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Abstract An interesting variant of the above gaiantumcommu-
nication complexity: suppose that Alice and Bob each have
The quantum version of communication complexity al- a quantum computer at their disposal and are allowed to ex-
lows the two communicating parties to exchange qubits change quantum bits (qubits) and/or can make use of the
and/or to make use of prior entanglement (shared EPR-quantum correlations given by pre-shared EPR-pairs (these
pairs). Some lower bound techniques are available for qubit are entangled 2-qubit stat%(mo) +111)) of which Alice
communication complexity, but except for the inner product has the first qubit and Bob the second) — can they do with
function, no bounds are known for the model with unlimited fewer communication than in the classical case? The an-
prior entanglement. We show that the “log rank” lower swer is yes. Quantum communication complexity was first
bound extends to the strongest variant of quantum com-considered by Yao [36] and the first example where quan-
munication complexity (qubit communicatienunlimited  tum beats classical communication complexity was given
prior entanglement). By relating the rank of the communi- in [10]. Bigger (even exponential) gaps have been shown
cation matrix to properties of polynomials, we are able to since [8, 2, 32, 7].
derive some strong bounds for exact protocols. In particu-  The question arises how big the gaps between quantum
lar, we prove both the “log rank conjecture” and the polyno- and classical can be for various (classes of) functions. In
mial equivalence of quantum and classical communication order to answer this, we need to exhibit limits on the power
complexity for various classes of functions. We also derive of quantum communication complexity, i.e., establish lowe
some weaker bounds for bounded-error quantum protocols.bounds — few of which are known currently. The main
purpose of this paper is to develop tools for proving lower
bounds on quantum communication protocols. We present
some new lower bounds for the case whgrés a total
1 Introduction Boolean function. Most of our bounds apply only to exact
guantum protocols, which always output the correct answer.
However, we also have some extensions of our techniques

Communication complexity deals with the following
to the case of bounded-error quantum protocols.

kind of problem. There are two separated parties, usually

called Alice and Bob. Alice receives some inpute X,

Bob receives somg € Y, and together they want to com- 1.1 ~Lower bounds for exact protocols

pute some functiorf (z,y) that depends on both andy.

Alice and Bob are allowed infinite computational power, ~ Let D(f) denote the classical deterministic communica-

but communication between them is expensive and has taion complexity of f, Q(f) the qubit communication com-

be minimized. How many bits do Alice and Bob have plexity, and@*(f) the qubit communication required if Al-

to exchange in the worst-case in order to be able to com-ice and Bob can also make use of an unlimited supply of

pute f(z,y)? This model was introduced by Yao [35] and pre-shared EPR-pairs. Cleady*(f) < Q(f) < D(f).

has been studied extensively, both for its applicatioh® (li ~Ultimately, we would like to show tha@*(f) andD(f) are

lower bounds on VLSI and circuits) and for its own sake. polynomially related for all total functiong (as are their

We refer to [20, 15] for definitions and results. query complexity counterparts [4]). This requires strange
~Partially supported by the EU fifth framework project QAIT- lower bound tools than we have at present. Some lower

1999-11234. Both authors are also affiliated with the Usitgrof bound methods are available fQx(f) [36, 19, 11, 2], but
Amsterdam. the only lower bound known fap*( f) is for the inner prod-




uct function [11]. A strong and well known lower bound
for the classical complexity D(f) is given by the loga-
rithm of the rank of the communication matrix fgr[23].
As first noted in [8], techniques of [36, 19] imply that an
N(log rank(f))-bound also holds fof (f). Our first result
is to extend this bound t@*(f) and to derive the optimal

constant:

@ (1) > BT )

This impliesn /2 lower bounds for the)*-complexity of
the equality and disjointness problems, for which no good
bounds were known before. Thig/2 is tight up to 1 bit,
since Alice can send herbit input to Bob withn /2 qubits
andn/2 EPR-pairs using superdense coding [6]. Our corre-
sponding lower bound also provides a new proaptimal-

ity of superdense coding. In fact, the sam/@ bound holds
for almost all functions. Furthermore, proof of the well-
known “log rank conjecture”D(f) < (logrank(f))* for
somek) would now imply our desired polynomial equiva-
lence betwee(f) and@*(f) (as already noted fab( f)
and@(f) in [2]). However, this conjecture is a long stand-
ing open question that is probably hard to solve in full gen-
erality.

Secondly, in order to get an algebraic handle on
rank(f), we relate it to a property of polynomials. It is
well known that every total Boolean functign {0,1}" —
{0,1} has a unique representation as a multilinear poly-
nomial in itsn variables. For the case where Alice and
Bob’s function has the fornf(z,y) = g(x A y), we show
thatrank(f) equals the number of monomialson(g) of
the polynomial that represeng(rank(f) < mon(g) was
shown in [31]). This number of monomials is often easy
to count and allows to determinenk(f). The functions
f(z,y) = g(z A y) form an important class that includes
inner product, disjointness, and the functions that give th
biggest gaps known betwedn(f) andlogrank(f) [31]
(similar techniques work for the class of functions where
f(z,y) = g(z Vy)org(z & y)).

We use this to show th@&*(f) € ©(D(f)) if g is sym-
metric. In this case we also show thaf f) is close to the
classical randomized complexity. Furthermo€g;(f) <
D(f) € O(Q*(f)?) if g is monotone. For the latter re-
sult we re-derive a result of Lovasz and Saks [22] using our
tools.

1.2 Lower bounds for bounded-error protocols

For the case of bounded-error quantum communication
protocols, very few lower bounds are currently known (ex-

1During discussions we had with Michael Nielsen in Cambrifigk)
in the summer of 1999 after having obtained this result, fiesped that
an equivalent theorem can be derived from results aBobhimidt numbers
in [27, Section 6.4.2].

ceptions are inner product [11] and the general discrep-
ancy bound [19]). In particular, no good lower bounds are
known for the disjointness problem. The best known upper
bound for this isO(y/nlogn) qubits [8], contrasting with
linear classical randomized complexity [16, 33]. Since dis
jointness is a co-NP-complete communication problem [3],
a good lower bound for this problem would imply lower
bounds for all NP-hard communication problems.

