a weighted sum of the squared Fourier coefficients off , where each coefficient
is attenuated by a factor(p − 1)|S|. We are interested in generalizing this hypercontractive inequality to
matrix-valuedfunctions. LetM be the space ofd×dmatrices and suppose we have a functionf : {0, 1}n →
M. For example, a natural scenario where this arises is in quantum information theory, if we assign to every
x ∈ {0, 1}n somem-qubit density matrixf(x) (so d = 2m). We define the Fourier transform̂f of a
matrix-valued functionf exactly as before:

f̂(S) =
1

2n

∑

x∈{0,1}n

f(x)χS(x).

The Fourier coefficientŝf(S) are now alsod × d matrices. An equivalent definition is by applying the

standard Fourier transform to eachi, j-entry separately:̂f(S)ij = f̂(·)ij(S). This extension of the Fourier
transform to matrix-valued functions is quite natural, andhas also been used in, e.g., [34, 15].

Our main result, which we prove in Section 3, is an extension of the hypercontractive inequality to
matrix-valued functions. ForM ∈ M with singular valuesσ1, . . . , σd, we define its (normalized Schatten)
p-norm as‖M‖p = (1

d

∑d
i=1 σ

p
i )

1/p.

Theorem 1. For everyf : {0, 1}n → M and1 ≤ p ≤ 2,

(
∑

S⊆[n]

(p− 1)|S|
∥∥f̂(S)

∥∥2

p

)1/2

≤
(

1

2n

∑

x∈{0,1}n

‖f(x)‖p
p

)1/p

.

This is the analogue of Eq. (3) for matrix-valued functions,with p-norms replacing absolute values. The
casen = 1 can be seen as a geometrical statement that extends the familiar parallelogram law in Euclidean
geometry and is closely related to the notion of uniform convexity. This case was first proven for certain
values ofp by Tomczak-Jaegermann [41] and then in full generality by Ball, Carlen, and Lieb [4]. Among
its applications are the work of Carlen and Lieb on fermion fields [13], and the more recent work of Lee and
Naor on metric embeddings [29].

To the best of our knowledge, the general casen ≥ 1 has not appeared before.1 Its proof is not difficult,
and follows by induction onn, similar to the proof of the usual hypercontractive inequality.2 Although
one might justly regard Theorem 1 as a ‘standard’ corollary of the result by Ball, Carlen, and Lieb, such
‘tensorized inequalities’ tend to be extremely useful (see, e.g., [8, 18]) and we believe that the matrix-valued
hypercontractive inequality will have more applications in the future.

1A different generalization of the Bonami-Beckner inequality was given by Borell [10]. His generalization, however, isan easy
corollary of the Bonami-Beckner inequality and is therefore relatively weak (although it does apply to any Banach space, and not
just to the space of matrices with the Schattenp-norm).

2We remark that Carlen and Lieb’s proof in [13] also uses induction and has some superficial resemblance to our proof. Their
induction, however, is on thedimensionof the matrices (or more precisely, the number of fermions),and moreover leads to an
entirely different inequality.
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1.2 Application: k-out-of-n random access codes

Our main application of Theorem 1 is for the following information-theoretic problem. Suppose we want
to encode ann-bit stringx into m bits or qubits, in such a way that for any setS ⊆ [n] of k indices, the
k-bit substringxS can be recovered with probability at leastp by making an appropriate measurement on
the encoding. We are allowed to use probabilistic encodingshere, so the encoding need not be a function
mappingx to a fixed classical string or a fixed quantum pure state. We will call such encodingsk-out-of-n
random access codes, since they allow us to access any set ofk out ofn bits. As far as we know, fork > 1
neither the classical nor the quantum case has been studied before. Here we focus on the quantum case,
because our lower bounds for quantum encodings of course also apply to classical encodings.

We are interested in the tradeoff between the lengthm of the quantum random access code, and the
success probabilityp. Clearly, if m ≥ n then we can just use the identity encoding to obtainp = 1.
If m < n then by Holevo’s theorem [21] our encoding will be “lossy”, and p will be less than 1. The
casek = 1 was first studied by Ambainis et al. [2], who showed that ifp is bounded away from 1/2, then
m = Ω(n/ log n). Nayak [33] subsequently strengthened this bound tom ≥ (1−H(p))n, whereH(·) is the
binary entropy function. This bound is optimal up to an additive log n term both for classical and quantum
encodings. The intuition of Nayak’s proof is that, for average i, the encoding only containsm/n < 1 bits
of information about the bitxi, which limits our ability to predictxi given the encoding.

