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Abstract

The quantum version of communication complexity al-
lows the two communicating parties to exchange qubits
and/or to make use of prior entanglement (shared EPR-
pairs). Some lower bound techniques are available for qubit
communication complexity, but except for the inner product
function, no bounds are known for the model with unlimited
prior entanglement. We show that the “log rank” lower
bound extends to the strongest variant of quantum com-
munication complexity (qubit communication+ unlimited
prior entanglement). By relating the rank of the communi-
cation matrix to properties of polynomials, we are able to
derive some strong bounds for exact protocols. In particu-
lar, we prove both the “log rank conjecture” and the polyno-
mial equivalence of quantum and classical communication
complexity for various classes of functions. We also derive
some weaker bounds for bounded-error quantum protocols.

1 Introduction

Communication complexity deals with the following
kind of problem. There are two separated parties, usually
called Alice and Bob. Alice receives some inputx 2 X ,
Bob receives somey 2 Y , and together they want to com-
pute some functionf(x; y) that depends on bothx andy.
Alice and Bob are allowed infinite computational power,
but communication between them is expensive and has to
be minimized. How many bits do Alice and Bob have
to exchange in the worst-case in order to be able to com-
putef(x; y)? This model was introduced by Yao [35] and
has been studied extensively, both for its applications (like
lower bounds on VLSI and circuits) and for its own sake.
We refer to [20, 15] for definitions and results.�Partially supported by the EU fifth framework project QAIP, IST–
1999–11234. Both authors are also affiliated with the University of
Amsterdam.

An interesting variant of the above isquantumcommu-
nication complexity: suppose that Alice and Bob each have
a quantum computer at their disposal and are allowed to ex-
change quantum bits (qubits) and/or can make use of the
quantum correlations given by pre-shared EPR-pairs (these
are entangled 2-qubit states1p2 (j00i+ j11i) of which Alice
has the first qubit and Bob the second) — can they do with
fewer communication than in the classical case? The an-
swer is yes. Quantum communication complexity was first
considered by Yao [36] and the first example where quan-
tum beats classical communication complexity was given
in [10]. Bigger (even exponential) gaps have been shown
since [8, 2, 32, 7].

The question arises how big the gaps between quantum
and classical can be for various (classes of) functions. In
order to answer this, we need to exhibit limits on the power
of quantum communication complexity, i.e., establish lower
bounds — few of which are known currently. The main
purpose of this paper is to develop tools for proving lower
bounds on quantum communication protocols. We present
some new lower bounds for the case wheref is a total
Boolean function. Most of our bounds apply only to exact
quantum protocols, which always output the correct answer.
However, we also have some extensions of our techniques
to the case of bounded-error quantum protocols.

1.1 Lower bounds for exact protocols

LetD(f) denote the classical deterministic communica-
tion complexity off , Q(f) the qubit communication com-
plexity, andQ�(f) the qubit communication required if Al-
ice and Bob can also make use of an unlimited supply of
pre-shared EPR-pairs. ClearlyQ�(f) � Q(f) � D(f).
Ultimately, we would like to show thatQ�(f) andD(f) are
polynomially related for all total functionsf (as are their
query complexity counterparts [4]). This requires stronger
lower bound tools than we have at present. Some lower
bound methods are available forQ(f) [36, 19, 11, 2], but
the only lower bound known forQ�(f) is for the inner prod-



uct function [11]. A strong and well known lower bound
for the classical complexityD(f) is given by the loga-
rithm of the rank of the communication matrix forf [23].
As first noted in [8], techniques of [36, 19] imply that an
(log rank(f))-bound also holds forQ(f). Our first result
is to extend this bound toQ�(f) and to derive the optimal
constant:1 Q�(f) � log rank(f)2 : (1)

This impliesn=2 lower bounds for theQ�-complexity of
the equality and disjointness problems, for which no good
bounds were known before. Thisn=2 is tight up to 1 bit,
since Alice can send hern-bit input to Bob withn=2 qubits
andn=2 EPR-pairs using superdense coding [6]. Our corre-
sponding lower bound also provides a new proof ofoptimal-
ity of superdense coding. In fact, the samen=2 bound holds
for almost all functions. Furthermore, proof of the well-
known “log rank conjecture” (D(f) � (log rank(f))k for
somek) would now imply our desired polynomial equiva-
lence betweenD(f) andQ�(f) (as already noted forD(f)
andQ(f) in [2]). However, this conjecture is a long stand-
ing open question that is probably hard to solve in full gen-
erality.

Secondly, in order to get an algebraic handle onrank(f), we relate it to a property of polynomials. It is
well known that every total Boolean functiong : f0; 1gn !f0; 1g has a unique representation as a multilinear poly-
nomial in its n variables. For the case where Alice and
Bob’s function has the formf(x; y) = g(x ^ y), we show
thatrank(f) equals the number of monomialsmon(g) of
the polynomial that representsg (rank(f) � mon(g) was
shown in [31]). This number of monomials is often easy
to count and allows to determinerank(f). The functionsf(x; y) = g(x ^ y) form an important class that includes
inner product, disjointness, and the functions that give the
biggest gaps known betweenD(f) and log rank(f) [31]
(similar techniques work for the class of functions wheref(x; y) = g(x _ y) or g(x� y)).

We use this to show thatQ�(f) 2 �(D(f)) if g is sym-
metric. In this case we also show thatD(f) is close to the
classical randomized complexity. Furthermore,Q�(f) �D(f) 2 O(Q�(f)2) if g is monotone. For the latter re-
sult we re-derive a result of Lovász and Saks [22] using our
tools.

1.2 Lower bounds for bounded-error protocols

For the case of bounded-error quantum communication
protocols, very few lower bounds are currently known (ex-1During discussions we had with Michael Nielsen in Cambridge(UK)
in the summer of 1999 after having obtained this result, it appeared that
an equivalent theorem can be derived from results aboutSchmidt numbers
in [27, Section 6.4.2].

ceptions are inner product [11] and the general discrep-
ancy bound [19]). In particular, no good lower bounds are
known for the disjointness problem. The best known upper
bound for this isO(pn logn) qubits [8], contrasting with
linear classical randomized complexity [16, 33]. Since dis-
jointness is a co-NP-complete communication problem [3],
a good lower bound for this problem would imply lower
bounds for all NP-hard communication problems.