In order to attack this problem, we make an ef-
fort to extend the above polynomial-based approach to
bounded-error protocols. We consider the approximate rank
fc?vﬁc(f), and show the boun@.(f) > (log@?z/k(f))/Q
for 2-sided bounded-error qubit protocols (again usinptec
niques from [36, 19]). Unfortunately, lower bounds on
m(f) are much harder to obtain than farnk(f). If we

could prove for the casg(z,y) = g(z A y) thatﬂ;yﬁc(f)
roughly equals the number of monomiafson(g) of an
approximating polynomial foy, then a./n lower bound
would follow for disjointness, because we show that dis-
jointness requires at lea8¥” monomials to approximate.
Since we prove that the quantitiesnk(f) andmon(g) are
in fact equal in the exact case, this gives some hope for
a similar resultﬂ;yﬁc(f) mon(g) in the approximating
case, and hence for resolving the complexity of disjoindnes

The specific bounds that we actually were abl@rove
for disjointness are more limited at this poi@ (DISJ,) €
Q(log n) for the general case (by an extension of techniques
of [11]; thelog n bound without entanglement was already
known [2]), @5(DISJ,) € Q(n) for 1-round protocols (us-
ing a result of [25]), and)»(DISJ,) € Q(log(n/e)) if the
error probability has to be ¢.

Below we sum up the main results, contrasting the exact
and bounded-error case.

~

¢ We show thatQ*(f) > logrank(f)/2 for ex-

act protocols with unlimited prior EPR-pairs and
Q2(f) > logrank(f)/2 for bounded-error qubit pro-
tocols without prior EPR-pairs.

e If f(z,y) = g(z A y) for some Boolean function

g, thenrank(f) mon(g). An analogous result
rank(f) ~ mon(g) for the approximate case is open.

¢ A polynomial for disjointness, DISJz,y)
NOR,(z A y), requires2™ monomials in the exact
case (implyingQ*(DISJ,) > n/2), and roughly2v”
monomials in the approximate case.

2 Preliminaries

We use|z| to denote the Hamming weight (number of
1s) of z € {0,1}", z; for the ith bit of z (zo = 0),
ande; for the string whose only 1 occurs at positian|f



z,y € {0,1}", we usex A y € {0,1}" for the string ob- nicates classical bits but can make use of an unlimited (but
tained by bitwise ANDing: andy, and similarlyz Vv y. Let finite) number of shared EPR-pairs, a@d(f) is the cost
g:{0,1}™ — {0, 1} be a Boolean function. We caJlsym- of a qubit protocol that can use shared EPR-pairgléan
metricif g(z) only depends omz|, andmonotonsf g can- guantum protocol is a protocol without prior entanglement
not decrease if we set more variables to 1. It is well known that starts witH0)|0)|0) and ends witH0)| f (z, y))|0). We

that eachy : {0,1}" — R has a unique representation as a useQ.(f) to denote the minimal cost of such protocols for
multilinear polynomialg(z) = > gc ¢y 3 asXs, where f. We add the superscript “1 round” for 1-round protocols,
X is the product of the variables Biandas is a real num- where Alice sends a message to Bob and Bob then sends

ber. The termus X s is called anonomialof g andmon(g) the output bit. Some simple relations that hold between
denotes the number of non-zero monomialg ofA poly- these measures aE (f) < Q(f) < D(f) < D'round(f),
nomial p approximatesy if |g(z) — p(z)| < 1/3 for all andQ(f) < Q.(f) < 2Q(f) because a clean protocol can

z € {0,1}". We usemon(g) for the minimal number of  be obtained by running an unclean exact protocol, copying
monomials among all polynomials that approximgtd he the answer, and reversing the unclean protocol to reset the
degreeof a monomial is the number of its variables, and the workspace. We also hav@*(f) < C*(f) < 2Q*(f) be-

degree of a polynomial is the largest degree of its monomi- cause teleportation allows to send a qubit using 1 EPR-pair

als. and 2 classical bits of communication [5], so tfi&-model
Let X andY be finite sets (usuallx = Y = {0,1}") can simulate the&)*-model. For bounded-error protocols
andf : X x Y — {0,1} be a Boolean function. For We analogously defin@,(f), Q3(f), C5(f) for quantum
example,equality has EQ (z,y) = 1 iff z = y, dis- protocols that give the correct answer with probability at
jointnesshas DISJ(z,y) = 1iff |z Ay| = 0 (equiva-  least2/3 on every input. We us&2“®(f) for the classical

lently, DISJ,(z,y) = NOR, (2 Ay)), andinner producthas bounded-error complexity in the public-coin model [20].
IP,(z,y) = 1iff |z Ay|isodd.M; denotes theX| x |Y|

Boolean matrix whose, y entry is f(z,y), andrank(f) 3 Log rank lower bound

denotes the rank ol/; over the reals. Arectangleis a

subsetR = S x T' C X x Y of the domain off. A 1- As first noted in [8, 2], techniques of Kremer and
coverfor f is a set of (possibly overlapping) rectangles that vaq [36, 19] implyQ(f) € Q(logrank(f)). We first state
covers all and only 1s id/;. C'(f) denotes the minimal  gng prove a lemma from [36, 19], then show how this gives
size of a 1-cover foff. Form > 1, we usef"™ to denote 3 jower bound),(f) > logrank(f)+ 1 for clean protocols
the Boolean function that is the AND ef independentin-  ithout prior entanglement, and then extend this to the new
stances off. Thatis, fA™ : X™ x Y™ — {0,1} and  resultQ*(f) > (log rank(f))/2.

f/\m(ml:' c Tms Yt - 7yM) = f(wlvyl) A f($2=y2) A

.. N f(@m,ym). Note thath 1 is the Kronecker product Lemma 1 (Kremer/Yao) The final state of a#i-qubit pro-