Now suppose thatk > 1, andm is much smaller thann. Clearly, for predicting one specific bitxi,
with i uniformly chosen, Nayak’s result applies, and we will have asuccess probability that is bounded
away from 1. But intuitively this should apply to each of thek bits that we need to predict. Moreover,
thesek success probabilities should not be very correlated, so we expect an overall success probability that
is exponentially small ink. Nayak’s proof does not generalize to the casek ≫ 1 (or at least, we do not
know how to do it). The reason it fails is the following. Suppose we probabilistically encodex ∈ {0, 1}n

as follows: with probability 1/4 our encoding isx itself, and with probability 3/4 our encoding is the empty
string. Then the average length of the output (and hence the entropy or amount of information in the
encoding) is onlyn/4 bits, or 1/4 bit for an averagexi. Yet from this encoding one can predictall of x
with success probability1/4! Hence, if we want to prove our intuition it is crucial to makeuse of the fact
that the encoding is always confined to a2m-dimensional space (a property which the above example lacks).
Entropy-based arguments, such as the ones used in [33], do not seem capable of capturing this condition.
The new hypercontractive inequality offers an alternativeapproach—in fact the only alternative approach
to entropy-based methods that we are aware of in quantum information. Applying the inequality to the
matrix-valued function that gives the encoding impliesp ≤ 2−Ω(k) if m≪ n. More precisely:

Theorem 2. For any η > 2 ln 2 there exists a constantCη such that ifn/k is large enough then for any
k-out-of-n quantum random access code onm qubits, the success probability satisfies

p ≤ Cη

(
1

2
+

1

2

√
ηm

n

)k

.

In particular, the success probability is exponentially small in k if m/n < 1/(2 ln 2) ≈ 0.721. Notice
that for very smallm/n the bound onp gets close to2−k, which is what one gets by guessing thek-bit
answer randomly. We also obtain bounds ifk is close ton, but these are a bit harder to state. We believe
that the theorem can be extended to the case thatm/n > 1/(2 ln 2), although proving this would probably
require a strengthening of the inequality by Ball, Carlen, and Lieb. Luckily, in all our applications we are
free to choose a small enoughm. Finally, we note that in contrast to Nayak’s approach, our proof does not
use the strong subadditivity of von Neumann entropy.
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The classical case. For future reference, we give a few comments regarding the special case of classical
(probabilistic)m-bit encodings. First, in this case the encodings are represented by diagonal matrices. For
such matrices, the base casen = 1 of Theorem 1 can be derived directly from the Bonami-Becknerinequal-
ity, without requiring the full strength of the Ball, Carlen, Lieb inequality (see [4] for details). Alternatively,
one can derive Theorem 2 in the classical case directly from the Bonami-Beckner inequality by condition-
ing on a fixedm-bit string of the encoding (this step is already impossiblein the quantum case) and then
analyzing the resulting distribution on{0, 1}n. This proof is very similar to the one we give in Section 4
(and in fact slightly less elegant due to the conditioning step) and we therefore omit the details.

Interestingly, in the classical case there is a simpler argument that avoids Bonami-Beckner altogether.
This argument was used in [42] and was communicated to us by the authors of that paper. We briefly sketch
it here. Suppose we have a classicalm-bit encoding that allows to recover anyk-bit set with probabilityp.
Use this repeatedly to decodeℓ = 100n/k uniformly and independently chosenk-sets. With probability at
leastpℓ, all decodings will be correct, and with probability1 − 2−Θ(n) the union of theℓ k-sets will have
at least9n/10 elements. Thus we have a way to recover 90% of the bits ofx from anm-bit encoding, with
probability at leastpℓ−2−Θ(n). A simple counting argument shows that this is impossible unlessp ≤ 2−Ω(k)

or m is close ton. This argument does not work for quantum encodings, of course, because these cannot
just be reused (a quantum measurement changes the state).

1.3 Applications in communication complexity

1.3.1 Direct product theorem for one-way quantum communication complexity

Our result fork-out-of-n random access codes has the flavor of a direct product theorem: the success
probability of performing a certain task onk instances (i.e.k distinct indices) goes down exponentially
with k. We use this to prove a new strong direct product theorem for one-way communication complexity.

Consider the 2-party Disjointness function: Alice receives inputx ∈ {0, 1}n, Bob receives inputy ∈
{0, 1}n, and they want to determine whether the sets represented by their inputs are disjoint, i.e. whether
xiyi = 0 for all i ∈ [n]. They want to do this while communicating as few qubits as possible (allowing
some error probability). We can either consider one-way protocols, where Alice sends one message to Bob
who then computes the output; or two-way protocols, which are interactive. The quantum communication
complexity of Disjointness is fairly well understood: it isΘ(n) qubits for one-way protocols [12], and
Θ(

√
n) qubits for two-way protocols [11, 22, 1, 40].