In order to attack this problem, we make an ef-
fort to extend the above polynomial-based approach to
bounded-errorprotocols. We consider the approximate rank℄rank(f), and show the boundQ2(f) � (log℄rank(f))=2
for 2-sided bounded-errorqubit protocols (again using tech-
niques from [36, 19]). Unfortunately, lower bounds on℄rank(f) are much harder to obtain than forrank(f). If we

could prove for the casef(x; y) = g(x ^ y) that℄rank(f)
roughly equals the number of monomialsgmon(g) of an
approximating polynomial forg, then a

pn lower bound
would follow for disjointness, because we show that dis-
jointness requires at least2pn monomials to approximate.
Since we prove that the quantitiesrank(f) andmon(g) are
in fact equal in the exact case, this gives some hope for
a similar result℄rank(f) � gmon(g) in the approximating
case, and hence for resolving the complexity of disjointness.

The specific bounds that we actually were able toprove
for disjointness are more limited at this point:Q�2(DISJn) 2
(logn) for the general case (by an extension of techniques
of [11]; the logn bound without entanglement was already
known [2]),Q�2(DISJn) 2 
(n) for 1-round protocols (us-
ing a result of [25]), andQ2(DISJn) 2 
(log(n=")) if the
error probability has to be< ".

Below we sum up the main results, contrasting the exact
and bounded-error case.� We show thatQ�(f) � log rank(f)=2 for ex-

act protocols with unlimited prior EPR-pairs andQ2(f) � log℄rank(f)=2 for bounded-error qubit pro-
tocols without prior EPR-pairs.� If f(x; y) = g(x ^ y) for some Boolean functiong, then rank(f) = mon(g). An analogous result℄rank(f) � gmon(g) for the approximate case is open.� A polynomial for disjointness, DISJn(x; y) =
NORn(x ^ y), requires2n monomials in the exact
case (implyingQ�(DISJn) � n=2), and roughly2pn
monomials in the approximate case.

2 Preliminaries

We usejxj to denote the Hamming weight (number of
1s) of x 2 f0; 1gn, xi for the ith bit of x (x0 = 0),
andei for the string whose only 1 occurs at positioni. If



x; y 2 f0; 1gn, we usex ^ y 2 f0; 1gn for the string ob-
tained by bitwise ANDingx andy, and similarlyx_ y. Letg : f0; 1gn ! f0; 1g be a Boolean function. We callg sym-
metric if g(x) only depends onjxj, andmonotoneif g can-
not decrease if we set more variables to 1. It is well known
that eachg : f0; 1gn ! R has a unique representation as a
multilinear polynomialg(x) = PS�f1;:::;ng aSXS , whereXS is the product of the variables inS andaS is a real num-
ber. The termaSXS is called amonomialof g andmon(g)
denotes the number of non-zero monomials ofg. A poly-
nomial p approximatesg if jg(x) � p(x)j � 1=3 for allx 2 f0; 1gn. We usegmon(g) for the minimal number of
monomials among all polynomials that approximateg. The
degreeof a monomial is the number of its variables, and the
degree of a polynomial is the largest degree of its monomi-
als.

Let X andY be finite sets (usuallyX = Y = f0; 1gn)
and f : X � Y ! f0; 1g be a Boolean function. For
example,equality has EQn(x; y) = 1 iff x = y, dis-
jointnesshas DISJn(x; y) = 1 iff jx ^ yj = 0 (equiva-
lently, DISJn(x; y) = NORn(x^y)), andinner producthas
IPn(x; y) = 1 iff jx ^ yj is odd.Mf denotes thejX j � jY j
Boolean matrix whosex; y entry isf(x; y), andrank(f)
denotes the rank ofMf over the reals. Arectangleis a
subsetR = S � T � X � Y of the domain off . A 1-
coverfor f is a set of (possibly overlapping) rectangles that
covers all and only 1s inMf . C1(f) denotes the minimal
size of a 1-cover forf . Form � 1, we usef^m to denote
the Boolean function that is the AND ofm independent in-
stances off . That is,f^m : Xm � Y m ! f0; 1g andf^m(x1; : : : ; xm; y1; : : : ; ym) = f(x1; y1) ^ f(x2; y2) ^: : : ^ f(xm; ym). Note thatMf^2 is the Kronecker productMf 
Mf and hencerank(f^m) = rank(f)m.

Alice and Bob want to compute somef : X � Y !f0; 1g. After the protocol they should both knowf(x; y).
Their system has three parts: Alice’s part, the 1-qubit chan-
nel, and Bob’s part. For definitions of quantum states and
operations, we refer to [28]. In the initial state, Alice and
Bob sharek EPR-pairs and all other qubits are zero. For
simplicity we assume Alice and Bob send 1 qubit in turn,
and at the end the output-bit of the protocol is put on the
channel. The assumption that 1 qubit is sent per round
can be replaced by a fixed number of qubitsqi for the ith
round. However, in order to be able to run a quantum pro-
tocol on a superposition of inputs, it is important that the
number of qubits sent in theith round is independent of the
input (x; y). An `-qubit protocol is described by unitary
transformationsU1(x); U2(y); U3(x); U4(y); : : : ; U`(x=y).
First Alice appliesU1(x) to her part and the channel, then
Bob appliesU2(y) to his part and the channel, etc.Q(f) denotes the (worst-case) cost of an optimal qubit
protocol that computesf exactly without prior entangle-
ment,C�(f) denotes the cost of a protocol that commu-

nicates classical bits but can make use of an unlimited (but
finite) number of shared EPR-pairs, andQ�(f) is the cost
of a qubit protocol that can use shared EPR-pairs. Aclean
quantum protocol is a protocol without prior entanglement
that starts withj0ij0ij0i and ends withj0ijf(x; y)ij0i. We
useQ
(f) to denote the minimal cost of such protocols forf . We add the superscript “1 round” for 1-round protocols,
where Alice sends a message to Bob and Bob then sends
the output bit. Some simple relations that hold between
these measures areQ�(f) � Q(f) � D(f) � D1round(f),
andQ(f) � Q
(f) � 2Q(f) because a clean protocol can
be obtained by running an unclean exact protocol, copying
the answer, and reversing the unclean protocol to reset the
workspace. We also haveQ�(f) � C�(f) � 2Q�(f) be-
cause teleportation allows to send a qubit using 1 EPR-pair
and 2 classical bits of communication [5], so theC�-model
can simulate theQ�-model. For bounded-error protocols
we analogously defineQ2(f), Q�2(f), C�2 (f) for quantum
protocols that give the correct answer with probability at
least2=3 on every input. We useRpub2 (f) for the classical
bounded-error complexity in the public-coin model [20].