My @ M; and henceank(f"™) = rank(f)™. tocol (without prior entanglement) on inp(t, y) can be
Alice and Bob want to compute sonfe: X x Y — written as

{0,1}. After the protocol they should both knof(z, y). ' ' ' . '

Their system has three parts: Alice’s part, the 1-qubit ehan Z @i(2)Bi(y)|Ai(2))]ie) | Bi(y)).

nel, and Bob’s part. For definitions of quantum states and 1e{0.1}

operations, we refer to [28]. In the initial state, Alice and \yhere the a;(z), 8;(y) are complex numbers and the
Bob sharek EPR-pairs and all other qubits are zero. For 4, (;) B;(y) are unit vectors.

simplicity we assume Alice and Bob send 1 qubit in turn,

and at the end the output-bit of the protocol is put on the Proof The proof is by induction o#:

channel. The assumption that 1 qubit is sent per round Base stepFor/ = 0 the lemma is obvious.

can be replaced by a fixed number of qulgitsor the ith Induction step. Suppose aftef qubits of communica-
round. However, in order to be able to run a quantum pro- tion the state can be written as

tocol on a superposition of inputs, it is important that the

number of qubits sent in thi¢h round is independent of the D ai(@)Bi(y)| Ai(x)ie)| Bi(y))- (2)
input (z,y). An ¢-qubit protocol is described by unitary i€{0,1}¢

transformationd/y (z), Uz(y), Us(2), Ua (y), - .., Ue(/y). We assume without loss of generality that it is Alice’s turn:

E'rit Allcl_e appllesUlr(]?:) to her gar:[ an: the fhannel, then she applied/,, (z) to her part and the channel. Note that

ob appliesz(y) to his part and the channel, etc. there exist complex numbersg(x), oy (x) and unit vec-
Q(f) denotes the (worst-case) cost of an optimal qubit tors A (z), A;1 (z) such that

protocol that computeg exactly without prior entangle-

ment, C*(f) denotes the cost of a protocol that commu- (Ups1(z) @ IN|Ai(x))]ie) | Bi(y)) =



aio(2)|Aio (2))]0)[ Bi(y)) + eia ()| Air (2))[1)| Bi (y))-

Thus every element of the superposition (2) “splits in two”
when we applyU,,;. Accordingly, we can write the state
afterUp,41 in the form required by the lemma. m

f, they each AND the answer into their answer bits (which
can be done cleanly), and they reverse the protocol, etc. Af-
ter allm instances of have been computed, Alice and Bob
both have the answef"™(z,y) left and thek EPR-pairs.

Bob now sends his halves of tliepairs to Alice who sets
each of thek pairs back td00). The protocol thus ends up
with the answer and a clean workspace, so we have a clean
protocol for fA™ that use2m¢ + 2k qubits and no prior
entanglement. By Theorem 1:

Theorem 1 Q.(f) > logrank(f) + 1.

Proof Consider a clear/-qubit protocol for f. By
Lemma 1, we can write its final state as

Y a@i@)Biy)|Ai(z))ie)|Bi(y)).

i€{0,1}¢

2ml + 2k > Q.(f™) > logrank(f"™)+1

mlogrank(f) + 1,

hence
The protocol is clean, so the final state|®|f(z,y))|0). /> logrank(f) _ 2k — 1_
Hence all parts ofA4;(z)) and|B;(y)) other than|0) will - 2 2m
cancel out, and we can assume without loss of generalitySince this holds for every: > 0, the theorem follows. O
that|4;(x)) = |Bi(y)) = |0) for all i. Now the amplitude
of the |0)|1)|0)-state is simply the sum of the amplitudes
a;(z)B;(y) of thei for whichi, = 1. This sum is either 0
or 1, and equals the acceptance probabifity:, y) of the
protocol. Lettinga(z) (resp.3(y)) be the dimensior¢—!
vector whose entries awe;(z) (resp.8;(y)) for thei with

We can derive a stronger bound fGf (f):

Theorem 3 C*(f) > logrank(f).

ip = 1.

Pz,y) = Y ai(x)Bi(y) = a(x)” - B(y).

i:ig:l

Since the protocol is exact, we must hat¥z,y) =

Proof Since a qubit and an EPR-pair can be used to send 2
classical bits [6], we can devise a qubit protocol for f
usingC*(f) qubits (compute the two copies ¢fin paral-

lel using the classical bit protocol). Hence by the previous
theoremC* (f) > Q*(f A f) > (logrank(f A [))/2 =

log rank(f). O

f(z,y). Hence if we defined as the|X| x d matrix hav-
ing the a(z) as rows andB as thed x |Y| matrix hav-
ing the 3(y) as columns, them/; = AB. But now
rank(M;) = rank(AB) < rank(4) < d < 27! and
the theorem follows. O

Below we draw some consequences from these log rank
lower bounds. Firstly,Mrq, is the identity matrix, so
rank(EQ,) = 2™. This gives the bound9*(EQ,,) > n/2,
C*(EQ,,) > n (in contrast,Q2(EQ,) € ©O(logn) and
C3(EQ,) € O(1)). The disjointness function on bits

The previous lower bound on clean protocols suffices to is the AND ofn disjointnesses on 1 bit (which have rank 2
prove a log rank lower bound also for the strongest model each), sa-ank(DISJ,) = 2". The complement of the in-
of quantum communication complexity: ner product function hasank(f) = 2". Thus we have the

following strong lower bounds, all tight up to 1 Bit:
logrank(f)
2 ' Corollary 1 Q*(EQ,), @*(DISJ,), Q*(IP,) > n/2 and
C*(EQ,),C*(DISJ,),C*(IP,) > n.