Now consider the case ofk independent instances: Alice receives inputsx1, . . . , xk (each ofn bits),
Bob receivesy1, . . . , yk, and their goal is to compute allk bits DISJn(x1, y1), . . . ,DISJn(xk, yk). Klauck
et al. [27] proved an optimal direct product theorem fortwo-wayquantum communication: every protocol
that communicates fewer thanαk

√
n qubits (for some small constantα > 0) will have a success probability

that is exponentially small ink. Surprisingly, no strong direct product theorem was known for the usually
simpler case ofone-waycommunication—not even forclassicalone-way communication. In Section 5 we
derive such a theorem from ourk-out-of-n random access code lower bound: ifη > 2 ln 2, then every
one-way quantum protocol that sends fewer thankn/η qubits will have success probability at most2−Ω(k).

These results can straightforwardly be generalized to get abound for all functions in terms of theirVC-
dimension. If f has VC-dimensiond, then any one-way quantum protocol for computingk independent
copies off that sendskd/η qubits, has success probability2−Ω(k). For simplicity, Section 5 only presents
the case of Disjointness.
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1.3.2 3-party NOF communication complexity of Disjointness

Though often studied in the standard 2-player setting, communication complexity is also interesting with
more than two players. Suppose there areℓ players, andℓ inputsx1, . . . , xℓ. The players want to compute
some functionf(x1, . . . , xℓ). There are two main models here: the “number in the hand” (NIH) model
where playerj sees only inputxj, and the “number on the forehead” (NOF) model where playerj sees all
inputsexceptxj . In theℓ-party version of the Disjointness problem, theℓ players want to figure out whether
there is an indexi ∈ [n] where allℓ input strings have a 1. Nearly tight bounds were obtained forthis
function in the NIH model by Chakrabarti et al. [14]. On the other hand, very little is known about lower
bounds in the NOF model. This is all the more unfortunate because even slightly superlogarithmic lower
bounds would already imply interesting lower bounds for Lovász-Schrijver proof systems [5].

Probably the best results known so far for three players are due to Beame et al. [6], in settings that limit
the communication to less than full interaction. Suppose wehave a classical protocol where Charlie first
sends a message to Bob, and then Alice and Bob are allowed two-way communication between each other
to compute DISJn(x1, x2, x3). Beame et al. showed (using a direct product theorem) that any bounded-
error protocol of this form requiresΩ(n1/3) bits of communication.3 Moreover, if Bob only has one-way
communication to Alice, then the bound becomesΩ(

√
n) bits. As Beame et al. noted, this follows from a

lower bound for the pointer-jumping problem due to Wigderson, included in the appendix of [3].4

In Section 6 we slightly strengthen the two 3-player results, with simpler proofs, showing the same
bounds for protocols where Alice and Bob can sendquantumbits. These results will follow easily from the
two direct product theorems: the one for two-way communication from [27], and the new one for one-way
communication that we prove here.

2 Preliminaries

Norms: Recall that we define thep-norm of ad-dimensional vectorv by

‖v‖p =

(
1

d

d∑

i=1

|vi|p
)1/p

.

We extend this to matrices by defining the (normalized Schatten)p-norm of a matrixA ∈ Cd×d as

‖A‖p =

(
1

d
Tr|A|p

)1/p

.

This is equivalent to thep-norm of the vector of singular values ofA. For diagonal matrices this definition
coincides with the one for vectors. For convenience we defined all norms to be under the normalized
counting measure, even though for matrices this is nonstandard. The advantage of the normalized norm is
that it is nondecreasing withp. We also define thetrace norm‖A‖tr of a matrixA as the sum of its singular
values, hence we have‖A‖tr = d‖A‖1 for anyd× d matrixA.

3Their conference paper had anΩ(n1/3/ log n) bound, but the journal version [6] managed to get rid of thelog n.
4Very recently, Viola and Wigderson [42] generalized the one-way pointer-jumping lower bound toΩ(n1/(ℓ−1)) for any constant

ℓ players, and obtained the same lower bound for the one-way complexity of ℓ-player Disjointness.
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Quantum states: Anm-qubitpure stateis a superposition|φ〉 =
∑

z∈{0,1}m αz|z〉 over all classicalm-bit

states. Theαz ’s are complex numbers calledamplitudes, and
∑

z |αz|2 = 1. Hence a pure state|φ〉 is a
unit vector inC2m

. Its complex conjugate (a row vector with entries conjugated) is denoted〈φ|. The inner
product between|φ〉 =

∑
z αz|z〉 and |ψ〉 =

∑
z βz|z〉 is the dot product〈φ| · |ψ〉 = 〈φ|ψ〉 =

∑
z α

∗
zβz.

Second, anm-qubit mixed state(or density matrix) ρ =
∑

i pi|φi〉〈φi| corresponds to a probability distribu-
tion overm-qubit pure states, where|φi〉 is given with probabilitypi. The eigenvaluesλ1, . . . , λd of ρ are
non-negative reals that sum to 1, so they form a probability distribution. If ρ is pure then one eigenvalue is
1 while all others are 0. Hence for anyp ≥ 1, the maximalp-norm is achieved by pure states:

‖ρ‖p
p =

1

d

d∑

i=1

λp
i ≤ 1

d

d∑

i=1

λi =
1

d
. (4)

A k-outcomepositive operator-valued measurement(POVM) is given byk positive semidefinite oper-
atorsE1, . . . , Ek with the property that

∑k
i=1Ei = I. When this POVM is applied to a mixed stateρ, the

probability of theith outcome is given by the trace Tr(Eiρ). The following well known fact gives the close
relationship between trace distance and distinguishability of density matrices:

Fact 3. The best possible measurement to distinguish two density matricesρ0 andρ1 has bias1
2‖ρ0 − ρ1‖tr.