3 Log rank lower bound

As first noted in [8, 2], techniques of Kremer and
Yao [36, 19] implyQ(f) 2 
(log rank(f)). We first state
and prove a lemma from [36, 19], then show how this gives
a lower boundQ
(f) � log rank(f)+1 for clean protocols
without prior entanglement, and then extend this to the new
resultQ�(f) � (log rank(f))=2.

Lemma 1 (Kremer/Yao) The final state of aǹ-qubit pro-
tocol (without prior entanglement) on input(x; y) can be
written as Xi2f0;1g` �i(x)�i(y)jAi(x)iji`ijBi(y)i;
where the�i(x); �i(y) are complex numbers and theAi(x); Bi(y) are unit vectors.

Proof The proof is by induction oǹ:
Base step.For ` = 0 the lemma is obvious.
Induction step. Suppose after̀ qubits of communica-

tion the state can be written asXi2f0;1g` �i(x)�i(y)jAi(x)iji`ijBi(y)i: (2)

We assume without loss of generality that it is Alice’s turn:
she appliesU`+1(x) to her part and the channel. Note that
there exist complex numbers�i0(x); �i1(x) and unit vec-
torsAi0(x); Ai1(x) such that(U`+1(x)
 I)jAi(x)iji`ijBi(y)i =



�i0(x)jAi0(x)ij0ijBi(y)i+ �i1(x)jAi1(x)ij1ijBi(y)i:
Thus every element of the superposition (2) “splits in two”
when we applyU`+1. Accordingly, we can write the state
afterU`+1 in the form required by the lemma. 2
Theorem 1 Q
(f) � log rank(f) + 1.

Proof Consider a cleaǹ -qubit protocol for f . By
Lemma 1, we can write its final state asXi2f0;1g` �i(x)�i(y)jAi(x)iji`ijBi(y)i:
The protocol is clean, so the final state isj0ijf(x; y)ij0i.
Hence all parts ofjAi(x)i and jBi(y)i other thanj0i will
cancel out, and we can assume without loss of generality
that jAi(x)i = jBi(y)i = j0i for all i. Now the amplitude
of the j0ij1ij0i-state is simply the sum of the amplitudes�i(x)�i(y) of the i for which i` = 1. This sum is either 0
or 1, and equals the acceptance probabilityP (x; y) of the
protocol. Letting�(x) (resp.�(y)) be the dimension-2`�1
vector whose entries are�i(x) (resp.�i(y)) for the i withi` = 1:P (x; y) = Xi:i`=1�i(x)�i(y) = �(x)T � �(y):
Since the protocol is exact, we must haveP (x; y) =f(x; y). Hence if we defineA as thejX j � d matrix hav-
ing the�(x) as rows andB as thed � jY j matrix hav-
ing the �(y) as columns, thenMf = AB. But nowrank(Mf ) = rank(AB) � rank(A) � d � 2l�1; and
the theorem follows. 2

The previous lower bound on clean protocols suffices to
prove a log rank lower bound also for the strongest model
of quantum communication complexity:

Theorem 2 Q�(f) � log rank(f)2 .

Proof Suppose we have some exact protocol forf that uses` qubits of communication andk prior EPR-pairs. We will
build a clean qubit protocol without prior entanglement forf^m. First Alice makesk EPR-pairs and sends one half
of each pair to Bob (at a cost ofk qubits of communica-
tion). Now they run the protocol to compute the first in-
stance off (` qubits of communication). Alice and Bob
each copy the answer to a safe place, which we will call
their respective ‘answer bits’, and they reverse the protocol
(again` qubits of communication). This gives them back
thek EPR-pairs (and an otherwise clean workspace), which
they can reuse. Now they compute the second instance of

f , they each AND the answer into their answer bits (which
can be done cleanly), and they reverse the protocol, etc. Af-
ter allm instances off have been computed, Alice and Bob
both have the answerf^m(x; y) left and thek EPR-pairs.
Bob now sends his halves of thek pairs to Alice who sets
each of thek pairs back toj00i. The protocol thus ends up
with the answer and a clean workspace, so we have a clean
protocol forf^m that uses2m` + 2k qubits and no prior
entanglement. By Theorem 1:2m`+ 2k � Q
(f^m) � log rank(f^m) + 1= m log rank(f) + 1;
hence ` � log rank(f)2 � 2k � 12m :
Since this holds for everym > 0, the theorem follows. 2

We can derive a stronger bound forC�(f):
Theorem 3 C�(f) � log rank(f).
Proof Since a qubit and an EPR-pair can be used to send 2
classical bits [6], we can devise a qubit protocol forf ^ f
usingC�(f) qubits (compute the two copies off in paral-
lel using the classical bit protocol). Hence by the previous
theoremC�(f) � Q�(f ^ f) � (log rank(f ^ f))=2 =log rank(f). 2

Below we draw some consequences from these log rank
lower bounds. Firstly,MEQn is the identity matrix, sorank(EQn) = 2n. This gives the boundsQ�(EQn) � n=2,C�(EQn) � n (in contrast,Q2(EQn) 2 �(logn) andC�2 (EQn) 2 O(1)). The disjointness function onn bits
is the AND ofn disjointnesses on 1 bit (which have rank 2
each), sorank(DISJn) = 2n. The complement of the in-
ner product function hasrank(f) = 2n. Thus we have the
following strong lower bounds, all tight up to 1 bit:2
Corollary 1 Q�(EQn); Q�(DISJn); Q�(IPn) � n=2 andC�(EQn); C�(DISJn); C�(IPn) � n.