Theorem 2 Q*(f) >

Proof Suppose we have some exact protocolffthat uses

¢ qubits of communication ankl prior EPR-pairs. We will
build a clean qubit protocol without prior entanglement for
fA™. First Alice makesk EPR-pairs and sends one half
of each pair to Bob (at a cost @f qubits of communica-
tion). Now they run the protocol to compute the first in-
stance off (¢ qubits of communication). Alice and Bob
each copy the answer to a safe place, which we will call
their respective ‘answer bits’, and they reverse the paitoc  Corollary 2. Almost all f = {0,1}" x {0,1}" — {0,1}
(again? qubits of communication). This gives them back have@*(f) = n/2andC*(f) > n.

thek EPR-pairs (and an otherwise clean workspace), which  2these hounds for IPare also given in [11]. The bounds for F@nd
they can reuse. Now they compute the second instance 0biSJ, are new, and can also be shown to holdZero-errorprotocols.

Koml6s [18] has shown that the fraction af x m
Boolean matrices that have determinant O goes to 0 as
m — oc. Hence almost alt” x 2" Boolean matrices have
full rank 2™, which implies that almost all functions have
maximal quantum communication complexity:




We say f satisfies thequantum direct sum property
computingm independent copies of (without prior en-
tanglement) takesQ(f) qubits of communication in the
worst case. (We have no example of fawithout this prop-

erty.) Using the same technique as before, we can prove
an equivalence between the qubit models with and without

prior entanglement for sucf

Corollary 3 If f satisfies the quantum direct sum property,

then@™(f) < Q(f) <2Q*(f)-

Proof @Q*(f) < Q(f) is obvious. Using the techniques of
Theorem 2 we haverQ(f) < 2mQ*(f) + k, for all m and
some fixedk, henceQ (f) < 2Q*(f). O

Finally, because of Theorem 2, the well-known “log rank

conjecture” now implies the polynomial equivalence of de-
terministic classical communication complexity and exact

guantum communication complexity (with or without prior
entanglement) for all totaf:

Corollary 4 If D(f) € O((logrank(f))*), then@Q*(f) <
Q(f) < D(f) € O(Q*(f)*) forall f.

4 A lower bound technique via polynomials

4.1 Decompositions and polynomials

The previous section showed that lower bounds on

rank(f) imply lower bounds orQ*(f). In this section we
relaterank(f) to the number of monomials of a polynomial

of M; is a;(z) timesr;. Thusall rows of M; are scalar mul-
tiples of each other, hendd; has rank 1. Sinceank(A +
B) < rank(A)+rank(B)andM; = Z;’;(lf) M;, we have
rank(f) = rank(M;) < Zﬁ(lf) rank(M;) = m(f).

m(f) < rank(f): Supposerank(f) = r. Then there
arer columnscy, ..., ¢, in My that span the column space
of M;. Let A be the2” x r matrix that has these; as
columns. LetB be ther x 2™ matrix whoseith column is
formed by ther coefficients of theth column ofA/; when
written out as a linear combination @f,...,c.. Then
M; = AB, hencef(z,y) = My(z,y) = >.;_, AziBiy.
Defining functionsy;, b; by a;(z) = A,; andb;(y) = By,
we havemn(f) < rank(f). O

Combined with Theorems 2 and 3 we obtain

logm(f)
2

Corollary 5 Q*(f) > andC*(f) > logm(f).

Accordingly, for lower bounds on quantum communica-
tion complexity it is important to be able to determine the
decomposition numben(f). Often this is hard. Itis much
easier to determine the number of monomialsn(f) of
f (which upper bounds:(f)). Below we show that in the
special case wherg(z, y) = g(z A y), these two numbers
are the samé.

Below, a monomial is calledvenif it containsz; iff it
containsy;, for example2x, x3y1y3 is even andey z3y; IS
not. A polynomial isevenif each of its monomials is even.

Lemma3 If p: {0,1}" x {0,1}" — R is an even polyno-
mial with & monomials, them: (p) = k.

for f and use this to prove lower bounds for some classes ofpyoof Clearlym(p) < k. To prove the converse, consider

functions.

We define thedecomposition numbem(f) of some
function f : {0,1}" x {0,1}" — R as the minimum
m such that there exist functions (z), ..., an(z) and
b1(y),...,bm(y) (from R™ to R) for which f(z,y) =
S ai(z)bi(y) for all z,y. We say thatf can bedecom-
posednto them functionsa;b;. Without loss of generality,
the functionsz;, b; may be assumed to be multilinear poly-

nomials. It turns out that the decomposition number equals

the rank?
Lemma 2 rank(f) = m(f).

Proof

rank(f) < m(f): Let f(z,3) = X7 ai(@)bi (), M;
be the matrix defined by/;(z,y) = a;(x)b;(y), r; be the
row vector whoseyth entry isb;(y). Note that thesth row

3The first part of the proof employs a technique of Nisan anddafig
son [31]. They used this to proleg rank(f) € O(n'°83 2) for a specific
f- Our Corollary 6, together with an easy lower bound on the Inemnof
monomials in the polynomial for their function, implies ttthis is tight:
log rank(f) € ©(n'°8s 2) for their f.

DISJ, (z,y) = T, (1 — z;y;), the unique polynomial for
the disjointness function. Note that this polynomial con-
tains all and only even monomials (with coefficierts).
Since DIS] has rank2?, it follows from Lemma 2 that
DISJ, cannot be decomposed in fewer tH¥hterms. We
will show how a decomposition gf with m(p) < k would
give rise to a decomposition of DISWith fewer than2”
terms. Suppose we can write

m(p)

p(z,y) =

i

=

ai(z)bi(y).

Let aXsYs be some even monomial jnand suppose the
monomialXsYs in DISJ, has coefficient = +1. Now
wheneverbX g occurs in somez;, replace thathXgs by
(¢b/a)Xs. Using the fact thap contains only even mono-
mials, it is not hard to see that the new polynomial ob-
tained in this way is the same psexcept that the monomial
aXgYg isreplaced by XgYs.

4 After learning about this result, Mario Szegedy (persomahmunica-
tion) came up with an alternative proof of this, using Foutiansforms.