Here “bias” is defined as twice the success probability, minus 1. We refer to Nielsen and Chuang [36]
for more details.

3 The hypercontractive inequality for matrix-valued funct ions

Here we prove Theorem 1. The proof relies on the following powerful inequality by Ball et al. [4] (they state
this inequality for the usual unnormalized Schattenp-norm, but both statements are clearly equivalent).

Lemma 4. ([4, Theorem 1]) For any matricesA,B and any1 ≤ p ≤ 2, it holds that
(∥∥∥∥

A+B

2

∥∥∥∥
2

p

+ (p− 1)

∥∥∥∥
A−B

2

∥∥∥∥
2

p

)1/2

≤
(
‖A‖p

p + ‖B‖p
p

2

)1/p

.

Theorem 1. For anyf : {0, 1}n → M and for any1 ≤ p ≤ 2,
(
∑

S⊆[n]

(p− 1)|S|
∥∥f̂(S)

∥∥2

p

)1/2

≤
(

1

2n

∑

x∈{0,1}n

‖f(x)‖p
p

)1/p

.

Proof: By induction. The casen = 1 follows from Lemma 4 by settingA = f(0) andB = f(1), and
noting that(A+B)/2 and(A−B)/2 are exactly the Fourier coefficientŝf(0) andf̂(1).

We now assume the lemma holds forn and prove it forn + 1. Let f : {0, 1}n+1 → M be some
matrix-valued function. Fori ∈ {0, 1}, let gi = f |xn+1=i be the function obtained by fixing the last input
bit of f to i. We apply the induction hypothesis ong0 andg1 to obtain




∑

S⊆[n]

(p− 1)|S|‖ĝ0(S)‖2
p




1/2

≤



 1

2n

∑

x∈{0,1}n

‖g0(x)‖p
p




1/p




∑

S⊆[n]

(p− 1)|S|‖ĝ1(S)‖2
p




1/2

≤



 1

2n

∑

x∈{0,1}n

‖g1(x)‖p
p




1/p

.
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Take theLp average of these two inequalities: raise each to thepth power, average them and take thepth
root. We get




1

2

∑

i∈{0,1}




∑

S⊆[n]

(p − 1)|S|‖ĝi(S)‖2
p




p/2



1/p

≤



 1

2n+1

∑

x∈{0,1}n

(
‖g0(x)‖p

p + ‖g1(x)‖p
p

)



1/p

(5)

=



 1

2n+1

∑

x∈{0,1}n+1

‖f(x)‖p
p




1/p

.

The right-hand side is the expression we wish to lower bound.To bound the left-hand side, we need the
following inequality (to get a sense of why this holds, consider the case whereq1 = 1 andq2 = ∞).

Lemma 5 (Minkowski’s inequality, [19, Theorem 26]). For any r1 × r2 matrix whose rows are given by
u1, . . . , ur1 and whose columns are given byv1, . . . , vr2 , and any1 ≤ q1 < q2 ≤ ∞,

∥∥∥
(
‖v1‖q2

, . . . , ‖vr2‖q2

)∥∥∥
q1

≥
∥∥∥
(
‖u1‖q1

, . . . , ‖ur1‖q1

)∥∥∥
q2

,

i.e., the value obtained by taking theq2-norm of each column and then taking theq1-norm of the results, is
at least that obtained by first taking theq1-norm of each row and then taking theq2-norm of the results.

Consider now the2n × 2 matrix whose entries are given by

cS,i = 2n/2
∥∥∥(p− 1)|S|/2ĝi(S)

∥∥∥
p

wherei ∈ {0, 1} andS ⊆ [n]. The left-hand side of (5) is then




1

2

∑

i∈{0,1}



 1

2n

∑

S⊆[n]

c2S,i




p/2



1/p

≥




1

2n

∑

S⊆[n]



1

2

∑

i∈{0,1}

cpS,i




2/p



1/2

=




∑

S⊆[n]

(p− 1)|S|

(
‖ĝ0(S)‖p

p + ‖ĝ1(S)‖p
p

2

)2/p



1/2

,

where the inequality follows from Lemma 5 withq1 = p, q2 = 2. We now apply Lemma 4 to deduce that
the above is lower bounded by




∑

S⊆[n]

(p− 1)|S|

(∥∥∥∥
ĝ0(S) + ĝ1(S)