Komlós [18] has shown that the fraction ofm � m
Boolean matrices that have determinant 0 goes to 0 asm!1. Hence almost all2n � 2n Boolean matrices have
full rank 2n, which implies that almost all functions have
maximal quantum communication complexity:

Corollary 2 Almost allf : f0; 1gn � f0; 1gn ! f0; 1g
haveQ�(f) � n=2 andC�(f) � n.2These bounds for IPn are also given in [11]. The bounds for EQn and
DISJn are new, and can also be shown to hold forzero-errorprotocols.



We sayf satisfies thequantum direct sum propertyif
computingm independent copies off (without prior en-
tanglement) takesmQ(f) qubits of communication in the
worst case. (We have no example of anf without this prop-
erty.) Using the same technique as before, we can prove
an equivalence between the qubit models with and without
prior entanglement for suchf :

Corollary 3 If f satisfies the quantum direct sum property,
thenQ�(f) � Q(f) � 2Q�(f).
Proof Q�(f) � Q(f) is obvious. Using the techniques of
Theorem 2 we havemQ(f) � 2mQ�(f)+k, for allm and
some fixedk, henceQ(f) � 2Q�(f). 2

Finally, because of Theorem 2, the well-known “log rank
conjecture” now implies the polynomial equivalence of de-
terministic classical communication complexity and exact
quantum communication complexity (with or without prior
entanglement) for all totalf :

Corollary 4 If D(f) 2 O((log rank(f))k), thenQ�(f) �Q(f) � D(f) 2 O(Q�(f)k) for all f .

4 A lower bound technique via polynomials

4.1 Decompositions and polynomials

The previous section showed that lower bounds onrank(f) imply lower bounds onQ�(f). In this section we
relaterank(f) to the number of monomials of a polynomial
for f and use this to prove lower bounds for some classes of
functions.

We define thedecomposition numberm(f) of some
function f : f0; 1gn � f0; 1gn ! R as the minimumm such that there exist functionsa1(x); : : : ; am(x) andb1(y); : : : ; bm(y) (from Rn to R) for which f(x; y) =Pmi=1 ai(x)bi(y) for all x; y. We say thatf can bedecom-
posedinto them functionsaibi. Without loss of generality,
the functionsai; bi may be assumed to be multilinear poly-
nomials. It turns out that the decomposition number equals
the rank:3
Lemma 2 rank(f) = m(f).
Proofrank(f) �m(f): Letf(x; y) =Pm(f)i=1 ai(x)bi(y),Mi
be the matrix defined byMi(x; y) = ai(x)bi(y), ri be the
row vector whoseyth entry isbi(y). Note that thexth row3The first part of the proof employs a technique of Nisan and Wigder-
son [31]. They used this to provelog rank(f) 2 O(nlog3 2) for a specificf . Our Corollary 6, together with an easy lower bound on the number of
monomials in the polynomial for their function, implies that this is tight:log rank(f) 2 �(nlog3 2) for their f .

ofMi isai(x) timesri. Thusall rows ofMi are scalar mul-
tiples of each other, henceMi has rank 1. Sincerank(A+B) � rank(A)+rank(B) andMf =Pm(f)i=1 Mi, we haverank(f) = rank(Mf ) �Pm(f)i=1 rank(Mi) = m(f).m(f) � rank(f): Supposerank(f) = r. Then there
arer columns
1; : : : ; 
r in Mf that span the column space
of Mf . Let A be the2n � r matrix that has these
i as
columns. LetB be ther � 2n matrix whoseith column is
formed by ther coefficients of theith column ofMf when
written out as a linear combination of
1; : : : ; 
r. ThenMf = AB, hencef(x; y) = Mf (x; y) = Pri=1 AxiBiy :
Defining functionsai; bi by ai(x) = Axi andbi(y) = Biy ,
we havem(f) � rank(f). 2

Combined with Theorems 2 and 3 we obtain

Corollary 5 Q�(f) � logm(f)2 andC�(f) � logm(f).
Accordingly, for lower bounds on quantum communica-

tion complexity it is important to be able to determine the
decomposition numberm(f). Often this is hard. It is much
easier to determine the number of monomialsmon(f) off (which upper boundsm(f)). Below we show that in the
special case wheref(x; y) = g(x ^ y), these two numbers
are the same.4

Below, a monomial is calledevenif it containsxi iff it
containsyi, for example2x1x3y1y3 is even andx1x3y1 is
not. A polynomial isevenif each of its monomials is even.

Lemma 3 If p : f0; 1gn� f0; 1gn ! R is an even polyno-
mial withk monomials, thenm(p) = k.

Proof Clearlym(p) � k. To prove the converse, consider
DISJn(x; y) = �ni=1(1 � xiyi), the unique polynomial for
the disjointness function. Note that this polynomial con-
tains all and only even monomials (with coefficients�1).
Since DISJn has rank2n, it follows from Lemma 2 that
DISJn cannot be decomposed in fewer then2n terms. We
will show how a decomposition ofp with m(p) < k would
give rise to a decomposition of DISJn with fewer than2n
terms. Suppose we can writep(x; y) = m(p)Xi=1 ai(x)bi(y):
Let aXSYS be some even monomial inp and suppose the
monomialXSYS in DISJn has coefficient
 = �1. Now
wheneverbXS occurs in someai, replace thatbXS by(
b=a)XS. Using the fact thatp contains only even mono-
mials, it is not hard to see that the new polynomial ob-
tained in this way is the same asp, except that the monomialaXSYS is replaced by
XSYS .4After learning about this result, Mario Szegedy (personal communica-
tion) came up with an alternative proof of this, using Fourier transforms.