Doing this sequentially for all monomials jm we end
up with a polynomial’ (with £ monomials andn(p') <
m(p)) that is a subpolynomial of DISJ in the sense that
each monomial ip’ also occurs with the same coefficient
in DISJ,. Notice that by adding alt™ — & missing DIS,]-
monomials tgy’, we obtain a decomposition of DISdvith
m(p') + 2" — k terms. But any such decomposition needs at
least2™ terms, hencen(p') + 2™ — k > 2", which implies
k<m(p') <m(p). 0

If f(z,y) = g(z A y) for some Boolean functiog, then
the polynomial that represenfsis just the polynomial of
with theith variable replaced by;y;. Hence such a poly-
nomial is even, and we obtain:

Corollary 6 If g : {0,1}" — {0,1} and f(z,y) = g(z A
y), thenmon(g) = mon(f) = m(f) = rank(f).

This gives a tool for lower bounding (quantum and clas-
sical) communication complexity whenevgis of the form
f(z,y) = g(x Ay): logmon(g) < C*(f) < D(f). Below
we give some applications.

4.2 Symmetric functions

As a first application we show th&(f) and@*(f) are
linearly related if f(z,y) = g(z A y) andg is symmet-
ric (this follows from Corollary 8 below). Furthermore, we
show that the classical randomized public-coin complexity
RP"(f) can be at most &g n-factor less tharD(f) for
suchf (The_(?rem 4). We will assume without loss of gener-

ality thatg(0) = 0, so the polynomial representiggdoes
not have the constant-1 monomial.

Lemma 4 If g is a symmetric function whose lowest-weight
1-input has Hamming weight> 0 and f (z,y) = g(z Ay),
thenD'ound(f) =log (i, (1) +1) + 1.

Proof It is known (and easy to see) that'7ound(f) =
logr + 1, wherer is the number of different rows o/,
(this equals the number of different columns in our case,
becausef(z,y) = f(y,z)). We countr. Firstly, if |z| < t
then thez-row contains only zeroes. Secondlyif# =’

and bothz| > t and|z'| > t then itis easy to see that there
exists ay such thafxz A y| = ¢t and|z’ A y| < ¢ (or vice
versa), hence (z,y) # f(2',y) so thez-row andz’-row

are different. Accordinglyy equals the number of different
x with |z| > t, +1 for the 0-row, which gives the lemmal

Lemma 5 If g is a symmetric function whose lowest-weight
1-input has weight > 0, then(1 —o(1))log (31, (7)) <
log mon(g) < log (Z?:t (’Z)) )

Proof The upper bound follows from the fact thatannot
have monomials of degree t. For the lower bound we
distinguish two cases.

Case 1:t < n/2. Itis known that every non-constant
symmetric functionf onm variables has degrekg(f) =
m — O(m%°48) [13]. This implies thaty must contain a
monomial of degred for somed € [n/2,n/2+ bl with b €
O(n%-548), for otherwise we could set/2 — b variables to
zero and obtain a non-constant symmetric functiomos:
n/2 + b variables with degree: n/2 < m — O(m°5%%).
But because is symmetric, it must then contaill (7))
monomials of degred. Hence by Stirling’s approximation
mon(g) > (%) > 27~ (""" which implies the lemma.

Case 2:t > n/2. Itis easy to see that must contain
all (7) monomials of degre Now

> (%)

i=t

(n — t+ D)mon(g) > (n — t + 1)(?) >

Hencelog mon(g)

>log (3, (3)) —log(n —t+1) =
(1—o(1))log (32, (7

). O

The numbernon(g) may be less the;, (7). Con-
sider the functioy(z1, z2,x3) = 1 + 22 + 23 — 122 —
123 — 223 [30]. Heremon(g) = 6 but Z?:l (?) =7.
Hence thel — o(1) of Lemma 5 cannot be improved tan
general (it can ify is a threshold function).

Combining the previous results:

g
)

Corollary 7 If g is a symmetric function whose lowest-
weight 1-input has weight > 0 and f(z,y) = g(z A y),
then (1 — o(1))log (X1, (7)) < C*(f) < D(f) <
Drromni(f) = log (S, () +1) +1.

Accordingly, for symmetrigy the communication com-
plexity (quantum and classical, with or without prior entan
glement, 1-round and multi-round) equ&lg rank(f) up
to small constant factors. In particular:

Corollary 8 If g is symmetric and (z,y) = g(z Ay), then
(1=0(1))D(f) < C*(f) < D(f).

We have shown tha®)*(f) and D(f) are equal up to
constant factors whenevé(z,y) = g(z Ay) andg is sym-
metric. For suchf, D(f) is also nearly equal to the clas-
sical bounded-error communication complexi&f“’ (),
where we allow Alice and Bob to share public coin flips.
In order to prove this, we introduce the notion @block
sensitivityin analogy to the notion of block sensitivity of
Nisan [29]. For inputz € {0,1}", let bs0,(g) be the
maximal number of disjoint setS;, ..., S, of indices of
variables, such that for eveiywe have (1) allS;-variables
have value 0 inc and (2)g(z) # g(z5), wherez”: is the
string obtained from: by setting allS;-variables to 1. Let
bs0(g) = max, bs0,(g). We now have:



Lemma 6 If g is symmetric, themon(g) < n2"s0(9),

Proof Lett be the smallest number such that# g:11,
thenbsO(g) > n —t. If ¢ < n/2 thenbsO(g) > n/2,
somon(g) < 2" < n?*0%9) If t > n/2 theng has no
monomials of degreg ¢, hencemon(g) < >, (}) <

n2bs0(g) O

Theorem 4 If g is a symmetric function and(z,y)
g(z Ay), thenD(f) € O(RE™(f)logn).