2

∥∥∥∥
2

p

+ (p− 1)

∥∥∥∥
ĝ0(S) − ĝ1(S)

2

∥∥∥∥
2

p

)


1/2

=




∑

S⊆[n+1]

(p− 1)|S|
∥∥f̂(S)

∥∥2

p




1/2

where we used̂f(S) = 1
2(ĝ0(S) + ĝ1(S)) andf̂(S ∪ {n+ 1}) = 1

2(ĝ0(S) − ĝ1(S)) for anyS ⊆ [n].
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4 Bounds fork-out-of-n quantum random access codes

In this section we prove Theorem 2. Recall that ak-out-of-n random access code allows us to encoden
bits intom qubits, such that we can recover anyk-bit substring with probability at leastp. We now define
this notion formally. In fact, we consider a somewhat weakernotion where we only measure the success
probability for a randomk subset, and a random inputx ∈ {0, 1}n. Since we only prove impossibility
results, this clearly makes our results stronger.

Definition 1. A k-out-of-n quantum random access code onm qubits with success probabilityp (for short
(k, n,m, p)-QRAC), is a map

f : {0, 1}n → C2m×2m

that assigns anm-qubit density matrixf(x) to everyx ∈ {0, 1}n, and a quantum measurement{MS,z}z∈{0,1}k

to every setS ∈
([n]

k

)
, with the property that

Ex,S[Tr(MS,xS
· f(x))] ≥ p,

where the expectation is taken over a uniform choice ofx ∈ {0, 1}n andS ∈
([n]

k

)
, andxS denotes thek-bit

substring ofx specified byS.

In order to prove Theorem 2, we introduce another notion of QRAC, which we callXOR-QRAC. Here,
the goal is to predict the XOR of thek bits indexed byS (as opposed to guessing all the bits inS). Since one
can always predict a bit with probability12 , it is convenient to define thebiasof the prediction asε = 2p− 1
wherep is the probability of a correct prediction. Hence a bias of1 means that the prediction is always
correct, whereas a bias of−1 means that it is always wrong. The advantage of dealing with an XOR-QRAC
is that it is easy to express the best achievable prediction bias without any need to introduce measurements.
Namely, iff : {0, 1}n → C2m×2m

is the encoding function, then the best achievable bias in predicting the
XOR of the bits inS (over a random{0, 1}n) is exactly half the trace distance between the average off(x)
over allx with the XOR of the bits inS being0 and the average off(x) over allx with the XOR of the bits
in S being1. Using our notation for Fourier coefficients, this can be written simply as

∥∥f̂(S)
∥∥

tr
.

Definition 2. Ak-out-of-n XOR quantum random access code onm qubits with biasε (for short(k, n,m, ε)-
XOR-QRAC), is a map

f : {0, 1}n → C2m×2m

that assigns anm-qubit density matrixf(x) to everyx ∈ {0, 1}n and has the property that

E
S∼([n]

k )

[∥∥f̂(S)
∥∥

tr

]
≥ ε.

Our new hypercontractive inequality allows us to easily derive the following key lemma:

Lemma 6. Let f : {0, 1}n → C2m×2m
be any mapping fromn-bit strings tom-qubit density matrices.

Then for any0 ≤ δ ≤ 1, we have ∑

S⊆[n]

δ|S|
∥∥f̂(S)

∥∥2

tr
≤ 22δm.

Proof: Let p = 1 + δ. On one hand, by Theorem 1 and Eq. (4) we have

∑

S⊆[n]

(p− 1)|S|
∥∥f̂(S)

∥∥2

p
≤
(

1

2n

∑

x∈{0,1}n

∥∥f(x)
∥∥p

p

)2/p

≤
(

1

2n
· 2n · 1

2m

)2/p

= 2−2m/p.
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On the other hand, by norm monotonicity we have

∑

S⊆[n]

(p− 1)|S|
∥∥f̂(S)

∥∥2

p
≥

∑

S⊆[n]

(p− 1)|S|
∥∥f̂(S)

∥∥2

1
= 2−2m

∑

S⊆[n]

(p − 1)|S|
∥∥f̂(S)

∥∥2

tr
.

By rearranging we have

∑

S⊆[n]

(p − 1)|S|
∥∥f̂(S)

∥∥2

tr
≤ 22m(1−1/p) ≤ 22m(p−1),

as required.

The following is our main theorem regarding XOR-QRAC. In particular it shows that ifk = o(n) and
m/n < 1/(2 ln 2) ≈ 0.721, then the bias will be exponentially small ink.

Theorem 7. For any(k, n,m, ε)-XOR-QRAC we have the following bound on the bias

ε ≤
(

(2e ln 2)m

k

)k/2(n
k

)−1/2

.

In particular, for anyη > 2 ln 2 there exists a constantCη such that ifn/k is large enough then for any
(k, n,m, ε)-XOR-QRAC,

ε ≤ Cη

(ηm
n

)k/2
.