Doing this sequentially for all monomials inp, we end
up with a polynomialp0 (with k monomials andm(p0) �m(p)) that is a subpolynomial of DISJn, in the sense that
each monomial inp0 also occurs with the same coefficient
in DISJn. Notice that by adding all2n � k missing DISJn-
monomials top0, we obtain a decomposition of DISJn withm(p0)+2n�k terms. But any such decomposition needs at
least2n terms, hencem(p0) + 2n � k � 2n, which impliesk � m(p0) � m(p). 2

If f(x; y) = g(x ^ y) for some Boolean functiong, then
the polynomial that representsf is just the polynomial ofg
with the ith variable replaced byxiyi. Hence such a poly-
nomial is even, and we obtain:

Corollary 6 If g : f0; 1gn ! f0; 1g andf(x; y) = g(x ^y), thenmon(g) = mon(f) = m(f) = rank(f).
This gives a tool for lower bounding (quantum and clas-

sical) communication complexity wheneverf is of the formf(x; y) = g(x ^ y): logmon(g) � C�(f) � D(f). Below
we give some applications.

4.2 Symmetric functions

As a first application we show thatD(f) andQ�(f) are
linearly related iff(x; y) = g(x ^ y) and g is symmet-
ric (this follows from Corollary 8 below). Furthermore, we
show that the classical randomized public-coin complexityRpub2 (f) can be at most alogn-factor less thanD(f) for
suchf (Theorem 4). We will assume without loss of gener-
ality thatg(~0) = 0, so the polynomial representingg does
not have the constant-1 monomial.

Lemma 4 If g is a symmetric function whose lowest-weight
1-input has Hamming weightt > 0 andf(x; y) = g(x^y),
thenD1round(f) = log �Pni=t �ni�+ 1�+ 1.

Proof It is known (and easy to see) thatD1round(f) =log r + 1, wherer is the number of different rows ofMf
(this equals the number of different columns in our case,
becausef(x; y) = f(y; x)). We countr. Firstly, if jxj < t
then thex-row contains only zeroes. Secondly, ifx 6= x0
and bothjxj � t andjx0j � t then it is easy to see that there
exists ay such thatjx ^ yj = t andjx0 ^ yj < t (or vice
versa), hencef(x; y) 6= f(x0; y) so thex-row andx0-row
are different. Accordingly,r equals the number of differentx with jxj � t, +1 for the 0-row, which gives the lemma.2
Lemma 5 If g is a symmetric function whose lowest-weight
1-input has weightt > 0, then(1�o(1)) log �Pni=t �ni�� �logmon(g) � log �Pni=t �ni�� :

Proof The upper bound follows from the fact thatg cannot
have monomials of degree< t. For the lower bound we
distinguish two cases.

Case 1: t � n=2. It is known that every non-constant
symmetric functionf onm variables has degreedeg(f) =m � O(m0:548) [13]. This implies thatg must contain a
monomial of degreed for somed 2 [n=2; n=2+ b℄with b 2O(n0:548), for otherwise we could setn=2� b variables to
zero and obtain a non-constant symmetric function onm =n=2 + b variables with degree< n=2 � m � O(m0:548).
But becauseg is symmetric, it must then containall

�nd�
monomials of degreed. Hence by Stirling’s approximationmon(g) � �nd� � 2n�O(n0:548), which implies the lemma.

Case 2:t > n=2. It is easy to see thatg must contain
all
�nt� monomials of degreet. Now(n� t+ 1)mon(g) � (n� t+ 1)�nt� � nXi=t �ni�:

Hencelogmon(g) � log �Pni=t �ni�� � log(n � t + 1) =(1� o(1)) log �Pni=t �ni��. 2
The numbermon(g) may be less then

Pni=t �ni�. Con-
sider the functiong(x1; x2; x3) = x1 + x2 + x3 � x1x2 �x1x3 � x2x3 [30]. Heremon(g) = 6 but

P3i=1 �3i� = 7.
Hence the1� o(1) of Lemma 5 cannot be improved to1 in
general (it can ifg is a threshold function).

Combining the previous results:

Corollary 7 If g is a symmetric function whose lowest-
weight 1-input has weightt > 0 andf(x; y) = g(x ^ y),
then (1 � o(1)) log �Pni=t �ni�� � C�(f) � D(f) �D1round(f) = log �Pni=t �ni�+ 1�+ 1:

Accordingly, for symmetricg the communication com-
plexity (quantum and classical, with or without prior entan-
glement, 1-round and multi-round) equalslog rank(f) up
to small constant factors. In particular:

Corollary 8 If g is symmetric andf(x; y) = g(x^y), then(1� o(1))D(f) � C�(f) � D(f).
We have shown thatQ�(f) andD(f) are equal up to

constant factors wheneverf(x; y) = g(x^y) andg is sym-
metric. For suchf , D(f) is also nearly equal to the clas-
sical bounded-error communication complexityRpub2 (f),
where we allow Alice and Bob to share public coin flips.
In order to prove this, we introduce the notion of0-block
sensitivityin analogy to the notion of block sensitivity of
Nisan [29]. For inputx 2 f0; 1gn, let bs0x(g) be the
maximal number of disjoint setsS1; : : : ; Sb of indices of
variables, such that for everyi we have (1) allSi-variables
have value 0 inx and (2)g(x) 6= g(xSi), wherexSi is the
string obtained fromx by setting allSi-variables to 1. Letbs0(g) = maxx bs0x(g). We now have:



Lemma 6 If g is symmetric, thenmon(g) � n2bs0(g).
Proof Let t be the smallest number such thatgt 6= gt+1,
thenbs0(g) � n � t. If t � n=2 thenbs0(g) � n=2,
somon(g) � 2n � n2bs0(g). If t > n=2 theng has no
monomials of degree� t, hencemon(g) �Pni=t+1 �ni� �n2bs0(g): 2
Theorem 4 If g is a symmetric function andf(x; y) =g(x ^ y), thenD(f) 2 O(Rpub2 (f) logn).
Proof By Corollary 7 we haveD(f) � (1 + o(1)) logmon(g). Lemma 6 impliesD(f) 2O(bs0(g) logn). Moreover,Rpub2 (f) 2 
(bs0(g)) imme-
diately follows from Razborov’s lower bound for disjoint-
ness [33] (see also [20, Section 4.6]). This implies the the-
orem. 2