Proof By Corollary 7 we have
D(f) < (14 o(1))log mon(g). Lemma 6 impliesD(f) €
O(bs0(g) logn). Moreover,RE“(f) € Q(bs0(g)) imme-
diately follows from Razborov’s lower bound for disjoint-

ness [33] (see also [20, Section 4.6]). This implies the the-

orem. O
This theorem is tight for the function defined bfx) =
1iff |z|] > n— 1. We havemon(g) = n + 1, so

logn < D(f) < (1 + 0o(1))logn. On the other hand, an
O(1) bounded-error public coin protocol can easily be de-
rived from the well-knowrO(1)-protocol for equality: Al-

ice tests ifiz| < n — 1, sends a0 if soand a 1 if not. In the
first case Alice and Bob know thgt(z,y) = 0. In the sec-
ond case, we havg(z,y) = 1iff z = yory = 1, which
can be tested with 2 applications of the equality-protocol.
HenceR?""(f) € O(1).

4.3 Monotone functions

A second application concerns monotone problems.

Lovasz and Saks [22] prove the log rank conjecture for
(among others) the following problem, which they call the
union problem forC. Here C is a monotone set system
(i.e, (A € CANA C B) = B € C) over some sizer
universe. Alice and Bob receive set@andy (respectively)

from this universe, and their task is to determine whether

z Uy € C. ldentifying sets with their representation as
n-bit strings, this problem can equivalently be viewed as
a functionf(z,y) = g(x V y), whereg is a monotone in-
creasing Boolean function. Note that it doesn’t really matt
whether we take increasing or decreasing, nor whether we
usex V y or x A y, as these problems can all be converted
into each other via De Morgan'’s laws. Our translation of
rank to number of monomials now allows us to re-derive
the Lovasz-Saks result without making use of their com-
binatorial lattice theoretical machinery. We just need the
following, slightly modified, result from their paper. For

Theorem 5 (Lovasz and Saks)
D(f) € O(log(C*(f)) log rank(f)).

Theorem 6 (Lovasz and Saks)If g is monotone and
f(z,y) = g(z Ay), thenD(f) € O((logrank(f))*).

Proof Let My, ..., M, be all the minimal monomials in
g. EachM; induces a rectangl&; = S; x T;, where
S; ={z | M; C z} andT; = {y | M; C y}. Because
¢ is monotone increasingy(z) = 1 iff z makes at least
one M; true. Hencef(z,y) = 1 iff there is ani such that
(z,y) € R;. Accordingly, the set oRR; is a 1-cover forf
andC'(f) < k < mon(g) = rank(f) by Corollary 6.
Plugging into Theorem 5 gives the theorem. |

Corollary 9 If g is monotone and (z,y) = g(z A y), then
D(f) € O(Q*(f)).

This result can be tightened for the special casélefvel
AND-OR-trees. For example, lgt be a 2-level AND-of-
ORs om: variables with fan-out/n andf (z,y) = g(zAy).
Theng has(2V” — 1)V monomials and hena@*(f) >
n/2. In contrast, the zero-error quantum complexityfag
O(n*/*1ogn) [9].

5 Bounded-error protocols

Here we generalize the above approach to bounded-
error quantum protocols. Define tlagproximate rankof

1 ﬂ;ﬂg(f), as the minimum rank among all matricés
that approximatel/; entry-wise up tol/3. Let theap-
proximate decomposition numbei(f) be the minimum
m such that there exist functions (z),...,a,(z) and

bi(y), .- bm(y) forwhich|f(z,y) — 321, ai(2)bi(y)| <
1/3 for all z, y. By the same proof as Lemma 2 we get:

Lemma 7 m(f) = m(f).
By a proof similar to Theorem 1 we show

logm(f)
—a

Proof By Lemma 1 we can write the final state of &qubit
bounded-error protocol fof as

Y ail@)Bi(y)|Ai@)ie)|Bi(y)).-

1€{0,1}¢

Theorem 7 Qa2 (f) >

Let (b(l‘, y) -
S ieqouyer @it (2)Bia ()| A (2))|1)| Bia () be the part
of the final state that corresponds to a 1-output of the proto-

the sake of completeness, we have included a proof in Ap-col. Fori, j € {0,1}¢!, define functions.;;, b;; by

pendix A. A somewhat more general result may be found

in [21, Section 3].

aij(r) = air (v)aji () (A (7)| 451 (2))



bij(y) = B () B () Bir ()| Bjs (1))

Note that the acceptance probability is

>

i,j€{0,1}~1

P(z,y) = (o(z,y)|o(2,y)) = aij (2)bi; (y)-

We have now decomposell(z,y) into 222 functions.
However, we must haveP(z,y) — f(z,y)| < 1/3 for
all z,y, hence2?=2 > m(f). It follows that¢ >
(logm(f))/2+ 1. O

Unfortunately, it is much harder to prove bounds on
m(f) than onm(f).> In the exact case we have(f)
mon(g) wheneverf (z,y) = g(z A y), andmon(g) is of-
ten easy to determine. If something similar is true in the

forany1 < i < n of his choice. For this the lower bound
m > (1 — H(2/3))n > 0.08 n is known [25], wheref (-)
is the binary entropy function. |

Independently from our work, Klauck [17] recently
noted the stronger result thitround protocolsk € O(1))
for disjointness requir€(n'/*) qubits of communication
(see also [26]).

For unlimited-rounds bounded-error quantum protocols
for disjointness we can only prove a logarithmic lower
bound, using a technique from [11] (for the model with-
out entanglement, the bourigh(DISJ,) € Q(logn) was
already shown in [2]).

Proposition 2 Q3(DISJ,) € Q(logn).

approximate case, then we obtain strong lower bounds onProof We sketch the proof for a protocol which maps

Q-(f), because our next theorem gives a bound@m (g)
in terms of the 0-block sensitivity defined in the previous
section (the proof is deferred to Appendix B).

Theorem 8 If g is a Boolean function, themon(g) >

In particular, for DISJ(z,y) = NOR,(z A y) it is
easy to see thatsO(NOR,,) = n, sologmon(NOR,,) >
\/n/12 (the upper bountbg mon(NOR,) € O(y/nlogn)
follows from the construction of a degregn polynomial
for OR, in [30]). Consequently, a proof that the approxi-
mate decomposition numbgt(f) roughly equalsnon(g)
would give Q2(DISJ,) € Q(y/n), nearly matching the
O(y/nlogn) upper bound of [8]. Sincex(f) = mon(g)
in the exact case, a result like(f) ~ mon(g) might be
doable.