Proof: Apply Lemma 6 withδ = k
(2 ln 2)m and only take the sum onS with |S| = k. This gives

E
S∼([n]

k )

[∥∥f̂(S)
∥∥2

tr

]
≤ 22δmδ−k

(
n

k

)−1

=

(
(2e ln 2)m

k

)k (n
k

)−1

.

The first bound onε now follows by convexity (Jensen’s inequality). To derive the second bound, approxi-
mate

(n
k

)
using Stirling’s approximationn! = Θ(

√
n(n/e)n):

(
n

k

)
=

n!

k!(n − k)!
= Θ

(√
n

k(n− k)

(n
k

)k
(

1 +
k

n− k

)n−k
)
.

Now use the fact that for large enoughn/k we have(1 + k/(n − k))(n−k)/k > (2e ln 2)/η, and notice that
the factor

√
n/k(n− k) ≥

√
1/k can be absorbed by this approximation.

We now derive Theorem 2 from Theorem 7.

Proof of Theorem 2: Consider a(k, n,m, p)-QRAC, given by encoding functionf and measurements
{MT,z}z∈{0,1}k for all T ∈

([n]
k

)
. DefinepT (w) = Ex [Pr[z ⊕ xT = w]] as the distribution on the “er-

ror vector”w ∈ {0, 1}k of the measurement outcomez ∈ {0, 1}k when applying{MT,z}. By definition,
we have thatp ≤ ET [pT (0k)].

Now suppose we want to predict the parity of the bits of some set S of size at mostk. We can do this as
follows: uniformly pick a setT ∈

([n]
k

)
that containsS, measuref(x) with {MT,z}, and output the parity
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of the bits corresponding toS in the measurement outcomez. Note that our output is correct if and only if
the bits corresponding toS in the error vectorw have even parity. Hence the bias of our output is

βS = ET :T⊇S




∑

w∈{0,1}k

pT (w)χS(w)



 = 2k ET :T⊇S [p̂T (S)] .

(We slightly abuse notation here by viewingS both as a subset ofT and as a subset of[k] obtained by
identifying T with [k].) Notice thatβS can be upper bounded by the best-achievable bias

∥∥f̂(S)
∥∥

tr
.

Consider the distributionS on setsS defined as follows: first pickj from the binomial distribution
B(k, 1/2) and then uniformly pickS ∈

([n]
j

)
. Notice that the distribution on pairs(S, T ) obtained by first

choosingS ∼ S and then choosing a uniformT ⊇ S from
([n]

k

)
is identical to the one obtained by first

choosing uniformlyT from
([n]

k

)
and then choosing a uniformS ⊆ T . This allows us to show that the

average biasβS overS ∼ S is at leastp, as follows:

ES∼S [βS ] = 2kES∼S,T⊇S [p̂T (S)]

= 2kE
T∼([n]

k ),S⊆T
[p̂T (S)]

= E
T∼([n]

k )

[
∑

S⊆T

p̂T (S)

]

= E
T∼([n]

k )

[
pT (0k)

]
≥ p

where the last equality follows from Eq. (2). On the other hand, using Theorem 7 we obtain

ES∼S [βS ] ≤ ES∼S

[∥∥f̂(S)
∥∥

tr

]

=
1

2k

k∑

j=0

(
k

j

)
E

S∼([n]
j )

[∥∥f̂(S)
∥∥

tr

]

≤ 1

2k

k∑

j=0

(
k

j

)
Cη

(ηm
n

)j/2

= Cη

(
1

2
+

1

2

√
ηm

n

)k

,

where the last equality uses the binomial theorem. Combining the two inequalities completes the proof.

5 Direct product theorem for one-way quantum communication

The setting of communication complexity is by now well-known, so we will not give formal definitions of
protocols etc., referring to [28, 43] instead. Consider then-bit Disjointness problem in 2-party commu-
nication complexity. Alice receivesn-bit string x and Bob receivesn-bit string y. They interpret these
strings as subsets of[n] and want to decide whether their sets are disjoint. In other words, DISJn(x, y) = 1

if and only if x ∩ y = ∅. Let DISJ(k)
n denotek independent instances of this problem. That is, Alice’s

input is ak-tuple x1, . . . , xk of n-bit strings, Bob’s input is ak-tuple y1, . . . , yk, and they should output
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all k bits: DISJ(k)
n (x1, . . . , xk, y1, . . . , yk) = DISJn(x1, y1), . . . ,DISJn(xk, yk). The trivial protocol where

Alice sends all her inputs to Bob has success probability 1 and communication complexitykn. We want to
show that if the total one-way communication is much smallerthankn qubits, then the success probability
is exponentially small ink. We will do that by deriving a random access code from the protocol’s message.