This theorem is tight for the function defined byg(x) =1 iff jxj � n � 1. We havemon(g) = n + 1, sologn � D(f) � (1 + o(1)) logn. On the other hand, anO(1) bounded-error public coin protocol can easily be de-
rived from the well-knownO(1)-protocol for equality: Al-
ice tests ifjxj < n� 1, sends a 0 if so and a 1 if not. In the
first case Alice and Bob know thatf(x; y) = 0. In the sec-
ond case, we havef(x; y) = 1 iff x = y or y = ~1, which
can be tested with 2 applications of the equality-protocol.
HenceRpub2 (f) 2 O(1).
4.3 Monotone functions

A second application concerns monotone problems.
Lovász and Saks [22] prove the log rank conjecture for
(among others) the following problem, which they call the
union problem forC. HereC is a monotone set system
(i.e., (A 2 C ^ A � B) ) B 2 C) over some size-n
universe. Alice and Bob receive setsx andy (respectively)
from this universe, and their task is to determine whetherx [ y 2 C. Identifying sets with their representation asn-bit strings, this problem can equivalently be viewed as
a functionf(x; y) = g(x _ y), whereg is a monotone in-
creasing Boolean function. Note that it doesn’t really matter
whether we takeg increasing or decreasing, nor whether we
usex _ y or x ^ y, as these problems can all be converted
into each other via De Morgan’s laws. Our translation of
rank to number of monomials now allows us to re-derive
the Lovász-Saks result without making use of their com-
binatorial lattice theoretical machinery. We just need the
following, slightly modified, result from their paper. For
the sake of completeness, we have included a proof in Ap-
pendix A. A somewhat more general result may be found
in [21, Section 3].

Theorem 5 (Lovász and Saks)D(f) 2 O(log(C1(f)) log rank(f)).
Theorem 6 (Lovász and Saks)If g is monotone andf(x; y) = g(x ^ y), thenD(f) 2 O((log rank(f))2).
Proof Let M1; : : : ;Mk be all the minimal monomials ing. EachMi induces a rectangleRi = Si � Ti, whereSi = fx j Mi � xg andTi = fy j Mi � yg. Becauseg is monotone increasing,g(z) = 1 iff z makes at least
oneMi true. Hencef(x; y) = 1 iff there is ani such that(x; y) 2 Ri. Accordingly, the set ofRi is a 1-cover forf
andC1(f) � k � mon(g) = rank(f) by Corollary 6.
Plugging into Theorem 5 gives the theorem. 2
Corollary 9 If g is monotone andf(x; y) = g(x^ y), thenD(f) 2 O(Q�(f)2).

This result can be tightened for the special case ofd-level
AND-OR-trees. For example, letg be a 2-level AND-of-
ORs onn variables with fan-out

pn andf(x; y) = g(x^y).
Theng has(2pn � 1)pn monomials and henceQ�(f) �n=2. In contrast, the zero-error quantum complexity off isO(n3=4 logn) [9].

5 Bounded-error protocols

Here we generalize the above approach to bounded-
error quantum protocols. Define theapproximate rankoff ,℄rank(f), as the minimum rank among all matricesM
that approximateMf entry-wise up to1=3. Let the ap-
proximate decomposition numberem(f) be the minimumm such that there exist functionsa1(x); : : : ; am(x) andb1(y); : : : ; bm(y) for which jf(x; y)�Pmi=1 ai(x)bi(y)j �1=3 for all x; y. By the same proof as Lemma 2 we get:

Lemma 7℄rank(f) = em(f).
By a proof similar to Theorem 1 we show

Theorem 7 Q2(f) � log em(f)2 .

Proof By Lemma 1 we can write the final state of an`-qubit
bounded-error protocol forf asXi2f0;1g` �i(x)�i(y)jAi(x)iji`ijBi(y)i:
Let �(x; y) =Pi2f0;1g`�1 �i1(x)�i1(y)jAi1(x)ij1ijBi1(y)i be the part
of the final state that corresponds to a 1-output of the proto-
col. Fori; j 2 f0; 1g`�1, define functionsaij ; bij byaij(x) = �i1(x)�j1(x)hAi1(x)jAj1(x)i



bij(y) = �i1(y)�j1(y)hBi1(y)jBj1(y)i
Note that the acceptance probability isP (x; y) = h�(x; y)j�(x; y)i = Xi;j2f0;1g`�1 aij(x)bij(y):
We have now decomposedP (x; y) into 22`�2 functions.
However, we must havejP (x; y) � f(x; y)j � 1=3 for
all x; y, hence22`�2 � em(f). It follows that ` �(log em(f))=2 + 1. 2

Unfortunately, it is much harder to prove bounds onem(f) than onm(f).5 In the exact case we havem(f) =mon(g) wheneverf(x; y) = g(x ^ y), andmon(g) is of-
ten easy to determine. If something similar is true in the
approximate case, then we obtain strong lower bounds onQ2(f), because our next theorem gives a bound ongmon(g)
in terms of the 0-block sensitivity defined in the previous
section (the proof is deferred to Appendix B).

Theorem 8 If g is a Boolean function, thengmon(g) �2pbs0(g)=12:
In particular, for DISJn(x; y) = NORn(x ^ y) it is

easy to see thatbs0(NORn) = n, so log gmon(NORn) �pn=12 (the upper boundlog gmon(NORn) 2 O(pn logn)
follows from the construction of a degree-

pn polynomial
for ORn in [30]). Consequently, a proof that the approxi-
mate decomposition numberem(f) roughly equalsgmon(g)
would giveQ2(DISJn) 2 
(pn), nearly matching theO(pn logn) upper bound of [8]. Sincem(f) = mon(g)
in the exact case, a result likeem(f) � gmon(g) might be
doable.

We end this section by proving some weaker lower
bounds for disjointness. Firstly, disjointness has a bounded-
error protocol with O(pn logn) qubits and O(pn)
rounds [8], but if we restrict to 1-round protocols then a
linear lower bound follows from a result of Nayak [25].