We end this section by proving some weaker lower
bounds for disjointness. Firstly, disjointness has a bednd
error protocol with O(y/nlogn) qubits and O(y/n)
rounds [8], but if we restrict to 1-round protocols then a
linear lower bound follows from a result of Nayak [25].

~
~

Proposition 1 Qi7°v"4(DISJ,) € Q(n).

Proof Suppose there exists a 1-round qubit protocol with
m qubits: Alice sends a messagi&(x) of m qubits to Bob,

z)|y) — (=1)PIEv) ) |y).  Alice chooses some

i € {1,...,n} and starts with|e;), Bob starts with

(1/v2m) 3, ly). After running the protocol, Bob has state
(_I)DISJn(ehy)

|pi) = Z \/2_71 ly) = Z

Y y

(-1)' v

Vo ly).

Note that

1n Z(_l)yﬁyj = 8.

Y

(¢il¢5) =

Hence the|¢;) form an orthogonal set, and Bob can de-
termine exactly whicH¢;) he has and thus leaiin Alice

now has transmittetbg n bits to Bob and the extension of
Holevo’s theorem that is given in [11] implies that at least
(logn)/2 qubits must have been communicated to achieve
this, no matter how much entanglement Alice and Bob share
initially. A similar analysis works for bounded-error (as
in [11]). m|

Finally, for the case where we want to compute disjoint-
ness with very small error probability, we can prove an
Q(log(n/e)) bound. Here we use the subscript to indi-
cate qubit protocols without prior entanglement whosererro
probability is< . We first give a tight bound for equality:

and Bob then has sufficient information to establish whether proposition 3 If ¢ > 2, thenQ. (EQ,) € Q(log(2)).

Alice’s z and Bob’sy are disjoint. Note thad/(z) is inde-
pendent ofy. If Bob’s inputisy = e;, then DISJ(z,y) is
the negation of Alice’sth bit. But then the message is an

Proof For simplicity we assumg/¢ is an integer. Suppose
that matrixA/ approximates\/rq, = I entry-wise up te.

(n,m,2/3) quantum random access code [1]: by choosing Consider thd /e x 1/ matrix M’ thatis the upper left block

inputy = e; and continuing the protocol, Bob can extract
from M (z) the ith bit of Alice (with probability> 2/3),

51t is interesting to note thalP,, (the negation of IR) has less than
maximal approximate decomposition number. For examplenfoe 2,
m(f) = 4 butin(f) = 3.

of M. This M’ is strictly diagonallydominanq > 1=
e=(L1-1De> >z |Mj;|. Astrictly diagonally dommant
matrix has full rank [14 Theorem 6.1.10.a], herdeitself
has rank at least/e. Using Lemma 7 and Theorem 7, we

now haveQ).(EQ,) € Q(log(1/e)).



Since it is also known thaD.(EQ,) € Q(logn) for all
fixede < 1/2 (this follows for instance from the result that
Q2(f) € Q(log D(f)) [19]), we have

Q:-(EQ,) € Q(max(log(1/e),logn)) = Q(log(n/e)).

O

We now reduce equality to disjointness. Lety €
{0,1}%/2. Definez’ € {0,1}" by replacingz; by z;7;
in z, andy’ € {0,1}"™ by replacingy; by 7;y; in y. Itis
easy to see that EQ,(z,y) = DISJ,(z',y’) so from the
previous proposition we obtain:

Proposition 4 If ¢ > 27, thenQ. (DISJ,) € Q(log(2)).

In particular, both equality and disjointness requir(e:)
qubits of communication if we want the error probability
to be exponentially small.

6 Open problems

To end this paper, we identify three important open ques-
tions in quantum communication complexity. First, are
Q*(f) and D(f) polynomially related forall total f, or
at least for allf of the form f(z,y) gz AN y)? We
have proven this for some special cases hersyfnmet-
ric or monotone), but the general question remains open.

There is a close analogy between the quantum communi-

cation complexity lower bounds presented here, and the
guantum query complexity bounds obtained in [4]. Let
deg(g) and mon(g) be, respectively, the degree and the
number of monomials of the polynomial that represents
g : {0,1}" — {0,1}. In [4] it was shown that a quan-
tum computer needs at leakty(g)/2 queries to the: vari-
ables to computg, and thatD(deg(g)*) queries suffice (see
also [30]). This implies that classical and quantum query
complexity are polynomially related for all totgl. Simi-
larly, we have shown here thébg mon(g))/2 qubits need

to be communicated to compuféz,y) = g(z A y). An
analogous upper bound lik@*(f) € O((logmon(g))*)
might be true. A similar resemblance holds in the bounded-
error case. Leﬁgg/g(g) be the minimum degree of poly-
nomials that approximatg. In [4] it was shown that a
bounded-error quantum computer needs at Iéav§(g)/2
queries to computeg and thatO(ﬁE;(g)ﬁ) queries suffice.
Here we showed thalog m(f))/2 qubits of communica-
tion are necessary to compufe A similar upper bound
like Q2(f) € O((logm(f))*) may hold.

A second open question: how do we prove good lower
bounds orbounded-errolquantum protocols? Theorems 7
and 8 of the previous section show thag(f) is lower
bounded bylog m(f)/2 andlog mon(g) is lower bounded

by 1/bs0(g). If we could showmn(f) ~ mon(g) whenever
f(z,y) = gz Ay), we would have)s(f) € Q(1/bs0(g)).
Sincem(f) mon(g) in the exact case, this may well
be true. As mentioned above, this is particularly inter-
esting because it would give a near-optimal lower bound
@2(DISJ,) € (V).