Lemma 8. Let ℓ ≤ k/2. If there is ac-qubit one-way communication protocol forDISJ(k)
n with success

probabilityσ, then there is anℓ-out-of-kn quantum random access code ofc+O(k + log(kn)) qubits with
success probabilityp ≥ 1

2σ · (1 − ℓ/k)ℓ.

Proof: Consider the following one-way communication setting: Alice has akn-bit stringx, and Bob hasℓ
distinct indicesi1, . . . , iℓ ∈ [kn] and wants to learn the corresponding bits ofx. In order to do this, they use
⌈log((kn)!)⌉ public coin flips to pick a random permutationπ ∈ Skn, and Alice sends thec-qubit message

corresponding to inputπ(x) in the DISJ(k)
n -protocol. We viewπ(x) = x1 . . . xk as consisting ofk disjoint

blocks ofn bits each. The probability (over the choice ofπ) that Bob’sℓ permuted indicesπ(i1), . . . , π(iℓ)
end up inℓ different blocks is

ℓ−1∏

i=0

kn− in

kn− i
≥
(
kn− ℓn

kn

)ℓ

=

(
1 − ℓ

k

)ℓ

.

If this is the case, Bob chooses his Disjointness inputsy1, . . . , yk as follows. If indexπ(ij) ended up
somewhere in blockb ∈ [k], then he choosesyb to be the string having a 1 at the position whereπ(ij)
ended up, and 0s elsewhere. Note that the correct output for the b-th instance of Disjointness with inputs
π(x) andy1, . . . , yk is exactly1 − xij . Now Bob completes the protocol and gets ak-bit output for the
k-fold Disjointness problem. A correct output tells him theℓ bits he wants to know (he can just disregard
the outcomes of the otherk − ℓ instances). Overall the success probability is at leastσ(1 − ℓ/k)ℓ.

We will now replace the large public coin by a short coin that Alice flips privately and sends along with
her message. By Newman’s theorem [35], there exists a setS of onlyO(log(2kn ·nk)/(σ(1− ℓ/k)ℓ)2) per-
mutations, such that using a random element from this small set instead of a uniformly random permutation
changes the success probability in the protocol by at most anadditive 1

2σ(1− ℓ/k)ℓ, for each of the2kn · nk

inputs that we are considering. Alice’s permutation (picked from the small setS, which we hardwire into
the protocol so Bob also knows it) can be described bylog |S| = O(k + log(kn)) bits. Here we assume
σ ≥ 2−k; the lemma is trivial otherwise. The quantum message corresponding tox together with Alice’s
private coin, is the quantum random access code. That is, if Alice’s message on inputx and permutationπ
is denoted byρπ(x), then the random access code is the mixed quantum state

1

|S|
∑

π∈S

ρπ(x) ⊗ |π〉〈π|.

This hasc+ log |S| qubits.

Combining the previous lemma with our earlier upper bound onp for ℓ-out-of-kn quantum random
access codes (Theorem 2), we obtain the following upper bound on the success probabilityσ of c-qubit
one-way communication protocols for DISJ(k)

n . For everyη > 2 ln 2 there exists a constantCη such that:

σ ≤ 2p(1 − ℓ/k)−ℓ ≤ 2Cη

((
1

2
+

1

2

√
η(c+O(k + log(kn)))

kn

)(
k

k − ℓ

))ℓ

.

Choosingℓ a sufficiently small constant fraction ofk (depending onη), we obtain a strong direct product
theorem for one-way communication:
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Theorem 9. For any η > 2 ln 2 the following holds: for any large enoughn and anyk, every one-way
quantum protocol forDISJ(k)

n that communicatesc ≤ kn/η qubits, has success probabilityσ ≤ 2−Ω(k)

(where the constant in theΩ(·) depends onη).

The above strong direct product theorem (SDPT) bounds the success probability for protocols that are
required to computeall k instances correctly. We call this azero-errorSDPT. What if we settle for getting
a (1 − ε)-fraction of thek instances right, for some smallε > 0? An ε-error SDPT is a theorem to the
effect that even in this case the success probability is exponentially small. Anε-error SDPT follows from
a zero-error SDPT as follows. Run anε-error protocol with success probabilityp (“success” now means
getting1 − ε of thek instances right), guess up toεk positions and change them. With probability at least
p the number of errors of theε-error protocol is at mostεk, and with probability at least1/

∑εk
i=0

(
k
i

)
we

now have corrected all those errors. Since
∑εk

i=0

(k
i

)
≤ 2kH(ε) (see, e.g., [24, Corollary 23.6]), we have a

protocol that computes all instances correctly with success probabilityσ ≥ p2−kH(ε). If we have a zero-
error SDPT that boundsσ ≤ 2−γk for someγ > H(ε), then it follows thatp must be exponentially small as
well: p ≤ 2−(γ−H(ε))k . Hence Theorem 9 implies:

Theorem 10. For any η > 2 ln 2 there exists anε > 0 such that the following holds: for every one-way
quantum protocol forDISJ(k)

n that communicatesc ≤ kn/η qubits, its probability to compute at least a
(1 − ε)-fraction of thek instances correctly is at most2−Ω(k).