Proposition 1 Q1round2 (DISJn) 2 
(n).
Proof Suppose there exists a 1-round qubit protocol withm qubits: Alice sends a messageM(x) of m qubits to Bob,
and Bob then has sufficient information to establish whether
Alice’s x and Bob’sy are disjoint. Note thatM(x) is inde-
pendent ofy. If Bob’s input isy = ei, then DISJn(x; y) is
the negation of Alice’sith bit. But then the message is an(n;m; 2=3) quantum random access code [1]: by choosing
input y = ei and continuing the protocol, Bob can extract
from M(x) the ith bit of Alice (with probability� 2=3),5It is interesting to note thatIPn (the negation of IPn) has less than
maximal approximate decomposition number. For example forn = 2,m(f) = 4 but em(f) = 3.

for any1 � i � n of his choice. For this the lower boundm � (1�H(2=3))n > 0:08 n is known [25], whereH(�)
is the binary entropy function. 2

Independently from our work, Klauck [17] recently
noted the stronger result thatk-round protocols (k 2 O(1))
for disjointness require
(n1=k) qubits of communication
(see also [26]).

For unlimited-rounds bounded-error quantum protocols
for disjointness we can only prove a logarithmic lower
bound, using a technique from [11] (for the model with-
out entanglement, the boundQ2(DISJn) 2 
(logn) was
already shown in [2]).

Proposition 2 Q�2(DISJn) 2 
(logn).
Proof We sketch the proof for a protocol which mapsjxijyi ! (�1)DISJn(x;y)jxijyi. Alice chooses somei 2 f1; : : : ; ng and starts withjeii, Bob starts with(1=p2n)Py jyi. After running the protocol, Bob has statej�ii =Xy (�1)DISJn(ei;y)p2n jyi =Xy (�1)1�yip2n jyi:
Note that h�ij�ji = 12n Xy (�1)yi+yj = Æij :
Hence thej�ii form an orthogonal set, and Bob can de-
termine exactly whichj�ii he has and thus learni. Alice
now has transmittedlogn bits to Bob and the extension of
Holevo’s theorem that is given in [11] implies that at least(logn)=2 qubits must have been communicated to achieve
this, no matter how much entanglement Alice and Bob share
initially. A similar analysis works for bounded-error (as
in [11]). 2

Finally, for the case where we want to compute disjoint-
ness with very small error probability, we can prove an
(log(n=")) bound. Here we use the subscript “"” to indi-
cate qubit protocols without prior entanglement whose error
probability is< ". We first give a tight bound for equality:

Proposition 3 If " � 2�n, thenQ"(EQn) 2 
(log(n" )).
Proof For simplicity we assume1=" is an integer. Suppose
that matrixM approximatesMEQn = I entry-wise up to".
Consider the1="�1="matrixM 0 that is the upper left block
ofM . ThisM 0 is strictly diagonally dominant:jM 0iij > 1�" = ( 1"�1)" >Pj 6=i jM 0ij j. A strictly diagonally dominant
matrix has full rank [14, Theorem 6.1.10.a], henceM itself
has rank at least1=". Using Lemma 7 and Theorem 7, we
now haveQ"(EQn) 2 
(log(1=")).



Since it is also known thatQ"(EQn) 2 
(logn) for all
fixed" < 1=2 (this follows for instance from the result thatQ2(f) 2 
(logD(f)) [19]), we haveQ"(EQn) 2 
(max(log(1="); logn)) = 
(log(n=")):2

We now reduce equality to disjointness. Letx; y 2f0; 1gn=2. Definex0 2 f0; 1gn by replacingxi by xixi
in x, andy0 2 f0; 1gn by replacingyi by yiyi in y. It is
easy to see that EQn=2(x; y) = DISJn(x0; y0) so from the
previous proposition we obtain:

Proposition 4 If " � 2�n2 , thenQ"(DISJn) 2 
(log(n" )).
In particular, both equality and disjointness require
(n)

qubits of communication if we want the error probability"
to be exponentially small.

6 Open problems

To end this paper, we identify three important open ques-
tions in quantum communication complexity. First, areQ�(f) andD(f) polynomially related forall total f , or
at least for allf of the form f(x; y) = g(x ^ y)? We
have proven this for some special cases here (g symmet-
ric or monotone), but the general question remains open.
There is a close analogy between the quantum communi-
cation complexity lower bounds presented here, and the
quantum query complexity bounds obtained in [4]. Letdeg(g) andmon(g) be, respectively, the degree and the
number of monomials of the polynomial that representsg : f0; 1gn ! f0; 1g. In [4] it was shown that a quan-
tum computer needs at leastdeg(g)=2 queries to then vari-
ables to computeg, and thatO(deg(g)4) queries suffice (see
also [30]). This implies that classical and quantum query
complexity are polynomially related for all totalf . Simi-
larly, we have shown here that(logmon(g))=2 qubits need
to be communicated to computef(x; y) = g(x ^ y). An
analogous upper bound likeQ�(f) 2 O((logmon(g))k)
might be true. A similar resemblance holds in the bounded-
error case. Letgdeg(g) be the minimum degree of poly-
nomials that approximateg. In [4] it was shown that a
bounded-error quantum computer needs at leastgdeg(g)=2
queries to computeg and thatO(gdeg(g)6) queries suffice.
Here we showed that(log em(f))=2 qubits of communica-
tion are necessary to computef . A similar upper bound
like Q2(f) 2 O((log em(f))k) may hold.

A second open question: how do we prove good lower
bounds onbounded-errorquantum protocols? Theorems 7
and 8 of the previous section show thatQ2(f) is lower
bounded bylog em(f)=2 andlog gmon(g) is lower bounded

by
pbs0(g). If we could showem(f) � gmon(g) wheneverf(x; y) = g(x^ y), we would haveQ2(f) 2 
(pbs0(g)).

Sincem(f) = mon(g) in the exact case, this may well
be true. As mentioned above, this is particularly inter-
esting because it would give a near-optimal lower boundQ2(DISJn) 2 
(pn).