Third and last, does prior entanglement add much power
to qubit communication, or ar@(f) and Q*(f) roughly
equal up to small additive or multiplicative factors? Simi-
larly, are@-(f) and@3( f) roughly equal? The biggest gap
that we know i) (EQ,) € O(logn) versus@s(EQ,) €
o(1).
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A Proof of Theorem 5

Theorem 5 (Lovasz and Saks)D( f)
1))(2 + logrank(f)).

< (L+1log(CH(f) +

Proof We will first give a protocol based on a 0-cover. Let
c=C"f)andR,,..., R. be anoptimal 0-cover. L&k; =
S; x T;. We will also useS; to denote théS; | x 2™ matrix of
S;-rows andr; for the2” x |T;| matrix of T;-columns. Call
R; type 1if rank(S;) < rank(M/)/2, andtype 2other-
wise. Note thatank(S;) + rank(T;) < rank(Mjy), hence
at least one ofank(S;) andrank(T;) is < rank(My)/2.
The protocol is specified recursively as follows. Alice
checks if herz occurs in some type R;. If no, then she
sends a 0 to Bob; if yes, then she sends the iricad they
continue with the reduced functign(obtained by shrinking
Alice’s domain toS;), which hasrank(g) = rank(S;) <
rank(My)/2. If Bob receives a 0, he checks if hjsoc-
curs in some type ;. If no, then he knows tha, y)
does not occur in anﬁi, so f(z,y) = 1 and he sends a
0 to Alice to tell her; if yes, then he sendsaind they con-
tinue with the reduced functiog, which hasrank(g) =
rank(T;) < rank(My)/2 becauseR; is type 2. Thus
Alice and Bob either learry(z,y) or reduce to a func-
tion g with rank(g) < rank(f)/2, at a cost of at most
1+ log(c+ 1) bits. It now follows by induction on the rank

thatD(f) < (14+1og(C°(f)+1))(1+log rank(f)). Since
C'(f) = C°(f) and|rank(f) — rank(f)| < 1, we have
D(f) = D(f) < (1+1og(C°(f)+1)) (1 +log rank(f)) <
(1 -|-10g(C'1(f) 1))(2 + log rank(f)). O

B Proof of Theorem 8

Here we prove Theorem 8. The proof uses some
tools from the degree-lower bound proofs of Nisan and
Szegedy [30, Section 3], including the following result
from [12, 34]:

Theorem 9 (Ehlich, Zeller; Rivlin, Cheney) Let p be a
single-variate polynomial of degretg(p) such thath; <



p(i) < by for every intege0 < i < n, and the deriva-
tive satisfiegp'(z)| > ¢ for some read < z < n. Then
deg(p) > \/en/(c+ ba — by).

A hypergraphis a set systenf/ C Pow{l,...,n}.
The setsE € H are called theedgesof H. We call H
an s-hypergraphif all E € H satisfy |[E| > s. A set
S C {1,...,n} is ablocking setfor H if it “hits” every
edge:SNE #(forall E € H.

Lemma 8 Letg : {0,1}" — {0,1} be a Boolean function
for whichg(0) = 0 andg(e;) = 1, p be a multilinear poly-
nomial that approximates (i.e., |g(z) — p(z)| < 1/3 for
all z € {0,1}"), and H be the\/n/12-hypergraph formed
by the set of all monomials pfthat have degreg +/n/12.
ThenH has no blocking set of sizé n/2.

Proof Assume, by way of contradiction, that there exists
a blocking setS of H with |S| < n/2. Obtain restric-
tions h andg of g andp, respectively, om — |S| > n/2
variables by fixing allS-variables to 0. Thermy approxi-
matesh and all monomials of have degree: /n/12 (all

p-monomials of higher degree have been set to 0 because

S is a blocking set forH). Sinceq approximatesh we
haveq(0) € [-1/3,1/3], q(e;) € [2/3,4/3], andg(z) €
[—1/3,4/3] for all otherxz € {0,1}". By standard sym-
metrization techniques [24, 30], we can tyrmto a single-
variate polynomiat of degree< /n/12, such that(0) €
[—1/3,1/3],7(1) € [2/3,4/3],andr(i) € [-1/3,4/3] for
i €{2,...,n/2}. Sincer(0) < 1/3 andr(1) > 2/3, we
must havey’(z) > 1/3 for some reak: € [0, 1]. But then
deg(r) > \/(1/3)(n/2)/(1/3 +4/3 +1/3) = \/n/12 by
Theorem 9, contradiction. Hence there is no blockingset
with | S| < n/2. O

The next lemma shows that must be large if it has no
blocking set of size< n/2:

Lemma 9 If H is ans-hypergraph of sizen < 2°, thenH
has a blocking set of sizé n/2.

Proof We use the probabilistic method to show the exis-
tence of a blocking sef. Randomly choose a sstof n/2
elements. The probability th&t does not hit some specific
Ee€His

(") _ 1
(nT/LZ) n(n -1

Then the probability that there is some edgec H that is
not hit by S'is

Pr[ \/ Sdoesnothit E< > Pr[S does not hit E<
EeH EeH

do2Fl<m .27 <1,
FeH

Thus with positive probabilityS hits all E € H, which
proves the existence of a blocking set. |

The above lemmas allow us to prove:

Theorem 8 If ¢ is a Boolean function, themon(g) >

9/bs0(9) /12

Proof Let p be a polynomial that approximateswith
mon(g) monomials. Leb = bs0(g), andz andS;, ..., S
be the input and sets that achieve the 0-block sensitivity of
9. We assume without loss of generality thyét) = 0.

We derive ab-variable Boolean functio(y;, ..., ys)
from g(z1,...,z,) as follows: ifj € S; then we replace
x; in g byy;, andifj ¢ S; for anyi, then we fixz; in g to
the valuez;. Note thath satisfies

1. h(0) =g(z) =0
2. h(e;) = g(2%) = 1 forall unite; € {0,1}*

3. mon(h) < mon(g), because we can easily derive an
approximating polynomial foh from p, without in-
creasing the number of monomialsyn

It follows easily from combining the previous lemmas
that any approximating polynomial far requires at least

2V¥/12 monomials, which concludes the proof. O