6 Lower bounds for 3-party Disjointness in the NOF model

We now prove two lower bounds for the communication complexity of 3-party Disjointness in the “number
on the forehead” model, slightly improving upon [6]. Here Alice seesn-bit inputsx andz, Bob seesy and
z, and Charlie seesx andy. Their goal is to decide if there is ani ∈ [n] such thatxi = yi = zi = 1.

6.1 Communication-typeC → (B ↔ A)

Suppose we have a 3-party protocolP for Disjointness with the following “flow” of communication. Charlie
sends a message ofc1 classical bits to Alice and Bob (or just to Bob, it doesn’t really matter), who then
exchangec2 qubits and compute Disjointness with bounded error probability. Our lower bound approach is
similar to the one of Beame et al. [6], the main change being our use of stronger direct product theorems.
Combining the (0-error) two-way quantum strong direct product theorem for Disjointness from [27] with
the argument from the end of our Section 5, we have the following ε-error strong direct product theorem for
k instances of 2-party Disjointness:

Theorem 11. There exist constantsε > 0 andα > 0 such that the following holds: for every two-way
quantum protocol forDISJ(k)

n that communicates at mostαk
√
n qubits, its probability to compute at least

an (1 − ε)-fraction of thek instances correctly, is at most2−Ω(k).

Assume without loss of generality that the error probability of our initial 3-party protocolP is at most
half theε of Theorem 11. View then-bit inputs of protocolP as consisting oft consecutive blocks of
n/t bits each. We will restrict attention to inputsz = z1 . . . zt where onezi is all-1, and the otherzj are
all-0. Note that for such az, we have DISJn(x, y, z) = DISJn/t(xi, yi). Fixing z thus reduces the 3-party
Disjointness on(x, y, z) to 2-party Disjointness on a smaller instance(xi, yi). Since Charlie does not see
input z, his c1-bit message is independent ofz. Now by going over allt possiblez’s, and running their
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2-party protocolt times starting from Charlie’s message, Alice and Bob obtaina protocolP ′ that computes
t independent instances of 2-party Disjointness, namely on each of thet inputs(x1, y1), . . . , (xt, yt). This
P ′ uses at mosttc2 qubits of communication. For everyx andy, it follows from linearity of expectation that
the expected number of instances whereP ′ errs, is at mostεt/2 (expectation taken over Charlie’s message,
and thet-fold Alice-Bob protocol). Hence by Markov’s inequality, the probability thatP ′ errs on more than
εt instances, is at most 1/2. Then for everyx, y there exists ac1-bit messagemxy such thatP ′, when given
that message to start with, with probability at least 1/2 correctly computes1 − ε of all t instances.

Now replace Charlie’sc1-bit message by a uniformly random messagem. Alice and Bob can just
generate this by themselves using shared randomness. This gives a new 2-party protocolP ′′. For eachx, y,
with probability 2−c1 we havem = mxy, hence with probability at least122−c1 the protocolP ′′ correctly
computes1 − ε of all t instances of Disjointness onn/t bits each. Choosingt = O(c1) and invoking
Theorem 11 gives a lower bound on the communication inP ′′: tc2 = Ω(t

√
n/t). Hencec2 = Ω(

√
n/c1).

The overall communication of the original 3-party protocolP is

c1 + c2 = c1 + Ω(
√
n/c1) = Ω(n1/3)

(the minimizing value ist = n1/3).
This generalizes the bound of Beame et al. [6] to the case where we allow Alice and Bob to send each

other qubits. Note that this bound is tight for our restricted set ofz’s, since Alice and Bob knowz and
can compute the 2-party Disjointness on the relevant(xi, yi) in O(

√
n2/3) = O(n1/3) qubits of two-way

communication without help from Charlie, using the optimalquantum protocol for 2-party Disjointness [1].

6.2 Communication-typeC → B → A

Now consider an even more restricted type of communication:Charlie sends a classical message to Bob,
then Bob sends a quantum message to Alice, and Alice computesthe output. We can use a similar argument
as before, dividing the inputs intot = O(n1/2) equal-sized blocks instead ofO(n1/3) equal-sized blocks.
If we now replace the two-way SDPT (Theorem 11) by the new one-way SDPT (Theorem 10), we obtain a
lower bound ofΩ(

√
n) for 3-party bounded-error protocols for Disjointness of this restricted type.

Remark. If Charlie’s message is quantum as well, then the same approach works, except we need to
reduce the error of the protocol to≪ 1/t at a multiplicative cost ofO(log t) = O(log n) to bothc1 andc2
(Charlie’s one quantum message needs to be reusedt times). This worsens the two communication lower
bounds toΩ(n1/3/ log n) andΩ(

√
n/ log n) qubits, respectively.
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