Third and last, does prior entanglement add much power
to qubit communication, or areQ(f) andQ�(f) roughly
equal up to small additive or multiplicative factors? Simi-
larly, areQ2(f) andQ�2(f) roughly equal? The biggest gap
that we know isQ2(EQn) 2 �(logn) versusQ�2(EQn) 2O(1).
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A Proof of Theorem 5

Theorem 5 (Lovász and Saks)D(f) � (1 + log(C1(f) +1))(2 + log rank(f)).
Proof We will first give a protocol based on a 0-cover. Let
 = C0(f) andR1; : : : ; R
 be an optimal 0-cover. LetRi =Si�Ti. We will also useSi to denote thejSij�2n matrix ofSi-rows andTi for the2n�jTij matrix ofTi-columns. CallRi type 1if rank(Si) � rank(Mf )=2, andtype 2other-
wise. Note thatrank(Si)+ rank(Ti) � rank(Mf ), hence
at least one ofrank(Si) andrank(Ti) is� rank(Mf )=2.

The protocol is specified recursively as follows. Alice
checks if herx occurs in some type 1Ri. If no, then she
sends a 0 to Bob; if yes, then she sends the indexi and they
continue with the reduced functiong (obtained by shrinking
Alice’s domain toSi), which hasrank(g) = rank(Si) �rank(Mf )=2. If Bob receives a 0, he checks if hisy oc-
curs in some type 2Rj . If no, then he knows that(x; y)
does not occur in anyRi, sof(x; y) = 1 and he sends a
0 to Alice to tell her; if yes, then he sendsj and they con-
tinue with the reduced functiong, which hasrank(g) =rank(Ti) � rank(Mf )=2 becauseRj is type 2. Thus
Alice and Bob either learnf(x; y) or reduce to a func-
tion g with rank(g) � rank(f)=2, at a cost of at most1+ log(
+1) bits. It now follows by induction on the rank
thatD(f) � (1+log(C0(f)+1))(1+log rank(f)). SinceC1(f) = C0(f) andjrank(f) � rank(f)j � 1, we haveD(f) = D(f) � (1+log(C0(f)+1))(1+log rank(f)) �(1 + log(C1(f) + 1))(2 + log rank(f)). 2
B Proof of Theorem 8

Here we prove Theorem 8. The proof uses some
tools from the degree-lower bound proofs of Nisan and
Szegedy [30, Section 3], including the following result
from [12, 34]:

Theorem 9 (Ehlich, Zeller; Rivlin, Cheney) Let p be a
single-variate polynomial of degreedeg(p) such thatb1 �



p(i) � b2 for every integer0 � i � n, and the deriva-
tive satisfiesjp0(x)j � 
 for some real0 � x � n. Thendeg(p) �p
n=(
+ b2 � b1).

A hypergraphis a set systemH � Powf1; : : : ; ng.
The setsE 2 H are called theedgesof H . We callH
an s-hypergraphif all E 2 H satisfy jEj � s. A setS � f1; : : : ; ng is a blocking setfor H if it “hits” every
edge:S \ E 6= ; for all E 2 H .

Lemma 8 Let g : f0; 1gn ! f0; 1g be a Boolean function
for whichg(~0) = 0 andg(ei) = 1, p be a multilinear poly-
nomial that approximatesg (i.e., jg(x) � p(x)j � 1=3 for
all x 2 f0; 1gn), andH be the

pn=12-hypergraph formed
by the set of all monomials ofp that have degree�pn=12.
ThenH has no blocking set of size� n=2.

Proof Assume, by way of contradiction, that there exists
a blocking setS of H with jSj � n=2. Obtain restric-
tionsh andq of g andp, respectively, onn � jSj � n=2
variables by fixing allS-variables to 0. Thenq approxi-
matesh and all monomials ofq have degree<pn=12 (allp-monomials of higher degree have been set to 0 becauseS is a blocking set forH). Sinceq approximatesh we
haveq(~0) 2 [�1=3; 1=3℄, q(ei) 2 [2=3; 4=3℄, andq(x) 2[�1=3; 4=3℄ for all otherx 2 f0; 1gn. By standard sym-
metrization techniques [24, 30], we can turnq into a single-
variate polynomialr of degree<pn=12, such thatr(0) 2[�1=3; 1=3℄, r(1) 2 [2=3; 4=3℄, andr(i) 2 [�1=3; 4=3℄ fori 2 f2; : : : ; n=2g. Sincer(0) � 1=3 andr(1) � 2=3, we
must havep0(x) � 1=3 for some realx 2 [0; 1℄. But thendeg(r) �p(1=3)(n=2)=(1=3+ 4=3 + 1=3) =pn=12 by
Theorem 9, contradiction. Hence there is no blocking setS
with jSj � n=2. 2

The next lemma shows thatH must be large if it has no
blocking set of size� n=2:

Lemma 9 If H is ans-hypergraph of sizem < 2s, thenH
has a blocking set of size� n=2.

Proof We use the probabilistic method to show the exis-
tence of a blocking setS. Randomly choose a setS of n=2
elements. The probability thatS does not hit some specificE 2 H is�n�jEjn=2 �� nn=2� = n2 (n2 � 1) : : : (n2 � jEj+ 1)n(n� 1) : : : (n� jEj+ 1) � 2�jEj:
Then the probability that there is some edgeE 2 H that is
not hit byS isPr[ _E2H S does not hit E℄ � XE2H Pr[S does not hit E℄ �

XE2H 2�jEj � m � 2�s < 1:
Thus with positive probability,S hits all E 2 H , which
proves the existence of a blocking set. 2

The above lemmas allow us to prove:

Theorem 8 If g is a Boolean function, thengmon(g) �2pbs0(g)=12:
Proof Let p be a polynomial that approximatesg withgmon(g) monomials. Letb = bs0(g), andz andS1; : : : ; Sb
be the input and sets that achieve the 0-block sensitivity ofg. We assume without loss of generality thatg(z) = 0.

We derive ab-variable Boolean functionh(y1; : : : ; yb)
from g(x1; : : : ; xn) as follows: if j 2 Si then we replacexj in g by yi, and if j 62 Si for anyi, then we fixxj in g to
the valuezj . Note thath satisfies

1. h(~0) = g(z) = 0
2. h(ei) = g(zSi) = 1 for all unit ei 2 f0; 1gb
3. gmon(h) � gmon(g), because we can easily derive an

approximating polynomial forh from p, without in-
creasing the number of monomials inp.

It follows easily from combining the previous lemmas
that any approximating polynomial forh requires at least2pb=12 monomials, which concludes the proof. 2


